]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2200.c
ath9k_htc: Initialize HW opmode
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include "ipw2200.h"
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84 MODULE_FIRMWARE("ipw2200-ibss.fw");
85 #ifdef CONFIG_IPW2200_MONITOR
86 MODULE_FIRMWARE("ipw2200-sniffer.fw");
87 #endif
88 MODULE_FIRMWARE("ipw2200-bss.fw");
89
90 static int cmdlog = 0;
91 static int debug = 0;
92 static int default_channel = 0;
93 static int network_mode = 0;
94
95 static u32 ipw_debug_level;
96 static int associate;
97 static int auto_create = 1;
98 static int led_support = 0;
99 static int disable = 0;
100 static int bt_coexist = 0;
101 static int hwcrypto = 0;
102 static int roaming = 1;
103 static const char ipw_modes[] = {
104 'a', 'b', 'g', '?'
105 };
106 static int antenna = CFG_SYS_ANTENNA_BOTH;
107
108 #ifdef CONFIG_IPW2200_PROMISCUOUS
109 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
110 #endif
111
112 static struct ieee80211_rate ipw2200_rates[] = {
113 { .bitrate = 10 },
114 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
115 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117 { .bitrate = 60 },
118 { .bitrate = 90 },
119 { .bitrate = 120 },
120 { .bitrate = 180 },
121 { .bitrate = 240 },
122 { .bitrate = 360 },
123 { .bitrate = 480 },
124 { .bitrate = 540 }
125 };
126
127 #define ipw2200_a_rates (ipw2200_rates + 4)
128 #define ipw2200_num_a_rates 8
129 #define ipw2200_bg_rates (ipw2200_rates + 0)
130 #define ipw2200_num_bg_rates 12
131
132 #ifdef CONFIG_IPW2200_QOS
133 static int qos_enable = 0;
134 static int qos_burst_enable = 0;
135 static int qos_no_ack_mask = 0;
136 static int burst_duration_CCK = 0;
137 static int burst_duration_OFDM = 0;
138
139 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
140 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
141 QOS_TX3_CW_MIN_OFDM},
142 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
143 QOS_TX3_CW_MAX_OFDM},
144 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
145 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
146 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
147 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct libipw_qos_parameters def_qos_parameters_CCK = {
151 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
152 QOS_TX3_CW_MIN_CCK},
153 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
154 QOS_TX3_CW_MAX_CCK},
155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
158 QOS_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static struct libipw_qos_parameters def_parameters_OFDM = {
162 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
163 DEF_TX3_CW_MIN_OFDM},
164 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
165 DEF_TX3_CW_MAX_OFDM},
166 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
167 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
168 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
169 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
170 };
171
172 static struct libipw_qos_parameters def_parameters_CCK = {
173 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
174 DEF_TX3_CW_MIN_CCK},
175 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
176 DEF_TX3_CW_MAX_CCK},
177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
180 DEF_TX3_TXOP_LIMIT_CCK}
181 };
182
183 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
184
185 static int from_priority_to_tx_queue[] = {
186 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
187 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
188 };
189
190 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
191
192 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
193 *qos_param);
194 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
195 *qos_param);
196 #endif /* CONFIG_IPW2200_QOS */
197
198 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
199 static void ipw_remove_current_network(struct ipw_priv *priv);
200 static void ipw_rx(struct ipw_priv *priv);
201 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
202 struct clx2_tx_queue *txq, int qindex);
203 static int ipw_queue_reset(struct ipw_priv *priv);
204
205 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
206 int len, int sync);
207
208 static void ipw_tx_queue_free(struct ipw_priv *);
209
210 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
211 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
212 static void ipw_rx_queue_replenish(void *);
213 static int ipw_up(struct ipw_priv *);
214 static void ipw_bg_up(struct work_struct *work);
215 static void ipw_down(struct ipw_priv *);
216 static void ipw_bg_down(struct work_struct *work);
217 static int ipw_config(struct ipw_priv *);
218 static int init_supported_rates(struct ipw_priv *priv,
219 struct ipw_supported_rates *prates);
220 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
221 static void ipw_send_wep_keys(struct ipw_priv *, int);
222
223 static int snprint_line(char *buf, size_t count,
224 const u8 * data, u32 len, u32 ofs)
225 {
226 int out, i, j, l;
227 char c;
228
229 out = snprintf(buf, count, "%08X", ofs);
230
231 for (l = 0, i = 0; i < 2; i++) {
232 out += snprintf(buf + out, count - out, " ");
233 for (j = 0; j < 8 && l < len; j++, l++)
234 out += snprintf(buf + out, count - out, "%02X ",
235 data[(i * 8 + j)]);
236 for (; j < 8; j++)
237 out += snprintf(buf + out, count - out, " ");
238 }
239
240 out += snprintf(buf + out, count - out, " ");
241 for (l = 0, i = 0; i < 2; i++) {
242 out += snprintf(buf + out, count - out, " ");
243 for (j = 0; j < 8 && l < len; j++, l++) {
244 c = data[(i * 8 + j)];
245 if (!isascii(c) || !isprint(c))
246 c = '.';
247
248 out += snprintf(buf + out, count - out, "%c", c);
249 }
250
251 for (; j < 8; j++)
252 out += snprintf(buf + out, count - out, " ");
253 }
254
255 return out;
256 }
257
258 static void printk_buf(int level, const u8 * data, u32 len)
259 {
260 char line[81];
261 u32 ofs = 0;
262 if (!(ipw_debug_level & level))
263 return;
264
265 while (len) {
266 snprint_line(line, sizeof(line), &data[ofs],
267 min(len, 16U), ofs);
268 printk(KERN_DEBUG "%s\n", line);
269 ofs += 16;
270 len -= min(len, 16U);
271 }
272 }
273
274 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
275 {
276 size_t out = size;
277 u32 ofs = 0;
278 int total = 0;
279
280 while (size && len) {
281 out = snprint_line(output, size, &data[ofs],
282 min_t(size_t, len, 16U), ofs);
283
284 ofs += 16;
285 output += out;
286 size -= out;
287 len -= min_t(size_t, len, 16U);
288 total += out;
289 }
290 return total;
291 }
292
293 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
294 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
295 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
296
297 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
298 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
299 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
300
301 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
302 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
303 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
304 {
305 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
306 __LINE__, (u32) (b), (u32) (c));
307 _ipw_write_reg8(a, b, c);
308 }
309
310 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
311 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
312 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
313 {
314 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
315 __LINE__, (u32) (b), (u32) (c));
316 _ipw_write_reg16(a, b, c);
317 }
318
319 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
320 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
321 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
322 {
323 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
324 __LINE__, (u32) (b), (u32) (c));
325 _ipw_write_reg32(a, b, c);
326 }
327
328 /* 8-bit direct write (low 4K) */
329 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
330 u8 val)
331 {
332 writeb(val, ipw->hw_base + ofs);
333 }
334
335 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
336 #define ipw_write8(ipw, ofs, val) do { \
337 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
338 __LINE__, (u32)(ofs), (u32)(val)); \
339 _ipw_write8(ipw, ofs, val); \
340 } while (0)
341
342 /* 16-bit direct write (low 4K) */
343 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
344 u16 val)
345 {
346 writew(val, ipw->hw_base + ofs);
347 }
348
349 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
350 #define ipw_write16(ipw, ofs, val) do { \
351 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
352 __LINE__, (u32)(ofs), (u32)(val)); \
353 _ipw_write16(ipw, ofs, val); \
354 } while (0)
355
356 /* 32-bit direct write (low 4K) */
357 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
358 u32 val)
359 {
360 writel(val, ipw->hw_base + ofs);
361 }
362
363 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
364 #define ipw_write32(ipw, ofs, val) do { \
365 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
366 __LINE__, (u32)(ofs), (u32)(val)); \
367 _ipw_write32(ipw, ofs, val); \
368 } while (0)
369
370 /* 8-bit direct read (low 4K) */
371 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
372 {
373 return readb(ipw->hw_base + ofs);
374 }
375
376 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
377 #define ipw_read8(ipw, ofs) ({ \
378 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
379 (u32)(ofs)); \
380 _ipw_read8(ipw, ofs); \
381 })
382
383 /* 16-bit direct read (low 4K) */
384 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
385 {
386 return readw(ipw->hw_base + ofs);
387 }
388
389 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
390 #define ipw_read16(ipw, ofs) ({ \
391 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
392 (u32)(ofs)); \
393 _ipw_read16(ipw, ofs); \
394 })
395
396 /* 32-bit direct read (low 4K) */
397 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
398 {
399 return readl(ipw->hw_base + ofs);
400 }
401
402 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
403 #define ipw_read32(ipw, ofs) ({ \
404 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
405 (u32)(ofs)); \
406 _ipw_read32(ipw, ofs); \
407 })
408
409 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
410 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
411 #define ipw_read_indirect(a, b, c, d) ({ \
412 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
413 __LINE__, (u32)(b), (u32)(d)); \
414 _ipw_read_indirect(a, b, c, d); \
415 })
416
417 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
418 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
419 int num);
420 #define ipw_write_indirect(a, b, c, d) do { \
421 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
422 __LINE__, (u32)(b), (u32)(d)); \
423 _ipw_write_indirect(a, b, c, d); \
424 } while (0)
425
426 /* 32-bit indirect write (above 4K) */
427 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
428 {
429 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
430 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
431 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
432 }
433
434 /* 8-bit indirect write (above 4K) */
435 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
436 {
437 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
438 u32 dif_len = reg - aligned_addr;
439
440 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
441 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
442 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
443 }
444
445 /* 16-bit indirect write (above 4K) */
446 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
447 {
448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
449 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
450
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 8-bit indirect read (above 4K) */
457 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
458 {
459 u32 word;
460 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
461 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
462 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
463 return (word >> ((reg & 0x3) * 8)) & 0xff;
464 }
465
466 /* 32-bit indirect read (above 4K) */
467 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
468 {
469 u32 value;
470
471 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
472
473 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
474 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
475 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
476 return value;
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
480 /* for area above 1st 4K of SRAM/reg space */
481 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 int num)
483 {
484 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
485 u32 dif_len = addr - aligned_addr;
486 u32 i;
487
488 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490 if (num <= 0) {
491 return;
492 }
493
494 /* Read the first dword (or portion) byte by byte */
495 if (unlikely(dif_len)) {
496 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497 /* Start reading at aligned_addr + dif_len */
498 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
499 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
500 aligned_addr += 4;
501 }
502
503 /* Read all of the middle dwords as dwords, with auto-increment */
504 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
507
508 /* Read the last dword (or portion) byte by byte */
509 if (unlikely(num)) {
510 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511 for (i = 0; num > 0; i++, num--)
512 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
513 }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /* for area above 1st 4K of SRAM/reg space */
518 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
519 int num)
520 {
521 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
522 u32 dif_len = addr - aligned_addr;
523 u32 i;
524
525 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
526
527 if (num <= 0) {
528 return;
529 }
530
531 /* Write the first dword (or portion) byte by byte */
532 if (unlikely(dif_len)) {
533 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
534 /* Start writing at aligned_addr + dif_len */
535 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
536 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
537 aligned_addr += 4;
538 }
539
540 /* Write all of the middle dwords as dwords, with auto-increment */
541 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
542 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
543 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
544
545 /* Write the last dword (or portion) byte by byte */
546 if (unlikely(num)) {
547 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
548 for (i = 0; num > 0; i++, num--, buf++)
549 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
550 }
551 }
552
553 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
554 /* for 1st 4K of SRAM/regs space */
555 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
556 int num)
557 {
558 memcpy_toio((priv->hw_base + addr), buf, num);
559 }
560
561 /* Set bit(s) in low 4K of SRAM/regs */
562 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
563 {
564 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
565 }
566
567 /* Clear bit(s) in low 4K of SRAM/regs */
568 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
569 {
570 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
571 }
572
573 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
574 {
575 if (priv->status & STATUS_INT_ENABLED)
576 return;
577 priv->status |= STATUS_INT_ENABLED;
578 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
579 }
580
581 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
582 {
583 if (!(priv->status & STATUS_INT_ENABLED))
584 return;
585 priv->status &= ~STATUS_INT_ENABLED;
586 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
587 }
588
589 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
590 {
591 unsigned long flags;
592
593 spin_lock_irqsave(&priv->irq_lock, flags);
594 __ipw_enable_interrupts(priv);
595 spin_unlock_irqrestore(&priv->irq_lock, flags);
596 }
597
598 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
599 {
600 unsigned long flags;
601
602 spin_lock_irqsave(&priv->irq_lock, flags);
603 __ipw_disable_interrupts(priv);
604 spin_unlock_irqrestore(&priv->irq_lock, flags);
605 }
606
607 static char *ipw_error_desc(u32 val)
608 {
609 switch (val) {
610 case IPW_FW_ERROR_OK:
611 return "ERROR_OK";
612 case IPW_FW_ERROR_FAIL:
613 return "ERROR_FAIL";
614 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
615 return "MEMORY_UNDERFLOW";
616 case IPW_FW_ERROR_MEMORY_OVERFLOW:
617 return "MEMORY_OVERFLOW";
618 case IPW_FW_ERROR_BAD_PARAM:
619 return "BAD_PARAM";
620 case IPW_FW_ERROR_BAD_CHECKSUM:
621 return "BAD_CHECKSUM";
622 case IPW_FW_ERROR_NMI_INTERRUPT:
623 return "NMI_INTERRUPT";
624 case IPW_FW_ERROR_BAD_DATABASE:
625 return "BAD_DATABASE";
626 case IPW_FW_ERROR_ALLOC_FAIL:
627 return "ALLOC_FAIL";
628 case IPW_FW_ERROR_DMA_UNDERRUN:
629 return "DMA_UNDERRUN";
630 case IPW_FW_ERROR_DMA_STATUS:
631 return "DMA_STATUS";
632 case IPW_FW_ERROR_DINO_ERROR:
633 return "DINO_ERROR";
634 case IPW_FW_ERROR_EEPROM_ERROR:
635 return "EEPROM_ERROR";
636 case IPW_FW_ERROR_SYSASSERT:
637 return "SYSASSERT";
638 case IPW_FW_ERROR_FATAL_ERROR:
639 return "FATAL_ERROR";
640 default:
641 return "UNKNOWN_ERROR";
642 }
643 }
644
645 static void ipw_dump_error_log(struct ipw_priv *priv,
646 struct ipw_fw_error *error)
647 {
648 u32 i;
649
650 if (!error) {
651 IPW_ERROR("Error allocating and capturing error log. "
652 "Nothing to dump.\n");
653 return;
654 }
655
656 IPW_ERROR("Start IPW Error Log Dump:\n");
657 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
658 error->status, error->config);
659
660 for (i = 0; i < error->elem_len; i++)
661 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
662 ipw_error_desc(error->elem[i].desc),
663 error->elem[i].time,
664 error->elem[i].blink1,
665 error->elem[i].blink2,
666 error->elem[i].link1,
667 error->elem[i].link2, error->elem[i].data);
668 for (i = 0; i < error->log_len; i++)
669 IPW_ERROR("%i\t0x%08x\t%i\n",
670 error->log[i].time,
671 error->log[i].data, error->log[i].event);
672 }
673
674 static inline int ipw_is_init(struct ipw_priv *priv)
675 {
676 return (priv->status & STATUS_INIT) ? 1 : 0;
677 }
678
679 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
680 {
681 u32 addr, field_info, field_len, field_count, total_len;
682
683 IPW_DEBUG_ORD("ordinal = %i\n", ord);
684
685 if (!priv || !val || !len) {
686 IPW_DEBUG_ORD("Invalid argument\n");
687 return -EINVAL;
688 }
689
690 /* verify device ordinal tables have been initialized */
691 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
692 IPW_DEBUG_ORD("Access ordinals before initialization\n");
693 return -EINVAL;
694 }
695
696 switch (IPW_ORD_TABLE_ID_MASK & ord) {
697 case IPW_ORD_TABLE_0_MASK:
698 /*
699 * TABLE 0: Direct access to a table of 32 bit values
700 *
701 * This is a very simple table with the data directly
702 * read from the table
703 */
704
705 /* remove the table id from the ordinal */
706 ord &= IPW_ORD_TABLE_VALUE_MASK;
707
708 /* boundary check */
709 if (ord > priv->table0_len) {
710 IPW_DEBUG_ORD("ordinal value (%i) longer then "
711 "max (%i)\n", ord, priv->table0_len);
712 return -EINVAL;
713 }
714
715 /* verify we have enough room to store the value */
716 if (*len < sizeof(u32)) {
717 IPW_DEBUG_ORD("ordinal buffer length too small, "
718 "need %zd\n", sizeof(u32));
719 return -EINVAL;
720 }
721
722 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
723 ord, priv->table0_addr + (ord << 2));
724
725 *len = sizeof(u32);
726 ord <<= 2;
727 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
728 break;
729
730 case IPW_ORD_TABLE_1_MASK:
731 /*
732 * TABLE 1: Indirect access to a table of 32 bit values
733 *
734 * This is a fairly large table of u32 values each
735 * representing starting addr for the data (which is
736 * also a u32)
737 */
738
739 /* remove the table id from the ordinal */
740 ord &= IPW_ORD_TABLE_VALUE_MASK;
741
742 /* boundary check */
743 if (ord > priv->table1_len) {
744 IPW_DEBUG_ORD("ordinal value too long\n");
745 return -EINVAL;
746 }
747
748 /* verify we have enough room to store the value */
749 if (*len < sizeof(u32)) {
750 IPW_DEBUG_ORD("ordinal buffer length too small, "
751 "need %zd\n", sizeof(u32));
752 return -EINVAL;
753 }
754
755 *((u32 *) val) =
756 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
757 *len = sizeof(u32);
758 break;
759
760 case IPW_ORD_TABLE_2_MASK:
761 /*
762 * TABLE 2: Indirect access to a table of variable sized values
763 *
764 * This table consist of six values, each containing
765 * - dword containing the starting offset of the data
766 * - dword containing the lengh in the first 16bits
767 * and the count in the second 16bits
768 */
769
770 /* remove the table id from the ordinal */
771 ord &= IPW_ORD_TABLE_VALUE_MASK;
772
773 /* boundary check */
774 if (ord > priv->table2_len) {
775 IPW_DEBUG_ORD("ordinal value too long\n");
776 return -EINVAL;
777 }
778
779 /* get the address of statistic */
780 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
781
782 /* get the second DW of statistics ;
783 * two 16-bit words - first is length, second is count */
784 field_info =
785 ipw_read_reg32(priv,
786 priv->table2_addr + (ord << 3) +
787 sizeof(u32));
788
789 /* get each entry length */
790 field_len = *((u16 *) & field_info);
791
792 /* get number of entries */
793 field_count = *(((u16 *) & field_info) + 1);
794
795 /* abort if not enough memory */
796 total_len = field_len * field_count;
797 if (total_len > *len) {
798 *len = total_len;
799 return -EINVAL;
800 }
801
802 *len = total_len;
803 if (!total_len)
804 return 0;
805
806 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
807 "field_info = 0x%08x\n",
808 addr, total_len, field_info);
809 ipw_read_indirect(priv, addr, val, total_len);
810 break;
811
812 default:
813 IPW_DEBUG_ORD("Invalid ordinal!\n");
814 return -EINVAL;
815
816 }
817
818 return 0;
819 }
820
821 static void ipw_init_ordinals(struct ipw_priv *priv)
822 {
823 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
824 priv->table0_len = ipw_read32(priv, priv->table0_addr);
825
826 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
827 priv->table0_addr, priv->table0_len);
828
829 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
830 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
831
832 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
833 priv->table1_addr, priv->table1_len);
834
835 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
836 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
837 priv->table2_len &= 0x0000ffff; /* use first two bytes */
838
839 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
840 priv->table2_addr, priv->table2_len);
841
842 }
843
844 static u32 ipw_register_toggle(u32 reg)
845 {
846 reg &= ~IPW_START_STANDBY;
847 if (reg & IPW_GATE_ODMA)
848 reg &= ~IPW_GATE_ODMA;
849 if (reg & IPW_GATE_IDMA)
850 reg &= ~IPW_GATE_IDMA;
851 if (reg & IPW_GATE_ADMA)
852 reg &= ~IPW_GATE_ADMA;
853 return reg;
854 }
855
856 /*
857 * LED behavior:
858 * - On radio ON, turn on any LEDs that require to be on during start
859 * - On initialization, start unassociated blink
860 * - On association, disable unassociated blink
861 * - On disassociation, start unassociated blink
862 * - On radio OFF, turn off any LEDs started during radio on
863 *
864 */
865 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
866 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
867 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
868
869 static void ipw_led_link_on(struct ipw_priv *priv)
870 {
871 unsigned long flags;
872 u32 led;
873
874 /* If configured to not use LEDs, or nic_type is 1,
875 * then we don't toggle a LINK led */
876 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
877 return;
878
879 spin_lock_irqsave(&priv->lock, flags);
880
881 if (!(priv->status & STATUS_RF_KILL_MASK) &&
882 !(priv->status & STATUS_LED_LINK_ON)) {
883 IPW_DEBUG_LED("Link LED On\n");
884 led = ipw_read_reg32(priv, IPW_EVENT_REG);
885 led |= priv->led_association_on;
886
887 led = ipw_register_toggle(led);
888
889 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
890 ipw_write_reg32(priv, IPW_EVENT_REG, led);
891
892 priv->status |= STATUS_LED_LINK_ON;
893
894 /* If we aren't associated, schedule turning the LED off */
895 if (!(priv->status & STATUS_ASSOCIATED))
896 queue_delayed_work(priv->workqueue,
897 &priv->led_link_off,
898 LD_TIME_LINK_ON);
899 }
900
901 spin_unlock_irqrestore(&priv->lock, flags);
902 }
903
904 static void ipw_bg_led_link_on(struct work_struct *work)
905 {
906 struct ipw_priv *priv =
907 container_of(work, struct ipw_priv, led_link_on.work);
908 mutex_lock(&priv->mutex);
909 ipw_led_link_on(priv);
910 mutex_unlock(&priv->mutex);
911 }
912
913 static void ipw_led_link_off(struct ipw_priv *priv)
914 {
915 unsigned long flags;
916 u32 led;
917
918 /* If configured not to use LEDs, or nic type is 1,
919 * then we don't goggle the LINK led. */
920 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
921 return;
922
923 spin_lock_irqsave(&priv->lock, flags);
924
925 if (priv->status & STATUS_LED_LINK_ON) {
926 led = ipw_read_reg32(priv, IPW_EVENT_REG);
927 led &= priv->led_association_off;
928 led = ipw_register_toggle(led);
929
930 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
931 ipw_write_reg32(priv, IPW_EVENT_REG, led);
932
933 IPW_DEBUG_LED("Link LED Off\n");
934
935 priv->status &= ~STATUS_LED_LINK_ON;
936
937 /* If we aren't associated and the radio is on, schedule
938 * turning the LED on (blink while unassociated) */
939 if (!(priv->status & STATUS_RF_KILL_MASK) &&
940 !(priv->status & STATUS_ASSOCIATED))
941 queue_delayed_work(priv->workqueue, &priv->led_link_on,
942 LD_TIME_LINK_OFF);
943
944 }
945
946 spin_unlock_irqrestore(&priv->lock, flags);
947 }
948
949 static void ipw_bg_led_link_off(struct work_struct *work)
950 {
951 struct ipw_priv *priv =
952 container_of(work, struct ipw_priv, led_link_off.work);
953 mutex_lock(&priv->mutex);
954 ipw_led_link_off(priv);
955 mutex_unlock(&priv->mutex);
956 }
957
958 static void __ipw_led_activity_on(struct ipw_priv *priv)
959 {
960 u32 led;
961
962 if (priv->config & CFG_NO_LED)
963 return;
964
965 if (priv->status & STATUS_RF_KILL_MASK)
966 return;
967
968 if (!(priv->status & STATUS_LED_ACT_ON)) {
969 led = ipw_read_reg32(priv, IPW_EVENT_REG);
970 led |= priv->led_activity_on;
971
972 led = ipw_register_toggle(led);
973
974 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
975 ipw_write_reg32(priv, IPW_EVENT_REG, led);
976
977 IPW_DEBUG_LED("Activity LED On\n");
978
979 priv->status |= STATUS_LED_ACT_ON;
980
981 cancel_delayed_work(&priv->led_act_off);
982 queue_delayed_work(priv->workqueue, &priv->led_act_off,
983 LD_TIME_ACT_ON);
984 } else {
985 /* Reschedule LED off for full time period */
986 cancel_delayed_work(&priv->led_act_off);
987 queue_delayed_work(priv->workqueue, &priv->led_act_off,
988 LD_TIME_ACT_ON);
989 }
990 }
991
992 #if 0
993 void ipw_led_activity_on(struct ipw_priv *priv)
994 {
995 unsigned long flags;
996 spin_lock_irqsave(&priv->lock, flags);
997 __ipw_led_activity_on(priv);
998 spin_unlock_irqrestore(&priv->lock, flags);
999 }
1000 #endif /* 0 */
1001
1002 static void ipw_led_activity_off(struct ipw_priv *priv)
1003 {
1004 unsigned long flags;
1005 u32 led;
1006
1007 if (priv->config & CFG_NO_LED)
1008 return;
1009
1010 spin_lock_irqsave(&priv->lock, flags);
1011
1012 if (priv->status & STATUS_LED_ACT_ON) {
1013 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1014 led &= priv->led_activity_off;
1015
1016 led = ipw_register_toggle(led);
1017
1018 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1019 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1020
1021 IPW_DEBUG_LED("Activity LED Off\n");
1022
1023 priv->status &= ~STATUS_LED_ACT_ON;
1024 }
1025
1026 spin_unlock_irqrestore(&priv->lock, flags);
1027 }
1028
1029 static void ipw_bg_led_activity_off(struct work_struct *work)
1030 {
1031 struct ipw_priv *priv =
1032 container_of(work, struct ipw_priv, led_act_off.work);
1033 mutex_lock(&priv->mutex);
1034 ipw_led_activity_off(priv);
1035 mutex_unlock(&priv->mutex);
1036 }
1037
1038 static void ipw_led_band_on(struct ipw_priv *priv)
1039 {
1040 unsigned long flags;
1041 u32 led;
1042
1043 /* Only nic type 1 supports mode LEDs */
1044 if (priv->config & CFG_NO_LED ||
1045 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1046 return;
1047
1048 spin_lock_irqsave(&priv->lock, flags);
1049
1050 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1051 if (priv->assoc_network->mode == IEEE_A) {
1052 led |= priv->led_ofdm_on;
1053 led &= priv->led_association_off;
1054 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1055 } else if (priv->assoc_network->mode == IEEE_G) {
1056 led |= priv->led_ofdm_on;
1057 led |= priv->led_association_on;
1058 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1059 } else {
1060 led &= priv->led_ofdm_off;
1061 led |= priv->led_association_on;
1062 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1063 }
1064
1065 led = ipw_register_toggle(led);
1066
1067 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1068 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1069
1070 spin_unlock_irqrestore(&priv->lock, flags);
1071 }
1072
1073 static void ipw_led_band_off(struct ipw_priv *priv)
1074 {
1075 unsigned long flags;
1076 u32 led;
1077
1078 /* Only nic type 1 supports mode LEDs */
1079 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1080 return;
1081
1082 spin_lock_irqsave(&priv->lock, flags);
1083
1084 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1085 led &= priv->led_ofdm_off;
1086 led &= priv->led_association_off;
1087
1088 led = ipw_register_toggle(led);
1089
1090 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1091 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1092
1093 spin_unlock_irqrestore(&priv->lock, flags);
1094 }
1095
1096 static void ipw_led_radio_on(struct ipw_priv *priv)
1097 {
1098 ipw_led_link_on(priv);
1099 }
1100
1101 static void ipw_led_radio_off(struct ipw_priv *priv)
1102 {
1103 ipw_led_activity_off(priv);
1104 ipw_led_link_off(priv);
1105 }
1106
1107 static void ipw_led_link_up(struct ipw_priv *priv)
1108 {
1109 /* Set the Link Led on for all nic types */
1110 ipw_led_link_on(priv);
1111 }
1112
1113 static void ipw_led_link_down(struct ipw_priv *priv)
1114 {
1115 ipw_led_activity_off(priv);
1116 ipw_led_link_off(priv);
1117
1118 if (priv->status & STATUS_RF_KILL_MASK)
1119 ipw_led_radio_off(priv);
1120 }
1121
1122 static void ipw_led_init(struct ipw_priv *priv)
1123 {
1124 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1125
1126 /* Set the default PINs for the link and activity leds */
1127 priv->led_activity_on = IPW_ACTIVITY_LED;
1128 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1129
1130 priv->led_association_on = IPW_ASSOCIATED_LED;
1131 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1132
1133 /* Set the default PINs for the OFDM leds */
1134 priv->led_ofdm_on = IPW_OFDM_LED;
1135 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1136
1137 switch (priv->nic_type) {
1138 case EEPROM_NIC_TYPE_1:
1139 /* In this NIC type, the LEDs are reversed.... */
1140 priv->led_activity_on = IPW_ASSOCIATED_LED;
1141 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1142 priv->led_association_on = IPW_ACTIVITY_LED;
1143 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1144
1145 if (!(priv->config & CFG_NO_LED))
1146 ipw_led_band_on(priv);
1147
1148 /* And we don't blink link LEDs for this nic, so
1149 * just return here */
1150 return;
1151
1152 case EEPROM_NIC_TYPE_3:
1153 case EEPROM_NIC_TYPE_2:
1154 case EEPROM_NIC_TYPE_4:
1155 case EEPROM_NIC_TYPE_0:
1156 break;
1157
1158 default:
1159 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1160 priv->nic_type);
1161 priv->nic_type = EEPROM_NIC_TYPE_0;
1162 break;
1163 }
1164
1165 if (!(priv->config & CFG_NO_LED)) {
1166 if (priv->status & STATUS_ASSOCIATED)
1167 ipw_led_link_on(priv);
1168 else
1169 ipw_led_link_off(priv);
1170 }
1171 }
1172
1173 static void ipw_led_shutdown(struct ipw_priv *priv)
1174 {
1175 ipw_led_activity_off(priv);
1176 ipw_led_link_off(priv);
1177 ipw_led_band_off(priv);
1178 cancel_delayed_work(&priv->led_link_on);
1179 cancel_delayed_work(&priv->led_link_off);
1180 cancel_delayed_work(&priv->led_act_off);
1181 }
1182
1183 /*
1184 * The following adds a new attribute to the sysfs representation
1185 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1186 * used for controling the debug level.
1187 *
1188 * See the level definitions in ipw for details.
1189 */
1190 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1191 {
1192 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1193 }
1194
1195 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1196 size_t count)
1197 {
1198 char *p = (char *)buf;
1199 u32 val;
1200
1201 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1202 p++;
1203 if (p[0] == 'x' || p[0] == 'X')
1204 p++;
1205 val = simple_strtoul(p, &p, 16);
1206 } else
1207 val = simple_strtoul(p, &p, 10);
1208 if (p == buf)
1209 printk(KERN_INFO DRV_NAME
1210 ": %s is not in hex or decimal form.\n", buf);
1211 else
1212 ipw_debug_level = val;
1213
1214 return strnlen(buf, count);
1215 }
1216
1217 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1218 show_debug_level, store_debug_level);
1219
1220 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1221 {
1222 /* length = 1st dword in log */
1223 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1224 }
1225
1226 static void ipw_capture_event_log(struct ipw_priv *priv,
1227 u32 log_len, struct ipw_event *log)
1228 {
1229 u32 base;
1230
1231 if (log_len) {
1232 base = ipw_read32(priv, IPW_EVENT_LOG);
1233 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1234 (u8 *) log, sizeof(*log) * log_len);
1235 }
1236 }
1237
1238 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1239 {
1240 struct ipw_fw_error *error;
1241 u32 log_len = ipw_get_event_log_len(priv);
1242 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1243 u32 elem_len = ipw_read_reg32(priv, base);
1244
1245 error = kmalloc(sizeof(*error) +
1246 sizeof(*error->elem) * elem_len +
1247 sizeof(*error->log) * log_len, GFP_ATOMIC);
1248 if (!error) {
1249 IPW_ERROR("Memory allocation for firmware error log "
1250 "failed.\n");
1251 return NULL;
1252 }
1253 error->jiffies = jiffies;
1254 error->status = priv->status;
1255 error->config = priv->config;
1256 error->elem_len = elem_len;
1257 error->log_len = log_len;
1258 error->elem = (struct ipw_error_elem *)error->payload;
1259 error->log = (struct ipw_event *)(error->elem + elem_len);
1260
1261 ipw_capture_event_log(priv, log_len, error->log);
1262
1263 if (elem_len)
1264 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1265 sizeof(*error->elem) * elem_len);
1266
1267 return error;
1268 }
1269
1270 static ssize_t show_event_log(struct device *d,
1271 struct device_attribute *attr, char *buf)
1272 {
1273 struct ipw_priv *priv = dev_get_drvdata(d);
1274 u32 log_len = ipw_get_event_log_len(priv);
1275 u32 log_size;
1276 struct ipw_event *log;
1277 u32 len = 0, i;
1278
1279 /* not using min() because of its strict type checking */
1280 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1281 sizeof(*log) * log_len : PAGE_SIZE;
1282 log = kzalloc(log_size, GFP_KERNEL);
1283 if (!log) {
1284 IPW_ERROR("Unable to allocate memory for log\n");
1285 return 0;
1286 }
1287 log_len = log_size / sizeof(*log);
1288 ipw_capture_event_log(priv, log_len, log);
1289
1290 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1291 for (i = 0; i < log_len; i++)
1292 len += snprintf(buf + len, PAGE_SIZE - len,
1293 "\n%08X%08X%08X",
1294 log[i].time, log[i].event, log[i].data);
1295 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1296 kfree(log);
1297 return len;
1298 }
1299
1300 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1301
1302 static ssize_t show_error(struct device *d,
1303 struct device_attribute *attr, char *buf)
1304 {
1305 struct ipw_priv *priv = dev_get_drvdata(d);
1306 u32 len = 0, i;
1307 if (!priv->error)
1308 return 0;
1309 len += snprintf(buf + len, PAGE_SIZE - len,
1310 "%08lX%08X%08X%08X",
1311 priv->error->jiffies,
1312 priv->error->status,
1313 priv->error->config, priv->error->elem_len);
1314 for (i = 0; i < priv->error->elem_len; i++)
1315 len += snprintf(buf + len, PAGE_SIZE - len,
1316 "\n%08X%08X%08X%08X%08X%08X%08X",
1317 priv->error->elem[i].time,
1318 priv->error->elem[i].desc,
1319 priv->error->elem[i].blink1,
1320 priv->error->elem[i].blink2,
1321 priv->error->elem[i].link1,
1322 priv->error->elem[i].link2,
1323 priv->error->elem[i].data);
1324
1325 len += snprintf(buf + len, PAGE_SIZE - len,
1326 "\n%08X", priv->error->log_len);
1327 for (i = 0; i < priv->error->log_len; i++)
1328 len += snprintf(buf + len, PAGE_SIZE - len,
1329 "\n%08X%08X%08X",
1330 priv->error->log[i].time,
1331 priv->error->log[i].event,
1332 priv->error->log[i].data);
1333 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1334 return len;
1335 }
1336
1337 static ssize_t clear_error(struct device *d,
1338 struct device_attribute *attr,
1339 const char *buf, size_t count)
1340 {
1341 struct ipw_priv *priv = dev_get_drvdata(d);
1342
1343 kfree(priv->error);
1344 priv->error = NULL;
1345 return count;
1346 }
1347
1348 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1349
1350 static ssize_t show_cmd_log(struct device *d,
1351 struct device_attribute *attr, char *buf)
1352 {
1353 struct ipw_priv *priv = dev_get_drvdata(d);
1354 u32 len = 0, i;
1355 if (!priv->cmdlog)
1356 return 0;
1357 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1358 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1359 i = (i + 1) % priv->cmdlog_len) {
1360 len +=
1361 snprintf(buf + len, PAGE_SIZE - len,
1362 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1363 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1364 priv->cmdlog[i].cmd.len);
1365 len +=
1366 snprintk_buf(buf + len, PAGE_SIZE - len,
1367 (u8 *) priv->cmdlog[i].cmd.param,
1368 priv->cmdlog[i].cmd.len);
1369 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1370 }
1371 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1372 return len;
1373 }
1374
1375 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1376
1377 #ifdef CONFIG_IPW2200_PROMISCUOUS
1378 static void ipw_prom_free(struct ipw_priv *priv);
1379 static int ipw_prom_alloc(struct ipw_priv *priv);
1380 static ssize_t store_rtap_iface(struct device *d,
1381 struct device_attribute *attr,
1382 const char *buf, size_t count)
1383 {
1384 struct ipw_priv *priv = dev_get_drvdata(d);
1385 int rc = 0;
1386
1387 if (count < 1)
1388 return -EINVAL;
1389
1390 switch (buf[0]) {
1391 case '0':
1392 if (!rtap_iface)
1393 return count;
1394
1395 if (netif_running(priv->prom_net_dev)) {
1396 IPW_WARNING("Interface is up. Cannot unregister.\n");
1397 return count;
1398 }
1399
1400 ipw_prom_free(priv);
1401 rtap_iface = 0;
1402 break;
1403
1404 case '1':
1405 if (rtap_iface)
1406 return count;
1407
1408 rc = ipw_prom_alloc(priv);
1409 if (!rc)
1410 rtap_iface = 1;
1411 break;
1412
1413 default:
1414 return -EINVAL;
1415 }
1416
1417 if (rc) {
1418 IPW_ERROR("Failed to register promiscuous network "
1419 "device (error %d).\n", rc);
1420 }
1421
1422 return count;
1423 }
1424
1425 static ssize_t show_rtap_iface(struct device *d,
1426 struct device_attribute *attr,
1427 char *buf)
1428 {
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 if (rtap_iface)
1431 return sprintf(buf, "%s", priv->prom_net_dev->name);
1432 else {
1433 buf[0] = '-';
1434 buf[1] = '1';
1435 buf[2] = '\0';
1436 return 3;
1437 }
1438 }
1439
1440 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1441 store_rtap_iface);
1442
1443 static ssize_t store_rtap_filter(struct device *d,
1444 struct device_attribute *attr,
1445 const char *buf, size_t count)
1446 {
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448
1449 if (!priv->prom_priv) {
1450 IPW_ERROR("Attempting to set filter without "
1451 "rtap_iface enabled.\n");
1452 return -EPERM;
1453 }
1454
1455 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1456
1457 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1458 BIT_ARG16(priv->prom_priv->filter));
1459
1460 return count;
1461 }
1462
1463 static ssize_t show_rtap_filter(struct device *d,
1464 struct device_attribute *attr,
1465 char *buf)
1466 {
1467 struct ipw_priv *priv = dev_get_drvdata(d);
1468 return sprintf(buf, "0x%04X",
1469 priv->prom_priv ? priv->prom_priv->filter : 0);
1470 }
1471
1472 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1473 store_rtap_filter);
1474 #endif
1475
1476 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1477 char *buf)
1478 {
1479 struct ipw_priv *priv = dev_get_drvdata(d);
1480 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1481 }
1482
1483 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1484 const char *buf, size_t count)
1485 {
1486 struct ipw_priv *priv = dev_get_drvdata(d);
1487 struct net_device *dev = priv->net_dev;
1488 char buffer[] = "00000000";
1489 unsigned long len =
1490 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1491 unsigned long val;
1492 char *p = buffer;
1493
1494 IPW_DEBUG_INFO("enter\n");
1495
1496 strncpy(buffer, buf, len);
1497 buffer[len] = 0;
1498
1499 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1500 p++;
1501 if (p[0] == 'x' || p[0] == 'X')
1502 p++;
1503 val = simple_strtoul(p, &p, 16);
1504 } else
1505 val = simple_strtoul(p, &p, 10);
1506 if (p == buffer) {
1507 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1508 } else {
1509 priv->ieee->scan_age = val;
1510 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1511 }
1512
1513 IPW_DEBUG_INFO("exit\n");
1514 return len;
1515 }
1516
1517 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1518
1519 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1520 char *buf)
1521 {
1522 struct ipw_priv *priv = dev_get_drvdata(d);
1523 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1524 }
1525
1526 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1527 const char *buf, size_t count)
1528 {
1529 struct ipw_priv *priv = dev_get_drvdata(d);
1530
1531 IPW_DEBUG_INFO("enter\n");
1532
1533 if (count == 0)
1534 return 0;
1535
1536 if (*buf == 0) {
1537 IPW_DEBUG_LED("Disabling LED control.\n");
1538 priv->config |= CFG_NO_LED;
1539 ipw_led_shutdown(priv);
1540 } else {
1541 IPW_DEBUG_LED("Enabling LED control.\n");
1542 priv->config &= ~CFG_NO_LED;
1543 ipw_led_init(priv);
1544 }
1545
1546 IPW_DEBUG_INFO("exit\n");
1547 return count;
1548 }
1549
1550 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1551
1552 static ssize_t show_status(struct device *d,
1553 struct device_attribute *attr, char *buf)
1554 {
1555 struct ipw_priv *p = dev_get_drvdata(d);
1556 return sprintf(buf, "0x%08x\n", (int)p->status);
1557 }
1558
1559 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1560
1561 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1562 char *buf)
1563 {
1564 struct ipw_priv *p = dev_get_drvdata(d);
1565 return sprintf(buf, "0x%08x\n", (int)p->config);
1566 }
1567
1568 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1569
1570 static ssize_t show_nic_type(struct device *d,
1571 struct device_attribute *attr, char *buf)
1572 {
1573 struct ipw_priv *priv = dev_get_drvdata(d);
1574 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1575 }
1576
1577 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1578
1579 static ssize_t show_ucode_version(struct device *d,
1580 struct device_attribute *attr, char *buf)
1581 {
1582 u32 len = sizeof(u32), tmp = 0;
1583 struct ipw_priv *p = dev_get_drvdata(d);
1584
1585 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1586 return 0;
1587
1588 return sprintf(buf, "0x%08x\n", tmp);
1589 }
1590
1591 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1592
1593 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1594 char *buf)
1595 {
1596 u32 len = sizeof(u32), tmp = 0;
1597 struct ipw_priv *p = dev_get_drvdata(d);
1598
1599 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1600 return 0;
1601
1602 return sprintf(buf, "0x%08x\n", tmp);
1603 }
1604
1605 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1606
1607 /*
1608 * Add a device attribute to view/control the delay between eeprom
1609 * operations.
1610 */
1611 static ssize_t show_eeprom_delay(struct device *d,
1612 struct device_attribute *attr, char *buf)
1613 {
1614 struct ipw_priv *p = dev_get_drvdata(d);
1615 int n = p->eeprom_delay;
1616 return sprintf(buf, "%i\n", n);
1617 }
1618 static ssize_t store_eeprom_delay(struct device *d,
1619 struct device_attribute *attr,
1620 const char *buf, size_t count)
1621 {
1622 struct ipw_priv *p = dev_get_drvdata(d);
1623 sscanf(buf, "%i", &p->eeprom_delay);
1624 return strnlen(buf, count);
1625 }
1626
1627 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1628 show_eeprom_delay, store_eeprom_delay);
1629
1630 static ssize_t show_command_event_reg(struct device *d,
1631 struct device_attribute *attr, char *buf)
1632 {
1633 u32 reg = 0;
1634 struct ipw_priv *p = dev_get_drvdata(d);
1635
1636 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1637 return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_command_event_reg(struct device *d,
1640 struct device_attribute *attr,
1641 const char *buf, size_t count)
1642 {
1643 u32 reg;
1644 struct ipw_priv *p = dev_get_drvdata(d);
1645
1646 sscanf(buf, "%x", &reg);
1647 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1648 return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1652 show_command_event_reg, store_command_event_reg);
1653
1654 static ssize_t show_mem_gpio_reg(struct device *d,
1655 struct device_attribute *attr, char *buf)
1656 {
1657 u32 reg = 0;
1658 struct ipw_priv *p = dev_get_drvdata(d);
1659
1660 reg = ipw_read_reg32(p, 0x301100);
1661 return sprintf(buf, "0x%08x\n", reg);
1662 }
1663 static ssize_t store_mem_gpio_reg(struct device *d,
1664 struct device_attribute *attr,
1665 const char *buf, size_t count)
1666 {
1667 u32 reg;
1668 struct ipw_priv *p = dev_get_drvdata(d);
1669
1670 sscanf(buf, "%x", &reg);
1671 ipw_write_reg32(p, 0x301100, reg);
1672 return strnlen(buf, count);
1673 }
1674
1675 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1676 show_mem_gpio_reg, store_mem_gpio_reg);
1677
1678 static ssize_t show_indirect_dword(struct device *d,
1679 struct device_attribute *attr, char *buf)
1680 {
1681 u32 reg = 0;
1682 struct ipw_priv *priv = dev_get_drvdata(d);
1683
1684 if (priv->status & STATUS_INDIRECT_DWORD)
1685 reg = ipw_read_reg32(priv, priv->indirect_dword);
1686 else
1687 reg = 0;
1688
1689 return sprintf(buf, "0x%08x\n", reg);
1690 }
1691 static ssize_t store_indirect_dword(struct device *d,
1692 struct device_attribute *attr,
1693 const char *buf, size_t count)
1694 {
1695 struct ipw_priv *priv = dev_get_drvdata(d);
1696
1697 sscanf(buf, "%x", &priv->indirect_dword);
1698 priv->status |= STATUS_INDIRECT_DWORD;
1699 return strnlen(buf, count);
1700 }
1701
1702 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1703 show_indirect_dword, store_indirect_dword);
1704
1705 static ssize_t show_indirect_byte(struct device *d,
1706 struct device_attribute *attr, char *buf)
1707 {
1708 u8 reg = 0;
1709 struct ipw_priv *priv = dev_get_drvdata(d);
1710
1711 if (priv->status & STATUS_INDIRECT_BYTE)
1712 reg = ipw_read_reg8(priv, priv->indirect_byte);
1713 else
1714 reg = 0;
1715
1716 return sprintf(buf, "0x%02x\n", reg);
1717 }
1718 static ssize_t store_indirect_byte(struct device *d,
1719 struct device_attribute *attr,
1720 const char *buf, size_t count)
1721 {
1722 struct ipw_priv *priv = dev_get_drvdata(d);
1723
1724 sscanf(buf, "%x", &priv->indirect_byte);
1725 priv->status |= STATUS_INDIRECT_BYTE;
1726 return strnlen(buf, count);
1727 }
1728
1729 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1730 show_indirect_byte, store_indirect_byte);
1731
1732 static ssize_t show_direct_dword(struct device *d,
1733 struct device_attribute *attr, char *buf)
1734 {
1735 u32 reg = 0;
1736 struct ipw_priv *priv = dev_get_drvdata(d);
1737
1738 if (priv->status & STATUS_DIRECT_DWORD)
1739 reg = ipw_read32(priv, priv->direct_dword);
1740 else
1741 reg = 0;
1742
1743 return sprintf(buf, "0x%08x\n", reg);
1744 }
1745 static ssize_t store_direct_dword(struct device *d,
1746 struct device_attribute *attr,
1747 const char *buf, size_t count)
1748 {
1749 struct ipw_priv *priv = dev_get_drvdata(d);
1750
1751 sscanf(buf, "%x", &priv->direct_dword);
1752 priv->status |= STATUS_DIRECT_DWORD;
1753 return strnlen(buf, count);
1754 }
1755
1756 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1757 show_direct_dword, store_direct_dword);
1758
1759 static int rf_kill_active(struct ipw_priv *priv)
1760 {
1761 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1762 priv->status |= STATUS_RF_KILL_HW;
1763 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1764 } else {
1765 priv->status &= ~STATUS_RF_KILL_HW;
1766 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1767 }
1768
1769 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1770 }
1771
1772 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1773 char *buf)
1774 {
1775 /* 0 - RF kill not enabled
1776 1 - SW based RF kill active (sysfs)
1777 2 - HW based RF kill active
1778 3 - Both HW and SW baed RF kill active */
1779 struct ipw_priv *priv = dev_get_drvdata(d);
1780 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1781 (rf_kill_active(priv) ? 0x2 : 0x0);
1782 return sprintf(buf, "%i\n", val);
1783 }
1784
1785 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1786 {
1787 if ((disable_radio ? 1 : 0) ==
1788 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1789 return 0;
1790
1791 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1792 disable_radio ? "OFF" : "ON");
1793
1794 if (disable_radio) {
1795 priv->status |= STATUS_RF_KILL_SW;
1796
1797 if (priv->workqueue) {
1798 cancel_delayed_work(&priv->request_scan);
1799 cancel_delayed_work(&priv->request_direct_scan);
1800 cancel_delayed_work(&priv->request_passive_scan);
1801 cancel_delayed_work(&priv->scan_event);
1802 }
1803 queue_work(priv->workqueue, &priv->down);
1804 } else {
1805 priv->status &= ~STATUS_RF_KILL_SW;
1806 if (rf_kill_active(priv)) {
1807 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1808 "disabled by HW switch\n");
1809 /* Make sure the RF_KILL check timer is running */
1810 cancel_delayed_work(&priv->rf_kill);
1811 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812 round_jiffies_relative(2 * HZ));
1813 } else
1814 queue_work(priv->workqueue, &priv->up);
1815 }
1816
1817 return 1;
1818 }
1819
1820 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1821 const char *buf, size_t count)
1822 {
1823 struct ipw_priv *priv = dev_get_drvdata(d);
1824
1825 ipw_radio_kill_sw(priv, buf[0] == '1');
1826
1827 return count;
1828 }
1829
1830 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1831
1832 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1833 char *buf)
1834 {
1835 struct ipw_priv *priv = dev_get_drvdata(d);
1836 int pos = 0, len = 0;
1837 if (priv->config & CFG_SPEED_SCAN) {
1838 while (priv->speed_scan[pos] != 0)
1839 len += sprintf(&buf[len], "%d ",
1840 priv->speed_scan[pos++]);
1841 return len + sprintf(&buf[len], "\n");
1842 }
1843
1844 return sprintf(buf, "0\n");
1845 }
1846
1847 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1848 const char *buf, size_t count)
1849 {
1850 struct ipw_priv *priv = dev_get_drvdata(d);
1851 int channel, pos = 0;
1852 const char *p = buf;
1853
1854 /* list of space separated channels to scan, optionally ending with 0 */
1855 while ((channel = simple_strtol(p, NULL, 0))) {
1856 if (pos == MAX_SPEED_SCAN - 1) {
1857 priv->speed_scan[pos] = 0;
1858 break;
1859 }
1860
1861 if (libipw_is_valid_channel(priv->ieee, channel))
1862 priv->speed_scan[pos++] = channel;
1863 else
1864 IPW_WARNING("Skipping invalid channel request: %d\n",
1865 channel);
1866 p = strchr(p, ' ');
1867 if (!p)
1868 break;
1869 while (*p == ' ' || *p == '\t')
1870 p++;
1871 }
1872
1873 if (pos == 0)
1874 priv->config &= ~CFG_SPEED_SCAN;
1875 else {
1876 priv->speed_scan_pos = 0;
1877 priv->config |= CFG_SPEED_SCAN;
1878 }
1879
1880 return count;
1881 }
1882
1883 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1884 store_speed_scan);
1885
1886 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1887 char *buf)
1888 {
1889 struct ipw_priv *priv = dev_get_drvdata(d);
1890 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1891 }
1892
1893 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1894 const char *buf, size_t count)
1895 {
1896 struct ipw_priv *priv = dev_get_drvdata(d);
1897 if (buf[0] == '1')
1898 priv->config |= CFG_NET_STATS;
1899 else
1900 priv->config &= ~CFG_NET_STATS;
1901
1902 return count;
1903 }
1904
1905 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1906 show_net_stats, store_net_stats);
1907
1908 static ssize_t show_channels(struct device *d,
1909 struct device_attribute *attr,
1910 char *buf)
1911 {
1912 struct ipw_priv *priv = dev_get_drvdata(d);
1913 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1914 int len = 0, i;
1915
1916 len = sprintf(&buf[len],
1917 "Displaying %d channels in 2.4Ghz band "
1918 "(802.11bg):\n", geo->bg_channels);
1919
1920 for (i = 0; i < geo->bg_channels; i++) {
1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1922 geo->bg[i].channel,
1923 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 " (radar spectrum)" : "",
1925 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 ? "" : ", IBSS",
1928 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 "passive only" : "active/passive",
1930 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1931 "B" : "B/G");
1932 }
1933
1934 len += sprintf(&buf[len],
1935 "Displaying %d channels in 5.2Ghz band "
1936 "(802.11a):\n", geo->a_channels);
1937 for (i = 0; i < geo->a_channels; i++) {
1938 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1939 geo->a[i].channel,
1940 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1941 " (radar spectrum)" : "",
1942 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1943 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1944 ? "" : ", IBSS",
1945 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1946 "passive only" : "active/passive");
1947 }
1948
1949 return len;
1950 }
1951
1952 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1953
1954 static void notify_wx_assoc_event(struct ipw_priv *priv)
1955 {
1956 union iwreq_data wrqu;
1957 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1958 if (priv->status & STATUS_ASSOCIATED)
1959 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1960 else
1961 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1962 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1963 }
1964
1965 static void ipw_irq_tasklet(struct ipw_priv *priv)
1966 {
1967 u32 inta, inta_mask, handled = 0;
1968 unsigned long flags;
1969 int rc = 0;
1970
1971 spin_lock_irqsave(&priv->irq_lock, flags);
1972
1973 inta = ipw_read32(priv, IPW_INTA_RW);
1974 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1975 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1976
1977 /* Add any cached INTA values that need to be handled */
1978 inta |= priv->isr_inta;
1979
1980 spin_unlock_irqrestore(&priv->irq_lock, flags);
1981
1982 spin_lock_irqsave(&priv->lock, flags);
1983
1984 /* handle all the justifications for the interrupt */
1985 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1986 ipw_rx(priv);
1987 handled |= IPW_INTA_BIT_RX_TRANSFER;
1988 }
1989
1990 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1991 IPW_DEBUG_HC("Command completed.\n");
1992 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1993 priv->status &= ~STATUS_HCMD_ACTIVE;
1994 wake_up_interruptible(&priv->wait_command_queue);
1995 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1996 }
1997
1998 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1999 IPW_DEBUG_TX("TX_QUEUE_1\n");
2000 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2001 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2002 }
2003
2004 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2005 IPW_DEBUG_TX("TX_QUEUE_2\n");
2006 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2007 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2008 }
2009
2010 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2011 IPW_DEBUG_TX("TX_QUEUE_3\n");
2012 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2013 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2014 }
2015
2016 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2017 IPW_DEBUG_TX("TX_QUEUE_4\n");
2018 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2019 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2020 }
2021
2022 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2023 IPW_WARNING("STATUS_CHANGE\n");
2024 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2025 }
2026
2027 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2028 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2029 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2030 }
2031
2032 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2033 IPW_WARNING("HOST_CMD_DONE\n");
2034 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2035 }
2036
2037 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2038 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2039 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2040 }
2041
2042 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2043 IPW_WARNING("PHY_OFF_DONE\n");
2044 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2045 }
2046
2047 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2048 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2049 priv->status |= STATUS_RF_KILL_HW;
2050 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2051 wake_up_interruptible(&priv->wait_command_queue);
2052 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2053 cancel_delayed_work(&priv->request_scan);
2054 cancel_delayed_work(&priv->request_direct_scan);
2055 cancel_delayed_work(&priv->request_passive_scan);
2056 cancel_delayed_work(&priv->scan_event);
2057 schedule_work(&priv->link_down);
2058 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2059 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2060 }
2061
2062 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2063 IPW_WARNING("Firmware error detected. Restarting.\n");
2064 if (priv->error) {
2065 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2066 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2067 struct ipw_fw_error *error =
2068 ipw_alloc_error_log(priv);
2069 ipw_dump_error_log(priv, error);
2070 kfree(error);
2071 }
2072 } else {
2073 priv->error = ipw_alloc_error_log(priv);
2074 if (priv->error)
2075 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2076 else
2077 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2078 "log.\n");
2079 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2080 ipw_dump_error_log(priv, priv->error);
2081 }
2082
2083 /* XXX: If hardware encryption is for WPA/WPA2,
2084 * we have to notify the supplicant. */
2085 if (priv->ieee->sec.encrypt) {
2086 priv->status &= ~STATUS_ASSOCIATED;
2087 notify_wx_assoc_event(priv);
2088 }
2089
2090 /* Keep the restart process from trying to send host
2091 * commands by clearing the INIT status bit */
2092 priv->status &= ~STATUS_INIT;
2093
2094 /* Cancel currently queued command. */
2095 priv->status &= ~STATUS_HCMD_ACTIVE;
2096 wake_up_interruptible(&priv->wait_command_queue);
2097
2098 queue_work(priv->workqueue, &priv->adapter_restart);
2099 handled |= IPW_INTA_BIT_FATAL_ERROR;
2100 }
2101
2102 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2103 IPW_ERROR("Parity error\n");
2104 handled |= IPW_INTA_BIT_PARITY_ERROR;
2105 }
2106
2107 if (handled != inta) {
2108 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2109 }
2110
2111 spin_unlock_irqrestore(&priv->lock, flags);
2112
2113 /* enable all interrupts */
2114 ipw_enable_interrupts(priv);
2115 }
2116
2117 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2118 static char *get_cmd_string(u8 cmd)
2119 {
2120 switch (cmd) {
2121 IPW_CMD(HOST_COMPLETE);
2122 IPW_CMD(POWER_DOWN);
2123 IPW_CMD(SYSTEM_CONFIG);
2124 IPW_CMD(MULTICAST_ADDRESS);
2125 IPW_CMD(SSID);
2126 IPW_CMD(ADAPTER_ADDRESS);
2127 IPW_CMD(PORT_TYPE);
2128 IPW_CMD(RTS_THRESHOLD);
2129 IPW_CMD(FRAG_THRESHOLD);
2130 IPW_CMD(POWER_MODE);
2131 IPW_CMD(WEP_KEY);
2132 IPW_CMD(TGI_TX_KEY);
2133 IPW_CMD(SCAN_REQUEST);
2134 IPW_CMD(SCAN_REQUEST_EXT);
2135 IPW_CMD(ASSOCIATE);
2136 IPW_CMD(SUPPORTED_RATES);
2137 IPW_CMD(SCAN_ABORT);
2138 IPW_CMD(TX_FLUSH);
2139 IPW_CMD(QOS_PARAMETERS);
2140 IPW_CMD(DINO_CONFIG);
2141 IPW_CMD(RSN_CAPABILITIES);
2142 IPW_CMD(RX_KEY);
2143 IPW_CMD(CARD_DISABLE);
2144 IPW_CMD(SEED_NUMBER);
2145 IPW_CMD(TX_POWER);
2146 IPW_CMD(COUNTRY_INFO);
2147 IPW_CMD(AIRONET_INFO);
2148 IPW_CMD(AP_TX_POWER);
2149 IPW_CMD(CCKM_INFO);
2150 IPW_CMD(CCX_VER_INFO);
2151 IPW_CMD(SET_CALIBRATION);
2152 IPW_CMD(SENSITIVITY_CALIB);
2153 IPW_CMD(RETRY_LIMIT);
2154 IPW_CMD(IPW_PRE_POWER_DOWN);
2155 IPW_CMD(VAP_BEACON_TEMPLATE);
2156 IPW_CMD(VAP_DTIM_PERIOD);
2157 IPW_CMD(EXT_SUPPORTED_RATES);
2158 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2159 IPW_CMD(VAP_QUIET_INTERVALS);
2160 IPW_CMD(VAP_CHANNEL_SWITCH);
2161 IPW_CMD(VAP_MANDATORY_CHANNELS);
2162 IPW_CMD(VAP_CELL_PWR_LIMIT);
2163 IPW_CMD(VAP_CF_PARAM_SET);
2164 IPW_CMD(VAP_SET_BEACONING_STATE);
2165 IPW_CMD(MEASUREMENT);
2166 IPW_CMD(POWER_CAPABILITY);
2167 IPW_CMD(SUPPORTED_CHANNELS);
2168 IPW_CMD(TPC_REPORT);
2169 IPW_CMD(WME_INFO);
2170 IPW_CMD(PRODUCTION_COMMAND);
2171 default:
2172 return "UNKNOWN";
2173 }
2174 }
2175
2176 #define HOST_COMPLETE_TIMEOUT HZ
2177
2178 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2179 {
2180 int rc = 0;
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&priv->lock, flags);
2184 if (priv->status & STATUS_HCMD_ACTIVE) {
2185 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2186 get_cmd_string(cmd->cmd));
2187 spin_unlock_irqrestore(&priv->lock, flags);
2188 return -EAGAIN;
2189 }
2190
2191 priv->status |= STATUS_HCMD_ACTIVE;
2192
2193 if (priv->cmdlog) {
2194 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2195 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2196 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2197 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2198 cmd->len);
2199 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2200 }
2201
2202 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2203 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2204 priv->status);
2205
2206 #ifndef DEBUG_CMD_WEP_KEY
2207 if (cmd->cmd == IPW_CMD_WEP_KEY)
2208 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2209 else
2210 #endif
2211 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2212
2213 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2214 if (rc) {
2215 priv->status &= ~STATUS_HCMD_ACTIVE;
2216 IPW_ERROR("Failed to send %s: Reason %d\n",
2217 get_cmd_string(cmd->cmd), rc);
2218 spin_unlock_irqrestore(&priv->lock, flags);
2219 goto exit;
2220 }
2221 spin_unlock_irqrestore(&priv->lock, flags);
2222
2223 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2224 !(priv->
2225 status & STATUS_HCMD_ACTIVE),
2226 HOST_COMPLETE_TIMEOUT);
2227 if (rc == 0) {
2228 spin_lock_irqsave(&priv->lock, flags);
2229 if (priv->status & STATUS_HCMD_ACTIVE) {
2230 IPW_ERROR("Failed to send %s: Command timed out.\n",
2231 get_cmd_string(cmd->cmd));
2232 priv->status &= ~STATUS_HCMD_ACTIVE;
2233 spin_unlock_irqrestore(&priv->lock, flags);
2234 rc = -EIO;
2235 goto exit;
2236 }
2237 spin_unlock_irqrestore(&priv->lock, flags);
2238 } else
2239 rc = 0;
2240
2241 if (priv->status & STATUS_RF_KILL_HW) {
2242 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2243 get_cmd_string(cmd->cmd));
2244 rc = -EIO;
2245 goto exit;
2246 }
2247
2248 exit:
2249 if (priv->cmdlog) {
2250 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2251 priv->cmdlog_pos %= priv->cmdlog_len;
2252 }
2253 return rc;
2254 }
2255
2256 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2257 {
2258 struct host_cmd cmd = {
2259 .cmd = command,
2260 };
2261
2262 return __ipw_send_cmd(priv, &cmd);
2263 }
2264
2265 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2266 void *data)
2267 {
2268 struct host_cmd cmd = {
2269 .cmd = command,
2270 .len = len,
2271 .param = data,
2272 };
2273
2274 return __ipw_send_cmd(priv, &cmd);
2275 }
2276
2277 static int ipw_send_host_complete(struct ipw_priv *priv)
2278 {
2279 if (!priv) {
2280 IPW_ERROR("Invalid args\n");
2281 return -1;
2282 }
2283
2284 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2285 }
2286
2287 static int ipw_send_system_config(struct ipw_priv *priv)
2288 {
2289 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2290 sizeof(priv->sys_config),
2291 &priv->sys_config);
2292 }
2293
2294 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2295 {
2296 if (!priv || !ssid) {
2297 IPW_ERROR("Invalid args\n");
2298 return -1;
2299 }
2300
2301 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2302 ssid);
2303 }
2304
2305 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2306 {
2307 if (!priv || !mac) {
2308 IPW_ERROR("Invalid args\n");
2309 return -1;
2310 }
2311
2312 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2313 priv->net_dev->name, mac);
2314
2315 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2316 }
2317
2318 /*
2319 * NOTE: This must be executed from our workqueue as it results in udelay
2320 * being called which may corrupt the keyboard if executed on default
2321 * workqueue
2322 */
2323 static void ipw_adapter_restart(void *adapter)
2324 {
2325 struct ipw_priv *priv = adapter;
2326
2327 if (priv->status & STATUS_RF_KILL_MASK)
2328 return;
2329
2330 ipw_down(priv);
2331
2332 if (priv->assoc_network &&
2333 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2334 ipw_remove_current_network(priv);
2335
2336 if (ipw_up(priv)) {
2337 IPW_ERROR("Failed to up device\n");
2338 return;
2339 }
2340 }
2341
2342 static void ipw_bg_adapter_restart(struct work_struct *work)
2343 {
2344 struct ipw_priv *priv =
2345 container_of(work, struct ipw_priv, adapter_restart);
2346 mutex_lock(&priv->mutex);
2347 ipw_adapter_restart(priv);
2348 mutex_unlock(&priv->mutex);
2349 }
2350
2351 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2352
2353 static void ipw_scan_check(void *data)
2354 {
2355 struct ipw_priv *priv = data;
2356 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2357 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358 "adapter after (%dms).\n",
2359 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360 queue_work(priv->workqueue, &priv->adapter_restart);
2361 }
2362 }
2363
2364 static void ipw_bg_scan_check(struct work_struct *work)
2365 {
2366 struct ipw_priv *priv =
2367 container_of(work, struct ipw_priv, scan_check.work);
2368 mutex_lock(&priv->mutex);
2369 ipw_scan_check(priv);
2370 mutex_unlock(&priv->mutex);
2371 }
2372
2373 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2374 struct ipw_scan_request_ext *request)
2375 {
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2377 sizeof(*request), request);
2378 }
2379
2380 static int ipw_send_scan_abort(struct ipw_priv *priv)
2381 {
2382 if (!priv) {
2383 IPW_ERROR("Invalid args\n");
2384 return -1;
2385 }
2386
2387 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2388 }
2389
2390 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2391 {
2392 struct ipw_sensitivity_calib calib = {
2393 .beacon_rssi_raw = cpu_to_le16(sens),
2394 };
2395
2396 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2397 &calib);
2398 }
2399
2400 static int ipw_send_associate(struct ipw_priv *priv,
2401 struct ipw_associate *associate)
2402 {
2403 if (!priv || !associate) {
2404 IPW_ERROR("Invalid args\n");
2405 return -1;
2406 }
2407
2408 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2409 associate);
2410 }
2411
2412 static int ipw_send_supported_rates(struct ipw_priv *priv,
2413 struct ipw_supported_rates *rates)
2414 {
2415 if (!priv || !rates) {
2416 IPW_ERROR("Invalid args\n");
2417 return -1;
2418 }
2419
2420 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2421 rates);
2422 }
2423
2424 static int ipw_set_random_seed(struct ipw_priv *priv)
2425 {
2426 u32 val;
2427
2428 if (!priv) {
2429 IPW_ERROR("Invalid args\n");
2430 return -1;
2431 }
2432
2433 get_random_bytes(&val, sizeof(val));
2434
2435 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2436 }
2437
2438 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2439 {
2440 __le32 v = cpu_to_le32(phy_off);
2441 if (!priv) {
2442 IPW_ERROR("Invalid args\n");
2443 return -1;
2444 }
2445
2446 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2447 }
2448
2449 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2450 {
2451 if (!priv || !power) {
2452 IPW_ERROR("Invalid args\n");
2453 return -1;
2454 }
2455
2456 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2457 }
2458
2459 static int ipw_set_tx_power(struct ipw_priv *priv)
2460 {
2461 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2462 struct ipw_tx_power tx_power;
2463 s8 max_power;
2464 int i;
2465
2466 memset(&tx_power, 0, sizeof(tx_power));
2467
2468 /* configure device for 'G' band */
2469 tx_power.ieee_mode = IPW_G_MODE;
2470 tx_power.num_channels = geo->bg_channels;
2471 for (i = 0; i < geo->bg_channels; i++) {
2472 max_power = geo->bg[i].max_power;
2473 tx_power.channels_tx_power[i].channel_number =
2474 geo->bg[i].channel;
2475 tx_power.channels_tx_power[i].tx_power = max_power ?
2476 min(max_power, priv->tx_power) : priv->tx_power;
2477 }
2478 if (ipw_send_tx_power(priv, &tx_power))
2479 return -EIO;
2480
2481 /* configure device to also handle 'B' band */
2482 tx_power.ieee_mode = IPW_B_MODE;
2483 if (ipw_send_tx_power(priv, &tx_power))
2484 return -EIO;
2485
2486 /* configure device to also handle 'A' band */
2487 if (priv->ieee->abg_true) {
2488 tx_power.ieee_mode = IPW_A_MODE;
2489 tx_power.num_channels = geo->a_channels;
2490 for (i = 0; i < tx_power.num_channels; i++) {
2491 max_power = geo->a[i].max_power;
2492 tx_power.channels_tx_power[i].channel_number =
2493 geo->a[i].channel;
2494 tx_power.channels_tx_power[i].tx_power = max_power ?
2495 min(max_power, priv->tx_power) : priv->tx_power;
2496 }
2497 if (ipw_send_tx_power(priv, &tx_power))
2498 return -EIO;
2499 }
2500 return 0;
2501 }
2502
2503 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2504 {
2505 struct ipw_rts_threshold rts_threshold = {
2506 .rts_threshold = cpu_to_le16(rts),
2507 };
2508
2509 if (!priv) {
2510 IPW_ERROR("Invalid args\n");
2511 return -1;
2512 }
2513
2514 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2515 sizeof(rts_threshold), &rts_threshold);
2516 }
2517
2518 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2519 {
2520 struct ipw_frag_threshold frag_threshold = {
2521 .frag_threshold = cpu_to_le16(frag),
2522 };
2523
2524 if (!priv) {
2525 IPW_ERROR("Invalid args\n");
2526 return -1;
2527 }
2528
2529 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2530 sizeof(frag_threshold), &frag_threshold);
2531 }
2532
2533 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2534 {
2535 __le32 param;
2536
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2540 }
2541
2542 /* If on battery, set to 3, if AC set to CAM, else user
2543 * level */
2544 switch (mode) {
2545 case IPW_POWER_BATTERY:
2546 param = cpu_to_le32(IPW_POWER_INDEX_3);
2547 break;
2548 case IPW_POWER_AC:
2549 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2550 break;
2551 default:
2552 param = cpu_to_le32(mode);
2553 break;
2554 }
2555
2556 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2557 &param);
2558 }
2559
2560 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2561 {
2562 struct ipw_retry_limit retry_limit = {
2563 .short_retry_limit = slimit,
2564 .long_retry_limit = llimit
2565 };
2566
2567 if (!priv) {
2568 IPW_ERROR("Invalid args\n");
2569 return -1;
2570 }
2571
2572 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2573 &retry_limit);
2574 }
2575
2576 /*
2577 * The IPW device contains a Microwire compatible EEPROM that stores
2578 * various data like the MAC address. Usually the firmware has exclusive
2579 * access to the eeprom, but during device initialization (before the
2580 * device driver has sent the HostComplete command to the firmware) the
2581 * device driver has read access to the EEPROM by way of indirect addressing
2582 * through a couple of memory mapped registers.
2583 *
2584 * The following is a simplified implementation for pulling data out of the
2585 * the eeprom, along with some helper functions to find information in
2586 * the per device private data's copy of the eeprom.
2587 *
2588 * NOTE: To better understand how these functions work (i.e what is a chip
2589 * select and why do have to keep driving the eeprom clock?), read
2590 * just about any data sheet for a Microwire compatible EEPROM.
2591 */
2592
2593 /* write a 32 bit value into the indirect accessor register */
2594 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2595 {
2596 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2597
2598 /* the eeprom requires some time to complete the operation */
2599 udelay(p->eeprom_delay);
2600
2601 return;
2602 }
2603
2604 /* perform a chip select operation */
2605 static void eeprom_cs(struct ipw_priv *priv)
2606 {
2607 eeprom_write_reg(priv, 0);
2608 eeprom_write_reg(priv, EEPROM_BIT_CS);
2609 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2610 eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 }
2612
2613 /* perform a chip select operation */
2614 static void eeprom_disable_cs(struct ipw_priv *priv)
2615 {
2616 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617 eeprom_write_reg(priv, 0);
2618 eeprom_write_reg(priv, EEPROM_BIT_SK);
2619 }
2620
2621 /* push a single bit down to the eeprom */
2622 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2623 {
2624 int d = (bit ? EEPROM_BIT_DI : 0);
2625 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2626 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2627 }
2628
2629 /* push an opcode followed by an address down to the eeprom */
2630 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2631 {
2632 int i;
2633
2634 eeprom_cs(priv);
2635 eeprom_write_bit(priv, 1);
2636 eeprom_write_bit(priv, op & 2);
2637 eeprom_write_bit(priv, op & 1);
2638 for (i = 7; i >= 0; i--) {
2639 eeprom_write_bit(priv, addr & (1 << i));
2640 }
2641 }
2642
2643 /* pull 16 bits off the eeprom, one bit at a time */
2644 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2645 {
2646 int i;
2647 u16 r = 0;
2648
2649 /* Send READ Opcode */
2650 eeprom_op(priv, EEPROM_CMD_READ, addr);
2651
2652 /* Send dummy bit */
2653 eeprom_write_reg(priv, EEPROM_BIT_CS);
2654
2655 /* Read the byte off the eeprom one bit at a time */
2656 for (i = 0; i < 16; i++) {
2657 u32 data = 0;
2658 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2659 eeprom_write_reg(priv, EEPROM_BIT_CS);
2660 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2661 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2662 }
2663
2664 /* Send another dummy bit */
2665 eeprom_write_reg(priv, 0);
2666 eeprom_disable_cs(priv);
2667
2668 return r;
2669 }
2670
2671 /* helper function for pulling the mac address out of the private */
2672 /* data's copy of the eeprom data */
2673 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2674 {
2675 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2676 }
2677
2678 /*
2679 * Either the device driver (i.e. the host) or the firmware can
2680 * load eeprom data into the designated region in SRAM. If neither
2681 * happens then the FW will shutdown with a fatal error.
2682 *
2683 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2684 * bit needs region of shared SRAM needs to be non-zero.
2685 */
2686 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2687 {
2688 int i;
2689 __le16 *eeprom = (__le16 *) priv->eeprom;
2690
2691 IPW_DEBUG_TRACE(">>\n");
2692
2693 /* read entire contents of eeprom into private buffer */
2694 for (i = 0; i < 128; i++)
2695 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2696
2697 /*
2698 If the data looks correct, then copy it to our private
2699 copy. Otherwise let the firmware know to perform the operation
2700 on its own.
2701 */
2702 if (priv->eeprom[EEPROM_VERSION] != 0) {
2703 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2704
2705 /* write the eeprom data to sram */
2706 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2707 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2708
2709 /* Do not load eeprom data on fatal error or suspend */
2710 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2711 } else {
2712 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2713
2714 /* Load eeprom data on fatal error or suspend */
2715 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2716 }
2717
2718 IPW_DEBUG_TRACE("<<\n");
2719 }
2720
2721 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2722 {
2723 count >>= 2;
2724 if (!count)
2725 return;
2726 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2727 while (count--)
2728 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2729 }
2730
2731 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2732 {
2733 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2734 CB_NUMBER_OF_ELEMENTS_SMALL *
2735 sizeof(struct command_block));
2736 }
2737
2738 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2739 { /* start dma engine but no transfers yet */
2740
2741 IPW_DEBUG_FW(">> : \n");
2742
2743 /* Start the dma */
2744 ipw_fw_dma_reset_command_blocks(priv);
2745
2746 /* Write CB base address */
2747 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2748
2749 IPW_DEBUG_FW("<< : \n");
2750 return 0;
2751 }
2752
2753 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2754 {
2755 u32 control = 0;
2756
2757 IPW_DEBUG_FW(">> :\n");
2758
2759 /* set the Stop and Abort bit */
2760 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2761 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2762 priv->sram_desc.last_cb_index = 0;
2763
2764 IPW_DEBUG_FW("<< \n");
2765 }
2766
2767 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2768 struct command_block *cb)
2769 {
2770 u32 address =
2771 IPW_SHARED_SRAM_DMA_CONTROL +
2772 (sizeof(struct command_block) * index);
2773 IPW_DEBUG_FW(">> :\n");
2774
2775 ipw_write_indirect(priv, address, (u8 *) cb,
2776 (int)sizeof(struct command_block));
2777
2778 IPW_DEBUG_FW("<< :\n");
2779 return 0;
2780
2781 }
2782
2783 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2784 {
2785 u32 control = 0;
2786 u32 index = 0;
2787
2788 IPW_DEBUG_FW(">> :\n");
2789
2790 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2791 ipw_fw_dma_write_command_block(priv, index,
2792 &priv->sram_desc.cb_list[index]);
2793
2794 /* Enable the DMA in the CSR register */
2795 ipw_clear_bit(priv, IPW_RESET_REG,
2796 IPW_RESET_REG_MASTER_DISABLED |
2797 IPW_RESET_REG_STOP_MASTER);
2798
2799 /* Set the Start bit. */
2800 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2801 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2802
2803 IPW_DEBUG_FW("<< :\n");
2804 return 0;
2805 }
2806
2807 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2808 {
2809 u32 address;
2810 u32 register_value = 0;
2811 u32 cb_fields_address = 0;
2812
2813 IPW_DEBUG_FW(">> :\n");
2814 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2815 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2816
2817 /* Read the DMA Controlor register */
2818 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2819 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2820
2821 /* Print the CB values */
2822 cb_fields_address = address;
2823 register_value = ipw_read_reg32(priv, cb_fields_address);
2824 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2825
2826 cb_fields_address += sizeof(u32);
2827 register_value = ipw_read_reg32(priv, cb_fields_address);
2828 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2829
2830 cb_fields_address += sizeof(u32);
2831 register_value = ipw_read_reg32(priv, cb_fields_address);
2832 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2833 register_value);
2834
2835 cb_fields_address += sizeof(u32);
2836 register_value = ipw_read_reg32(priv, cb_fields_address);
2837 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2838
2839 IPW_DEBUG_FW(">> :\n");
2840 }
2841
2842 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2843 {
2844 u32 current_cb_address = 0;
2845 u32 current_cb_index = 0;
2846
2847 IPW_DEBUG_FW("<< :\n");
2848 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2849
2850 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2851 sizeof(struct command_block);
2852
2853 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2854 current_cb_index, current_cb_address);
2855
2856 IPW_DEBUG_FW(">> :\n");
2857 return current_cb_index;
2858
2859 }
2860
2861 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2862 u32 src_address,
2863 u32 dest_address,
2864 u32 length,
2865 int interrupt_enabled, int is_last)
2866 {
2867
2868 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2869 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2870 CB_DEST_SIZE_LONG;
2871 struct command_block *cb;
2872 u32 last_cb_element = 0;
2873
2874 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2875 src_address, dest_address, length);
2876
2877 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2878 return -1;
2879
2880 last_cb_element = priv->sram_desc.last_cb_index;
2881 cb = &priv->sram_desc.cb_list[last_cb_element];
2882 priv->sram_desc.last_cb_index++;
2883
2884 /* Calculate the new CB control word */
2885 if (interrupt_enabled)
2886 control |= CB_INT_ENABLED;
2887
2888 if (is_last)
2889 control |= CB_LAST_VALID;
2890
2891 control |= length;
2892
2893 /* Calculate the CB Element's checksum value */
2894 cb->status = control ^ src_address ^ dest_address;
2895
2896 /* Copy the Source and Destination addresses */
2897 cb->dest_addr = dest_address;
2898 cb->source_addr = src_address;
2899
2900 /* Copy the Control Word last */
2901 cb->control = control;
2902
2903 return 0;
2904 }
2905
2906 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2907 int nr, u32 dest_address, u32 len)
2908 {
2909 int ret, i;
2910 u32 size;
2911
2912 IPW_DEBUG_FW(">> \n");
2913 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2914 nr, dest_address, len);
2915
2916 for (i = 0; i < nr; i++) {
2917 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2918 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2919 dest_address +
2920 i * CB_MAX_LENGTH, size,
2921 0, 0);
2922 if (ret) {
2923 IPW_DEBUG_FW_INFO(": Failed\n");
2924 return -1;
2925 } else
2926 IPW_DEBUG_FW_INFO(": Added new cb\n");
2927 }
2928
2929 IPW_DEBUG_FW("<< \n");
2930 return 0;
2931 }
2932
2933 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2934 {
2935 u32 current_index = 0, previous_index;
2936 u32 watchdog = 0;
2937
2938 IPW_DEBUG_FW(">> : \n");
2939
2940 current_index = ipw_fw_dma_command_block_index(priv);
2941 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2942 (int)priv->sram_desc.last_cb_index);
2943
2944 while (current_index < priv->sram_desc.last_cb_index) {
2945 udelay(50);
2946 previous_index = current_index;
2947 current_index = ipw_fw_dma_command_block_index(priv);
2948
2949 if (previous_index < current_index) {
2950 watchdog = 0;
2951 continue;
2952 }
2953 if (++watchdog > 400) {
2954 IPW_DEBUG_FW_INFO("Timeout\n");
2955 ipw_fw_dma_dump_command_block(priv);
2956 ipw_fw_dma_abort(priv);
2957 return -1;
2958 }
2959 }
2960
2961 ipw_fw_dma_abort(priv);
2962
2963 /*Disable the DMA in the CSR register */
2964 ipw_set_bit(priv, IPW_RESET_REG,
2965 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2966
2967 IPW_DEBUG_FW("<< dmaWaitSync \n");
2968 return 0;
2969 }
2970
2971 static void ipw_remove_current_network(struct ipw_priv *priv)
2972 {
2973 struct list_head *element, *safe;
2974 struct libipw_network *network = NULL;
2975 unsigned long flags;
2976
2977 spin_lock_irqsave(&priv->ieee->lock, flags);
2978 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2979 network = list_entry(element, struct libipw_network, list);
2980 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2981 list_del(element);
2982 list_add_tail(&network->list,
2983 &priv->ieee->network_free_list);
2984 }
2985 }
2986 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2987 }
2988
2989 /**
2990 * Check that card is still alive.
2991 * Reads debug register from domain0.
2992 * If card is present, pre-defined value should
2993 * be found there.
2994 *
2995 * @param priv
2996 * @return 1 if card is present, 0 otherwise
2997 */
2998 static inline int ipw_alive(struct ipw_priv *priv)
2999 {
3000 return ipw_read32(priv, 0x90) == 0xd55555d5;
3001 }
3002
3003 /* timeout in msec, attempted in 10-msec quanta */
3004 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3005 int timeout)
3006 {
3007 int i = 0;
3008
3009 do {
3010 if ((ipw_read32(priv, addr) & mask) == mask)
3011 return i;
3012 mdelay(10);
3013 i += 10;
3014 } while (i < timeout);
3015
3016 return -ETIME;
3017 }
3018
3019 /* These functions load the firmware and micro code for the operation of
3020 * the ipw hardware. It assumes the buffer has all the bits for the
3021 * image and the caller is handling the memory allocation and clean up.
3022 */
3023
3024 static int ipw_stop_master(struct ipw_priv *priv)
3025 {
3026 int rc;
3027
3028 IPW_DEBUG_TRACE(">> \n");
3029 /* stop master. typical delay - 0 */
3030 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3031
3032 /* timeout is in msec, polled in 10-msec quanta */
3033 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3034 IPW_RESET_REG_MASTER_DISABLED, 100);
3035 if (rc < 0) {
3036 IPW_ERROR("wait for stop master failed after 100ms\n");
3037 return -1;
3038 }
3039
3040 IPW_DEBUG_INFO("stop master %dms\n", rc);
3041
3042 return rc;
3043 }
3044
3045 static void ipw_arc_release(struct ipw_priv *priv)
3046 {
3047 IPW_DEBUG_TRACE(">> \n");
3048 mdelay(5);
3049
3050 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3051
3052 /* no one knows timing, for safety add some delay */
3053 mdelay(5);
3054 }
3055
3056 struct fw_chunk {
3057 __le32 address;
3058 __le32 length;
3059 };
3060
3061 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3062 {
3063 int rc = 0, i, addr;
3064 u8 cr = 0;
3065 __le16 *image;
3066
3067 image = (__le16 *) data;
3068
3069 IPW_DEBUG_TRACE(">> \n");
3070
3071 rc = ipw_stop_master(priv);
3072
3073 if (rc < 0)
3074 return rc;
3075
3076 for (addr = IPW_SHARED_LOWER_BOUND;
3077 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3078 ipw_write32(priv, addr, 0);
3079 }
3080
3081 /* no ucode (yet) */
3082 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3083 /* destroy DMA queues */
3084 /* reset sequence */
3085
3086 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3087 ipw_arc_release(priv);
3088 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3089 mdelay(1);
3090
3091 /* reset PHY */
3092 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3093 mdelay(1);
3094
3095 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3096 mdelay(1);
3097
3098 /* enable ucode store */
3099 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3100 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3101 mdelay(1);
3102
3103 /* write ucode */
3104 /**
3105 * @bug
3106 * Do NOT set indirect address register once and then
3107 * store data to indirect data register in the loop.
3108 * It seems very reasonable, but in this case DINO do not
3109 * accept ucode. It is essential to set address each time.
3110 */
3111 /* load new ipw uCode */
3112 for (i = 0; i < len / 2; i++)
3113 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3114 le16_to_cpu(image[i]));
3115
3116 /* enable DINO */
3117 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3118 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3119
3120 /* this is where the igx / win driver deveates from the VAP driver. */
3121
3122 /* wait for alive response */
3123 for (i = 0; i < 100; i++) {
3124 /* poll for incoming data */
3125 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3126 if (cr & DINO_RXFIFO_DATA)
3127 break;
3128 mdelay(1);
3129 }
3130
3131 if (cr & DINO_RXFIFO_DATA) {
3132 /* alive_command_responce size is NOT multiple of 4 */
3133 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3134
3135 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3136 response_buffer[i] =
3137 cpu_to_le32(ipw_read_reg32(priv,
3138 IPW_BASEBAND_RX_FIFO_READ));
3139 memcpy(&priv->dino_alive, response_buffer,
3140 sizeof(priv->dino_alive));
3141 if (priv->dino_alive.alive_command == 1
3142 && priv->dino_alive.ucode_valid == 1) {
3143 rc = 0;
3144 IPW_DEBUG_INFO
3145 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3146 "of %02d/%02d/%02d %02d:%02d\n",
3147 priv->dino_alive.software_revision,
3148 priv->dino_alive.software_revision,
3149 priv->dino_alive.device_identifier,
3150 priv->dino_alive.device_identifier,
3151 priv->dino_alive.time_stamp[0],
3152 priv->dino_alive.time_stamp[1],
3153 priv->dino_alive.time_stamp[2],
3154 priv->dino_alive.time_stamp[3],
3155 priv->dino_alive.time_stamp[4]);
3156 } else {
3157 IPW_DEBUG_INFO("Microcode is not alive\n");
3158 rc = -EINVAL;
3159 }
3160 } else {
3161 IPW_DEBUG_INFO("No alive response from DINO\n");
3162 rc = -ETIME;
3163 }
3164
3165 /* disable DINO, otherwise for some reason
3166 firmware have problem getting alive resp. */
3167 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3168
3169 return rc;
3170 }
3171
3172 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3173 {
3174 int ret = -1;
3175 int offset = 0;
3176 struct fw_chunk *chunk;
3177 int total_nr = 0;
3178 int i;
3179 struct pci_pool *pool;
3180 u32 *virts[CB_NUMBER_OF_ELEMENTS_SMALL];
3181 dma_addr_t phys[CB_NUMBER_OF_ELEMENTS_SMALL];
3182
3183 IPW_DEBUG_TRACE("<< : \n");
3184
3185 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3186 if (!pool) {
3187 IPW_ERROR("pci_pool_create failed\n");
3188 return -ENOMEM;
3189 }
3190
3191 /* Start the Dma */
3192 ret = ipw_fw_dma_enable(priv);
3193
3194 /* the DMA is already ready this would be a bug. */
3195 BUG_ON(priv->sram_desc.last_cb_index > 0);
3196
3197 do {
3198 u32 chunk_len;
3199 u8 *start;
3200 int size;
3201 int nr = 0;
3202
3203 chunk = (struct fw_chunk *)(data + offset);
3204 offset += sizeof(struct fw_chunk);
3205 chunk_len = le32_to_cpu(chunk->length);
3206 start = data + offset;
3207
3208 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3209 for (i = 0; i < nr; i++) {
3210 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3211 &phys[total_nr]);
3212 if (!virts[total_nr]) {
3213 ret = -ENOMEM;
3214 goto out;
3215 }
3216 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3217 CB_MAX_LENGTH);
3218 memcpy(virts[total_nr], start, size);
3219 start += size;
3220 total_nr++;
3221 /* We don't support fw chunk larger than 64*8K */
3222 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3223 }
3224
3225 /* build DMA packet and queue up for sending */
3226 /* dma to chunk->address, the chunk->length bytes from data +
3227 * offeset*/
3228 /* Dma loading */
3229 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3230 nr, le32_to_cpu(chunk->address),
3231 chunk_len);
3232 if (ret) {
3233 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3234 goto out;
3235 }
3236
3237 offset += chunk_len;
3238 } while (offset < len);
3239
3240 /* Run the DMA and wait for the answer */
3241 ret = ipw_fw_dma_kick(priv);
3242 if (ret) {
3243 IPW_ERROR("dmaKick Failed\n");
3244 goto out;
3245 }
3246
3247 ret = ipw_fw_dma_wait(priv);
3248 if (ret) {
3249 IPW_ERROR("dmaWaitSync Failed\n");
3250 goto out;
3251 }
3252 out:
3253 for (i = 0; i < total_nr; i++)
3254 pci_pool_free(pool, virts[i], phys[i]);
3255
3256 pci_pool_destroy(pool);
3257
3258 return ret;
3259 }
3260
3261 /* stop nic */
3262 static int ipw_stop_nic(struct ipw_priv *priv)
3263 {
3264 int rc = 0;
3265
3266 /* stop */
3267 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3268
3269 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3270 IPW_RESET_REG_MASTER_DISABLED, 500);
3271 if (rc < 0) {
3272 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3273 return rc;
3274 }
3275
3276 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3277
3278 return rc;
3279 }
3280
3281 static void ipw_start_nic(struct ipw_priv *priv)
3282 {
3283 IPW_DEBUG_TRACE(">>\n");
3284
3285 /* prvHwStartNic release ARC */
3286 ipw_clear_bit(priv, IPW_RESET_REG,
3287 IPW_RESET_REG_MASTER_DISABLED |
3288 IPW_RESET_REG_STOP_MASTER |
3289 CBD_RESET_REG_PRINCETON_RESET);
3290
3291 /* enable power management */
3292 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3293 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3294
3295 IPW_DEBUG_TRACE("<<\n");
3296 }
3297
3298 static int ipw_init_nic(struct ipw_priv *priv)
3299 {
3300 int rc;
3301
3302 IPW_DEBUG_TRACE(">>\n");
3303 /* reset */
3304 /*prvHwInitNic */
3305 /* set "initialization complete" bit to move adapter to D0 state */
3306 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3307
3308 /* low-level PLL activation */
3309 ipw_write32(priv, IPW_READ_INT_REGISTER,
3310 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3311
3312 /* wait for clock stabilization */
3313 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3314 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3315 if (rc < 0)
3316 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3317
3318 /* assert SW reset */
3319 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3320
3321 udelay(10);
3322
3323 /* set "initialization complete" bit to move adapter to D0 state */
3324 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3325
3326 IPW_DEBUG_TRACE(">>\n");
3327 return 0;
3328 }
3329
3330 /* Call this function from process context, it will sleep in request_firmware.
3331 * Probe is an ok place to call this from.
3332 */
3333 static int ipw_reset_nic(struct ipw_priv *priv)
3334 {
3335 int rc = 0;
3336 unsigned long flags;
3337
3338 IPW_DEBUG_TRACE(">>\n");
3339
3340 rc = ipw_init_nic(priv);
3341
3342 spin_lock_irqsave(&priv->lock, flags);
3343 /* Clear the 'host command active' bit... */
3344 priv->status &= ~STATUS_HCMD_ACTIVE;
3345 wake_up_interruptible(&priv->wait_command_queue);
3346 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3347 wake_up_interruptible(&priv->wait_state);
3348 spin_unlock_irqrestore(&priv->lock, flags);
3349
3350 IPW_DEBUG_TRACE("<<\n");
3351 return rc;
3352 }
3353
3354
3355 struct ipw_fw {
3356 __le32 ver;
3357 __le32 boot_size;
3358 __le32 ucode_size;
3359 __le32 fw_size;
3360 u8 data[0];
3361 };
3362
3363 static int ipw_get_fw(struct ipw_priv *priv,
3364 const struct firmware **raw, const char *name)
3365 {
3366 struct ipw_fw *fw;
3367 int rc;
3368
3369 /* ask firmware_class module to get the boot firmware off disk */
3370 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3371 if (rc < 0) {
3372 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3373 return rc;
3374 }
3375
3376 if ((*raw)->size < sizeof(*fw)) {
3377 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3378 return -EINVAL;
3379 }
3380
3381 fw = (void *)(*raw)->data;
3382
3383 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3384 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3385 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3386 name, (*raw)->size);
3387 return -EINVAL;
3388 }
3389
3390 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3391 name,
3392 le32_to_cpu(fw->ver) >> 16,
3393 le32_to_cpu(fw->ver) & 0xff,
3394 (*raw)->size - sizeof(*fw));
3395 return 0;
3396 }
3397
3398 #define IPW_RX_BUF_SIZE (3000)
3399
3400 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3401 struct ipw_rx_queue *rxq)
3402 {
3403 unsigned long flags;
3404 int i;
3405
3406 spin_lock_irqsave(&rxq->lock, flags);
3407
3408 INIT_LIST_HEAD(&rxq->rx_free);
3409 INIT_LIST_HEAD(&rxq->rx_used);
3410
3411 /* Fill the rx_used queue with _all_ of the Rx buffers */
3412 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3413 /* In the reset function, these buffers may have been allocated
3414 * to an SKB, so we need to unmap and free potential storage */
3415 if (rxq->pool[i].skb != NULL) {
3416 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3417 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3418 dev_kfree_skb(rxq->pool[i].skb);
3419 rxq->pool[i].skb = NULL;
3420 }
3421 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3422 }
3423
3424 /* Set us so that we have processed and used all buffers, but have
3425 * not restocked the Rx queue with fresh buffers */
3426 rxq->read = rxq->write = 0;
3427 rxq->free_count = 0;
3428 spin_unlock_irqrestore(&rxq->lock, flags);
3429 }
3430
3431 #ifdef CONFIG_PM
3432 static int fw_loaded = 0;
3433 static const struct firmware *raw = NULL;
3434
3435 static void free_firmware(void)
3436 {
3437 if (fw_loaded) {
3438 release_firmware(raw);
3439 raw = NULL;
3440 fw_loaded = 0;
3441 }
3442 }
3443 #else
3444 #define free_firmware() do {} while (0)
3445 #endif
3446
3447 static int ipw_load(struct ipw_priv *priv)
3448 {
3449 #ifndef CONFIG_PM
3450 const struct firmware *raw = NULL;
3451 #endif
3452 struct ipw_fw *fw;
3453 u8 *boot_img, *ucode_img, *fw_img;
3454 u8 *name = NULL;
3455 int rc = 0, retries = 3;
3456
3457 switch (priv->ieee->iw_mode) {
3458 case IW_MODE_ADHOC:
3459 name = "ipw2200-ibss.fw";
3460 break;
3461 #ifdef CONFIG_IPW2200_MONITOR
3462 case IW_MODE_MONITOR:
3463 name = "ipw2200-sniffer.fw";
3464 break;
3465 #endif
3466 case IW_MODE_INFRA:
3467 name = "ipw2200-bss.fw";
3468 break;
3469 }
3470
3471 if (!name) {
3472 rc = -EINVAL;
3473 goto error;
3474 }
3475
3476 #ifdef CONFIG_PM
3477 if (!fw_loaded) {
3478 #endif
3479 rc = ipw_get_fw(priv, &raw, name);
3480 if (rc < 0)
3481 goto error;
3482 #ifdef CONFIG_PM
3483 }
3484 #endif
3485
3486 fw = (void *)raw->data;
3487 boot_img = &fw->data[0];
3488 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3489 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3490 le32_to_cpu(fw->ucode_size)];
3491
3492 if (rc < 0)
3493 goto error;
3494
3495 if (!priv->rxq)
3496 priv->rxq = ipw_rx_queue_alloc(priv);
3497 else
3498 ipw_rx_queue_reset(priv, priv->rxq);
3499 if (!priv->rxq) {
3500 IPW_ERROR("Unable to initialize Rx queue\n");
3501 goto error;
3502 }
3503
3504 retry:
3505 /* Ensure interrupts are disabled */
3506 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3507 priv->status &= ~STATUS_INT_ENABLED;
3508
3509 /* ack pending interrupts */
3510 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3511
3512 ipw_stop_nic(priv);
3513
3514 rc = ipw_reset_nic(priv);
3515 if (rc < 0) {
3516 IPW_ERROR("Unable to reset NIC\n");
3517 goto error;
3518 }
3519
3520 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3521 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3522
3523 /* DMA the initial boot firmware into the device */
3524 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3525 if (rc < 0) {
3526 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3527 goto error;
3528 }
3529
3530 /* kick start the device */
3531 ipw_start_nic(priv);
3532
3533 /* wait for the device to finish its initial startup sequence */
3534 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3535 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3536 if (rc < 0) {
3537 IPW_ERROR("device failed to boot initial fw image\n");
3538 goto error;
3539 }
3540 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3541
3542 /* ack fw init done interrupt */
3543 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3544
3545 /* DMA the ucode into the device */
3546 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3547 if (rc < 0) {
3548 IPW_ERROR("Unable to load ucode: %d\n", rc);
3549 goto error;
3550 }
3551
3552 /* stop nic */
3553 ipw_stop_nic(priv);
3554
3555 /* DMA bss firmware into the device */
3556 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3557 if (rc < 0) {
3558 IPW_ERROR("Unable to load firmware: %d\n", rc);
3559 goto error;
3560 }
3561 #ifdef CONFIG_PM
3562 fw_loaded = 1;
3563 #endif
3564
3565 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3566
3567 rc = ipw_queue_reset(priv);
3568 if (rc < 0) {
3569 IPW_ERROR("Unable to initialize queues\n");
3570 goto error;
3571 }
3572
3573 /* Ensure interrupts are disabled */
3574 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3575 /* ack pending interrupts */
3576 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3577
3578 /* kick start the device */
3579 ipw_start_nic(priv);
3580
3581 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3582 if (retries > 0) {
3583 IPW_WARNING("Parity error. Retrying init.\n");
3584 retries--;
3585 goto retry;
3586 }
3587
3588 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3589 rc = -EIO;
3590 goto error;
3591 }
3592
3593 /* wait for the device */
3594 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3595 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3596 if (rc < 0) {
3597 IPW_ERROR("device failed to start within 500ms\n");
3598 goto error;
3599 }
3600 IPW_DEBUG_INFO("device response after %dms\n", rc);
3601
3602 /* ack fw init done interrupt */
3603 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3604
3605 /* read eeprom data and initialize the eeprom region of sram */
3606 priv->eeprom_delay = 1;
3607 ipw_eeprom_init_sram(priv);
3608
3609 /* enable interrupts */
3610 ipw_enable_interrupts(priv);
3611
3612 /* Ensure our queue has valid packets */
3613 ipw_rx_queue_replenish(priv);
3614
3615 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3616
3617 /* ack pending interrupts */
3618 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3619
3620 #ifndef CONFIG_PM
3621 release_firmware(raw);
3622 #endif
3623 return 0;
3624
3625 error:
3626 if (priv->rxq) {
3627 ipw_rx_queue_free(priv, priv->rxq);
3628 priv->rxq = NULL;
3629 }
3630 ipw_tx_queue_free(priv);
3631 if (raw)
3632 release_firmware(raw);
3633 #ifdef CONFIG_PM
3634 fw_loaded = 0;
3635 raw = NULL;
3636 #endif
3637
3638 return rc;
3639 }
3640
3641 /**
3642 * DMA services
3643 *
3644 * Theory of operation
3645 *
3646 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3647 * 2 empty entries always kept in the buffer to protect from overflow.
3648 *
3649 * For Tx queue, there are low mark and high mark limits. If, after queuing
3650 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3651 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3652 * Tx queue resumed.
3653 *
3654 * The IPW operates with six queues, one receive queue in the device's
3655 * sram, one transmit queue for sending commands to the device firmware,
3656 * and four transmit queues for data.
3657 *
3658 * The four transmit queues allow for performing quality of service (qos)
3659 * transmissions as per the 802.11 protocol. Currently Linux does not
3660 * provide a mechanism to the user for utilizing prioritized queues, so
3661 * we only utilize the first data transmit queue (queue1).
3662 */
3663
3664 /**
3665 * Driver allocates buffers of this size for Rx
3666 */
3667
3668 /**
3669 * ipw_rx_queue_space - Return number of free slots available in queue.
3670 */
3671 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3672 {
3673 int s = q->read - q->write;
3674 if (s <= 0)
3675 s += RX_QUEUE_SIZE;
3676 /* keep some buffer to not confuse full and empty queue */
3677 s -= 2;
3678 if (s < 0)
3679 s = 0;
3680 return s;
3681 }
3682
3683 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3684 {
3685 int s = q->last_used - q->first_empty;
3686 if (s <= 0)
3687 s += q->n_bd;
3688 s -= 2; /* keep some reserve to not confuse empty and full situations */
3689 if (s < 0)
3690 s = 0;
3691 return s;
3692 }
3693
3694 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3695 {
3696 return (++index == n_bd) ? 0 : index;
3697 }
3698
3699 /**
3700 * Initialize common DMA queue structure
3701 *
3702 * @param q queue to init
3703 * @param count Number of BD's to allocate. Should be power of 2
3704 * @param read_register Address for 'read' register
3705 * (not offset within BAR, full address)
3706 * @param write_register Address for 'write' register
3707 * (not offset within BAR, full address)
3708 * @param base_register Address for 'base' register
3709 * (not offset within BAR, full address)
3710 * @param size Address for 'size' register
3711 * (not offset within BAR, full address)
3712 */
3713 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3714 int count, u32 read, u32 write, u32 base, u32 size)
3715 {
3716 q->n_bd = count;
3717
3718 q->low_mark = q->n_bd / 4;
3719 if (q->low_mark < 4)
3720 q->low_mark = 4;
3721
3722 q->high_mark = q->n_bd / 8;
3723 if (q->high_mark < 2)
3724 q->high_mark = 2;
3725
3726 q->first_empty = q->last_used = 0;
3727 q->reg_r = read;
3728 q->reg_w = write;
3729
3730 ipw_write32(priv, base, q->dma_addr);
3731 ipw_write32(priv, size, count);
3732 ipw_write32(priv, read, 0);
3733 ipw_write32(priv, write, 0);
3734
3735 _ipw_read32(priv, 0x90);
3736 }
3737
3738 static int ipw_queue_tx_init(struct ipw_priv *priv,
3739 struct clx2_tx_queue *q,
3740 int count, u32 read, u32 write, u32 base, u32 size)
3741 {
3742 struct pci_dev *dev = priv->pci_dev;
3743
3744 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3745 if (!q->txb) {
3746 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3747 return -ENOMEM;
3748 }
3749
3750 q->bd =
3751 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3752 if (!q->bd) {
3753 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3754 sizeof(q->bd[0]) * count);
3755 kfree(q->txb);
3756 q->txb = NULL;
3757 return -ENOMEM;
3758 }
3759
3760 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3761 return 0;
3762 }
3763
3764 /**
3765 * Free one TFD, those at index [txq->q.last_used].
3766 * Do NOT advance any indexes
3767 *
3768 * @param dev
3769 * @param txq
3770 */
3771 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3772 struct clx2_tx_queue *txq)
3773 {
3774 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3775 struct pci_dev *dev = priv->pci_dev;
3776 int i;
3777
3778 /* classify bd */
3779 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3780 /* nothing to cleanup after for host commands */
3781 return;
3782
3783 /* sanity check */
3784 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3785 IPW_ERROR("Too many chunks: %i\n",
3786 le32_to_cpu(bd->u.data.num_chunks));
3787 /** @todo issue fatal error, it is quite serious situation */
3788 return;
3789 }
3790
3791 /* unmap chunks if any */
3792 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3793 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3794 le16_to_cpu(bd->u.data.chunk_len[i]),
3795 PCI_DMA_TODEVICE);
3796 if (txq->txb[txq->q.last_used]) {
3797 libipw_txb_free(txq->txb[txq->q.last_used]);
3798 txq->txb[txq->q.last_used] = NULL;
3799 }
3800 }
3801 }
3802
3803 /**
3804 * Deallocate DMA queue.
3805 *
3806 * Empty queue by removing and destroying all BD's.
3807 * Free all buffers.
3808 *
3809 * @param dev
3810 * @param q
3811 */
3812 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3813 {
3814 struct clx2_queue *q = &txq->q;
3815 struct pci_dev *dev = priv->pci_dev;
3816
3817 if (q->n_bd == 0)
3818 return;
3819
3820 /* first, empty all BD's */
3821 for (; q->first_empty != q->last_used;
3822 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3823 ipw_queue_tx_free_tfd(priv, txq);
3824 }
3825
3826 /* free buffers belonging to queue itself */
3827 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3828 q->dma_addr);
3829 kfree(txq->txb);
3830
3831 /* 0 fill whole structure */
3832 memset(txq, 0, sizeof(*txq));
3833 }
3834
3835 /**
3836 * Destroy all DMA queues and structures
3837 *
3838 * @param priv
3839 */
3840 static void ipw_tx_queue_free(struct ipw_priv *priv)
3841 {
3842 /* Tx CMD queue */
3843 ipw_queue_tx_free(priv, &priv->txq_cmd);
3844
3845 /* Tx queues */
3846 ipw_queue_tx_free(priv, &priv->txq[0]);
3847 ipw_queue_tx_free(priv, &priv->txq[1]);
3848 ipw_queue_tx_free(priv, &priv->txq[2]);
3849 ipw_queue_tx_free(priv, &priv->txq[3]);
3850 }
3851
3852 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3853 {
3854 /* First 3 bytes are manufacturer */
3855 bssid[0] = priv->mac_addr[0];
3856 bssid[1] = priv->mac_addr[1];
3857 bssid[2] = priv->mac_addr[2];
3858
3859 /* Last bytes are random */
3860 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3861
3862 bssid[0] &= 0xfe; /* clear multicast bit */
3863 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3864 }
3865
3866 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3867 {
3868 struct ipw_station_entry entry;
3869 int i;
3870
3871 for (i = 0; i < priv->num_stations; i++) {
3872 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3873 /* Another node is active in network */
3874 priv->missed_adhoc_beacons = 0;
3875 if (!(priv->config & CFG_STATIC_CHANNEL))
3876 /* when other nodes drop out, we drop out */
3877 priv->config &= ~CFG_ADHOC_PERSIST;
3878
3879 return i;
3880 }
3881 }
3882
3883 if (i == MAX_STATIONS)
3884 return IPW_INVALID_STATION;
3885
3886 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3887
3888 entry.reserved = 0;
3889 entry.support_mode = 0;
3890 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3891 memcpy(priv->stations[i], bssid, ETH_ALEN);
3892 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3893 &entry, sizeof(entry));
3894 priv->num_stations++;
3895
3896 return i;
3897 }
3898
3899 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3900 {
3901 int i;
3902
3903 for (i = 0; i < priv->num_stations; i++)
3904 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3905 return i;
3906
3907 return IPW_INVALID_STATION;
3908 }
3909
3910 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3911 {
3912 int err;
3913
3914 if (priv->status & STATUS_ASSOCIATING) {
3915 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3916 queue_work(priv->workqueue, &priv->disassociate);
3917 return;
3918 }
3919
3920 if (!(priv->status & STATUS_ASSOCIATED)) {
3921 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3922 return;
3923 }
3924
3925 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3926 "on channel %d.\n",
3927 priv->assoc_request.bssid,
3928 priv->assoc_request.channel);
3929
3930 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3931 priv->status |= STATUS_DISASSOCIATING;
3932
3933 if (quiet)
3934 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3935 else
3936 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3937
3938 err = ipw_send_associate(priv, &priv->assoc_request);
3939 if (err) {
3940 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3941 "failed.\n");
3942 return;
3943 }
3944
3945 }
3946
3947 static int ipw_disassociate(void *data)
3948 {
3949 struct ipw_priv *priv = data;
3950 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3951 return 0;
3952 ipw_send_disassociate(data, 0);
3953 netif_carrier_off(priv->net_dev);
3954 return 1;
3955 }
3956
3957 static void ipw_bg_disassociate(struct work_struct *work)
3958 {
3959 struct ipw_priv *priv =
3960 container_of(work, struct ipw_priv, disassociate);
3961 mutex_lock(&priv->mutex);
3962 ipw_disassociate(priv);
3963 mutex_unlock(&priv->mutex);
3964 }
3965
3966 static void ipw_system_config(struct work_struct *work)
3967 {
3968 struct ipw_priv *priv =
3969 container_of(work, struct ipw_priv, system_config);
3970
3971 #ifdef CONFIG_IPW2200_PROMISCUOUS
3972 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3973 priv->sys_config.accept_all_data_frames = 1;
3974 priv->sys_config.accept_non_directed_frames = 1;
3975 priv->sys_config.accept_all_mgmt_bcpr = 1;
3976 priv->sys_config.accept_all_mgmt_frames = 1;
3977 }
3978 #endif
3979
3980 ipw_send_system_config(priv);
3981 }
3982
3983 struct ipw_status_code {
3984 u16 status;
3985 const char *reason;
3986 };
3987
3988 static const struct ipw_status_code ipw_status_codes[] = {
3989 {0x00, "Successful"},
3990 {0x01, "Unspecified failure"},
3991 {0x0A, "Cannot support all requested capabilities in the "
3992 "Capability information field"},
3993 {0x0B, "Reassociation denied due to inability to confirm that "
3994 "association exists"},
3995 {0x0C, "Association denied due to reason outside the scope of this "
3996 "standard"},
3997 {0x0D,
3998 "Responding station does not support the specified authentication "
3999 "algorithm"},
4000 {0x0E,
4001 "Received an Authentication frame with authentication sequence "
4002 "transaction sequence number out of expected sequence"},
4003 {0x0F, "Authentication rejected because of challenge failure"},
4004 {0x10, "Authentication rejected due to timeout waiting for next "
4005 "frame in sequence"},
4006 {0x11, "Association denied because AP is unable to handle additional "
4007 "associated stations"},
4008 {0x12,
4009 "Association denied due to requesting station not supporting all "
4010 "of the datarates in the BSSBasicServiceSet Parameter"},
4011 {0x13,
4012 "Association denied due to requesting station not supporting "
4013 "short preamble operation"},
4014 {0x14,
4015 "Association denied due to requesting station not supporting "
4016 "PBCC encoding"},
4017 {0x15,
4018 "Association denied due to requesting station not supporting "
4019 "channel agility"},
4020 {0x19,
4021 "Association denied due to requesting station not supporting "
4022 "short slot operation"},
4023 {0x1A,
4024 "Association denied due to requesting station not supporting "
4025 "DSSS-OFDM operation"},
4026 {0x28, "Invalid Information Element"},
4027 {0x29, "Group Cipher is not valid"},
4028 {0x2A, "Pairwise Cipher is not valid"},
4029 {0x2B, "AKMP is not valid"},
4030 {0x2C, "Unsupported RSN IE version"},
4031 {0x2D, "Invalid RSN IE Capabilities"},
4032 {0x2E, "Cipher suite is rejected per security policy"},
4033 };
4034
4035 static const char *ipw_get_status_code(u16 status)
4036 {
4037 int i;
4038 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4039 if (ipw_status_codes[i].status == (status & 0xff))
4040 return ipw_status_codes[i].reason;
4041 return "Unknown status value.";
4042 }
4043
4044 static void inline average_init(struct average *avg)
4045 {
4046 memset(avg, 0, sizeof(*avg));
4047 }
4048
4049 #define DEPTH_RSSI 8
4050 #define DEPTH_NOISE 16
4051 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4052 {
4053 return ((depth-1)*prev_avg + val)/depth;
4054 }
4055
4056 static void average_add(struct average *avg, s16 val)
4057 {
4058 avg->sum -= avg->entries[avg->pos];
4059 avg->sum += val;
4060 avg->entries[avg->pos++] = val;
4061 if (unlikely(avg->pos == AVG_ENTRIES)) {
4062 avg->init = 1;
4063 avg->pos = 0;
4064 }
4065 }
4066
4067 static s16 average_value(struct average *avg)
4068 {
4069 if (!unlikely(avg->init)) {
4070 if (avg->pos)
4071 return avg->sum / avg->pos;
4072 return 0;
4073 }
4074
4075 return avg->sum / AVG_ENTRIES;
4076 }
4077
4078 static void ipw_reset_stats(struct ipw_priv *priv)
4079 {
4080 u32 len = sizeof(u32);
4081
4082 priv->quality = 0;
4083
4084 average_init(&priv->average_missed_beacons);
4085 priv->exp_avg_rssi = -60;
4086 priv->exp_avg_noise = -85 + 0x100;
4087
4088 priv->last_rate = 0;
4089 priv->last_missed_beacons = 0;
4090 priv->last_rx_packets = 0;
4091 priv->last_tx_packets = 0;
4092 priv->last_tx_failures = 0;
4093
4094 /* Firmware managed, reset only when NIC is restarted, so we have to
4095 * normalize on the current value */
4096 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4097 &priv->last_rx_err, &len);
4098 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4099 &priv->last_tx_failures, &len);
4100
4101 /* Driver managed, reset with each association */
4102 priv->missed_adhoc_beacons = 0;
4103 priv->missed_beacons = 0;
4104 priv->tx_packets = 0;
4105 priv->rx_packets = 0;
4106
4107 }
4108
4109 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4110 {
4111 u32 i = 0x80000000;
4112 u32 mask = priv->rates_mask;
4113 /* If currently associated in B mode, restrict the maximum
4114 * rate match to B rates */
4115 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4116 mask &= LIBIPW_CCK_RATES_MASK;
4117
4118 /* TODO: Verify that the rate is supported by the current rates
4119 * list. */
4120
4121 while (i && !(mask & i))
4122 i >>= 1;
4123 switch (i) {
4124 case LIBIPW_CCK_RATE_1MB_MASK:
4125 return 1000000;
4126 case LIBIPW_CCK_RATE_2MB_MASK:
4127 return 2000000;
4128 case LIBIPW_CCK_RATE_5MB_MASK:
4129 return 5500000;
4130 case LIBIPW_OFDM_RATE_6MB_MASK:
4131 return 6000000;
4132 case LIBIPW_OFDM_RATE_9MB_MASK:
4133 return 9000000;
4134 case LIBIPW_CCK_RATE_11MB_MASK:
4135 return 11000000;
4136 case LIBIPW_OFDM_RATE_12MB_MASK:
4137 return 12000000;
4138 case LIBIPW_OFDM_RATE_18MB_MASK:
4139 return 18000000;
4140 case LIBIPW_OFDM_RATE_24MB_MASK:
4141 return 24000000;
4142 case LIBIPW_OFDM_RATE_36MB_MASK:
4143 return 36000000;
4144 case LIBIPW_OFDM_RATE_48MB_MASK:
4145 return 48000000;
4146 case LIBIPW_OFDM_RATE_54MB_MASK:
4147 return 54000000;
4148 }
4149
4150 if (priv->ieee->mode == IEEE_B)
4151 return 11000000;
4152 else
4153 return 54000000;
4154 }
4155
4156 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4157 {
4158 u32 rate, len = sizeof(rate);
4159 int err;
4160
4161 if (!(priv->status & STATUS_ASSOCIATED))
4162 return 0;
4163
4164 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4165 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4166 &len);
4167 if (err) {
4168 IPW_DEBUG_INFO("failed querying ordinals.\n");
4169 return 0;
4170 }
4171 } else
4172 return ipw_get_max_rate(priv);
4173
4174 switch (rate) {
4175 case IPW_TX_RATE_1MB:
4176 return 1000000;
4177 case IPW_TX_RATE_2MB:
4178 return 2000000;
4179 case IPW_TX_RATE_5MB:
4180 return 5500000;
4181 case IPW_TX_RATE_6MB:
4182 return 6000000;
4183 case IPW_TX_RATE_9MB:
4184 return 9000000;
4185 case IPW_TX_RATE_11MB:
4186 return 11000000;
4187 case IPW_TX_RATE_12MB:
4188 return 12000000;
4189 case IPW_TX_RATE_18MB:
4190 return 18000000;
4191 case IPW_TX_RATE_24MB:
4192 return 24000000;
4193 case IPW_TX_RATE_36MB:
4194 return 36000000;
4195 case IPW_TX_RATE_48MB:
4196 return 48000000;
4197 case IPW_TX_RATE_54MB:
4198 return 54000000;
4199 }
4200
4201 return 0;
4202 }
4203
4204 #define IPW_STATS_INTERVAL (2 * HZ)
4205 static void ipw_gather_stats(struct ipw_priv *priv)
4206 {
4207 u32 rx_err, rx_err_delta, rx_packets_delta;
4208 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4209 u32 missed_beacons_percent, missed_beacons_delta;
4210 u32 quality = 0;
4211 u32 len = sizeof(u32);
4212 s16 rssi;
4213 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4214 rate_quality;
4215 u32 max_rate;
4216
4217 if (!(priv->status & STATUS_ASSOCIATED)) {
4218 priv->quality = 0;
4219 return;
4220 }
4221
4222 /* Update the statistics */
4223 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4224 &priv->missed_beacons, &len);
4225 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4226 priv->last_missed_beacons = priv->missed_beacons;
4227 if (priv->assoc_request.beacon_interval) {
4228 missed_beacons_percent = missed_beacons_delta *
4229 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4230 (IPW_STATS_INTERVAL * 10);
4231 } else {
4232 missed_beacons_percent = 0;
4233 }
4234 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4235
4236 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4237 rx_err_delta = rx_err - priv->last_rx_err;
4238 priv->last_rx_err = rx_err;
4239
4240 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4241 tx_failures_delta = tx_failures - priv->last_tx_failures;
4242 priv->last_tx_failures = tx_failures;
4243
4244 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4245 priv->last_rx_packets = priv->rx_packets;
4246
4247 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4248 priv->last_tx_packets = priv->tx_packets;
4249
4250 /* Calculate quality based on the following:
4251 *
4252 * Missed beacon: 100% = 0, 0% = 70% missed
4253 * Rate: 60% = 1Mbs, 100% = Max
4254 * Rx and Tx errors represent a straight % of total Rx/Tx
4255 * RSSI: 100% = > -50, 0% = < -80
4256 * Rx errors: 100% = 0, 0% = 50% missed
4257 *
4258 * The lowest computed quality is used.
4259 *
4260 */
4261 #define BEACON_THRESHOLD 5
4262 beacon_quality = 100 - missed_beacons_percent;
4263 if (beacon_quality < BEACON_THRESHOLD)
4264 beacon_quality = 0;
4265 else
4266 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4267 (100 - BEACON_THRESHOLD);
4268 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4269 beacon_quality, missed_beacons_percent);
4270
4271 priv->last_rate = ipw_get_current_rate(priv);
4272 max_rate = ipw_get_max_rate(priv);
4273 rate_quality = priv->last_rate * 40 / max_rate + 60;
4274 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4275 rate_quality, priv->last_rate / 1000000);
4276
4277 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4278 rx_quality = 100 - (rx_err_delta * 100) /
4279 (rx_packets_delta + rx_err_delta);
4280 else
4281 rx_quality = 100;
4282 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4283 rx_quality, rx_err_delta, rx_packets_delta);
4284
4285 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4286 tx_quality = 100 - (tx_failures_delta * 100) /
4287 (tx_packets_delta + tx_failures_delta);
4288 else
4289 tx_quality = 100;
4290 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4291 tx_quality, tx_failures_delta, tx_packets_delta);
4292
4293 rssi = priv->exp_avg_rssi;
4294 signal_quality =
4295 (100 *
4296 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4297 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4298 (priv->ieee->perfect_rssi - rssi) *
4299 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4300 62 * (priv->ieee->perfect_rssi - rssi))) /
4301 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4302 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4303 if (signal_quality > 100)
4304 signal_quality = 100;
4305 else if (signal_quality < 1)
4306 signal_quality = 0;
4307
4308 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4309 signal_quality, rssi);
4310
4311 quality = min(rx_quality, signal_quality);
4312 quality = min(tx_quality, quality);
4313 quality = min(rate_quality, quality);
4314 quality = min(beacon_quality, quality);
4315 if (quality == beacon_quality)
4316 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4317 quality);
4318 if (quality == rate_quality)
4319 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4320 quality);
4321 if (quality == tx_quality)
4322 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4323 quality);
4324 if (quality == rx_quality)
4325 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4326 quality);
4327 if (quality == signal_quality)
4328 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4329 quality);
4330
4331 priv->quality = quality;
4332
4333 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4334 IPW_STATS_INTERVAL);
4335 }
4336
4337 static void ipw_bg_gather_stats(struct work_struct *work)
4338 {
4339 struct ipw_priv *priv =
4340 container_of(work, struct ipw_priv, gather_stats.work);
4341 mutex_lock(&priv->mutex);
4342 ipw_gather_stats(priv);
4343 mutex_unlock(&priv->mutex);
4344 }
4345
4346 /* Missed beacon behavior:
4347 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4348 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4349 * Above disassociate threshold, give up and stop scanning.
4350 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4351 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4352 int missed_count)
4353 {
4354 priv->notif_missed_beacons = missed_count;
4355
4356 if (missed_count > priv->disassociate_threshold &&
4357 priv->status & STATUS_ASSOCIATED) {
4358 /* If associated and we've hit the missed
4359 * beacon threshold, disassociate, turn
4360 * off roaming, and abort any active scans */
4361 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4362 IPW_DL_STATE | IPW_DL_ASSOC,
4363 "Missed beacon: %d - disassociate\n", missed_count);
4364 priv->status &= ~STATUS_ROAMING;
4365 if (priv->status & STATUS_SCANNING) {
4366 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4367 IPW_DL_STATE,
4368 "Aborting scan with missed beacon.\n");
4369 queue_work(priv->workqueue, &priv->abort_scan);
4370 }
4371
4372 queue_work(priv->workqueue, &priv->disassociate);
4373 return;
4374 }
4375
4376 if (priv->status & STATUS_ROAMING) {
4377 /* If we are currently roaming, then just
4378 * print a debug statement... */
4379 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4380 "Missed beacon: %d - roam in progress\n",
4381 missed_count);
4382 return;
4383 }
4384
4385 if (roaming &&
4386 (missed_count > priv->roaming_threshold &&
4387 missed_count <= priv->disassociate_threshold)) {
4388 /* If we are not already roaming, set the ROAM
4389 * bit in the status and kick off a scan.
4390 * This can happen several times before we reach
4391 * disassociate_threshold. */
4392 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4393 "Missed beacon: %d - initiate "
4394 "roaming\n", missed_count);
4395 if (!(priv->status & STATUS_ROAMING)) {
4396 priv->status |= STATUS_ROAMING;
4397 if (!(priv->status & STATUS_SCANNING))
4398 queue_delayed_work(priv->workqueue,
4399 &priv->request_scan, 0);
4400 }
4401 return;
4402 }
4403
4404 if (priv->status & STATUS_SCANNING &&
4405 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4406 /* Stop scan to keep fw from getting
4407 * stuck (only if we aren't roaming --
4408 * otherwise we'll never scan more than 2 or 3
4409 * channels..) */
4410 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4411 "Aborting scan with missed beacon.\n");
4412 queue_work(priv->workqueue, &priv->abort_scan);
4413 }
4414
4415 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4416 }
4417
4418 static void ipw_scan_event(struct work_struct *work)
4419 {
4420 union iwreq_data wrqu;
4421
4422 struct ipw_priv *priv =
4423 container_of(work, struct ipw_priv, scan_event.work);
4424
4425 wrqu.data.length = 0;
4426 wrqu.data.flags = 0;
4427 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4428 }
4429
4430 static void handle_scan_event(struct ipw_priv *priv)
4431 {
4432 /* Only userspace-requested scan completion events go out immediately */
4433 if (!priv->user_requested_scan) {
4434 if (!delayed_work_pending(&priv->scan_event))
4435 queue_delayed_work(priv->workqueue, &priv->scan_event,
4436 round_jiffies_relative(msecs_to_jiffies(4000)));
4437 } else {
4438 union iwreq_data wrqu;
4439
4440 priv->user_requested_scan = 0;
4441 cancel_delayed_work(&priv->scan_event);
4442
4443 wrqu.data.length = 0;
4444 wrqu.data.flags = 0;
4445 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4446 }
4447 }
4448
4449 /**
4450 * Handle host notification packet.
4451 * Called from interrupt routine
4452 */
4453 static void ipw_rx_notification(struct ipw_priv *priv,
4454 struct ipw_rx_notification *notif)
4455 {
4456 DECLARE_SSID_BUF(ssid);
4457 u16 size = le16_to_cpu(notif->size);
4458
4459 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4460
4461 switch (notif->subtype) {
4462 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4463 struct notif_association *assoc = &notif->u.assoc;
4464
4465 switch (assoc->state) {
4466 case CMAS_ASSOCIATED:{
4467 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4468 IPW_DL_ASSOC,
4469 "associated: '%s' %pM \n",
4470 print_ssid(ssid, priv->essid,
4471 priv->essid_len),
4472 priv->bssid);
4473
4474 switch (priv->ieee->iw_mode) {
4475 case IW_MODE_INFRA:
4476 memcpy(priv->ieee->bssid,
4477 priv->bssid, ETH_ALEN);
4478 break;
4479
4480 case IW_MODE_ADHOC:
4481 memcpy(priv->ieee->bssid,
4482 priv->bssid, ETH_ALEN);
4483
4484 /* clear out the station table */
4485 priv->num_stations = 0;
4486
4487 IPW_DEBUG_ASSOC
4488 ("queueing adhoc check\n");
4489 queue_delayed_work(priv->
4490 workqueue,
4491 &priv->
4492 adhoc_check,
4493 le16_to_cpu(priv->
4494 assoc_request.
4495 beacon_interval));
4496 break;
4497 }
4498
4499 priv->status &= ~STATUS_ASSOCIATING;
4500 priv->status |= STATUS_ASSOCIATED;
4501 queue_work(priv->workqueue,
4502 &priv->system_config);
4503
4504 #ifdef CONFIG_IPW2200_QOS
4505 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4506 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4507 if ((priv->status & STATUS_AUTH) &&
4508 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4509 == IEEE80211_STYPE_ASSOC_RESP)) {
4510 if ((sizeof
4511 (struct
4512 libipw_assoc_response)
4513 <= size)
4514 && (size <= 2314)) {
4515 struct
4516 libipw_rx_stats
4517 stats = {
4518 .len = size - 1,
4519 };
4520
4521 IPW_DEBUG_QOS
4522 ("QoS Associate "
4523 "size %d\n", size);
4524 libipw_rx_mgt(priv->
4525 ieee,
4526 (struct
4527 libipw_hdr_4addr
4528 *)
4529 &notif->u.raw, &stats);
4530 }
4531 }
4532 #endif
4533
4534 schedule_work(&priv->link_up);
4535
4536 break;
4537 }
4538
4539 case CMAS_AUTHENTICATED:{
4540 if (priv->
4541 status & (STATUS_ASSOCIATED |
4542 STATUS_AUTH)) {
4543 struct notif_authenticate *auth
4544 = &notif->u.auth;
4545 IPW_DEBUG(IPW_DL_NOTIF |
4546 IPW_DL_STATE |
4547 IPW_DL_ASSOC,
4548 "deauthenticated: '%s' "
4549 "%pM"
4550 ": (0x%04X) - %s \n",
4551 print_ssid(ssid,
4552 priv->
4553 essid,
4554 priv->
4555 essid_len),
4556 priv->bssid,
4557 le16_to_cpu(auth->status),
4558 ipw_get_status_code
4559 (le16_to_cpu
4560 (auth->status)));
4561
4562 priv->status &=
4563 ~(STATUS_ASSOCIATING |
4564 STATUS_AUTH |
4565 STATUS_ASSOCIATED);
4566
4567 schedule_work(&priv->link_down);
4568 break;
4569 }
4570
4571 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4572 IPW_DL_ASSOC,
4573 "authenticated: '%s' %pM\n",
4574 print_ssid(ssid, priv->essid,
4575 priv->essid_len),
4576 priv->bssid);
4577 break;
4578 }
4579
4580 case CMAS_INIT:{
4581 if (priv->status & STATUS_AUTH) {
4582 struct
4583 libipw_assoc_response
4584 *resp;
4585 resp =
4586 (struct
4587 libipw_assoc_response
4588 *)&notif->u.raw;
4589 IPW_DEBUG(IPW_DL_NOTIF |
4590 IPW_DL_STATE |
4591 IPW_DL_ASSOC,
4592 "association failed (0x%04X): %s\n",
4593 le16_to_cpu(resp->status),
4594 ipw_get_status_code
4595 (le16_to_cpu
4596 (resp->status)));
4597 }
4598
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4600 IPW_DL_ASSOC,
4601 "disassociated: '%s' %pM \n",
4602 print_ssid(ssid, priv->essid,
4603 priv->essid_len),
4604 priv->bssid);
4605
4606 priv->status &=
4607 ~(STATUS_DISASSOCIATING |
4608 STATUS_ASSOCIATING |
4609 STATUS_ASSOCIATED | STATUS_AUTH);
4610 if (priv->assoc_network
4611 && (priv->assoc_network->
4612 capability &
4613 WLAN_CAPABILITY_IBSS))
4614 ipw_remove_current_network
4615 (priv);
4616
4617 schedule_work(&priv->link_down);
4618
4619 break;
4620 }
4621
4622 case CMAS_RX_ASSOC_RESP:
4623 break;
4624
4625 default:
4626 IPW_ERROR("assoc: unknown (%d)\n",
4627 assoc->state);
4628 break;
4629 }
4630
4631 break;
4632 }
4633
4634 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4635 struct notif_authenticate *auth = &notif->u.auth;
4636 switch (auth->state) {
4637 case CMAS_AUTHENTICATED:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4639 "authenticated: '%s' %pM \n",
4640 print_ssid(ssid, priv->essid,
4641 priv->essid_len),
4642 priv->bssid);
4643 priv->status |= STATUS_AUTH;
4644 break;
4645
4646 case CMAS_INIT:
4647 if (priv->status & STATUS_AUTH) {
4648 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649 IPW_DL_ASSOC,
4650 "authentication failed (0x%04X): %s\n",
4651 le16_to_cpu(auth->status),
4652 ipw_get_status_code(le16_to_cpu
4653 (auth->
4654 status)));
4655 }
4656 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4657 IPW_DL_ASSOC,
4658 "deauthenticated: '%s' %pM\n",
4659 print_ssid(ssid, priv->essid,
4660 priv->essid_len),
4661 priv->bssid);
4662
4663 priv->status &= ~(STATUS_ASSOCIATING |
4664 STATUS_AUTH |
4665 STATUS_ASSOCIATED);
4666
4667 schedule_work(&priv->link_down);
4668 break;
4669
4670 case CMAS_TX_AUTH_SEQ_1:
4671 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4673 break;
4674 case CMAS_RX_AUTH_SEQ_2:
4675 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4677 break;
4678 case CMAS_AUTH_SEQ_1_PASS:
4679 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4680 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4681 break;
4682 case CMAS_AUTH_SEQ_1_FAIL:
4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4685 break;
4686 case CMAS_TX_AUTH_SEQ_3:
4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4689 break;
4690 case CMAS_RX_AUTH_SEQ_4:
4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4693 break;
4694 case CMAS_AUTH_SEQ_2_PASS:
4695 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4697 break;
4698 case CMAS_AUTH_SEQ_2_FAIL:
4699 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4700 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4701 break;
4702 case CMAS_TX_ASSOC:
4703 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4704 IPW_DL_ASSOC, "TX_ASSOC\n");
4705 break;
4706 case CMAS_RX_ASSOC_RESP:
4707 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4709
4710 break;
4711 case CMAS_ASSOCIATED:
4712 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713 IPW_DL_ASSOC, "ASSOCIATED\n");
4714 break;
4715 default:
4716 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4717 auth->state);
4718 break;
4719 }
4720 break;
4721 }
4722
4723 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4724 struct notif_channel_result *x =
4725 &notif->u.channel_result;
4726
4727 if (size == sizeof(*x)) {
4728 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4729 x->channel_num);
4730 } else {
4731 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4732 "(should be %zd)\n",
4733 size, sizeof(*x));
4734 }
4735 break;
4736 }
4737
4738 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4739 struct notif_scan_complete *x = &notif->u.scan_complete;
4740 if (size == sizeof(*x)) {
4741 IPW_DEBUG_SCAN
4742 ("Scan completed: type %d, %d channels, "
4743 "%d status\n", x->scan_type,
4744 x->num_channels, x->status);
4745 } else {
4746 IPW_ERROR("Scan completed of wrong size %d "
4747 "(should be %zd)\n",
4748 size, sizeof(*x));
4749 }
4750
4751 priv->status &=
4752 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4753
4754 wake_up_interruptible(&priv->wait_state);
4755 cancel_delayed_work(&priv->scan_check);
4756
4757 if (priv->status & STATUS_EXIT_PENDING)
4758 break;
4759
4760 priv->ieee->scans++;
4761
4762 #ifdef CONFIG_IPW2200_MONITOR
4763 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4764 priv->status |= STATUS_SCAN_FORCED;
4765 queue_delayed_work(priv->workqueue,
4766 &priv->request_scan, 0);
4767 break;
4768 }
4769 priv->status &= ~STATUS_SCAN_FORCED;
4770 #endif /* CONFIG_IPW2200_MONITOR */
4771
4772 /* Do queued direct scans first */
4773 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4774 queue_delayed_work(priv->workqueue,
4775 &priv->request_direct_scan, 0);
4776 }
4777
4778 if (!(priv->status & (STATUS_ASSOCIATED |
4779 STATUS_ASSOCIATING |
4780 STATUS_ROAMING |
4781 STATUS_DISASSOCIATING)))
4782 queue_work(priv->workqueue, &priv->associate);
4783 else if (priv->status & STATUS_ROAMING) {
4784 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4785 /* If a scan completed and we are in roam mode, then
4786 * the scan that completed was the one requested as a
4787 * result of entering roam... so, schedule the
4788 * roam work */
4789 queue_work(priv->workqueue,
4790 &priv->roam);
4791 else
4792 /* Don't schedule if we aborted the scan */
4793 priv->status &= ~STATUS_ROAMING;
4794 } else if (priv->status & STATUS_SCAN_PENDING)
4795 queue_delayed_work(priv->workqueue,
4796 &priv->request_scan, 0);
4797 else if (priv->config & CFG_BACKGROUND_SCAN
4798 && priv->status & STATUS_ASSOCIATED)
4799 queue_delayed_work(priv->workqueue,
4800 &priv->request_scan,
4801 round_jiffies_relative(HZ));
4802
4803 /* Send an empty event to user space.
4804 * We don't send the received data on the event because
4805 * it would require us to do complex transcoding, and
4806 * we want to minimise the work done in the irq handler
4807 * Use a request to extract the data.
4808 * Also, we generate this even for any scan, regardless
4809 * on how the scan was initiated. User space can just
4810 * sync on periodic scan to get fresh data...
4811 * Jean II */
4812 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4813 handle_scan_event(priv);
4814 break;
4815 }
4816
4817 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4818 struct notif_frag_length *x = &notif->u.frag_len;
4819
4820 if (size == sizeof(*x))
4821 IPW_ERROR("Frag length: %d\n",
4822 le16_to_cpu(x->frag_length));
4823 else
4824 IPW_ERROR("Frag length of wrong size %d "
4825 "(should be %zd)\n",
4826 size, sizeof(*x));
4827 break;
4828 }
4829
4830 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4831 struct notif_link_deterioration *x =
4832 &notif->u.link_deterioration;
4833
4834 if (size == sizeof(*x)) {
4835 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4836 "link deterioration: type %d, cnt %d\n",
4837 x->silence_notification_type,
4838 x->silence_count);
4839 memcpy(&priv->last_link_deterioration, x,
4840 sizeof(*x));
4841 } else {
4842 IPW_ERROR("Link Deterioration of wrong size %d "
4843 "(should be %zd)\n",
4844 size, sizeof(*x));
4845 }
4846 break;
4847 }
4848
4849 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4850 IPW_ERROR("Dino config\n");
4851 if (priv->hcmd
4852 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4853 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4854
4855 break;
4856 }
4857
4858 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4859 struct notif_beacon_state *x = &notif->u.beacon_state;
4860 if (size != sizeof(*x)) {
4861 IPW_ERROR
4862 ("Beacon state of wrong size %d (should "
4863 "be %zd)\n", size, sizeof(*x));
4864 break;
4865 }
4866
4867 if (le32_to_cpu(x->state) ==
4868 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4869 ipw_handle_missed_beacon(priv,
4870 le32_to_cpu(x->
4871 number));
4872
4873 break;
4874 }
4875
4876 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4877 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4878 if (size == sizeof(*x)) {
4879 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4880 "0x%02x station %d\n",
4881 x->key_state, x->security_type,
4882 x->station_index);
4883 break;
4884 }
4885
4886 IPW_ERROR
4887 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4888 size, sizeof(*x));
4889 break;
4890 }
4891
4892 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4893 struct notif_calibration *x = &notif->u.calibration;
4894
4895 if (size == sizeof(*x)) {
4896 memcpy(&priv->calib, x, sizeof(*x));
4897 IPW_DEBUG_INFO("TODO: Calibration\n");
4898 break;
4899 }
4900
4901 IPW_ERROR
4902 ("Calibration of wrong size %d (should be %zd)\n",
4903 size, sizeof(*x));
4904 break;
4905 }
4906
4907 case HOST_NOTIFICATION_NOISE_STATS:{
4908 if (size == sizeof(u32)) {
4909 priv->exp_avg_noise =
4910 exponential_average(priv->exp_avg_noise,
4911 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4912 DEPTH_NOISE);
4913 break;
4914 }
4915
4916 IPW_ERROR
4917 ("Noise stat is wrong size %d (should be %zd)\n",
4918 size, sizeof(u32));
4919 break;
4920 }
4921
4922 default:
4923 IPW_DEBUG_NOTIF("Unknown notification: "
4924 "subtype=%d,flags=0x%2x,size=%d\n",
4925 notif->subtype, notif->flags, size);
4926 }
4927 }
4928
4929 /**
4930 * Destroys all DMA structures and initialise them again
4931 *
4932 * @param priv
4933 * @return error code
4934 */
4935 static int ipw_queue_reset(struct ipw_priv *priv)
4936 {
4937 int rc = 0;
4938 /** @todo customize queue sizes */
4939 int nTx = 64, nTxCmd = 8;
4940 ipw_tx_queue_free(priv);
4941 /* Tx CMD queue */
4942 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4943 IPW_TX_CMD_QUEUE_READ_INDEX,
4944 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4945 IPW_TX_CMD_QUEUE_BD_BASE,
4946 IPW_TX_CMD_QUEUE_BD_SIZE);
4947 if (rc) {
4948 IPW_ERROR("Tx Cmd queue init failed\n");
4949 goto error;
4950 }
4951 /* Tx queue(s) */
4952 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4953 IPW_TX_QUEUE_0_READ_INDEX,
4954 IPW_TX_QUEUE_0_WRITE_INDEX,
4955 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4956 if (rc) {
4957 IPW_ERROR("Tx 0 queue init failed\n");
4958 goto error;
4959 }
4960 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4961 IPW_TX_QUEUE_1_READ_INDEX,
4962 IPW_TX_QUEUE_1_WRITE_INDEX,
4963 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4964 if (rc) {
4965 IPW_ERROR("Tx 1 queue init failed\n");
4966 goto error;
4967 }
4968 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4969 IPW_TX_QUEUE_2_READ_INDEX,
4970 IPW_TX_QUEUE_2_WRITE_INDEX,
4971 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4972 if (rc) {
4973 IPW_ERROR("Tx 2 queue init failed\n");
4974 goto error;
4975 }
4976 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4977 IPW_TX_QUEUE_3_READ_INDEX,
4978 IPW_TX_QUEUE_3_WRITE_INDEX,
4979 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4980 if (rc) {
4981 IPW_ERROR("Tx 3 queue init failed\n");
4982 goto error;
4983 }
4984 /* statistics */
4985 priv->rx_bufs_min = 0;
4986 priv->rx_pend_max = 0;
4987 return rc;
4988
4989 error:
4990 ipw_tx_queue_free(priv);
4991 return rc;
4992 }
4993
4994 /**
4995 * Reclaim Tx queue entries no more used by NIC.
4996 *
4997 * When FW advances 'R' index, all entries between old and
4998 * new 'R' index need to be reclaimed. As result, some free space
4999 * forms. If there is enough free space (> low mark), wake Tx queue.
5000 *
5001 * @note Need to protect against garbage in 'R' index
5002 * @param priv
5003 * @param txq
5004 * @param qindex
5005 * @return Number of used entries remains in the queue
5006 */
5007 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5008 struct clx2_tx_queue *txq, int qindex)
5009 {
5010 u32 hw_tail;
5011 int used;
5012 struct clx2_queue *q = &txq->q;
5013
5014 hw_tail = ipw_read32(priv, q->reg_r);
5015 if (hw_tail >= q->n_bd) {
5016 IPW_ERROR
5017 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5018 hw_tail, q->n_bd);
5019 goto done;
5020 }
5021 for (; q->last_used != hw_tail;
5022 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5023 ipw_queue_tx_free_tfd(priv, txq);
5024 priv->tx_packets++;
5025 }
5026 done:
5027 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5028 (qindex >= 0))
5029 netif_wake_queue(priv->net_dev);
5030 used = q->first_empty - q->last_used;
5031 if (used < 0)
5032 used += q->n_bd;
5033
5034 return used;
5035 }
5036
5037 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5038 int len, int sync)
5039 {
5040 struct clx2_tx_queue *txq = &priv->txq_cmd;
5041 struct clx2_queue *q = &txq->q;
5042 struct tfd_frame *tfd;
5043
5044 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5045 IPW_ERROR("No space for Tx\n");
5046 return -EBUSY;
5047 }
5048
5049 tfd = &txq->bd[q->first_empty];
5050 txq->txb[q->first_empty] = NULL;
5051
5052 memset(tfd, 0, sizeof(*tfd));
5053 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5054 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5055 priv->hcmd_seq++;
5056 tfd->u.cmd.index = hcmd;
5057 tfd->u.cmd.length = len;
5058 memcpy(tfd->u.cmd.payload, buf, len);
5059 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5060 ipw_write32(priv, q->reg_w, q->first_empty);
5061 _ipw_read32(priv, 0x90);
5062
5063 return 0;
5064 }
5065
5066 /*
5067 * Rx theory of operation
5068 *
5069 * The host allocates 32 DMA target addresses and passes the host address
5070 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5071 * 0 to 31
5072 *
5073 * Rx Queue Indexes
5074 * The host/firmware share two index registers for managing the Rx buffers.
5075 *
5076 * The READ index maps to the first position that the firmware may be writing
5077 * to -- the driver can read up to (but not including) this position and get
5078 * good data.
5079 * The READ index is managed by the firmware once the card is enabled.
5080 *
5081 * The WRITE index maps to the last position the driver has read from -- the
5082 * position preceding WRITE is the last slot the firmware can place a packet.
5083 *
5084 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5085 * WRITE = READ.
5086 *
5087 * During initialization the host sets up the READ queue position to the first
5088 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5089 *
5090 * When the firmware places a packet in a buffer it will advance the READ index
5091 * and fire the RX interrupt. The driver can then query the READ index and
5092 * process as many packets as possible, moving the WRITE index forward as it
5093 * resets the Rx queue buffers with new memory.
5094 *
5095 * The management in the driver is as follows:
5096 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5097 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5098 * to replensish the ipw->rxq->rx_free.
5099 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5100 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5101 * 'processed' and 'read' driver indexes as well)
5102 * + A received packet is processed and handed to the kernel network stack,
5103 * detached from the ipw->rxq. The driver 'processed' index is updated.
5104 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5105 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5106 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5107 * were enough free buffers and RX_STALLED is set it is cleared.
5108 *
5109 *
5110 * Driver sequence:
5111 *
5112 * ipw_rx_queue_alloc() Allocates rx_free
5113 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5114 * ipw_rx_queue_restock
5115 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5116 * queue, updates firmware pointers, and updates
5117 * the WRITE index. If insufficient rx_free buffers
5118 * are available, schedules ipw_rx_queue_replenish
5119 *
5120 * -- enable interrupts --
5121 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5122 * READ INDEX, detaching the SKB from the pool.
5123 * Moves the packet buffer from queue to rx_used.
5124 * Calls ipw_rx_queue_restock to refill any empty
5125 * slots.
5126 * ...
5127 *
5128 */
5129
5130 /*
5131 * If there are slots in the RX queue that need to be restocked,
5132 * and we have free pre-allocated buffers, fill the ranks as much
5133 * as we can pulling from rx_free.
5134 *
5135 * This moves the 'write' index forward to catch up with 'processed', and
5136 * also updates the memory address in the firmware to reference the new
5137 * target buffer.
5138 */
5139 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5140 {
5141 struct ipw_rx_queue *rxq = priv->rxq;
5142 struct list_head *element;
5143 struct ipw_rx_mem_buffer *rxb;
5144 unsigned long flags;
5145 int write;
5146
5147 spin_lock_irqsave(&rxq->lock, flags);
5148 write = rxq->write;
5149 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5150 element = rxq->rx_free.next;
5151 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5152 list_del(element);
5153
5154 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5155 rxb->dma_addr);
5156 rxq->queue[rxq->write] = rxb;
5157 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5158 rxq->free_count--;
5159 }
5160 spin_unlock_irqrestore(&rxq->lock, flags);
5161
5162 /* If the pre-allocated buffer pool is dropping low, schedule to
5163 * refill it */
5164 if (rxq->free_count <= RX_LOW_WATERMARK)
5165 queue_work(priv->workqueue, &priv->rx_replenish);
5166
5167 /* If we've added more space for the firmware to place data, tell it */
5168 if (write != rxq->write)
5169 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5170 }
5171
5172 /*
5173 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5174 * Also restock the Rx queue via ipw_rx_queue_restock.
5175 *
5176 * This is called as a scheduled work item (except for during intialization)
5177 */
5178 static void ipw_rx_queue_replenish(void *data)
5179 {
5180 struct ipw_priv *priv = data;
5181 struct ipw_rx_queue *rxq = priv->rxq;
5182 struct list_head *element;
5183 struct ipw_rx_mem_buffer *rxb;
5184 unsigned long flags;
5185
5186 spin_lock_irqsave(&rxq->lock, flags);
5187 while (!list_empty(&rxq->rx_used)) {
5188 element = rxq->rx_used.next;
5189 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5190 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5191 if (!rxb->skb) {
5192 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5193 priv->net_dev->name);
5194 /* We don't reschedule replenish work here -- we will
5195 * call the restock method and if it still needs
5196 * more buffers it will schedule replenish */
5197 break;
5198 }
5199 list_del(element);
5200
5201 rxb->dma_addr =
5202 pci_map_single(priv->pci_dev, rxb->skb->data,
5203 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5204
5205 list_add_tail(&rxb->list, &rxq->rx_free);
5206 rxq->free_count++;
5207 }
5208 spin_unlock_irqrestore(&rxq->lock, flags);
5209
5210 ipw_rx_queue_restock(priv);
5211 }
5212
5213 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5214 {
5215 struct ipw_priv *priv =
5216 container_of(work, struct ipw_priv, rx_replenish);
5217 mutex_lock(&priv->mutex);
5218 ipw_rx_queue_replenish(priv);
5219 mutex_unlock(&priv->mutex);
5220 }
5221
5222 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5223 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5224 * This free routine walks the list of POOL entries and if SKB is set to
5225 * non NULL it is unmapped and freed
5226 */
5227 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5228 {
5229 int i;
5230
5231 if (!rxq)
5232 return;
5233
5234 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5235 if (rxq->pool[i].skb != NULL) {
5236 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5237 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5238 dev_kfree_skb(rxq->pool[i].skb);
5239 }
5240 }
5241
5242 kfree(rxq);
5243 }
5244
5245 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246 {
5247 struct ipw_rx_queue *rxq;
5248 int i;
5249
5250 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5251 if (unlikely(!rxq)) {
5252 IPW_ERROR("memory allocation failed\n");
5253 return NULL;
5254 }
5255 spin_lock_init(&rxq->lock);
5256 INIT_LIST_HEAD(&rxq->rx_free);
5257 INIT_LIST_HEAD(&rxq->rx_used);
5258
5259 /* Fill the rx_used queue with _all_ of the Rx buffers */
5260 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5261 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262
5263 /* Set us so that we have processed and used all buffers, but have
5264 * not restocked the Rx queue with fresh buffers */
5265 rxq->read = rxq->write = 0;
5266 rxq->free_count = 0;
5267
5268 return rxq;
5269 }
5270
5271 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272 {
5273 rate &= ~LIBIPW_BASIC_RATE_MASK;
5274 if (ieee_mode == IEEE_A) {
5275 switch (rate) {
5276 case LIBIPW_OFDM_RATE_6MB:
5277 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5278 1 : 0;
5279 case LIBIPW_OFDM_RATE_9MB:
5280 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5281 1 : 0;
5282 case LIBIPW_OFDM_RATE_12MB:
5283 return priv->
5284 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5285 case LIBIPW_OFDM_RATE_18MB:
5286 return priv->
5287 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5288 case LIBIPW_OFDM_RATE_24MB:
5289 return priv->
5290 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5291 case LIBIPW_OFDM_RATE_36MB:
5292 return priv->
5293 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5294 case LIBIPW_OFDM_RATE_48MB:
5295 return priv->
5296 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5297 case LIBIPW_OFDM_RATE_54MB:
5298 return priv->
5299 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5300 default:
5301 return 0;
5302 }
5303 }
5304
5305 /* B and G mixed */
5306 switch (rate) {
5307 case LIBIPW_CCK_RATE_1MB:
5308 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5309 case LIBIPW_CCK_RATE_2MB:
5310 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5311 case LIBIPW_CCK_RATE_5MB:
5312 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5313 case LIBIPW_CCK_RATE_11MB:
5314 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5315 }
5316
5317 /* If we are limited to B modulations, bail at this point */
5318 if (ieee_mode == IEEE_B)
5319 return 0;
5320
5321 /* G */
5322 switch (rate) {
5323 case LIBIPW_OFDM_RATE_6MB:
5324 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5325 case LIBIPW_OFDM_RATE_9MB:
5326 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5327 case LIBIPW_OFDM_RATE_12MB:
5328 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5329 case LIBIPW_OFDM_RATE_18MB:
5330 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5331 case LIBIPW_OFDM_RATE_24MB:
5332 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5333 case LIBIPW_OFDM_RATE_36MB:
5334 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5335 case LIBIPW_OFDM_RATE_48MB:
5336 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337 case LIBIPW_OFDM_RATE_54MB:
5338 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5339 }
5340
5341 return 0;
5342 }
5343
5344 static int ipw_compatible_rates(struct ipw_priv *priv,
5345 const struct libipw_network *network,
5346 struct ipw_supported_rates *rates)
5347 {
5348 int num_rates, i;
5349
5350 memset(rates, 0, sizeof(*rates));
5351 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5352 rates->num_rates = 0;
5353 for (i = 0; i < num_rates; i++) {
5354 if (!ipw_is_rate_in_mask(priv, network->mode,
5355 network->rates[i])) {
5356
5357 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5358 IPW_DEBUG_SCAN("Adding masked mandatory "
5359 "rate %02X\n",
5360 network->rates[i]);
5361 rates->supported_rates[rates->num_rates++] =
5362 network->rates[i];
5363 continue;
5364 }
5365
5366 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367 network->rates[i], priv->rates_mask);
5368 continue;
5369 }
5370
5371 rates->supported_rates[rates->num_rates++] = network->rates[i];
5372 }
5373
5374 num_rates = min(network->rates_ex_len,
5375 (u8) (IPW_MAX_RATES - num_rates));
5376 for (i = 0; i < num_rates; i++) {
5377 if (!ipw_is_rate_in_mask(priv, network->mode,
5378 network->rates_ex[i])) {
5379 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5380 IPW_DEBUG_SCAN("Adding masked mandatory "
5381 "rate %02X\n",
5382 network->rates_ex[i]);
5383 rates->supported_rates[rates->num_rates++] =
5384 network->rates[i];
5385 continue;
5386 }
5387
5388 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389 network->rates_ex[i], priv->rates_mask);
5390 continue;
5391 }
5392
5393 rates->supported_rates[rates->num_rates++] =
5394 network->rates_ex[i];
5395 }
5396
5397 return 1;
5398 }
5399
5400 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5401 const struct ipw_supported_rates *src)
5402 {
5403 u8 i;
5404 for (i = 0; i < src->num_rates; i++)
5405 dest->supported_rates[i] = src->supported_rates[i];
5406 dest->num_rates = src->num_rates;
5407 }
5408
5409 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5410 * mask should ever be used -- right now all callers to add the scan rates are
5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5412 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5413 u8 modulation, u32 rate_mask)
5414 {
5415 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5416 LIBIPW_BASIC_RATE_MASK : 0;
5417
5418 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5419 rates->supported_rates[rates->num_rates++] =
5420 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421
5422 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5423 rates->supported_rates[rates->num_rates++] =
5424 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425
5426 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5427 rates->supported_rates[rates->num_rates++] = basic_mask |
5428 LIBIPW_CCK_RATE_5MB;
5429
5430 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5431 rates->supported_rates[rates->num_rates++] = basic_mask |
5432 LIBIPW_CCK_RATE_11MB;
5433 }
5434
5435 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5436 u8 modulation, u32 rate_mask)
5437 {
5438 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439 LIBIPW_BASIC_RATE_MASK : 0;
5440
5441 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5442 rates->supported_rates[rates->num_rates++] = basic_mask |
5443 LIBIPW_OFDM_RATE_6MB;
5444
5445 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5446 rates->supported_rates[rates->num_rates++] =
5447 LIBIPW_OFDM_RATE_9MB;
5448
5449 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5450 rates->supported_rates[rates->num_rates++] = basic_mask |
5451 LIBIPW_OFDM_RATE_12MB;
5452
5453 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5454 rates->supported_rates[rates->num_rates++] =
5455 LIBIPW_OFDM_RATE_18MB;
5456
5457 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5458 rates->supported_rates[rates->num_rates++] = basic_mask |
5459 LIBIPW_OFDM_RATE_24MB;
5460
5461 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5462 rates->supported_rates[rates->num_rates++] =
5463 LIBIPW_OFDM_RATE_36MB;
5464
5465 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5466 rates->supported_rates[rates->num_rates++] =
5467 LIBIPW_OFDM_RATE_48MB;
5468
5469 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5470 rates->supported_rates[rates->num_rates++] =
5471 LIBIPW_OFDM_RATE_54MB;
5472 }
5473
5474 struct ipw_network_match {
5475 struct libipw_network *network;
5476 struct ipw_supported_rates rates;
5477 };
5478
5479 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5480 struct ipw_network_match *match,
5481 struct libipw_network *network,
5482 int roaming)
5483 {
5484 struct ipw_supported_rates rates;
5485 DECLARE_SSID_BUF(ssid);
5486
5487 /* Verify that this network's capability is compatible with the
5488 * current mode (AdHoc or Infrastructure) */
5489 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5490 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5491 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5492 "capability mismatch.\n",
5493 print_ssid(ssid, network->ssid,
5494 network->ssid_len),
5495 network->bssid);
5496 return 0;
5497 }
5498
5499 if (unlikely(roaming)) {
5500 /* If we are roaming, then ensure check if this is a valid
5501 * network to try and roam to */
5502 if ((network->ssid_len != match->network->ssid_len) ||
5503 memcmp(network->ssid, match->network->ssid,
5504 network->ssid_len)) {
5505 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5506 "because of non-network ESSID.\n",
5507 print_ssid(ssid, network->ssid,
5508 network->ssid_len),
5509 network->bssid);
5510 return 0;
5511 }
5512 } else {
5513 /* If an ESSID has been configured then compare the broadcast
5514 * ESSID to ours */
5515 if ((priv->config & CFG_STATIC_ESSID) &&
5516 ((network->ssid_len != priv->essid_len) ||
5517 memcmp(network->ssid, priv->essid,
5518 min(network->ssid_len, priv->essid_len)))) {
5519 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5520
5521 strncpy(escaped,
5522 print_ssid(ssid, network->ssid,
5523 network->ssid_len),
5524 sizeof(escaped));
5525 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526 "because of ESSID mismatch: '%s'.\n",
5527 escaped, network->bssid,
5528 print_ssid(ssid, priv->essid,
5529 priv->essid_len));
5530 return 0;
5531 }
5532 }
5533
5534 /* If the old network rate is better than this one, don't bother
5535 * testing everything else. */
5536
5537 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5538 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5539 "current network.\n",
5540 print_ssid(ssid, match->network->ssid,
5541 match->network->ssid_len));
5542 return 0;
5543 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5544 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5545 "current network.\n",
5546 print_ssid(ssid, match->network->ssid,
5547 match->network->ssid_len));
5548 return 0;
5549 }
5550
5551 /* Now go through and see if the requested network is valid... */
5552 if (priv->ieee->scan_age != 0 &&
5553 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5554 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5555 "because of age: %ums.\n",
5556 print_ssid(ssid, network->ssid,
5557 network->ssid_len),
5558 network->bssid,
5559 jiffies_to_msecs(jiffies -
5560 network->last_scanned));
5561 return 0;
5562 }
5563
5564 if ((priv->config & CFG_STATIC_CHANNEL) &&
5565 (network->channel != priv->channel)) {
5566 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5567 "because of channel mismatch: %d != %d.\n",
5568 print_ssid(ssid, network->ssid,
5569 network->ssid_len),
5570 network->bssid,
5571 network->channel, priv->channel);
5572 return 0;
5573 }
5574
5575 /* Verify privacy compatability */
5576 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5577 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5578 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5579 "because of privacy mismatch: %s != %s.\n",
5580 print_ssid(ssid, network->ssid,
5581 network->ssid_len),
5582 network->bssid,
5583 priv->
5584 capability & CAP_PRIVACY_ON ? "on" : "off",
5585 network->
5586 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5587 "off");
5588 return 0;
5589 }
5590
5591 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5592 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5593 "because of the same BSSID match: %pM"
5594 ".\n", print_ssid(ssid, network->ssid,
5595 network->ssid_len),
5596 network->bssid,
5597 priv->bssid);
5598 return 0;
5599 }
5600
5601 /* Filter out any incompatible freq / mode combinations */
5602 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5603 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5604 "because of invalid frequency/mode "
5605 "combination.\n",
5606 print_ssid(ssid, network->ssid,
5607 network->ssid_len),
5608 network->bssid);
5609 return 0;
5610 }
5611
5612 /* Ensure that the rates supported by the driver are compatible with
5613 * this AP, including verification of basic rates (mandatory) */
5614 if (!ipw_compatible_rates(priv, network, &rates)) {
5615 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5616 "because configured rate mask excludes "
5617 "AP mandatory rate.\n",
5618 print_ssid(ssid, network->ssid,
5619 network->ssid_len),
5620 network->bssid);
5621 return 0;
5622 }
5623
5624 if (rates.num_rates == 0) {
5625 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5626 "because of no compatible rates.\n",
5627 print_ssid(ssid, network->ssid,
5628 network->ssid_len),
5629 network->bssid);
5630 return 0;
5631 }
5632
5633 /* TODO: Perform any further minimal comparititive tests. We do not
5634 * want to put too much policy logic here; intelligent scan selection
5635 * should occur within a generic IEEE 802.11 user space tool. */
5636
5637 /* Set up 'new' AP to this network */
5638 ipw_copy_rates(&match->rates, &rates);
5639 match->network = network;
5640 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5641 print_ssid(ssid, network->ssid, network->ssid_len),
5642 network->bssid);
5643
5644 return 1;
5645 }
5646
5647 static void ipw_merge_adhoc_network(struct work_struct *work)
5648 {
5649 DECLARE_SSID_BUF(ssid);
5650 struct ipw_priv *priv =
5651 container_of(work, struct ipw_priv, merge_networks);
5652 struct libipw_network *network = NULL;
5653 struct ipw_network_match match = {
5654 .network = priv->assoc_network
5655 };
5656
5657 if ((priv->status & STATUS_ASSOCIATED) &&
5658 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5659 /* First pass through ROAM process -- look for a better
5660 * network */
5661 unsigned long flags;
5662
5663 spin_lock_irqsave(&priv->ieee->lock, flags);
5664 list_for_each_entry(network, &priv->ieee->network_list, list) {
5665 if (network != priv->assoc_network)
5666 ipw_find_adhoc_network(priv, &match, network,
5667 1);
5668 }
5669 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5670
5671 if (match.network == priv->assoc_network) {
5672 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5673 "merge to.\n");
5674 return;
5675 }
5676
5677 mutex_lock(&priv->mutex);
5678 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5679 IPW_DEBUG_MERGE("remove network %s\n",
5680 print_ssid(ssid, priv->essid,
5681 priv->essid_len));
5682 ipw_remove_current_network(priv);
5683 }
5684
5685 ipw_disassociate(priv);
5686 priv->assoc_network = match.network;
5687 mutex_unlock(&priv->mutex);
5688 return;
5689 }
5690 }
5691
5692 static int ipw_best_network(struct ipw_priv *priv,
5693 struct ipw_network_match *match,
5694 struct libipw_network *network, int roaming)
5695 {
5696 struct ipw_supported_rates rates;
5697 DECLARE_SSID_BUF(ssid);
5698
5699 /* Verify that this network's capability is compatible with the
5700 * current mode (AdHoc or Infrastructure) */
5701 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5702 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5703 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5704 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5705 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5706 "capability mismatch.\n",
5707 print_ssid(ssid, network->ssid,
5708 network->ssid_len),
5709 network->bssid);
5710 return 0;
5711 }
5712
5713 if (unlikely(roaming)) {
5714 /* If we are roaming, then ensure check if this is a valid
5715 * network to try and roam to */
5716 if ((network->ssid_len != match->network->ssid_len) ||
5717 memcmp(network->ssid, match->network->ssid,
5718 network->ssid_len)) {
5719 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5720 "because of non-network ESSID.\n",
5721 print_ssid(ssid, network->ssid,
5722 network->ssid_len),
5723 network->bssid);
5724 return 0;
5725 }
5726 } else {
5727 /* If an ESSID has been configured then compare the broadcast
5728 * ESSID to ours */
5729 if ((priv->config & CFG_STATIC_ESSID) &&
5730 ((network->ssid_len != priv->essid_len) ||
5731 memcmp(network->ssid, priv->essid,
5732 min(network->ssid_len, priv->essid_len)))) {
5733 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5734 strncpy(escaped,
5735 print_ssid(ssid, network->ssid,
5736 network->ssid_len),
5737 sizeof(escaped));
5738 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739 "because of ESSID mismatch: '%s'.\n",
5740 escaped, network->bssid,
5741 print_ssid(ssid, priv->essid,
5742 priv->essid_len));
5743 return 0;
5744 }
5745 }
5746
5747 /* If the old network rate is better than this one, don't bother
5748 * testing everything else. */
5749 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5750 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5751 strncpy(escaped,
5752 print_ssid(ssid, network->ssid, network->ssid_len),
5753 sizeof(escaped));
5754 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5755 "'%s (%pM)' has a stronger signal.\n",
5756 escaped, network->bssid,
5757 print_ssid(ssid, match->network->ssid,
5758 match->network->ssid_len),
5759 match->network->bssid);
5760 return 0;
5761 }
5762
5763 /* If this network has already had an association attempt within the
5764 * last 3 seconds, do not try and associate again... */
5765 if (network->last_associate &&
5766 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5767 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5768 "because of storming (%ums since last "
5769 "assoc attempt).\n",
5770 print_ssid(ssid, network->ssid,
5771 network->ssid_len),
5772 network->bssid,
5773 jiffies_to_msecs(jiffies -
5774 network->last_associate));
5775 return 0;
5776 }
5777
5778 /* Now go through and see if the requested network is valid... */
5779 if (priv->ieee->scan_age != 0 &&
5780 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5781 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5782 "because of age: %ums.\n",
5783 print_ssid(ssid, network->ssid,
5784 network->ssid_len),
5785 network->bssid,
5786 jiffies_to_msecs(jiffies -
5787 network->last_scanned));
5788 return 0;
5789 }
5790
5791 if ((priv->config & CFG_STATIC_CHANNEL) &&
5792 (network->channel != priv->channel)) {
5793 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5794 "because of channel mismatch: %d != %d.\n",
5795 print_ssid(ssid, network->ssid,
5796 network->ssid_len),
5797 network->bssid,
5798 network->channel, priv->channel);
5799 return 0;
5800 }
5801
5802 /* Verify privacy compatability */
5803 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5804 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5805 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5806 "because of privacy mismatch: %s != %s.\n",
5807 print_ssid(ssid, network->ssid,
5808 network->ssid_len),
5809 network->bssid,
5810 priv->capability & CAP_PRIVACY_ON ? "on" :
5811 "off",
5812 network->capability &
5813 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5814 return 0;
5815 }
5816
5817 if ((priv->config & CFG_STATIC_BSSID) &&
5818 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5819 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5820 "because of BSSID mismatch: %pM.\n",
5821 print_ssid(ssid, network->ssid,
5822 network->ssid_len),
5823 network->bssid, priv->bssid);
5824 return 0;
5825 }
5826
5827 /* Filter out any incompatible freq / mode combinations */
5828 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5829 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5830 "because of invalid frequency/mode "
5831 "combination.\n",
5832 print_ssid(ssid, network->ssid,
5833 network->ssid_len),
5834 network->bssid);
5835 return 0;
5836 }
5837
5838 /* Filter out invalid channel in current GEO */
5839 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5840 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5841 "because of invalid channel in current GEO\n",
5842 print_ssid(ssid, network->ssid,
5843 network->ssid_len),
5844 network->bssid);
5845 return 0;
5846 }
5847
5848 /* Ensure that the rates supported by the driver are compatible with
5849 * this AP, including verification of basic rates (mandatory) */
5850 if (!ipw_compatible_rates(priv, network, &rates)) {
5851 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5852 "because configured rate mask excludes "
5853 "AP mandatory rate.\n",
5854 print_ssid(ssid, network->ssid,
5855 network->ssid_len),
5856 network->bssid);
5857 return 0;
5858 }
5859
5860 if (rates.num_rates == 0) {
5861 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5862 "because of no compatible rates.\n",
5863 print_ssid(ssid, network->ssid,
5864 network->ssid_len),
5865 network->bssid);
5866 return 0;
5867 }
5868
5869 /* TODO: Perform any further minimal comparititive tests. We do not
5870 * want to put too much policy logic here; intelligent scan selection
5871 * should occur within a generic IEEE 802.11 user space tool. */
5872
5873 /* Set up 'new' AP to this network */
5874 ipw_copy_rates(&match->rates, &rates);
5875 match->network = network;
5876
5877 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5878 print_ssid(ssid, network->ssid, network->ssid_len),
5879 network->bssid);
5880
5881 return 1;
5882 }
5883
5884 static void ipw_adhoc_create(struct ipw_priv *priv,
5885 struct libipw_network *network)
5886 {
5887 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5888 int i;
5889
5890 /*
5891 * For the purposes of scanning, we can set our wireless mode
5892 * to trigger scans across combinations of bands, but when it
5893 * comes to creating a new ad-hoc network, we have tell the FW
5894 * exactly which band to use.
5895 *
5896 * We also have the possibility of an invalid channel for the
5897 * chossen band. Attempting to create a new ad-hoc network
5898 * with an invalid channel for wireless mode will trigger a
5899 * FW fatal error.
5900 *
5901 */
5902 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5903 case LIBIPW_52GHZ_BAND:
5904 network->mode = IEEE_A;
5905 i = libipw_channel_to_index(priv->ieee, priv->channel);
5906 BUG_ON(i == -1);
5907 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5908 IPW_WARNING("Overriding invalid channel\n");
5909 priv->channel = geo->a[0].channel;
5910 }
5911 break;
5912
5913 case LIBIPW_24GHZ_BAND:
5914 if (priv->ieee->mode & IEEE_G)
5915 network->mode = IEEE_G;
5916 else
5917 network->mode = IEEE_B;
5918 i = libipw_channel_to_index(priv->ieee, priv->channel);
5919 BUG_ON(i == -1);
5920 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5921 IPW_WARNING("Overriding invalid channel\n");
5922 priv->channel = geo->bg[0].channel;
5923 }
5924 break;
5925
5926 default:
5927 IPW_WARNING("Overriding invalid channel\n");
5928 if (priv->ieee->mode & IEEE_A) {
5929 network->mode = IEEE_A;
5930 priv->channel = geo->a[0].channel;
5931 } else if (priv->ieee->mode & IEEE_G) {
5932 network->mode = IEEE_G;
5933 priv->channel = geo->bg[0].channel;
5934 } else {
5935 network->mode = IEEE_B;
5936 priv->channel = geo->bg[0].channel;
5937 }
5938 break;
5939 }
5940
5941 network->channel = priv->channel;
5942 priv->config |= CFG_ADHOC_PERSIST;
5943 ipw_create_bssid(priv, network->bssid);
5944 network->ssid_len = priv->essid_len;
5945 memcpy(network->ssid, priv->essid, priv->essid_len);
5946 memset(&network->stats, 0, sizeof(network->stats));
5947 network->capability = WLAN_CAPABILITY_IBSS;
5948 if (!(priv->config & CFG_PREAMBLE_LONG))
5949 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5950 if (priv->capability & CAP_PRIVACY_ON)
5951 network->capability |= WLAN_CAPABILITY_PRIVACY;
5952 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5953 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5954 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5955 memcpy(network->rates_ex,
5956 &priv->rates.supported_rates[network->rates_len],
5957 network->rates_ex_len);
5958 network->last_scanned = 0;
5959 network->flags = 0;
5960 network->last_associate = 0;
5961 network->time_stamp[0] = 0;
5962 network->time_stamp[1] = 0;
5963 network->beacon_interval = 100; /* Default */
5964 network->listen_interval = 10; /* Default */
5965 network->atim_window = 0; /* Default */
5966 network->wpa_ie_len = 0;
5967 network->rsn_ie_len = 0;
5968 }
5969
5970 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5971 {
5972 struct ipw_tgi_tx_key key;
5973
5974 if (!(priv->ieee->sec.flags & (1 << index)))
5975 return;
5976
5977 key.key_id = index;
5978 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5979 key.security_type = type;
5980 key.station_index = 0; /* always 0 for BSS */
5981 key.flags = 0;
5982 /* 0 for new key; previous value of counter (after fatal error) */
5983 key.tx_counter[0] = cpu_to_le32(0);
5984 key.tx_counter[1] = cpu_to_le32(0);
5985
5986 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5987 }
5988
5989 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5990 {
5991 struct ipw_wep_key key;
5992 int i;
5993
5994 key.cmd_id = DINO_CMD_WEP_KEY;
5995 key.seq_num = 0;
5996
5997 /* Note: AES keys cannot be set for multiple times.
5998 * Only set it at the first time. */
5999 for (i = 0; i < 4; i++) {
6000 key.key_index = i | type;
6001 if (!(priv->ieee->sec.flags & (1 << i))) {
6002 key.key_size = 0;
6003 continue;
6004 }
6005
6006 key.key_size = priv->ieee->sec.key_sizes[i];
6007 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6008
6009 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6010 }
6011 }
6012
6013 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6014 {
6015 if (priv->ieee->host_encrypt)
6016 return;
6017
6018 switch (level) {
6019 case SEC_LEVEL_3:
6020 priv->sys_config.disable_unicast_decryption = 0;
6021 priv->ieee->host_decrypt = 0;
6022 break;
6023 case SEC_LEVEL_2:
6024 priv->sys_config.disable_unicast_decryption = 1;
6025 priv->ieee->host_decrypt = 1;
6026 break;
6027 case SEC_LEVEL_1:
6028 priv->sys_config.disable_unicast_decryption = 0;
6029 priv->ieee->host_decrypt = 0;
6030 break;
6031 case SEC_LEVEL_0:
6032 priv->sys_config.disable_unicast_decryption = 1;
6033 break;
6034 default:
6035 break;
6036 }
6037 }
6038
6039 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6040 {
6041 if (priv->ieee->host_encrypt)
6042 return;
6043
6044 switch (level) {
6045 case SEC_LEVEL_3:
6046 priv->sys_config.disable_multicast_decryption = 0;
6047 break;
6048 case SEC_LEVEL_2:
6049 priv->sys_config.disable_multicast_decryption = 1;
6050 break;
6051 case SEC_LEVEL_1:
6052 priv->sys_config.disable_multicast_decryption = 0;
6053 break;
6054 case SEC_LEVEL_0:
6055 priv->sys_config.disable_multicast_decryption = 1;
6056 break;
6057 default:
6058 break;
6059 }
6060 }
6061
6062 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6063 {
6064 switch (priv->ieee->sec.level) {
6065 case SEC_LEVEL_3:
6066 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6067 ipw_send_tgi_tx_key(priv,
6068 DCT_FLAG_EXT_SECURITY_CCM,
6069 priv->ieee->sec.active_key);
6070
6071 if (!priv->ieee->host_mc_decrypt)
6072 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6073 break;
6074 case SEC_LEVEL_2:
6075 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6076 ipw_send_tgi_tx_key(priv,
6077 DCT_FLAG_EXT_SECURITY_TKIP,
6078 priv->ieee->sec.active_key);
6079 break;
6080 case SEC_LEVEL_1:
6081 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6082 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6083 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6084 break;
6085 case SEC_LEVEL_0:
6086 default:
6087 break;
6088 }
6089 }
6090
6091 static void ipw_adhoc_check(void *data)
6092 {
6093 struct ipw_priv *priv = data;
6094
6095 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6096 !(priv->config & CFG_ADHOC_PERSIST)) {
6097 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6098 IPW_DL_STATE | IPW_DL_ASSOC,
6099 "Missed beacon: %d - disassociate\n",
6100 priv->missed_adhoc_beacons);
6101 ipw_remove_current_network(priv);
6102 ipw_disassociate(priv);
6103 return;
6104 }
6105
6106 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6107 le16_to_cpu(priv->assoc_request.beacon_interval));
6108 }
6109
6110 static void ipw_bg_adhoc_check(struct work_struct *work)
6111 {
6112 struct ipw_priv *priv =
6113 container_of(work, struct ipw_priv, adhoc_check.work);
6114 mutex_lock(&priv->mutex);
6115 ipw_adhoc_check(priv);
6116 mutex_unlock(&priv->mutex);
6117 }
6118
6119 static void ipw_debug_config(struct ipw_priv *priv)
6120 {
6121 DECLARE_SSID_BUF(ssid);
6122 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6123 "[CFG 0x%08X]\n", priv->config);
6124 if (priv->config & CFG_STATIC_CHANNEL)
6125 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6126 else
6127 IPW_DEBUG_INFO("Channel unlocked.\n");
6128 if (priv->config & CFG_STATIC_ESSID)
6129 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6130 print_ssid(ssid, priv->essid, priv->essid_len));
6131 else
6132 IPW_DEBUG_INFO("ESSID unlocked.\n");
6133 if (priv->config & CFG_STATIC_BSSID)
6134 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6135 else
6136 IPW_DEBUG_INFO("BSSID unlocked.\n");
6137 if (priv->capability & CAP_PRIVACY_ON)
6138 IPW_DEBUG_INFO("PRIVACY on\n");
6139 else
6140 IPW_DEBUG_INFO("PRIVACY off\n");
6141 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6142 }
6143
6144 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6145 {
6146 /* TODO: Verify that this works... */
6147 struct ipw_fixed_rate fr;
6148 u32 reg;
6149 u16 mask = 0;
6150 u16 new_tx_rates = priv->rates_mask;
6151
6152 /* Identify 'current FW band' and match it with the fixed
6153 * Tx rates */
6154
6155 switch (priv->ieee->freq_band) {
6156 case LIBIPW_52GHZ_BAND: /* A only */
6157 /* IEEE_A */
6158 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6159 /* Invalid fixed rate mask */
6160 IPW_DEBUG_WX
6161 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6162 new_tx_rates = 0;
6163 break;
6164 }
6165
6166 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6167 break;
6168
6169 default: /* 2.4Ghz or Mixed */
6170 /* IEEE_B */
6171 if (mode == IEEE_B) {
6172 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6173 /* Invalid fixed rate mask */
6174 IPW_DEBUG_WX
6175 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6176 new_tx_rates = 0;
6177 }
6178 break;
6179 }
6180
6181 /* IEEE_G */
6182 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6183 LIBIPW_OFDM_RATES_MASK)) {
6184 /* Invalid fixed rate mask */
6185 IPW_DEBUG_WX
6186 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6187 new_tx_rates = 0;
6188 break;
6189 }
6190
6191 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6192 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6193 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6194 }
6195
6196 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6197 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6198 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6199 }
6200
6201 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6202 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6203 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6204 }
6205
6206 new_tx_rates |= mask;
6207 break;
6208 }
6209
6210 fr.tx_rates = cpu_to_le16(new_tx_rates);
6211
6212 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6213 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6214 }
6215
6216 static void ipw_abort_scan(struct ipw_priv *priv)
6217 {
6218 int err;
6219
6220 if (priv->status & STATUS_SCAN_ABORTING) {
6221 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6222 return;
6223 }
6224 priv->status |= STATUS_SCAN_ABORTING;
6225
6226 err = ipw_send_scan_abort(priv);
6227 if (err)
6228 IPW_DEBUG_HC("Request to abort scan failed.\n");
6229 }
6230
6231 static void ipw_add_scan_channels(struct ipw_priv *priv,
6232 struct ipw_scan_request_ext *scan,
6233 int scan_type)
6234 {
6235 int channel_index = 0;
6236 const struct libipw_geo *geo;
6237 int i;
6238
6239 geo = libipw_get_geo(priv->ieee);
6240
6241 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6242 int start = channel_index;
6243 for (i = 0; i < geo->a_channels; i++) {
6244 if ((priv->status & STATUS_ASSOCIATED) &&
6245 geo->a[i].channel == priv->channel)
6246 continue;
6247 channel_index++;
6248 scan->channels_list[channel_index] = geo->a[i].channel;
6249 ipw_set_scan_type(scan, channel_index,
6250 geo->a[i].
6251 flags & LIBIPW_CH_PASSIVE_ONLY ?
6252 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6253 scan_type);
6254 }
6255
6256 if (start != channel_index) {
6257 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6258 (channel_index - start);
6259 channel_index++;
6260 }
6261 }
6262
6263 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6264 int start = channel_index;
6265 if (priv->config & CFG_SPEED_SCAN) {
6266 int index;
6267 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6268 /* nop out the list */
6269 [0] = 0
6270 };
6271
6272 u8 channel;
6273 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6274 channel =
6275 priv->speed_scan[priv->speed_scan_pos];
6276 if (channel == 0) {
6277 priv->speed_scan_pos = 0;
6278 channel = priv->speed_scan[0];
6279 }
6280 if ((priv->status & STATUS_ASSOCIATED) &&
6281 channel == priv->channel) {
6282 priv->speed_scan_pos++;
6283 continue;
6284 }
6285
6286 /* If this channel has already been
6287 * added in scan, break from loop
6288 * and this will be the first channel
6289 * in the next scan.
6290 */
6291 if (channels[channel - 1] != 0)
6292 break;
6293
6294 channels[channel - 1] = 1;
6295 priv->speed_scan_pos++;
6296 channel_index++;
6297 scan->channels_list[channel_index] = channel;
6298 index =
6299 libipw_channel_to_index(priv->ieee, channel);
6300 ipw_set_scan_type(scan, channel_index,
6301 geo->bg[index].
6302 flags &
6303 LIBIPW_CH_PASSIVE_ONLY ?
6304 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6305 : scan_type);
6306 }
6307 } else {
6308 for (i = 0; i < geo->bg_channels; i++) {
6309 if ((priv->status & STATUS_ASSOCIATED) &&
6310 geo->bg[i].channel == priv->channel)
6311 continue;
6312 channel_index++;
6313 scan->channels_list[channel_index] =
6314 geo->bg[i].channel;
6315 ipw_set_scan_type(scan, channel_index,
6316 geo->bg[i].
6317 flags &
6318 LIBIPW_CH_PASSIVE_ONLY ?
6319 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6320 : scan_type);
6321 }
6322 }
6323
6324 if (start != channel_index) {
6325 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6326 (channel_index - start);
6327 }
6328 }
6329 }
6330
6331 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6332 {
6333 /* staying on passive channels longer than the DTIM interval during a
6334 * scan, while associated, causes the firmware to cancel the scan
6335 * without notification. Hence, don't stay on passive channels longer
6336 * than the beacon interval.
6337 */
6338 if (priv->status & STATUS_ASSOCIATED
6339 && priv->assoc_network->beacon_interval > 10)
6340 return priv->assoc_network->beacon_interval - 10;
6341 else
6342 return 120;
6343 }
6344
6345 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6346 {
6347 struct ipw_scan_request_ext scan;
6348 int err = 0, scan_type;
6349
6350 if (!(priv->status & STATUS_INIT) ||
6351 (priv->status & STATUS_EXIT_PENDING))
6352 return 0;
6353
6354 mutex_lock(&priv->mutex);
6355
6356 if (direct && (priv->direct_scan_ssid_len == 0)) {
6357 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6358 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6359 goto done;
6360 }
6361
6362 if (priv->status & STATUS_SCANNING) {
6363 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6364 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6365 STATUS_SCAN_PENDING;
6366 goto done;
6367 }
6368
6369 if (!(priv->status & STATUS_SCAN_FORCED) &&
6370 priv->status & STATUS_SCAN_ABORTING) {
6371 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6372 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6373 STATUS_SCAN_PENDING;
6374 goto done;
6375 }
6376
6377 if (priv->status & STATUS_RF_KILL_MASK) {
6378 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6379 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6380 STATUS_SCAN_PENDING;
6381 goto done;
6382 }
6383
6384 memset(&scan, 0, sizeof(scan));
6385 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6386
6387 if (type == IW_SCAN_TYPE_PASSIVE) {
6388 IPW_DEBUG_WX("use passive scanning\n");
6389 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6390 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6391 cpu_to_le16(ipw_passive_dwell_time(priv));
6392 ipw_add_scan_channels(priv, &scan, scan_type);
6393 goto send_request;
6394 }
6395
6396 /* Use active scan by default. */
6397 if (priv->config & CFG_SPEED_SCAN)
6398 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6399 cpu_to_le16(30);
6400 else
6401 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6402 cpu_to_le16(20);
6403
6404 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6405 cpu_to_le16(20);
6406
6407 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6408 cpu_to_le16(ipw_passive_dwell_time(priv));
6409 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6410
6411 #ifdef CONFIG_IPW2200_MONITOR
6412 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6413 u8 channel;
6414 u8 band = 0;
6415
6416 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6417 case LIBIPW_52GHZ_BAND:
6418 band = (u8) (IPW_A_MODE << 6) | 1;
6419 channel = priv->channel;
6420 break;
6421
6422 case LIBIPW_24GHZ_BAND:
6423 band = (u8) (IPW_B_MODE << 6) | 1;
6424 channel = priv->channel;
6425 break;
6426
6427 default:
6428 band = (u8) (IPW_B_MODE << 6) | 1;
6429 channel = 9;
6430 break;
6431 }
6432
6433 scan.channels_list[0] = band;
6434 scan.channels_list[1] = channel;
6435 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6436
6437 /* NOTE: The card will sit on this channel for this time
6438 * period. Scan aborts are timing sensitive and frequently
6439 * result in firmware restarts. As such, it is best to
6440 * set a small dwell_time here and just keep re-issuing
6441 * scans. Otherwise fast channel hopping will not actually
6442 * hop channels.
6443 *
6444 * TODO: Move SPEED SCAN support to all modes and bands */
6445 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6446 cpu_to_le16(2000);
6447 } else {
6448 #endif /* CONFIG_IPW2200_MONITOR */
6449 /* Honor direct scans first, otherwise if we are roaming make
6450 * this a direct scan for the current network. Finally,
6451 * ensure that every other scan is a fast channel hop scan */
6452 if (direct) {
6453 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6454 priv->direct_scan_ssid_len);
6455 if (err) {
6456 IPW_DEBUG_HC("Attempt to send SSID command "
6457 "failed\n");
6458 goto done;
6459 }
6460
6461 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6462 } else if ((priv->status & STATUS_ROAMING)
6463 || (!(priv->status & STATUS_ASSOCIATED)
6464 && (priv->config & CFG_STATIC_ESSID)
6465 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6466 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6467 if (err) {
6468 IPW_DEBUG_HC("Attempt to send SSID command "
6469 "failed.\n");
6470 goto done;
6471 }
6472
6473 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6474 } else
6475 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6476
6477 ipw_add_scan_channels(priv, &scan, scan_type);
6478 #ifdef CONFIG_IPW2200_MONITOR
6479 }
6480 #endif
6481
6482 send_request:
6483 err = ipw_send_scan_request_ext(priv, &scan);
6484 if (err) {
6485 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6486 goto done;
6487 }
6488
6489 priv->status |= STATUS_SCANNING;
6490 if (direct) {
6491 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6492 priv->direct_scan_ssid_len = 0;
6493 } else
6494 priv->status &= ~STATUS_SCAN_PENDING;
6495
6496 queue_delayed_work(priv->workqueue, &priv->scan_check,
6497 IPW_SCAN_CHECK_WATCHDOG);
6498 done:
6499 mutex_unlock(&priv->mutex);
6500 return err;
6501 }
6502
6503 static void ipw_request_passive_scan(struct work_struct *work)
6504 {
6505 struct ipw_priv *priv =
6506 container_of(work, struct ipw_priv, request_passive_scan.work);
6507 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6508 }
6509
6510 static void ipw_request_scan(struct work_struct *work)
6511 {
6512 struct ipw_priv *priv =
6513 container_of(work, struct ipw_priv, request_scan.work);
6514 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6515 }
6516
6517 static void ipw_request_direct_scan(struct work_struct *work)
6518 {
6519 struct ipw_priv *priv =
6520 container_of(work, struct ipw_priv, request_direct_scan.work);
6521 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6522 }
6523
6524 static void ipw_bg_abort_scan(struct work_struct *work)
6525 {
6526 struct ipw_priv *priv =
6527 container_of(work, struct ipw_priv, abort_scan);
6528 mutex_lock(&priv->mutex);
6529 ipw_abort_scan(priv);
6530 mutex_unlock(&priv->mutex);
6531 }
6532
6533 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6534 {
6535 /* This is called when wpa_supplicant loads and closes the driver
6536 * interface. */
6537 priv->ieee->wpa_enabled = value;
6538 return 0;
6539 }
6540
6541 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6542 {
6543 struct libipw_device *ieee = priv->ieee;
6544 struct libipw_security sec = {
6545 .flags = SEC_AUTH_MODE,
6546 };
6547 int ret = 0;
6548
6549 if (value & IW_AUTH_ALG_SHARED_KEY) {
6550 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6551 ieee->open_wep = 0;
6552 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6553 sec.auth_mode = WLAN_AUTH_OPEN;
6554 ieee->open_wep = 1;
6555 } else if (value & IW_AUTH_ALG_LEAP) {
6556 sec.auth_mode = WLAN_AUTH_LEAP;
6557 ieee->open_wep = 1;
6558 } else
6559 return -EINVAL;
6560
6561 if (ieee->set_security)
6562 ieee->set_security(ieee->dev, &sec);
6563 else
6564 ret = -EOPNOTSUPP;
6565
6566 return ret;
6567 }
6568
6569 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6570 int wpa_ie_len)
6571 {
6572 /* make sure WPA is enabled */
6573 ipw_wpa_enable(priv, 1);
6574 }
6575
6576 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6577 char *capabilities, int length)
6578 {
6579 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6580
6581 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6582 capabilities);
6583 }
6584
6585 /*
6586 * WE-18 support
6587 */
6588
6589 /* SIOCSIWGENIE */
6590 static int ipw_wx_set_genie(struct net_device *dev,
6591 struct iw_request_info *info,
6592 union iwreq_data *wrqu, char *extra)
6593 {
6594 struct ipw_priv *priv = libipw_priv(dev);
6595 struct libipw_device *ieee = priv->ieee;
6596 u8 *buf;
6597 int err = 0;
6598
6599 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6600 (wrqu->data.length && extra == NULL))
6601 return -EINVAL;
6602
6603 if (wrqu->data.length) {
6604 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6605 if (buf == NULL) {
6606 err = -ENOMEM;
6607 goto out;
6608 }
6609
6610 memcpy(buf, extra, wrqu->data.length);
6611 kfree(ieee->wpa_ie);
6612 ieee->wpa_ie = buf;
6613 ieee->wpa_ie_len = wrqu->data.length;
6614 } else {
6615 kfree(ieee->wpa_ie);
6616 ieee->wpa_ie = NULL;
6617 ieee->wpa_ie_len = 0;
6618 }
6619
6620 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6621 out:
6622 return err;
6623 }
6624
6625 /* SIOCGIWGENIE */
6626 static int ipw_wx_get_genie(struct net_device *dev,
6627 struct iw_request_info *info,
6628 union iwreq_data *wrqu, char *extra)
6629 {
6630 struct ipw_priv *priv = libipw_priv(dev);
6631 struct libipw_device *ieee = priv->ieee;
6632 int err = 0;
6633
6634 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6635 wrqu->data.length = 0;
6636 goto out;
6637 }
6638
6639 if (wrqu->data.length < ieee->wpa_ie_len) {
6640 err = -E2BIG;
6641 goto out;
6642 }
6643
6644 wrqu->data.length = ieee->wpa_ie_len;
6645 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6646
6647 out:
6648 return err;
6649 }
6650
6651 static int wext_cipher2level(int cipher)
6652 {
6653 switch (cipher) {
6654 case IW_AUTH_CIPHER_NONE:
6655 return SEC_LEVEL_0;
6656 case IW_AUTH_CIPHER_WEP40:
6657 case IW_AUTH_CIPHER_WEP104:
6658 return SEC_LEVEL_1;
6659 case IW_AUTH_CIPHER_TKIP:
6660 return SEC_LEVEL_2;
6661 case IW_AUTH_CIPHER_CCMP:
6662 return SEC_LEVEL_3;
6663 default:
6664 return -1;
6665 }
6666 }
6667
6668 /* SIOCSIWAUTH */
6669 static int ipw_wx_set_auth(struct net_device *dev,
6670 struct iw_request_info *info,
6671 union iwreq_data *wrqu, char *extra)
6672 {
6673 struct ipw_priv *priv = libipw_priv(dev);
6674 struct libipw_device *ieee = priv->ieee;
6675 struct iw_param *param = &wrqu->param;
6676 struct lib80211_crypt_data *crypt;
6677 unsigned long flags;
6678 int ret = 0;
6679
6680 switch (param->flags & IW_AUTH_INDEX) {
6681 case IW_AUTH_WPA_VERSION:
6682 break;
6683 case IW_AUTH_CIPHER_PAIRWISE:
6684 ipw_set_hw_decrypt_unicast(priv,
6685 wext_cipher2level(param->value));
6686 break;
6687 case IW_AUTH_CIPHER_GROUP:
6688 ipw_set_hw_decrypt_multicast(priv,
6689 wext_cipher2level(param->value));
6690 break;
6691 case IW_AUTH_KEY_MGMT:
6692 /*
6693 * ipw2200 does not use these parameters
6694 */
6695 break;
6696
6697 case IW_AUTH_TKIP_COUNTERMEASURES:
6698 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6699 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6700 break;
6701
6702 flags = crypt->ops->get_flags(crypt->priv);
6703
6704 if (param->value)
6705 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6706 else
6707 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6708
6709 crypt->ops->set_flags(flags, crypt->priv);
6710
6711 break;
6712
6713 case IW_AUTH_DROP_UNENCRYPTED:{
6714 /* HACK:
6715 *
6716 * wpa_supplicant calls set_wpa_enabled when the driver
6717 * is loaded and unloaded, regardless of if WPA is being
6718 * used. No other calls are made which can be used to
6719 * determine if encryption will be used or not prior to
6720 * association being expected. If encryption is not being
6721 * used, drop_unencrypted is set to false, else true -- we
6722 * can use this to determine if the CAP_PRIVACY_ON bit should
6723 * be set.
6724 */
6725 struct libipw_security sec = {
6726 .flags = SEC_ENABLED,
6727 .enabled = param->value,
6728 };
6729 priv->ieee->drop_unencrypted = param->value;
6730 /* We only change SEC_LEVEL for open mode. Others
6731 * are set by ipw_wpa_set_encryption.
6732 */
6733 if (!param->value) {
6734 sec.flags |= SEC_LEVEL;
6735 sec.level = SEC_LEVEL_0;
6736 } else {
6737 sec.flags |= SEC_LEVEL;
6738 sec.level = SEC_LEVEL_1;
6739 }
6740 if (priv->ieee->set_security)
6741 priv->ieee->set_security(priv->ieee->dev, &sec);
6742 break;
6743 }
6744
6745 case IW_AUTH_80211_AUTH_ALG:
6746 ret = ipw_wpa_set_auth_algs(priv, param->value);
6747 break;
6748
6749 case IW_AUTH_WPA_ENABLED:
6750 ret = ipw_wpa_enable(priv, param->value);
6751 ipw_disassociate(priv);
6752 break;
6753
6754 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6755 ieee->ieee802_1x = param->value;
6756 break;
6757
6758 case IW_AUTH_PRIVACY_INVOKED:
6759 ieee->privacy_invoked = param->value;
6760 break;
6761
6762 default:
6763 return -EOPNOTSUPP;
6764 }
6765 return ret;
6766 }
6767
6768 /* SIOCGIWAUTH */
6769 static int ipw_wx_get_auth(struct net_device *dev,
6770 struct iw_request_info *info,
6771 union iwreq_data *wrqu, char *extra)
6772 {
6773 struct ipw_priv *priv = libipw_priv(dev);
6774 struct libipw_device *ieee = priv->ieee;
6775 struct lib80211_crypt_data *crypt;
6776 struct iw_param *param = &wrqu->param;
6777 int ret = 0;
6778
6779 switch (param->flags & IW_AUTH_INDEX) {
6780 case IW_AUTH_WPA_VERSION:
6781 case IW_AUTH_CIPHER_PAIRWISE:
6782 case IW_AUTH_CIPHER_GROUP:
6783 case IW_AUTH_KEY_MGMT:
6784 /*
6785 * wpa_supplicant will control these internally
6786 */
6787 ret = -EOPNOTSUPP;
6788 break;
6789
6790 case IW_AUTH_TKIP_COUNTERMEASURES:
6791 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6792 if (!crypt || !crypt->ops->get_flags)
6793 break;
6794
6795 param->value = (crypt->ops->get_flags(crypt->priv) &
6796 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6797
6798 break;
6799
6800 case IW_AUTH_DROP_UNENCRYPTED:
6801 param->value = ieee->drop_unencrypted;
6802 break;
6803
6804 case IW_AUTH_80211_AUTH_ALG:
6805 param->value = ieee->sec.auth_mode;
6806 break;
6807
6808 case IW_AUTH_WPA_ENABLED:
6809 param->value = ieee->wpa_enabled;
6810 break;
6811
6812 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6813 param->value = ieee->ieee802_1x;
6814 break;
6815
6816 case IW_AUTH_ROAMING_CONTROL:
6817 case IW_AUTH_PRIVACY_INVOKED:
6818 param->value = ieee->privacy_invoked;
6819 break;
6820
6821 default:
6822 return -EOPNOTSUPP;
6823 }
6824 return 0;
6825 }
6826
6827 /* SIOCSIWENCODEEXT */
6828 static int ipw_wx_set_encodeext(struct net_device *dev,
6829 struct iw_request_info *info,
6830 union iwreq_data *wrqu, char *extra)
6831 {
6832 struct ipw_priv *priv = libipw_priv(dev);
6833 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6834
6835 if (hwcrypto) {
6836 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6837 /* IPW HW can't build TKIP MIC,
6838 host decryption still needed */
6839 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6840 priv->ieee->host_mc_decrypt = 1;
6841 else {
6842 priv->ieee->host_encrypt = 0;
6843 priv->ieee->host_encrypt_msdu = 1;
6844 priv->ieee->host_decrypt = 1;
6845 }
6846 } else {
6847 priv->ieee->host_encrypt = 0;
6848 priv->ieee->host_encrypt_msdu = 0;
6849 priv->ieee->host_decrypt = 0;
6850 priv->ieee->host_mc_decrypt = 0;
6851 }
6852 }
6853
6854 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6855 }
6856
6857 /* SIOCGIWENCODEEXT */
6858 static int ipw_wx_get_encodeext(struct net_device *dev,
6859 struct iw_request_info *info,
6860 union iwreq_data *wrqu, char *extra)
6861 {
6862 struct ipw_priv *priv = libipw_priv(dev);
6863 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6864 }
6865
6866 /* SIOCSIWMLME */
6867 static int ipw_wx_set_mlme(struct net_device *dev,
6868 struct iw_request_info *info,
6869 union iwreq_data *wrqu, char *extra)
6870 {
6871 struct ipw_priv *priv = libipw_priv(dev);
6872 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6873 __le16 reason;
6874
6875 reason = cpu_to_le16(mlme->reason_code);
6876
6877 switch (mlme->cmd) {
6878 case IW_MLME_DEAUTH:
6879 /* silently ignore */
6880 break;
6881
6882 case IW_MLME_DISASSOC:
6883 ipw_disassociate(priv);
6884 break;
6885
6886 default:
6887 return -EOPNOTSUPP;
6888 }
6889 return 0;
6890 }
6891
6892 #ifdef CONFIG_IPW2200_QOS
6893
6894 /* QoS */
6895 /*
6896 * get the modulation type of the current network or
6897 * the card current mode
6898 */
6899 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6900 {
6901 u8 mode = 0;
6902
6903 if (priv->status & STATUS_ASSOCIATED) {
6904 unsigned long flags;
6905
6906 spin_lock_irqsave(&priv->ieee->lock, flags);
6907 mode = priv->assoc_network->mode;
6908 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6909 } else {
6910 mode = priv->ieee->mode;
6911 }
6912 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6913 return mode;
6914 }
6915
6916 /*
6917 * Handle management frame beacon and probe response
6918 */
6919 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6920 int active_network,
6921 struct libipw_network *network)
6922 {
6923 u32 size = sizeof(struct libipw_qos_parameters);
6924
6925 if (network->capability & WLAN_CAPABILITY_IBSS)
6926 network->qos_data.active = network->qos_data.supported;
6927
6928 if (network->flags & NETWORK_HAS_QOS_MASK) {
6929 if (active_network &&
6930 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6931 network->qos_data.active = network->qos_data.supported;
6932
6933 if ((network->qos_data.active == 1) && (active_network == 1) &&
6934 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6935 (network->qos_data.old_param_count !=
6936 network->qos_data.param_count)) {
6937 network->qos_data.old_param_count =
6938 network->qos_data.param_count;
6939 schedule_work(&priv->qos_activate);
6940 IPW_DEBUG_QOS("QoS parameters change call "
6941 "qos_activate\n");
6942 }
6943 } else {
6944 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6945 memcpy(&network->qos_data.parameters,
6946 &def_parameters_CCK, size);
6947 else
6948 memcpy(&network->qos_data.parameters,
6949 &def_parameters_OFDM, size);
6950
6951 if ((network->qos_data.active == 1) && (active_network == 1)) {
6952 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6953 schedule_work(&priv->qos_activate);
6954 }
6955
6956 network->qos_data.active = 0;
6957 network->qos_data.supported = 0;
6958 }
6959 if ((priv->status & STATUS_ASSOCIATED) &&
6960 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6961 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6962 if (network->capability & WLAN_CAPABILITY_IBSS)
6963 if ((network->ssid_len ==
6964 priv->assoc_network->ssid_len) &&
6965 !memcmp(network->ssid,
6966 priv->assoc_network->ssid,
6967 network->ssid_len)) {
6968 queue_work(priv->workqueue,
6969 &priv->merge_networks);
6970 }
6971 }
6972
6973 return 0;
6974 }
6975
6976 /*
6977 * This function set up the firmware to support QoS. It sends
6978 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6979 */
6980 static int ipw_qos_activate(struct ipw_priv *priv,
6981 struct libipw_qos_data *qos_network_data)
6982 {
6983 int err;
6984 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6985 struct libipw_qos_parameters *active_one = NULL;
6986 u32 size = sizeof(struct libipw_qos_parameters);
6987 u32 burst_duration;
6988 int i;
6989 u8 type;
6990
6991 type = ipw_qos_current_mode(priv);
6992
6993 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6994 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6995 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6996 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6997
6998 if (qos_network_data == NULL) {
6999 if (type == IEEE_B) {
7000 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7001 active_one = &def_parameters_CCK;
7002 } else
7003 active_one = &def_parameters_OFDM;
7004
7005 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7006 burst_duration = ipw_qos_get_burst_duration(priv);
7007 for (i = 0; i < QOS_QUEUE_NUM; i++)
7008 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7009 cpu_to_le16(burst_duration);
7010 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7011 if (type == IEEE_B) {
7012 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7013 type);
7014 if (priv->qos_data.qos_enable == 0)
7015 active_one = &def_parameters_CCK;
7016 else
7017 active_one = priv->qos_data.def_qos_parm_CCK;
7018 } else {
7019 if (priv->qos_data.qos_enable == 0)
7020 active_one = &def_parameters_OFDM;
7021 else
7022 active_one = priv->qos_data.def_qos_parm_OFDM;
7023 }
7024 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7025 } else {
7026 unsigned long flags;
7027 int active;
7028
7029 spin_lock_irqsave(&priv->ieee->lock, flags);
7030 active_one = &(qos_network_data->parameters);
7031 qos_network_data->old_param_count =
7032 qos_network_data->param_count;
7033 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7034 active = qos_network_data->supported;
7035 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7036
7037 if (active == 0) {
7038 burst_duration = ipw_qos_get_burst_duration(priv);
7039 for (i = 0; i < QOS_QUEUE_NUM; i++)
7040 qos_parameters[QOS_PARAM_SET_ACTIVE].
7041 tx_op_limit[i] = cpu_to_le16(burst_duration);
7042 }
7043 }
7044
7045 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7046 err = ipw_send_qos_params_command(priv,
7047 (struct libipw_qos_parameters *)
7048 &(qos_parameters[0]));
7049 if (err)
7050 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7051
7052 return err;
7053 }
7054
7055 /*
7056 * send IPW_CMD_WME_INFO to the firmware
7057 */
7058 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7059 {
7060 int ret = 0;
7061 struct libipw_qos_information_element qos_info;
7062
7063 if (priv == NULL)
7064 return -1;
7065
7066 qos_info.elementID = QOS_ELEMENT_ID;
7067 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7068
7069 qos_info.version = QOS_VERSION_1;
7070 qos_info.ac_info = 0;
7071
7072 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7073 qos_info.qui_type = QOS_OUI_TYPE;
7074 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7075
7076 ret = ipw_send_qos_info_command(priv, &qos_info);
7077 if (ret != 0) {
7078 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7079 }
7080 return ret;
7081 }
7082
7083 /*
7084 * Set the QoS parameter with the association request structure
7085 */
7086 static int ipw_qos_association(struct ipw_priv *priv,
7087 struct libipw_network *network)
7088 {
7089 int err = 0;
7090 struct libipw_qos_data *qos_data = NULL;
7091 struct libipw_qos_data ibss_data = {
7092 .supported = 1,
7093 .active = 1,
7094 };
7095
7096 switch (priv->ieee->iw_mode) {
7097 case IW_MODE_ADHOC:
7098 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7099
7100 qos_data = &ibss_data;
7101 break;
7102
7103 case IW_MODE_INFRA:
7104 qos_data = &network->qos_data;
7105 break;
7106
7107 default:
7108 BUG();
7109 break;
7110 }
7111
7112 err = ipw_qos_activate(priv, qos_data);
7113 if (err) {
7114 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7115 return err;
7116 }
7117
7118 if (priv->qos_data.qos_enable && qos_data->supported) {
7119 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7120 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7121 return ipw_qos_set_info_element(priv);
7122 }
7123
7124 return 0;
7125 }
7126
7127 /*
7128 * handling the beaconing responses. if we get different QoS setting
7129 * off the network from the associated setting, adjust the QoS
7130 * setting
7131 */
7132 static int ipw_qos_association_resp(struct ipw_priv *priv,
7133 struct libipw_network *network)
7134 {
7135 int ret = 0;
7136 unsigned long flags;
7137 u32 size = sizeof(struct libipw_qos_parameters);
7138 int set_qos_param = 0;
7139
7140 if ((priv == NULL) || (network == NULL) ||
7141 (priv->assoc_network == NULL))
7142 return ret;
7143
7144 if (!(priv->status & STATUS_ASSOCIATED))
7145 return ret;
7146
7147 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7148 return ret;
7149
7150 spin_lock_irqsave(&priv->ieee->lock, flags);
7151 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7152 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7153 sizeof(struct libipw_qos_data));
7154 priv->assoc_network->qos_data.active = 1;
7155 if ((network->qos_data.old_param_count !=
7156 network->qos_data.param_count)) {
7157 set_qos_param = 1;
7158 network->qos_data.old_param_count =
7159 network->qos_data.param_count;
7160 }
7161
7162 } else {
7163 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7164 memcpy(&priv->assoc_network->qos_data.parameters,
7165 &def_parameters_CCK, size);
7166 else
7167 memcpy(&priv->assoc_network->qos_data.parameters,
7168 &def_parameters_OFDM, size);
7169 priv->assoc_network->qos_data.active = 0;
7170 priv->assoc_network->qos_data.supported = 0;
7171 set_qos_param = 1;
7172 }
7173
7174 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7175
7176 if (set_qos_param == 1)
7177 schedule_work(&priv->qos_activate);
7178
7179 return ret;
7180 }
7181
7182 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7183 {
7184 u32 ret = 0;
7185
7186 if ((priv == NULL))
7187 return 0;
7188
7189 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7190 ret = priv->qos_data.burst_duration_CCK;
7191 else
7192 ret = priv->qos_data.burst_duration_OFDM;
7193
7194 return ret;
7195 }
7196
7197 /*
7198 * Initialize the setting of QoS global
7199 */
7200 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7201 int burst_enable, u32 burst_duration_CCK,
7202 u32 burst_duration_OFDM)
7203 {
7204 priv->qos_data.qos_enable = enable;
7205
7206 if (priv->qos_data.qos_enable) {
7207 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7208 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7209 IPW_DEBUG_QOS("QoS is enabled\n");
7210 } else {
7211 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7212 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7213 IPW_DEBUG_QOS("QoS is not enabled\n");
7214 }
7215
7216 priv->qos_data.burst_enable = burst_enable;
7217
7218 if (burst_enable) {
7219 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7220 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7221 } else {
7222 priv->qos_data.burst_duration_CCK = 0;
7223 priv->qos_data.burst_duration_OFDM = 0;
7224 }
7225 }
7226
7227 /*
7228 * map the packet priority to the right TX Queue
7229 */
7230 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7231 {
7232 if (priority > 7 || !priv->qos_data.qos_enable)
7233 priority = 0;
7234
7235 return from_priority_to_tx_queue[priority] - 1;
7236 }
7237
7238 static int ipw_is_qos_active(struct net_device *dev,
7239 struct sk_buff *skb)
7240 {
7241 struct ipw_priv *priv = libipw_priv(dev);
7242 struct libipw_qos_data *qos_data = NULL;
7243 int active, supported;
7244 u8 *daddr = skb->data + ETH_ALEN;
7245 int unicast = !is_multicast_ether_addr(daddr);
7246
7247 if (!(priv->status & STATUS_ASSOCIATED))
7248 return 0;
7249
7250 qos_data = &priv->assoc_network->qos_data;
7251
7252 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7253 if (unicast == 0)
7254 qos_data->active = 0;
7255 else
7256 qos_data->active = qos_data->supported;
7257 }
7258 active = qos_data->active;
7259 supported = qos_data->supported;
7260 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7261 "unicast %d\n",
7262 priv->qos_data.qos_enable, active, supported, unicast);
7263 if (active && priv->qos_data.qos_enable)
7264 return 1;
7265
7266 return 0;
7267
7268 }
7269 /*
7270 * add QoS parameter to the TX command
7271 */
7272 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7273 u16 priority,
7274 struct tfd_data *tfd)
7275 {
7276 int tx_queue_id = 0;
7277
7278
7279 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7280 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7281
7282 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7283 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7284 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7285 }
7286 return 0;
7287 }
7288
7289 /*
7290 * background support to run QoS activate functionality
7291 */
7292 static void ipw_bg_qos_activate(struct work_struct *work)
7293 {
7294 struct ipw_priv *priv =
7295 container_of(work, struct ipw_priv, qos_activate);
7296
7297 mutex_lock(&priv->mutex);
7298
7299 if (priv->status & STATUS_ASSOCIATED)
7300 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7301
7302 mutex_unlock(&priv->mutex);
7303 }
7304
7305 static int ipw_handle_probe_response(struct net_device *dev,
7306 struct libipw_probe_response *resp,
7307 struct libipw_network *network)
7308 {
7309 struct ipw_priv *priv = libipw_priv(dev);
7310 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7311 (network == priv->assoc_network));
7312
7313 ipw_qos_handle_probe_response(priv, active_network, network);
7314
7315 return 0;
7316 }
7317
7318 static int ipw_handle_beacon(struct net_device *dev,
7319 struct libipw_beacon *resp,
7320 struct libipw_network *network)
7321 {
7322 struct ipw_priv *priv = libipw_priv(dev);
7323 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7324 (network == priv->assoc_network));
7325
7326 ipw_qos_handle_probe_response(priv, active_network, network);
7327
7328 return 0;
7329 }
7330
7331 static int ipw_handle_assoc_response(struct net_device *dev,
7332 struct libipw_assoc_response *resp,
7333 struct libipw_network *network)
7334 {
7335 struct ipw_priv *priv = libipw_priv(dev);
7336 ipw_qos_association_resp(priv, network);
7337 return 0;
7338 }
7339
7340 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7341 *qos_param)
7342 {
7343 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7344 sizeof(*qos_param) * 3, qos_param);
7345 }
7346
7347 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7348 *qos_param)
7349 {
7350 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7351 qos_param);
7352 }
7353
7354 #endif /* CONFIG_IPW2200_QOS */
7355
7356 static int ipw_associate_network(struct ipw_priv *priv,
7357 struct libipw_network *network,
7358 struct ipw_supported_rates *rates, int roaming)
7359 {
7360 int err;
7361 DECLARE_SSID_BUF(ssid);
7362
7363 if (priv->config & CFG_FIXED_RATE)
7364 ipw_set_fixed_rate(priv, network->mode);
7365
7366 if (!(priv->config & CFG_STATIC_ESSID)) {
7367 priv->essid_len = min(network->ssid_len,
7368 (u8) IW_ESSID_MAX_SIZE);
7369 memcpy(priv->essid, network->ssid, priv->essid_len);
7370 }
7371
7372 network->last_associate = jiffies;
7373
7374 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7375 priv->assoc_request.channel = network->channel;
7376 priv->assoc_request.auth_key = 0;
7377
7378 if ((priv->capability & CAP_PRIVACY_ON) &&
7379 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7380 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7381 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7382
7383 if (priv->ieee->sec.level == SEC_LEVEL_1)
7384 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7385
7386 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7387 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7388 priv->assoc_request.auth_type = AUTH_LEAP;
7389 else
7390 priv->assoc_request.auth_type = AUTH_OPEN;
7391
7392 if (priv->ieee->wpa_ie_len) {
7393 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7394 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7395 priv->ieee->wpa_ie_len);
7396 }
7397
7398 /*
7399 * It is valid for our ieee device to support multiple modes, but
7400 * when it comes to associating to a given network we have to choose
7401 * just one mode.
7402 */
7403 if (network->mode & priv->ieee->mode & IEEE_A)
7404 priv->assoc_request.ieee_mode = IPW_A_MODE;
7405 else if (network->mode & priv->ieee->mode & IEEE_G)
7406 priv->assoc_request.ieee_mode = IPW_G_MODE;
7407 else if (network->mode & priv->ieee->mode & IEEE_B)
7408 priv->assoc_request.ieee_mode = IPW_B_MODE;
7409
7410 priv->assoc_request.capability = cpu_to_le16(network->capability);
7411 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7412 && !(priv->config & CFG_PREAMBLE_LONG)) {
7413 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7414 } else {
7415 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7416
7417 /* Clear the short preamble if we won't be supporting it */
7418 priv->assoc_request.capability &=
7419 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7420 }
7421
7422 /* Clear capability bits that aren't used in Ad Hoc */
7423 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7424 priv->assoc_request.capability &=
7425 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7426
7427 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7428 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7429 roaming ? "Rea" : "A",
7430 print_ssid(ssid, priv->essid, priv->essid_len),
7431 network->channel,
7432 ipw_modes[priv->assoc_request.ieee_mode],
7433 rates->num_rates,
7434 (priv->assoc_request.preamble_length ==
7435 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7436 network->capability &
7437 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7438 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7439 priv->capability & CAP_PRIVACY_ON ?
7440 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7441 "(open)") : "",
7442 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7443 priv->capability & CAP_PRIVACY_ON ?
7444 '1' + priv->ieee->sec.active_key : '.',
7445 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7446
7447 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7448 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7449 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7450 priv->assoc_request.assoc_type = HC_IBSS_START;
7451 priv->assoc_request.assoc_tsf_msw = 0;
7452 priv->assoc_request.assoc_tsf_lsw = 0;
7453 } else {
7454 if (unlikely(roaming))
7455 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7456 else
7457 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7458 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7459 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7460 }
7461
7462 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7463
7464 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7465 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7466 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7467 } else {
7468 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7469 priv->assoc_request.atim_window = 0;
7470 }
7471
7472 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7473
7474 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7475 if (err) {
7476 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7477 return err;
7478 }
7479
7480 rates->ieee_mode = priv->assoc_request.ieee_mode;
7481 rates->purpose = IPW_RATE_CONNECT;
7482 ipw_send_supported_rates(priv, rates);
7483
7484 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7485 priv->sys_config.dot11g_auto_detection = 1;
7486 else
7487 priv->sys_config.dot11g_auto_detection = 0;
7488
7489 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7490 priv->sys_config.answer_broadcast_ssid_probe = 1;
7491 else
7492 priv->sys_config.answer_broadcast_ssid_probe = 0;
7493
7494 err = ipw_send_system_config(priv);
7495 if (err) {
7496 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7497 return err;
7498 }
7499
7500 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7501 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7502 if (err) {
7503 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7504 return err;
7505 }
7506
7507 /*
7508 * If preemption is enabled, it is possible for the association
7509 * to complete before we return from ipw_send_associate. Therefore
7510 * we have to be sure and update our priviate data first.
7511 */
7512 priv->channel = network->channel;
7513 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7514 priv->status |= STATUS_ASSOCIATING;
7515 priv->status &= ~STATUS_SECURITY_UPDATED;
7516
7517 priv->assoc_network = network;
7518
7519 #ifdef CONFIG_IPW2200_QOS
7520 ipw_qos_association(priv, network);
7521 #endif
7522
7523 err = ipw_send_associate(priv, &priv->assoc_request);
7524 if (err) {
7525 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7526 return err;
7527 }
7528
7529 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7530 print_ssid(ssid, priv->essid, priv->essid_len),
7531 priv->bssid);
7532
7533 return 0;
7534 }
7535
7536 static void ipw_roam(void *data)
7537 {
7538 struct ipw_priv *priv = data;
7539 struct libipw_network *network = NULL;
7540 struct ipw_network_match match = {
7541 .network = priv->assoc_network
7542 };
7543
7544 /* The roaming process is as follows:
7545 *
7546 * 1. Missed beacon threshold triggers the roaming process by
7547 * setting the status ROAM bit and requesting a scan.
7548 * 2. When the scan completes, it schedules the ROAM work
7549 * 3. The ROAM work looks at all of the known networks for one that
7550 * is a better network than the currently associated. If none
7551 * found, the ROAM process is over (ROAM bit cleared)
7552 * 4. If a better network is found, a disassociation request is
7553 * sent.
7554 * 5. When the disassociation completes, the roam work is again
7555 * scheduled. The second time through, the driver is no longer
7556 * associated, and the newly selected network is sent an
7557 * association request.
7558 * 6. At this point ,the roaming process is complete and the ROAM
7559 * status bit is cleared.
7560 */
7561
7562 /* If we are no longer associated, and the roaming bit is no longer
7563 * set, then we are not actively roaming, so just return */
7564 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7565 return;
7566
7567 if (priv->status & STATUS_ASSOCIATED) {
7568 /* First pass through ROAM process -- look for a better
7569 * network */
7570 unsigned long flags;
7571 u8 rssi = priv->assoc_network->stats.rssi;
7572 priv->assoc_network->stats.rssi = -128;
7573 spin_lock_irqsave(&priv->ieee->lock, flags);
7574 list_for_each_entry(network, &priv->ieee->network_list, list) {
7575 if (network != priv->assoc_network)
7576 ipw_best_network(priv, &match, network, 1);
7577 }
7578 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7579 priv->assoc_network->stats.rssi = rssi;
7580
7581 if (match.network == priv->assoc_network) {
7582 IPW_DEBUG_ASSOC("No better APs in this network to "
7583 "roam to.\n");
7584 priv->status &= ~STATUS_ROAMING;
7585 ipw_debug_config(priv);
7586 return;
7587 }
7588
7589 ipw_send_disassociate(priv, 1);
7590 priv->assoc_network = match.network;
7591
7592 return;
7593 }
7594
7595 /* Second pass through ROAM process -- request association */
7596 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7597 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7598 priv->status &= ~STATUS_ROAMING;
7599 }
7600
7601 static void ipw_bg_roam(struct work_struct *work)
7602 {
7603 struct ipw_priv *priv =
7604 container_of(work, struct ipw_priv, roam);
7605 mutex_lock(&priv->mutex);
7606 ipw_roam(priv);
7607 mutex_unlock(&priv->mutex);
7608 }
7609
7610 static int ipw_associate(void *data)
7611 {
7612 struct ipw_priv *priv = data;
7613
7614 struct libipw_network *network = NULL;
7615 struct ipw_network_match match = {
7616 .network = NULL
7617 };
7618 struct ipw_supported_rates *rates;
7619 struct list_head *element;
7620 unsigned long flags;
7621 DECLARE_SSID_BUF(ssid);
7622
7623 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7624 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7625 return 0;
7626 }
7627
7628 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7629 IPW_DEBUG_ASSOC("Not attempting association (already in "
7630 "progress)\n");
7631 return 0;
7632 }
7633
7634 if (priv->status & STATUS_DISASSOCIATING) {
7635 IPW_DEBUG_ASSOC("Not attempting association (in "
7636 "disassociating)\n ");
7637 queue_work(priv->workqueue, &priv->associate);
7638 return 0;
7639 }
7640
7641 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7642 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7643 "initialized)\n");
7644 return 0;
7645 }
7646
7647 if (!(priv->config & CFG_ASSOCIATE) &&
7648 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7649 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7650 return 0;
7651 }
7652
7653 /* Protect our use of the network_list */
7654 spin_lock_irqsave(&priv->ieee->lock, flags);
7655 list_for_each_entry(network, &priv->ieee->network_list, list)
7656 ipw_best_network(priv, &match, network, 0);
7657
7658 network = match.network;
7659 rates = &match.rates;
7660
7661 if (network == NULL &&
7662 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7663 priv->config & CFG_ADHOC_CREATE &&
7664 priv->config & CFG_STATIC_ESSID &&
7665 priv->config & CFG_STATIC_CHANNEL) {
7666 /* Use oldest network if the free list is empty */
7667 if (list_empty(&priv->ieee->network_free_list)) {
7668 struct libipw_network *oldest = NULL;
7669 struct libipw_network *target;
7670
7671 list_for_each_entry(target, &priv->ieee->network_list, list) {
7672 if ((oldest == NULL) ||
7673 (target->last_scanned < oldest->last_scanned))
7674 oldest = target;
7675 }
7676
7677 /* If there are no more slots, expire the oldest */
7678 list_del(&oldest->list);
7679 target = oldest;
7680 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7681 "network list.\n",
7682 print_ssid(ssid, target->ssid,
7683 target->ssid_len),
7684 target->bssid);
7685 list_add_tail(&target->list,
7686 &priv->ieee->network_free_list);
7687 }
7688
7689 element = priv->ieee->network_free_list.next;
7690 network = list_entry(element, struct libipw_network, list);
7691 ipw_adhoc_create(priv, network);
7692 rates = &priv->rates;
7693 list_del(element);
7694 list_add_tail(&network->list, &priv->ieee->network_list);
7695 }
7696 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7697
7698 /* If we reached the end of the list, then we don't have any valid
7699 * matching APs */
7700 if (!network) {
7701 ipw_debug_config(priv);
7702
7703 if (!(priv->status & STATUS_SCANNING)) {
7704 if (!(priv->config & CFG_SPEED_SCAN))
7705 queue_delayed_work(priv->workqueue,
7706 &priv->request_scan,
7707 SCAN_INTERVAL);
7708 else
7709 queue_delayed_work(priv->workqueue,
7710 &priv->request_scan, 0);
7711 }
7712
7713 return 0;
7714 }
7715
7716 ipw_associate_network(priv, network, rates, 0);
7717
7718 return 1;
7719 }
7720
7721 static void ipw_bg_associate(struct work_struct *work)
7722 {
7723 struct ipw_priv *priv =
7724 container_of(work, struct ipw_priv, associate);
7725 mutex_lock(&priv->mutex);
7726 ipw_associate(priv);
7727 mutex_unlock(&priv->mutex);
7728 }
7729
7730 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7731 struct sk_buff *skb)
7732 {
7733 struct ieee80211_hdr *hdr;
7734 u16 fc;
7735
7736 hdr = (struct ieee80211_hdr *)skb->data;
7737 fc = le16_to_cpu(hdr->frame_control);
7738 if (!(fc & IEEE80211_FCTL_PROTECTED))
7739 return;
7740
7741 fc &= ~IEEE80211_FCTL_PROTECTED;
7742 hdr->frame_control = cpu_to_le16(fc);
7743 switch (priv->ieee->sec.level) {
7744 case SEC_LEVEL_3:
7745 /* Remove CCMP HDR */
7746 memmove(skb->data + LIBIPW_3ADDR_LEN,
7747 skb->data + LIBIPW_3ADDR_LEN + 8,
7748 skb->len - LIBIPW_3ADDR_LEN - 8);
7749 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7750 break;
7751 case SEC_LEVEL_2:
7752 break;
7753 case SEC_LEVEL_1:
7754 /* Remove IV */
7755 memmove(skb->data + LIBIPW_3ADDR_LEN,
7756 skb->data + LIBIPW_3ADDR_LEN + 4,
7757 skb->len - LIBIPW_3ADDR_LEN - 4);
7758 skb_trim(skb, skb->len - 8); /* IV + ICV */
7759 break;
7760 case SEC_LEVEL_0:
7761 break;
7762 default:
7763 printk(KERN_ERR "Unknown security level %d\n",
7764 priv->ieee->sec.level);
7765 break;
7766 }
7767 }
7768
7769 static void ipw_handle_data_packet(struct ipw_priv *priv,
7770 struct ipw_rx_mem_buffer *rxb,
7771 struct libipw_rx_stats *stats)
7772 {
7773 struct net_device *dev = priv->net_dev;
7774 struct libipw_hdr_4addr *hdr;
7775 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7776
7777 /* We received data from the HW, so stop the watchdog */
7778 dev->trans_start = jiffies;
7779
7780 /* We only process data packets if the
7781 * interface is open */
7782 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7783 skb_tailroom(rxb->skb))) {
7784 dev->stats.rx_errors++;
7785 priv->wstats.discard.misc++;
7786 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7787 return;
7788 } else if (unlikely(!netif_running(priv->net_dev))) {
7789 dev->stats.rx_dropped++;
7790 priv->wstats.discard.misc++;
7791 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7792 return;
7793 }
7794
7795 /* Advance skb->data to the start of the actual payload */
7796 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7797
7798 /* Set the size of the skb to the size of the frame */
7799 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7800
7801 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7802
7803 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7804 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7805 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7806 (is_multicast_ether_addr(hdr->addr1) ?
7807 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7808 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7809
7810 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7811 dev->stats.rx_errors++;
7812 else { /* libipw_rx succeeded, so it now owns the SKB */
7813 rxb->skb = NULL;
7814 __ipw_led_activity_on(priv);
7815 }
7816 }
7817
7818 #ifdef CONFIG_IPW2200_RADIOTAP
7819 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7820 struct ipw_rx_mem_buffer *rxb,
7821 struct libipw_rx_stats *stats)
7822 {
7823 struct net_device *dev = priv->net_dev;
7824 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7825 struct ipw_rx_frame *frame = &pkt->u.frame;
7826
7827 /* initial pull of some data */
7828 u16 received_channel = frame->received_channel;
7829 u8 antennaAndPhy = frame->antennaAndPhy;
7830 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7831 u16 pktrate = frame->rate;
7832
7833 /* Magic struct that slots into the radiotap header -- no reason
7834 * to build this manually element by element, we can write it much
7835 * more efficiently than we can parse it. ORDER MATTERS HERE */
7836 struct ipw_rt_hdr *ipw_rt;
7837
7838 short len = le16_to_cpu(pkt->u.frame.length);
7839
7840 /* We received data from the HW, so stop the watchdog */
7841 dev->trans_start = jiffies;
7842
7843 /* We only process data packets if the
7844 * interface is open */
7845 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7846 skb_tailroom(rxb->skb))) {
7847 dev->stats.rx_errors++;
7848 priv->wstats.discard.misc++;
7849 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7850 return;
7851 } else if (unlikely(!netif_running(priv->net_dev))) {
7852 dev->stats.rx_dropped++;
7853 priv->wstats.discard.misc++;
7854 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7855 return;
7856 }
7857
7858 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7859 * that now */
7860 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7861 /* FIXME: Should alloc bigger skb instead */
7862 dev->stats.rx_dropped++;
7863 priv->wstats.discard.misc++;
7864 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7865 return;
7866 }
7867
7868 /* copy the frame itself */
7869 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7870 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7871
7872 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7873
7874 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7875 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7876 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7877
7878 /* Big bitfield of all the fields we provide in radiotap */
7879 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7880 (1 << IEEE80211_RADIOTAP_TSFT) |
7881 (1 << IEEE80211_RADIOTAP_FLAGS) |
7882 (1 << IEEE80211_RADIOTAP_RATE) |
7883 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7884 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7885 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7886 (1 << IEEE80211_RADIOTAP_ANTENNA));
7887
7888 /* Zero the flags, we'll add to them as we go */
7889 ipw_rt->rt_flags = 0;
7890 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7891 frame->parent_tsf[2] << 16 |
7892 frame->parent_tsf[1] << 8 |
7893 frame->parent_tsf[0]);
7894
7895 /* Convert signal to DBM */
7896 ipw_rt->rt_dbmsignal = antsignal;
7897 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7898
7899 /* Convert the channel data and set the flags */
7900 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7901 if (received_channel > 14) { /* 802.11a */
7902 ipw_rt->rt_chbitmask =
7903 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7904 } else if (antennaAndPhy & 32) { /* 802.11b */
7905 ipw_rt->rt_chbitmask =
7906 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7907 } else { /* 802.11g */
7908 ipw_rt->rt_chbitmask =
7909 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7910 }
7911
7912 /* set the rate in multiples of 500k/s */
7913 switch (pktrate) {
7914 case IPW_TX_RATE_1MB:
7915 ipw_rt->rt_rate = 2;
7916 break;
7917 case IPW_TX_RATE_2MB:
7918 ipw_rt->rt_rate = 4;
7919 break;
7920 case IPW_TX_RATE_5MB:
7921 ipw_rt->rt_rate = 10;
7922 break;
7923 case IPW_TX_RATE_6MB:
7924 ipw_rt->rt_rate = 12;
7925 break;
7926 case IPW_TX_RATE_9MB:
7927 ipw_rt->rt_rate = 18;
7928 break;
7929 case IPW_TX_RATE_11MB:
7930 ipw_rt->rt_rate = 22;
7931 break;
7932 case IPW_TX_RATE_12MB:
7933 ipw_rt->rt_rate = 24;
7934 break;
7935 case IPW_TX_RATE_18MB:
7936 ipw_rt->rt_rate = 36;
7937 break;
7938 case IPW_TX_RATE_24MB:
7939 ipw_rt->rt_rate = 48;
7940 break;
7941 case IPW_TX_RATE_36MB:
7942 ipw_rt->rt_rate = 72;
7943 break;
7944 case IPW_TX_RATE_48MB:
7945 ipw_rt->rt_rate = 96;
7946 break;
7947 case IPW_TX_RATE_54MB:
7948 ipw_rt->rt_rate = 108;
7949 break;
7950 default:
7951 ipw_rt->rt_rate = 0;
7952 break;
7953 }
7954
7955 /* antenna number */
7956 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7957
7958 /* set the preamble flag if we have it */
7959 if ((antennaAndPhy & 64))
7960 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7961
7962 /* Set the size of the skb to the size of the frame */
7963 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7964
7965 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7966
7967 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7968 dev->stats.rx_errors++;
7969 else { /* libipw_rx succeeded, so it now owns the SKB */
7970 rxb->skb = NULL;
7971 /* no LED during capture */
7972 }
7973 }
7974 #endif
7975
7976 #ifdef CONFIG_IPW2200_PROMISCUOUS
7977 #define libipw_is_probe_response(fc) \
7978 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7979 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7980
7981 #define libipw_is_management(fc) \
7982 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7983
7984 #define libipw_is_control(fc) \
7985 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7986
7987 #define libipw_is_data(fc) \
7988 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7989
7990 #define libipw_is_assoc_request(fc) \
7991 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7992
7993 #define libipw_is_reassoc_request(fc) \
7994 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7995
7996 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7997 struct ipw_rx_mem_buffer *rxb,
7998 struct libipw_rx_stats *stats)
7999 {
8000 struct net_device *dev = priv->prom_net_dev;
8001 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8002 struct ipw_rx_frame *frame = &pkt->u.frame;
8003 struct ipw_rt_hdr *ipw_rt;
8004
8005 /* First cache any information we need before we overwrite
8006 * the information provided in the skb from the hardware */
8007 struct ieee80211_hdr *hdr;
8008 u16 channel = frame->received_channel;
8009 u8 phy_flags = frame->antennaAndPhy;
8010 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8011 s8 noise = (s8) le16_to_cpu(frame->noise);
8012 u8 rate = frame->rate;
8013 short len = le16_to_cpu(pkt->u.frame.length);
8014 struct sk_buff *skb;
8015 int hdr_only = 0;
8016 u16 filter = priv->prom_priv->filter;
8017
8018 /* If the filter is set to not include Rx frames then return */
8019 if (filter & IPW_PROM_NO_RX)
8020 return;
8021
8022 /* We received data from the HW, so stop the watchdog */
8023 dev->trans_start = jiffies;
8024
8025 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8026 dev->stats.rx_errors++;
8027 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8028 return;
8029 }
8030
8031 /* We only process data packets if the interface is open */
8032 if (unlikely(!netif_running(dev))) {
8033 dev->stats.rx_dropped++;
8034 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8035 return;
8036 }
8037
8038 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8039 * that now */
8040 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8041 /* FIXME: Should alloc bigger skb instead */
8042 dev->stats.rx_dropped++;
8043 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8044 return;
8045 }
8046
8047 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8048 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8049 if (filter & IPW_PROM_NO_MGMT)
8050 return;
8051 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8052 hdr_only = 1;
8053 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8054 if (filter & IPW_PROM_NO_CTL)
8055 return;
8056 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8057 hdr_only = 1;
8058 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8059 if (filter & IPW_PROM_NO_DATA)
8060 return;
8061 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8062 hdr_only = 1;
8063 }
8064
8065 /* Copy the SKB since this is for the promiscuous side */
8066 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8067 if (skb == NULL) {
8068 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8069 return;
8070 }
8071
8072 /* copy the frame data to write after where the radiotap header goes */
8073 ipw_rt = (void *)skb->data;
8074
8075 if (hdr_only)
8076 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8077
8078 memcpy(ipw_rt->payload, hdr, len);
8079
8080 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8081 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8082 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8083
8084 /* Set the size of the skb to the size of the frame */
8085 skb_put(skb, sizeof(*ipw_rt) + len);
8086
8087 /* Big bitfield of all the fields we provide in radiotap */
8088 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8089 (1 << IEEE80211_RADIOTAP_TSFT) |
8090 (1 << IEEE80211_RADIOTAP_FLAGS) |
8091 (1 << IEEE80211_RADIOTAP_RATE) |
8092 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8093 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8094 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8095 (1 << IEEE80211_RADIOTAP_ANTENNA));
8096
8097 /* Zero the flags, we'll add to them as we go */
8098 ipw_rt->rt_flags = 0;
8099 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8100 frame->parent_tsf[2] << 16 |
8101 frame->parent_tsf[1] << 8 |
8102 frame->parent_tsf[0]);
8103
8104 /* Convert to DBM */
8105 ipw_rt->rt_dbmsignal = signal;
8106 ipw_rt->rt_dbmnoise = noise;
8107
8108 /* Convert the channel data and set the flags */
8109 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8110 if (channel > 14) { /* 802.11a */
8111 ipw_rt->rt_chbitmask =
8112 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8113 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8114 ipw_rt->rt_chbitmask =
8115 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8116 } else { /* 802.11g */
8117 ipw_rt->rt_chbitmask =
8118 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8119 }
8120
8121 /* set the rate in multiples of 500k/s */
8122 switch (rate) {
8123 case IPW_TX_RATE_1MB:
8124 ipw_rt->rt_rate = 2;
8125 break;
8126 case IPW_TX_RATE_2MB:
8127 ipw_rt->rt_rate = 4;
8128 break;
8129 case IPW_TX_RATE_5MB:
8130 ipw_rt->rt_rate = 10;
8131 break;
8132 case IPW_TX_RATE_6MB:
8133 ipw_rt->rt_rate = 12;
8134 break;
8135 case IPW_TX_RATE_9MB:
8136 ipw_rt->rt_rate = 18;
8137 break;
8138 case IPW_TX_RATE_11MB:
8139 ipw_rt->rt_rate = 22;
8140 break;
8141 case IPW_TX_RATE_12MB:
8142 ipw_rt->rt_rate = 24;
8143 break;
8144 case IPW_TX_RATE_18MB:
8145 ipw_rt->rt_rate = 36;
8146 break;
8147 case IPW_TX_RATE_24MB:
8148 ipw_rt->rt_rate = 48;
8149 break;
8150 case IPW_TX_RATE_36MB:
8151 ipw_rt->rt_rate = 72;
8152 break;
8153 case IPW_TX_RATE_48MB:
8154 ipw_rt->rt_rate = 96;
8155 break;
8156 case IPW_TX_RATE_54MB:
8157 ipw_rt->rt_rate = 108;
8158 break;
8159 default:
8160 ipw_rt->rt_rate = 0;
8161 break;
8162 }
8163
8164 /* antenna number */
8165 ipw_rt->rt_antenna = (phy_flags & 3);
8166
8167 /* set the preamble flag if we have it */
8168 if (phy_flags & (1 << 6))
8169 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8170
8171 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8172
8173 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8174 dev->stats.rx_errors++;
8175 dev_kfree_skb_any(skb);
8176 }
8177 }
8178 #endif
8179
8180 static int is_network_packet(struct ipw_priv *priv,
8181 struct libipw_hdr_4addr *header)
8182 {
8183 /* Filter incoming packets to determine if they are targetted toward
8184 * this network, discarding packets coming from ourselves */
8185 switch (priv->ieee->iw_mode) {
8186 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8187 /* packets from our adapter are dropped (echo) */
8188 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8189 return 0;
8190
8191 /* {broad,multi}cast packets to our BSSID go through */
8192 if (is_multicast_ether_addr(header->addr1))
8193 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8194
8195 /* packets to our adapter go through */
8196 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8197 ETH_ALEN);
8198
8199 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8200 /* packets from our adapter are dropped (echo) */
8201 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8202 return 0;
8203
8204 /* {broad,multi}cast packets to our BSS go through */
8205 if (is_multicast_ether_addr(header->addr1))
8206 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8207
8208 /* packets to our adapter go through */
8209 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8210 ETH_ALEN);
8211 }
8212
8213 return 1;
8214 }
8215
8216 #define IPW_PACKET_RETRY_TIME HZ
8217
8218 static int is_duplicate_packet(struct ipw_priv *priv,
8219 struct libipw_hdr_4addr *header)
8220 {
8221 u16 sc = le16_to_cpu(header->seq_ctl);
8222 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8223 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8224 u16 *last_seq, *last_frag;
8225 unsigned long *last_time;
8226
8227 switch (priv->ieee->iw_mode) {
8228 case IW_MODE_ADHOC:
8229 {
8230 struct list_head *p;
8231 struct ipw_ibss_seq *entry = NULL;
8232 u8 *mac = header->addr2;
8233 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8234
8235 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8236 entry =
8237 list_entry(p, struct ipw_ibss_seq, list);
8238 if (!memcmp(entry->mac, mac, ETH_ALEN))
8239 break;
8240 }
8241 if (p == &priv->ibss_mac_hash[index]) {
8242 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8243 if (!entry) {
8244 IPW_ERROR
8245 ("Cannot malloc new mac entry\n");
8246 return 0;
8247 }
8248 memcpy(entry->mac, mac, ETH_ALEN);
8249 entry->seq_num = seq;
8250 entry->frag_num = frag;
8251 entry->packet_time = jiffies;
8252 list_add(&entry->list,
8253 &priv->ibss_mac_hash[index]);
8254 return 0;
8255 }
8256 last_seq = &entry->seq_num;
8257 last_frag = &entry->frag_num;
8258 last_time = &entry->packet_time;
8259 break;
8260 }
8261 case IW_MODE_INFRA:
8262 last_seq = &priv->last_seq_num;
8263 last_frag = &priv->last_frag_num;
8264 last_time = &priv->last_packet_time;
8265 break;
8266 default:
8267 return 0;
8268 }
8269 if ((*last_seq == seq) &&
8270 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8271 if (*last_frag == frag)
8272 goto drop;
8273 if (*last_frag + 1 != frag)
8274 /* out-of-order fragment */
8275 goto drop;
8276 } else
8277 *last_seq = seq;
8278
8279 *last_frag = frag;
8280 *last_time = jiffies;
8281 return 0;
8282
8283 drop:
8284 /* Comment this line now since we observed the card receives
8285 * duplicate packets but the FCTL_RETRY bit is not set in the
8286 * IBSS mode with fragmentation enabled.
8287 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8288 return 1;
8289 }
8290
8291 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8292 struct ipw_rx_mem_buffer *rxb,
8293 struct libipw_rx_stats *stats)
8294 {
8295 struct sk_buff *skb = rxb->skb;
8296 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8297 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8298 (skb->data + IPW_RX_FRAME_SIZE);
8299
8300 libipw_rx_mgt(priv->ieee, header, stats);
8301
8302 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8303 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8304 IEEE80211_STYPE_PROBE_RESP) ||
8305 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8306 IEEE80211_STYPE_BEACON))) {
8307 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8308 ipw_add_station(priv, header->addr2);
8309 }
8310
8311 if (priv->config & CFG_NET_STATS) {
8312 IPW_DEBUG_HC("sending stat packet\n");
8313
8314 /* Set the size of the skb to the size of the full
8315 * ipw header and 802.11 frame */
8316 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8317 IPW_RX_FRAME_SIZE);
8318
8319 /* Advance past the ipw packet header to the 802.11 frame */
8320 skb_pull(skb, IPW_RX_FRAME_SIZE);
8321
8322 /* Push the libipw_rx_stats before the 802.11 frame */
8323 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8324
8325 skb->dev = priv->ieee->dev;
8326
8327 /* Point raw at the libipw_stats */
8328 skb_reset_mac_header(skb);
8329
8330 skb->pkt_type = PACKET_OTHERHOST;
8331 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8332 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8333 netif_rx(skb);
8334 rxb->skb = NULL;
8335 }
8336 }
8337
8338 /*
8339 * Main entry function for recieving a packet with 80211 headers. This
8340 * should be called when ever the FW has notified us that there is a new
8341 * skb in the recieve queue.
8342 */
8343 static void ipw_rx(struct ipw_priv *priv)
8344 {
8345 struct ipw_rx_mem_buffer *rxb;
8346 struct ipw_rx_packet *pkt;
8347 struct libipw_hdr_4addr *header;
8348 u32 r, w, i;
8349 u8 network_packet;
8350 u8 fill_rx = 0;
8351
8352 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8353 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8354 i = priv->rxq->read;
8355
8356 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8357 fill_rx = 1;
8358
8359 while (i != r) {
8360 rxb = priv->rxq->queue[i];
8361 if (unlikely(rxb == NULL)) {
8362 printk(KERN_CRIT "Queue not allocated!\n");
8363 break;
8364 }
8365 priv->rxq->queue[i] = NULL;
8366
8367 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8368 IPW_RX_BUF_SIZE,
8369 PCI_DMA_FROMDEVICE);
8370
8371 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8372 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8373 pkt->header.message_type,
8374 pkt->header.rx_seq_num, pkt->header.control_bits);
8375
8376 switch (pkt->header.message_type) {
8377 case RX_FRAME_TYPE: /* 802.11 frame */ {
8378 struct libipw_rx_stats stats = {
8379 .rssi = pkt->u.frame.rssi_dbm -
8380 IPW_RSSI_TO_DBM,
8381 .signal =
8382 pkt->u.frame.rssi_dbm -
8383 IPW_RSSI_TO_DBM + 0x100,
8384 .noise =
8385 le16_to_cpu(pkt->u.frame.noise),
8386 .rate = pkt->u.frame.rate,
8387 .mac_time = jiffies,
8388 .received_channel =
8389 pkt->u.frame.received_channel,
8390 .freq =
8391 (pkt->u.frame.
8392 control & (1 << 0)) ?
8393 LIBIPW_24GHZ_BAND :
8394 LIBIPW_52GHZ_BAND,
8395 .len = le16_to_cpu(pkt->u.frame.length),
8396 };
8397
8398 if (stats.rssi != 0)
8399 stats.mask |= LIBIPW_STATMASK_RSSI;
8400 if (stats.signal != 0)
8401 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8402 if (stats.noise != 0)
8403 stats.mask |= LIBIPW_STATMASK_NOISE;
8404 if (stats.rate != 0)
8405 stats.mask |= LIBIPW_STATMASK_RATE;
8406
8407 priv->rx_packets++;
8408
8409 #ifdef CONFIG_IPW2200_PROMISCUOUS
8410 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8411 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8412 #endif
8413
8414 #ifdef CONFIG_IPW2200_MONITOR
8415 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8416 #ifdef CONFIG_IPW2200_RADIOTAP
8417
8418 ipw_handle_data_packet_monitor(priv,
8419 rxb,
8420 &stats);
8421 #else
8422 ipw_handle_data_packet(priv, rxb,
8423 &stats);
8424 #endif
8425 break;
8426 }
8427 #endif
8428
8429 header =
8430 (struct libipw_hdr_4addr *)(rxb->skb->
8431 data +
8432 IPW_RX_FRAME_SIZE);
8433 /* TODO: Check Ad-Hoc dest/source and make sure
8434 * that we are actually parsing these packets
8435 * correctly -- we should probably use the
8436 * frame control of the packet and disregard
8437 * the current iw_mode */
8438
8439 network_packet =
8440 is_network_packet(priv, header);
8441 if (network_packet && priv->assoc_network) {
8442 priv->assoc_network->stats.rssi =
8443 stats.rssi;
8444 priv->exp_avg_rssi =
8445 exponential_average(priv->exp_avg_rssi,
8446 stats.rssi, DEPTH_RSSI);
8447 }
8448
8449 IPW_DEBUG_RX("Frame: len=%u\n",
8450 le16_to_cpu(pkt->u.frame.length));
8451
8452 if (le16_to_cpu(pkt->u.frame.length) <
8453 libipw_get_hdrlen(le16_to_cpu(
8454 header->frame_ctl))) {
8455 IPW_DEBUG_DROP
8456 ("Received packet is too small. "
8457 "Dropping.\n");
8458 priv->net_dev->stats.rx_errors++;
8459 priv->wstats.discard.misc++;
8460 break;
8461 }
8462
8463 switch (WLAN_FC_GET_TYPE
8464 (le16_to_cpu(header->frame_ctl))) {
8465
8466 case IEEE80211_FTYPE_MGMT:
8467 ipw_handle_mgmt_packet(priv, rxb,
8468 &stats);
8469 break;
8470
8471 case IEEE80211_FTYPE_CTL:
8472 break;
8473
8474 case IEEE80211_FTYPE_DATA:
8475 if (unlikely(!network_packet ||
8476 is_duplicate_packet(priv,
8477 header)))
8478 {
8479 IPW_DEBUG_DROP("Dropping: "
8480 "%pM, "
8481 "%pM, "
8482 "%pM\n",
8483 header->addr1,
8484 header->addr2,
8485 header->addr3);
8486 break;
8487 }
8488
8489 ipw_handle_data_packet(priv, rxb,
8490 &stats);
8491
8492 break;
8493 }
8494 break;
8495 }
8496
8497 case RX_HOST_NOTIFICATION_TYPE:{
8498 IPW_DEBUG_RX
8499 ("Notification: subtype=%02X flags=%02X size=%d\n",
8500 pkt->u.notification.subtype,
8501 pkt->u.notification.flags,
8502 le16_to_cpu(pkt->u.notification.size));
8503 ipw_rx_notification(priv, &pkt->u.notification);
8504 break;
8505 }
8506
8507 default:
8508 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8509 pkt->header.message_type);
8510 break;
8511 }
8512
8513 /* For now we just don't re-use anything. We can tweak this
8514 * later to try and re-use notification packets and SKBs that
8515 * fail to Rx correctly */
8516 if (rxb->skb != NULL) {
8517 dev_kfree_skb_any(rxb->skb);
8518 rxb->skb = NULL;
8519 }
8520
8521 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8522 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8523 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8524
8525 i = (i + 1) % RX_QUEUE_SIZE;
8526
8527 /* If there are a lot of unsued frames, restock the Rx queue
8528 * so the ucode won't assert */
8529 if (fill_rx) {
8530 priv->rxq->read = i;
8531 ipw_rx_queue_replenish(priv);
8532 }
8533 }
8534
8535 /* Backtrack one entry */
8536 priv->rxq->read = i;
8537 ipw_rx_queue_restock(priv);
8538 }
8539
8540 #define DEFAULT_RTS_THRESHOLD 2304U
8541 #define MIN_RTS_THRESHOLD 1U
8542 #define MAX_RTS_THRESHOLD 2304U
8543 #define DEFAULT_BEACON_INTERVAL 100U
8544 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8545 #define DEFAULT_LONG_RETRY_LIMIT 4U
8546
8547 /**
8548 * ipw_sw_reset
8549 * @option: options to control different reset behaviour
8550 * 0 = reset everything except the 'disable' module_param
8551 * 1 = reset everything and print out driver info (for probe only)
8552 * 2 = reset everything
8553 */
8554 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8555 {
8556 int band, modulation;
8557 int old_mode = priv->ieee->iw_mode;
8558
8559 /* Initialize module parameter values here */
8560 priv->config = 0;
8561
8562 /* We default to disabling the LED code as right now it causes
8563 * too many systems to lock up... */
8564 if (!led_support)
8565 priv->config |= CFG_NO_LED;
8566
8567 if (associate)
8568 priv->config |= CFG_ASSOCIATE;
8569 else
8570 IPW_DEBUG_INFO("Auto associate disabled.\n");
8571
8572 if (auto_create)
8573 priv->config |= CFG_ADHOC_CREATE;
8574 else
8575 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8576
8577 priv->config &= ~CFG_STATIC_ESSID;
8578 priv->essid_len = 0;
8579 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8580
8581 if (disable && option) {
8582 priv->status |= STATUS_RF_KILL_SW;
8583 IPW_DEBUG_INFO("Radio disabled.\n");
8584 }
8585
8586 if (default_channel != 0) {
8587 priv->config |= CFG_STATIC_CHANNEL;
8588 priv->channel = default_channel;
8589 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8590 /* TODO: Validate that provided channel is in range */
8591 }
8592 #ifdef CONFIG_IPW2200_QOS
8593 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8594 burst_duration_CCK, burst_duration_OFDM);
8595 #endif /* CONFIG_IPW2200_QOS */
8596
8597 switch (network_mode) {
8598 case 1:
8599 priv->ieee->iw_mode = IW_MODE_ADHOC;
8600 priv->net_dev->type = ARPHRD_ETHER;
8601
8602 break;
8603 #ifdef CONFIG_IPW2200_MONITOR
8604 case 2:
8605 priv->ieee->iw_mode = IW_MODE_MONITOR;
8606 #ifdef CONFIG_IPW2200_RADIOTAP
8607 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8608 #else
8609 priv->net_dev->type = ARPHRD_IEEE80211;
8610 #endif
8611 break;
8612 #endif
8613 default:
8614 case 0:
8615 priv->net_dev->type = ARPHRD_ETHER;
8616 priv->ieee->iw_mode = IW_MODE_INFRA;
8617 break;
8618 }
8619
8620 if (hwcrypto) {
8621 priv->ieee->host_encrypt = 0;
8622 priv->ieee->host_encrypt_msdu = 0;
8623 priv->ieee->host_decrypt = 0;
8624 priv->ieee->host_mc_decrypt = 0;
8625 }
8626 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8627
8628 /* IPW2200/2915 is abled to do hardware fragmentation. */
8629 priv->ieee->host_open_frag = 0;
8630
8631 if ((priv->pci_dev->device == 0x4223) ||
8632 (priv->pci_dev->device == 0x4224)) {
8633 if (option == 1)
8634 printk(KERN_INFO DRV_NAME
8635 ": Detected Intel PRO/Wireless 2915ABG Network "
8636 "Connection\n");
8637 priv->ieee->abg_true = 1;
8638 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8639 modulation = LIBIPW_OFDM_MODULATION |
8640 LIBIPW_CCK_MODULATION;
8641 priv->adapter = IPW_2915ABG;
8642 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8643 } else {
8644 if (option == 1)
8645 printk(KERN_INFO DRV_NAME
8646 ": Detected Intel PRO/Wireless 2200BG Network "
8647 "Connection\n");
8648
8649 priv->ieee->abg_true = 0;
8650 band = LIBIPW_24GHZ_BAND;
8651 modulation = LIBIPW_OFDM_MODULATION |
8652 LIBIPW_CCK_MODULATION;
8653 priv->adapter = IPW_2200BG;
8654 priv->ieee->mode = IEEE_G | IEEE_B;
8655 }
8656
8657 priv->ieee->freq_band = band;
8658 priv->ieee->modulation = modulation;
8659
8660 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8661
8662 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8663 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8664
8665 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8666 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8667 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8668
8669 /* If power management is turned on, default to AC mode */
8670 priv->power_mode = IPW_POWER_AC;
8671 priv->tx_power = IPW_TX_POWER_DEFAULT;
8672
8673 return old_mode == priv->ieee->iw_mode;
8674 }
8675
8676 /*
8677 * This file defines the Wireless Extension handlers. It does not
8678 * define any methods of hardware manipulation and relies on the
8679 * functions defined in ipw_main to provide the HW interaction.
8680 *
8681 * The exception to this is the use of the ipw_get_ordinal()
8682 * function used to poll the hardware vs. making unecessary calls.
8683 *
8684 */
8685
8686 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8687 {
8688 if (channel == 0) {
8689 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8690 priv->config &= ~CFG_STATIC_CHANNEL;
8691 IPW_DEBUG_ASSOC("Attempting to associate with new "
8692 "parameters.\n");
8693 ipw_associate(priv);
8694 return 0;
8695 }
8696
8697 priv->config |= CFG_STATIC_CHANNEL;
8698
8699 if (priv->channel == channel) {
8700 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8701 channel);
8702 return 0;
8703 }
8704
8705 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8706 priv->channel = channel;
8707
8708 #ifdef CONFIG_IPW2200_MONITOR
8709 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8710 int i;
8711 if (priv->status & STATUS_SCANNING) {
8712 IPW_DEBUG_SCAN("Scan abort triggered due to "
8713 "channel change.\n");
8714 ipw_abort_scan(priv);
8715 }
8716
8717 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8718 udelay(10);
8719
8720 if (priv->status & STATUS_SCANNING)
8721 IPW_DEBUG_SCAN("Still scanning...\n");
8722 else
8723 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8724 1000 - i);
8725
8726 return 0;
8727 }
8728 #endif /* CONFIG_IPW2200_MONITOR */
8729
8730 /* Network configuration changed -- force [re]association */
8731 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8732 if (!ipw_disassociate(priv))
8733 ipw_associate(priv);
8734
8735 return 0;
8736 }
8737
8738 static int ipw_wx_set_freq(struct net_device *dev,
8739 struct iw_request_info *info,
8740 union iwreq_data *wrqu, char *extra)
8741 {
8742 struct ipw_priv *priv = libipw_priv(dev);
8743 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8744 struct iw_freq *fwrq = &wrqu->freq;
8745 int ret = 0, i;
8746 u8 channel, flags;
8747 int band;
8748
8749 if (fwrq->m == 0) {
8750 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8751 mutex_lock(&priv->mutex);
8752 ret = ipw_set_channel(priv, 0);
8753 mutex_unlock(&priv->mutex);
8754 return ret;
8755 }
8756 /* if setting by freq convert to channel */
8757 if (fwrq->e == 1) {
8758 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8759 if (channel == 0)
8760 return -EINVAL;
8761 } else
8762 channel = fwrq->m;
8763
8764 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8765 return -EINVAL;
8766
8767 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8768 i = libipw_channel_to_index(priv->ieee, channel);
8769 if (i == -1)
8770 return -EINVAL;
8771
8772 flags = (band == LIBIPW_24GHZ_BAND) ?
8773 geo->bg[i].flags : geo->a[i].flags;
8774 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8775 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8776 return -EINVAL;
8777 }
8778 }
8779
8780 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8781 mutex_lock(&priv->mutex);
8782 ret = ipw_set_channel(priv, channel);
8783 mutex_unlock(&priv->mutex);
8784 return ret;
8785 }
8786
8787 static int ipw_wx_get_freq(struct net_device *dev,
8788 struct iw_request_info *info,
8789 union iwreq_data *wrqu, char *extra)
8790 {
8791 struct ipw_priv *priv = libipw_priv(dev);
8792
8793 wrqu->freq.e = 0;
8794
8795 /* If we are associated, trying to associate, or have a statically
8796 * configured CHANNEL then return that; otherwise return ANY */
8797 mutex_lock(&priv->mutex);
8798 if (priv->config & CFG_STATIC_CHANNEL ||
8799 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8800 int i;
8801
8802 i = libipw_channel_to_index(priv->ieee, priv->channel);
8803 BUG_ON(i == -1);
8804 wrqu->freq.e = 1;
8805
8806 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8807 case LIBIPW_52GHZ_BAND:
8808 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8809 break;
8810
8811 case LIBIPW_24GHZ_BAND:
8812 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8813 break;
8814
8815 default:
8816 BUG();
8817 }
8818 } else
8819 wrqu->freq.m = 0;
8820
8821 mutex_unlock(&priv->mutex);
8822 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8823 return 0;
8824 }
8825
8826 static int ipw_wx_set_mode(struct net_device *dev,
8827 struct iw_request_info *info,
8828 union iwreq_data *wrqu, char *extra)
8829 {
8830 struct ipw_priv *priv = libipw_priv(dev);
8831 int err = 0;
8832
8833 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8834
8835 switch (wrqu->mode) {
8836 #ifdef CONFIG_IPW2200_MONITOR
8837 case IW_MODE_MONITOR:
8838 #endif
8839 case IW_MODE_ADHOC:
8840 case IW_MODE_INFRA:
8841 break;
8842 case IW_MODE_AUTO:
8843 wrqu->mode = IW_MODE_INFRA;
8844 break;
8845 default:
8846 return -EINVAL;
8847 }
8848 if (wrqu->mode == priv->ieee->iw_mode)
8849 return 0;
8850
8851 mutex_lock(&priv->mutex);
8852
8853 ipw_sw_reset(priv, 0);
8854
8855 #ifdef CONFIG_IPW2200_MONITOR
8856 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8857 priv->net_dev->type = ARPHRD_ETHER;
8858
8859 if (wrqu->mode == IW_MODE_MONITOR)
8860 #ifdef CONFIG_IPW2200_RADIOTAP
8861 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8862 #else
8863 priv->net_dev->type = ARPHRD_IEEE80211;
8864 #endif
8865 #endif /* CONFIG_IPW2200_MONITOR */
8866
8867 /* Free the existing firmware and reset the fw_loaded
8868 * flag so ipw_load() will bring in the new firmware */
8869 free_firmware();
8870
8871 priv->ieee->iw_mode = wrqu->mode;
8872
8873 queue_work(priv->workqueue, &priv->adapter_restart);
8874 mutex_unlock(&priv->mutex);
8875 return err;
8876 }
8877
8878 static int ipw_wx_get_mode(struct net_device *dev,
8879 struct iw_request_info *info,
8880 union iwreq_data *wrqu, char *extra)
8881 {
8882 struct ipw_priv *priv = libipw_priv(dev);
8883 mutex_lock(&priv->mutex);
8884 wrqu->mode = priv->ieee->iw_mode;
8885 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8886 mutex_unlock(&priv->mutex);
8887 return 0;
8888 }
8889
8890 /* Values are in microsecond */
8891 static const s32 timeout_duration[] = {
8892 350000,
8893 250000,
8894 75000,
8895 37000,
8896 25000,
8897 };
8898
8899 static const s32 period_duration[] = {
8900 400000,
8901 700000,
8902 1000000,
8903 1000000,
8904 1000000
8905 };
8906
8907 static int ipw_wx_get_range(struct net_device *dev,
8908 struct iw_request_info *info,
8909 union iwreq_data *wrqu, char *extra)
8910 {
8911 struct ipw_priv *priv = libipw_priv(dev);
8912 struct iw_range *range = (struct iw_range *)extra;
8913 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8914 int i = 0, j;
8915
8916 wrqu->data.length = sizeof(*range);
8917 memset(range, 0, sizeof(*range));
8918
8919 /* 54Mbs == ~27 Mb/s real (802.11g) */
8920 range->throughput = 27 * 1000 * 1000;
8921
8922 range->max_qual.qual = 100;
8923 /* TODO: Find real max RSSI and stick here */
8924 range->max_qual.level = 0;
8925 range->max_qual.noise = 0;
8926 range->max_qual.updated = 7; /* Updated all three */
8927
8928 range->avg_qual.qual = 70;
8929 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8930 range->avg_qual.level = 0; /* FIXME to real average level */
8931 range->avg_qual.noise = 0;
8932 range->avg_qual.updated = 7; /* Updated all three */
8933 mutex_lock(&priv->mutex);
8934 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8935
8936 for (i = 0; i < range->num_bitrates; i++)
8937 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8938 500000;
8939
8940 range->max_rts = DEFAULT_RTS_THRESHOLD;
8941 range->min_frag = MIN_FRAG_THRESHOLD;
8942 range->max_frag = MAX_FRAG_THRESHOLD;
8943
8944 range->encoding_size[0] = 5;
8945 range->encoding_size[1] = 13;
8946 range->num_encoding_sizes = 2;
8947 range->max_encoding_tokens = WEP_KEYS;
8948
8949 /* Set the Wireless Extension versions */
8950 range->we_version_compiled = WIRELESS_EXT;
8951 range->we_version_source = 18;
8952
8953 i = 0;
8954 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8955 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8956 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8957 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8958 continue;
8959
8960 range->freq[i].i = geo->bg[j].channel;
8961 range->freq[i].m = geo->bg[j].freq * 100000;
8962 range->freq[i].e = 1;
8963 i++;
8964 }
8965 }
8966
8967 if (priv->ieee->mode & IEEE_A) {
8968 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8969 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8970 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8971 continue;
8972
8973 range->freq[i].i = geo->a[j].channel;
8974 range->freq[i].m = geo->a[j].freq * 100000;
8975 range->freq[i].e = 1;
8976 i++;
8977 }
8978 }
8979
8980 range->num_channels = i;
8981 range->num_frequency = i;
8982
8983 mutex_unlock(&priv->mutex);
8984
8985 /* Event capability (kernel + driver) */
8986 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8987 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8988 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8989 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8990 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8991
8992 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8993 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8994
8995 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8996
8997 IPW_DEBUG_WX("GET Range\n");
8998 return 0;
8999 }
9000
9001 static int ipw_wx_set_wap(struct net_device *dev,
9002 struct iw_request_info *info,
9003 union iwreq_data *wrqu, char *extra)
9004 {
9005 struct ipw_priv *priv = libipw_priv(dev);
9006
9007 static const unsigned char any[] = {
9008 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9009 };
9010 static const unsigned char off[] = {
9011 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9012 };
9013
9014 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9015 return -EINVAL;
9016 mutex_lock(&priv->mutex);
9017 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9018 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9019 /* we disable mandatory BSSID association */
9020 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9021 priv->config &= ~CFG_STATIC_BSSID;
9022 IPW_DEBUG_ASSOC("Attempting to associate with new "
9023 "parameters.\n");
9024 ipw_associate(priv);
9025 mutex_unlock(&priv->mutex);
9026 return 0;
9027 }
9028
9029 priv->config |= CFG_STATIC_BSSID;
9030 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9031 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9032 mutex_unlock(&priv->mutex);
9033 return 0;
9034 }
9035
9036 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9037 wrqu->ap_addr.sa_data);
9038
9039 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9040
9041 /* Network configuration changed -- force [re]association */
9042 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9043 if (!ipw_disassociate(priv))
9044 ipw_associate(priv);
9045
9046 mutex_unlock(&priv->mutex);
9047 return 0;
9048 }
9049
9050 static int ipw_wx_get_wap(struct net_device *dev,
9051 struct iw_request_info *info,
9052 union iwreq_data *wrqu, char *extra)
9053 {
9054 struct ipw_priv *priv = libipw_priv(dev);
9055
9056 /* If we are associated, trying to associate, or have a statically
9057 * configured BSSID then return that; otherwise return ANY */
9058 mutex_lock(&priv->mutex);
9059 if (priv->config & CFG_STATIC_BSSID ||
9060 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9061 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9062 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9063 } else
9064 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9065
9066 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9067 wrqu->ap_addr.sa_data);
9068 mutex_unlock(&priv->mutex);
9069 return 0;
9070 }
9071
9072 static int ipw_wx_set_essid(struct net_device *dev,
9073 struct iw_request_info *info,
9074 union iwreq_data *wrqu, char *extra)
9075 {
9076 struct ipw_priv *priv = libipw_priv(dev);
9077 int length;
9078 DECLARE_SSID_BUF(ssid);
9079
9080 mutex_lock(&priv->mutex);
9081
9082 if (!wrqu->essid.flags)
9083 {
9084 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9085 ipw_disassociate(priv);
9086 priv->config &= ~CFG_STATIC_ESSID;
9087 ipw_associate(priv);
9088 mutex_unlock(&priv->mutex);
9089 return 0;
9090 }
9091
9092 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9093
9094 priv->config |= CFG_STATIC_ESSID;
9095
9096 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9097 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9098 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9099 mutex_unlock(&priv->mutex);
9100 return 0;
9101 }
9102
9103 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9104 print_ssid(ssid, extra, length), length);
9105
9106 priv->essid_len = length;
9107 memcpy(priv->essid, extra, priv->essid_len);
9108
9109 /* Network configuration changed -- force [re]association */
9110 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9111 if (!ipw_disassociate(priv))
9112 ipw_associate(priv);
9113
9114 mutex_unlock(&priv->mutex);
9115 return 0;
9116 }
9117
9118 static int ipw_wx_get_essid(struct net_device *dev,
9119 struct iw_request_info *info,
9120 union iwreq_data *wrqu, char *extra)
9121 {
9122 struct ipw_priv *priv = libipw_priv(dev);
9123 DECLARE_SSID_BUF(ssid);
9124
9125 /* If we are associated, trying to associate, or have a statically
9126 * configured ESSID then return that; otherwise return ANY */
9127 mutex_lock(&priv->mutex);
9128 if (priv->config & CFG_STATIC_ESSID ||
9129 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9130 IPW_DEBUG_WX("Getting essid: '%s'\n",
9131 print_ssid(ssid, priv->essid, priv->essid_len));
9132 memcpy(extra, priv->essid, priv->essid_len);
9133 wrqu->essid.length = priv->essid_len;
9134 wrqu->essid.flags = 1; /* active */
9135 } else {
9136 IPW_DEBUG_WX("Getting essid: ANY\n");
9137 wrqu->essid.length = 0;
9138 wrqu->essid.flags = 0; /* active */
9139 }
9140 mutex_unlock(&priv->mutex);
9141 return 0;
9142 }
9143
9144 static int ipw_wx_set_nick(struct net_device *dev,
9145 struct iw_request_info *info,
9146 union iwreq_data *wrqu, char *extra)
9147 {
9148 struct ipw_priv *priv = libipw_priv(dev);
9149
9150 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9151 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9152 return -E2BIG;
9153 mutex_lock(&priv->mutex);
9154 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9155 memset(priv->nick, 0, sizeof(priv->nick));
9156 memcpy(priv->nick, extra, wrqu->data.length);
9157 IPW_DEBUG_TRACE("<<\n");
9158 mutex_unlock(&priv->mutex);
9159 return 0;
9160
9161 }
9162
9163 static int ipw_wx_get_nick(struct net_device *dev,
9164 struct iw_request_info *info,
9165 union iwreq_data *wrqu, char *extra)
9166 {
9167 struct ipw_priv *priv = libipw_priv(dev);
9168 IPW_DEBUG_WX("Getting nick\n");
9169 mutex_lock(&priv->mutex);
9170 wrqu->data.length = strlen(priv->nick);
9171 memcpy(extra, priv->nick, wrqu->data.length);
9172 wrqu->data.flags = 1; /* active */
9173 mutex_unlock(&priv->mutex);
9174 return 0;
9175 }
9176
9177 static int ipw_wx_set_sens(struct net_device *dev,
9178 struct iw_request_info *info,
9179 union iwreq_data *wrqu, char *extra)
9180 {
9181 struct ipw_priv *priv = libipw_priv(dev);
9182 int err = 0;
9183
9184 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9185 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9186 mutex_lock(&priv->mutex);
9187
9188 if (wrqu->sens.fixed == 0)
9189 {
9190 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9191 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9192 goto out;
9193 }
9194 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9195 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9196 err = -EINVAL;
9197 goto out;
9198 }
9199
9200 priv->roaming_threshold = wrqu->sens.value;
9201 priv->disassociate_threshold = 3*wrqu->sens.value;
9202 out:
9203 mutex_unlock(&priv->mutex);
9204 return err;
9205 }
9206
9207 static int ipw_wx_get_sens(struct net_device *dev,
9208 struct iw_request_info *info,
9209 union iwreq_data *wrqu, char *extra)
9210 {
9211 struct ipw_priv *priv = libipw_priv(dev);
9212 mutex_lock(&priv->mutex);
9213 wrqu->sens.fixed = 1;
9214 wrqu->sens.value = priv->roaming_threshold;
9215 mutex_unlock(&priv->mutex);
9216
9217 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9218 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9219
9220 return 0;
9221 }
9222
9223 static int ipw_wx_set_rate(struct net_device *dev,
9224 struct iw_request_info *info,
9225 union iwreq_data *wrqu, char *extra)
9226 {
9227 /* TODO: We should use semaphores or locks for access to priv */
9228 struct ipw_priv *priv = libipw_priv(dev);
9229 u32 target_rate = wrqu->bitrate.value;
9230 u32 fixed, mask;
9231
9232 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9233 /* value = X, fixed = 1 means only rate X */
9234 /* value = X, fixed = 0 means all rates lower equal X */
9235
9236 if (target_rate == -1) {
9237 fixed = 0;
9238 mask = LIBIPW_DEFAULT_RATES_MASK;
9239 /* Now we should reassociate */
9240 goto apply;
9241 }
9242
9243 mask = 0;
9244 fixed = wrqu->bitrate.fixed;
9245
9246 if (target_rate == 1000000 || !fixed)
9247 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9248 if (target_rate == 1000000)
9249 goto apply;
9250
9251 if (target_rate == 2000000 || !fixed)
9252 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9253 if (target_rate == 2000000)
9254 goto apply;
9255
9256 if (target_rate == 5500000 || !fixed)
9257 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9258 if (target_rate == 5500000)
9259 goto apply;
9260
9261 if (target_rate == 6000000 || !fixed)
9262 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9263 if (target_rate == 6000000)
9264 goto apply;
9265
9266 if (target_rate == 9000000 || !fixed)
9267 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9268 if (target_rate == 9000000)
9269 goto apply;
9270
9271 if (target_rate == 11000000 || !fixed)
9272 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9273 if (target_rate == 11000000)
9274 goto apply;
9275
9276 if (target_rate == 12000000 || !fixed)
9277 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9278 if (target_rate == 12000000)
9279 goto apply;
9280
9281 if (target_rate == 18000000 || !fixed)
9282 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9283 if (target_rate == 18000000)
9284 goto apply;
9285
9286 if (target_rate == 24000000 || !fixed)
9287 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9288 if (target_rate == 24000000)
9289 goto apply;
9290
9291 if (target_rate == 36000000 || !fixed)
9292 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9293 if (target_rate == 36000000)
9294 goto apply;
9295
9296 if (target_rate == 48000000 || !fixed)
9297 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9298 if (target_rate == 48000000)
9299 goto apply;
9300
9301 if (target_rate == 54000000 || !fixed)
9302 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9303 if (target_rate == 54000000)
9304 goto apply;
9305
9306 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9307 return -EINVAL;
9308
9309 apply:
9310 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9311 mask, fixed ? "fixed" : "sub-rates");
9312 mutex_lock(&priv->mutex);
9313 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9314 priv->config &= ~CFG_FIXED_RATE;
9315 ipw_set_fixed_rate(priv, priv->ieee->mode);
9316 } else
9317 priv->config |= CFG_FIXED_RATE;
9318
9319 if (priv->rates_mask == mask) {
9320 IPW_DEBUG_WX("Mask set to current mask.\n");
9321 mutex_unlock(&priv->mutex);
9322 return 0;
9323 }
9324
9325 priv->rates_mask = mask;
9326
9327 /* Network configuration changed -- force [re]association */
9328 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9329 if (!ipw_disassociate(priv))
9330 ipw_associate(priv);
9331
9332 mutex_unlock(&priv->mutex);
9333 return 0;
9334 }
9335
9336 static int ipw_wx_get_rate(struct net_device *dev,
9337 struct iw_request_info *info,
9338 union iwreq_data *wrqu, char *extra)
9339 {
9340 struct ipw_priv *priv = libipw_priv(dev);
9341 mutex_lock(&priv->mutex);
9342 wrqu->bitrate.value = priv->last_rate;
9343 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9344 mutex_unlock(&priv->mutex);
9345 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9346 return 0;
9347 }
9348
9349 static int ipw_wx_set_rts(struct net_device *dev,
9350 struct iw_request_info *info,
9351 union iwreq_data *wrqu, char *extra)
9352 {
9353 struct ipw_priv *priv = libipw_priv(dev);
9354 mutex_lock(&priv->mutex);
9355 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9356 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9357 else {
9358 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9359 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9360 mutex_unlock(&priv->mutex);
9361 return -EINVAL;
9362 }
9363 priv->rts_threshold = wrqu->rts.value;
9364 }
9365
9366 ipw_send_rts_threshold(priv, priv->rts_threshold);
9367 mutex_unlock(&priv->mutex);
9368 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9369 return 0;
9370 }
9371
9372 static int ipw_wx_get_rts(struct net_device *dev,
9373 struct iw_request_info *info,
9374 union iwreq_data *wrqu, char *extra)
9375 {
9376 struct ipw_priv *priv = libipw_priv(dev);
9377 mutex_lock(&priv->mutex);
9378 wrqu->rts.value = priv->rts_threshold;
9379 wrqu->rts.fixed = 0; /* no auto select */
9380 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9381 mutex_unlock(&priv->mutex);
9382 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9383 return 0;
9384 }
9385
9386 static int ipw_wx_set_txpow(struct net_device *dev,
9387 struct iw_request_info *info,
9388 union iwreq_data *wrqu, char *extra)
9389 {
9390 struct ipw_priv *priv = libipw_priv(dev);
9391 int err = 0;
9392
9393 mutex_lock(&priv->mutex);
9394 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9395 err = -EINPROGRESS;
9396 goto out;
9397 }
9398
9399 if (!wrqu->power.fixed)
9400 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9401
9402 if (wrqu->power.flags != IW_TXPOW_DBM) {
9403 err = -EINVAL;
9404 goto out;
9405 }
9406
9407 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9408 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9409 err = -EINVAL;
9410 goto out;
9411 }
9412
9413 priv->tx_power = wrqu->power.value;
9414 err = ipw_set_tx_power(priv);
9415 out:
9416 mutex_unlock(&priv->mutex);
9417 return err;
9418 }
9419
9420 static int ipw_wx_get_txpow(struct net_device *dev,
9421 struct iw_request_info *info,
9422 union iwreq_data *wrqu, char *extra)
9423 {
9424 struct ipw_priv *priv = libipw_priv(dev);
9425 mutex_lock(&priv->mutex);
9426 wrqu->power.value = priv->tx_power;
9427 wrqu->power.fixed = 1;
9428 wrqu->power.flags = IW_TXPOW_DBM;
9429 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9430 mutex_unlock(&priv->mutex);
9431
9432 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9433 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9434
9435 return 0;
9436 }
9437
9438 static int ipw_wx_set_frag(struct net_device *dev,
9439 struct iw_request_info *info,
9440 union iwreq_data *wrqu, char *extra)
9441 {
9442 struct ipw_priv *priv = libipw_priv(dev);
9443 mutex_lock(&priv->mutex);
9444 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9445 priv->ieee->fts = DEFAULT_FTS;
9446 else {
9447 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9448 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9449 mutex_unlock(&priv->mutex);
9450 return -EINVAL;
9451 }
9452
9453 priv->ieee->fts = wrqu->frag.value & ~0x1;
9454 }
9455
9456 ipw_send_frag_threshold(priv, wrqu->frag.value);
9457 mutex_unlock(&priv->mutex);
9458 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9459 return 0;
9460 }
9461
9462 static int ipw_wx_get_frag(struct net_device *dev,
9463 struct iw_request_info *info,
9464 union iwreq_data *wrqu, char *extra)
9465 {
9466 struct ipw_priv *priv = libipw_priv(dev);
9467 mutex_lock(&priv->mutex);
9468 wrqu->frag.value = priv->ieee->fts;
9469 wrqu->frag.fixed = 0; /* no auto select */
9470 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9471 mutex_unlock(&priv->mutex);
9472 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9473
9474 return 0;
9475 }
9476
9477 static int ipw_wx_set_retry(struct net_device *dev,
9478 struct iw_request_info *info,
9479 union iwreq_data *wrqu, char *extra)
9480 {
9481 struct ipw_priv *priv = libipw_priv(dev);
9482
9483 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9484 return -EINVAL;
9485
9486 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9487 return 0;
9488
9489 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9490 return -EINVAL;
9491
9492 mutex_lock(&priv->mutex);
9493 if (wrqu->retry.flags & IW_RETRY_SHORT)
9494 priv->short_retry_limit = (u8) wrqu->retry.value;
9495 else if (wrqu->retry.flags & IW_RETRY_LONG)
9496 priv->long_retry_limit = (u8) wrqu->retry.value;
9497 else {
9498 priv->short_retry_limit = (u8) wrqu->retry.value;
9499 priv->long_retry_limit = (u8) wrqu->retry.value;
9500 }
9501
9502 ipw_send_retry_limit(priv, priv->short_retry_limit,
9503 priv->long_retry_limit);
9504 mutex_unlock(&priv->mutex);
9505 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9506 priv->short_retry_limit, priv->long_retry_limit);
9507 return 0;
9508 }
9509
9510 static int ipw_wx_get_retry(struct net_device *dev,
9511 struct iw_request_info *info,
9512 union iwreq_data *wrqu, char *extra)
9513 {
9514 struct ipw_priv *priv = libipw_priv(dev);
9515
9516 mutex_lock(&priv->mutex);
9517 wrqu->retry.disabled = 0;
9518
9519 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9520 mutex_unlock(&priv->mutex);
9521 return -EINVAL;
9522 }
9523
9524 if (wrqu->retry.flags & IW_RETRY_LONG) {
9525 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9526 wrqu->retry.value = priv->long_retry_limit;
9527 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9528 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9529 wrqu->retry.value = priv->short_retry_limit;
9530 } else {
9531 wrqu->retry.flags = IW_RETRY_LIMIT;
9532 wrqu->retry.value = priv->short_retry_limit;
9533 }
9534 mutex_unlock(&priv->mutex);
9535
9536 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9537
9538 return 0;
9539 }
9540
9541 static int ipw_wx_set_scan(struct net_device *dev,
9542 struct iw_request_info *info,
9543 union iwreq_data *wrqu, char *extra)
9544 {
9545 struct ipw_priv *priv = libipw_priv(dev);
9546 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9547 struct delayed_work *work = NULL;
9548
9549 mutex_lock(&priv->mutex);
9550
9551 priv->user_requested_scan = 1;
9552
9553 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9554 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9555 int len = min((int)req->essid_len,
9556 (int)sizeof(priv->direct_scan_ssid));
9557 memcpy(priv->direct_scan_ssid, req->essid, len);
9558 priv->direct_scan_ssid_len = len;
9559 work = &priv->request_direct_scan;
9560 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9561 work = &priv->request_passive_scan;
9562 }
9563 } else {
9564 /* Normal active broadcast scan */
9565 work = &priv->request_scan;
9566 }
9567
9568 mutex_unlock(&priv->mutex);
9569
9570 IPW_DEBUG_WX("Start scan\n");
9571
9572 queue_delayed_work(priv->workqueue, work, 0);
9573
9574 return 0;
9575 }
9576
9577 static int ipw_wx_get_scan(struct net_device *dev,
9578 struct iw_request_info *info,
9579 union iwreq_data *wrqu, char *extra)
9580 {
9581 struct ipw_priv *priv = libipw_priv(dev);
9582 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9583 }
9584
9585 static int ipw_wx_set_encode(struct net_device *dev,
9586 struct iw_request_info *info,
9587 union iwreq_data *wrqu, char *key)
9588 {
9589 struct ipw_priv *priv = libipw_priv(dev);
9590 int ret;
9591 u32 cap = priv->capability;
9592
9593 mutex_lock(&priv->mutex);
9594 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9595
9596 /* In IBSS mode, we need to notify the firmware to update
9597 * the beacon info after we changed the capability. */
9598 if (cap != priv->capability &&
9599 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9600 priv->status & STATUS_ASSOCIATED)
9601 ipw_disassociate(priv);
9602
9603 mutex_unlock(&priv->mutex);
9604 return ret;
9605 }
9606
9607 static int ipw_wx_get_encode(struct net_device *dev,
9608 struct iw_request_info *info,
9609 union iwreq_data *wrqu, char *key)
9610 {
9611 struct ipw_priv *priv = libipw_priv(dev);
9612 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9613 }
9614
9615 static int ipw_wx_set_power(struct net_device *dev,
9616 struct iw_request_info *info,
9617 union iwreq_data *wrqu, char *extra)
9618 {
9619 struct ipw_priv *priv = libipw_priv(dev);
9620 int err;
9621 mutex_lock(&priv->mutex);
9622 if (wrqu->power.disabled) {
9623 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9624 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9625 if (err) {
9626 IPW_DEBUG_WX("failed setting power mode.\n");
9627 mutex_unlock(&priv->mutex);
9628 return err;
9629 }
9630 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9631 mutex_unlock(&priv->mutex);
9632 return 0;
9633 }
9634
9635 switch (wrqu->power.flags & IW_POWER_MODE) {
9636 case IW_POWER_ON: /* If not specified */
9637 case IW_POWER_MODE: /* If set all mask */
9638 case IW_POWER_ALL_R: /* If explicitly state all */
9639 break;
9640 default: /* Otherwise we don't support it */
9641 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9642 wrqu->power.flags);
9643 mutex_unlock(&priv->mutex);
9644 return -EOPNOTSUPP;
9645 }
9646
9647 /* If the user hasn't specified a power management mode yet, default
9648 * to BATTERY */
9649 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9650 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9651 else
9652 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9653
9654 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9655 if (err) {
9656 IPW_DEBUG_WX("failed setting power mode.\n");
9657 mutex_unlock(&priv->mutex);
9658 return err;
9659 }
9660
9661 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9662 mutex_unlock(&priv->mutex);
9663 return 0;
9664 }
9665
9666 static int ipw_wx_get_power(struct net_device *dev,
9667 struct iw_request_info *info,
9668 union iwreq_data *wrqu, char *extra)
9669 {
9670 struct ipw_priv *priv = libipw_priv(dev);
9671 mutex_lock(&priv->mutex);
9672 if (!(priv->power_mode & IPW_POWER_ENABLED))
9673 wrqu->power.disabled = 1;
9674 else
9675 wrqu->power.disabled = 0;
9676
9677 mutex_unlock(&priv->mutex);
9678 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9679
9680 return 0;
9681 }
9682
9683 static int ipw_wx_set_powermode(struct net_device *dev,
9684 struct iw_request_info *info,
9685 union iwreq_data *wrqu, char *extra)
9686 {
9687 struct ipw_priv *priv = libipw_priv(dev);
9688 int mode = *(int *)extra;
9689 int err;
9690
9691 mutex_lock(&priv->mutex);
9692 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9693 mode = IPW_POWER_AC;
9694
9695 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9696 err = ipw_send_power_mode(priv, mode);
9697 if (err) {
9698 IPW_DEBUG_WX("failed setting power mode.\n");
9699 mutex_unlock(&priv->mutex);
9700 return err;
9701 }
9702 priv->power_mode = IPW_POWER_ENABLED | mode;
9703 }
9704 mutex_unlock(&priv->mutex);
9705 return 0;
9706 }
9707
9708 #define MAX_WX_STRING 80
9709 static int ipw_wx_get_powermode(struct net_device *dev,
9710 struct iw_request_info *info,
9711 union iwreq_data *wrqu, char *extra)
9712 {
9713 struct ipw_priv *priv = libipw_priv(dev);
9714 int level = IPW_POWER_LEVEL(priv->power_mode);
9715 char *p = extra;
9716
9717 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9718
9719 switch (level) {
9720 case IPW_POWER_AC:
9721 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9722 break;
9723 case IPW_POWER_BATTERY:
9724 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9725 break;
9726 default:
9727 p += snprintf(p, MAX_WX_STRING - (p - extra),
9728 "(Timeout %dms, Period %dms)",
9729 timeout_duration[level - 1] / 1000,
9730 period_duration[level - 1] / 1000);
9731 }
9732
9733 if (!(priv->power_mode & IPW_POWER_ENABLED))
9734 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9735
9736 wrqu->data.length = p - extra + 1;
9737
9738 return 0;
9739 }
9740
9741 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9742 struct iw_request_info *info,
9743 union iwreq_data *wrqu, char *extra)
9744 {
9745 struct ipw_priv *priv = libipw_priv(dev);
9746 int mode = *(int *)extra;
9747 u8 band = 0, modulation = 0;
9748
9749 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9750 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9751 return -EINVAL;
9752 }
9753 mutex_lock(&priv->mutex);
9754 if (priv->adapter == IPW_2915ABG) {
9755 priv->ieee->abg_true = 1;
9756 if (mode & IEEE_A) {
9757 band |= LIBIPW_52GHZ_BAND;
9758 modulation |= LIBIPW_OFDM_MODULATION;
9759 } else
9760 priv->ieee->abg_true = 0;
9761 } else {
9762 if (mode & IEEE_A) {
9763 IPW_WARNING("Attempt to set 2200BG into "
9764 "802.11a mode\n");
9765 mutex_unlock(&priv->mutex);
9766 return -EINVAL;
9767 }
9768
9769 priv->ieee->abg_true = 0;
9770 }
9771
9772 if (mode & IEEE_B) {
9773 band |= LIBIPW_24GHZ_BAND;
9774 modulation |= LIBIPW_CCK_MODULATION;
9775 } else
9776 priv->ieee->abg_true = 0;
9777
9778 if (mode & IEEE_G) {
9779 band |= LIBIPW_24GHZ_BAND;
9780 modulation |= LIBIPW_OFDM_MODULATION;
9781 } else
9782 priv->ieee->abg_true = 0;
9783
9784 priv->ieee->mode = mode;
9785 priv->ieee->freq_band = band;
9786 priv->ieee->modulation = modulation;
9787 init_supported_rates(priv, &priv->rates);
9788
9789 /* Network configuration changed -- force [re]association */
9790 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9791 if (!ipw_disassociate(priv)) {
9792 ipw_send_supported_rates(priv, &priv->rates);
9793 ipw_associate(priv);
9794 }
9795
9796 /* Update the band LEDs */
9797 ipw_led_band_on(priv);
9798
9799 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9800 mode & IEEE_A ? 'a' : '.',
9801 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9802 mutex_unlock(&priv->mutex);
9803 return 0;
9804 }
9805
9806 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9807 struct iw_request_info *info,
9808 union iwreq_data *wrqu, char *extra)
9809 {
9810 struct ipw_priv *priv = libipw_priv(dev);
9811 mutex_lock(&priv->mutex);
9812 switch (priv->ieee->mode) {
9813 case IEEE_A:
9814 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9815 break;
9816 case IEEE_B:
9817 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9818 break;
9819 case IEEE_A | IEEE_B:
9820 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9821 break;
9822 case IEEE_G:
9823 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9824 break;
9825 case IEEE_A | IEEE_G:
9826 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9827 break;
9828 case IEEE_B | IEEE_G:
9829 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9830 break;
9831 case IEEE_A | IEEE_B | IEEE_G:
9832 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9833 break;
9834 default:
9835 strncpy(extra, "unknown", MAX_WX_STRING);
9836 break;
9837 }
9838
9839 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9840
9841 wrqu->data.length = strlen(extra) + 1;
9842 mutex_unlock(&priv->mutex);
9843
9844 return 0;
9845 }
9846
9847 static int ipw_wx_set_preamble(struct net_device *dev,
9848 struct iw_request_info *info,
9849 union iwreq_data *wrqu, char *extra)
9850 {
9851 struct ipw_priv *priv = libipw_priv(dev);
9852 int mode = *(int *)extra;
9853 mutex_lock(&priv->mutex);
9854 /* Switching from SHORT -> LONG requires a disassociation */
9855 if (mode == 1) {
9856 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9857 priv->config |= CFG_PREAMBLE_LONG;
9858
9859 /* Network configuration changed -- force [re]association */
9860 IPW_DEBUG_ASSOC
9861 ("[re]association triggered due to preamble change.\n");
9862 if (!ipw_disassociate(priv))
9863 ipw_associate(priv);
9864 }
9865 goto done;
9866 }
9867
9868 if (mode == 0) {
9869 priv->config &= ~CFG_PREAMBLE_LONG;
9870 goto done;
9871 }
9872 mutex_unlock(&priv->mutex);
9873 return -EINVAL;
9874
9875 done:
9876 mutex_unlock(&priv->mutex);
9877 return 0;
9878 }
9879
9880 static int ipw_wx_get_preamble(struct net_device *dev,
9881 struct iw_request_info *info,
9882 union iwreq_data *wrqu, char *extra)
9883 {
9884 struct ipw_priv *priv = libipw_priv(dev);
9885 mutex_lock(&priv->mutex);
9886 if (priv->config & CFG_PREAMBLE_LONG)
9887 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9888 else
9889 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9890 mutex_unlock(&priv->mutex);
9891 return 0;
9892 }
9893
9894 #ifdef CONFIG_IPW2200_MONITOR
9895 static int ipw_wx_set_monitor(struct net_device *dev,
9896 struct iw_request_info *info,
9897 union iwreq_data *wrqu, char *extra)
9898 {
9899 struct ipw_priv *priv = libipw_priv(dev);
9900 int *parms = (int *)extra;
9901 int enable = (parms[0] > 0);
9902 mutex_lock(&priv->mutex);
9903 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9904 if (enable) {
9905 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9906 #ifdef CONFIG_IPW2200_RADIOTAP
9907 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9908 #else
9909 priv->net_dev->type = ARPHRD_IEEE80211;
9910 #endif
9911 queue_work(priv->workqueue, &priv->adapter_restart);
9912 }
9913
9914 ipw_set_channel(priv, parms[1]);
9915 } else {
9916 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9917 mutex_unlock(&priv->mutex);
9918 return 0;
9919 }
9920 priv->net_dev->type = ARPHRD_ETHER;
9921 queue_work(priv->workqueue, &priv->adapter_restart);
9922 }
9923 mutex_unlock(&priv->mutex);
9924 return 0;
9925 }
9926
9927 #endif /* CONFIG_IPW2200_MONITOR */
9928
9929 static int ipw_wx_reset(struct net_device *dev,
9930 struct iw_request_info *info,
9931 union iwreq_data *wrqu, char *extra)
9932 {
9933 struct ipw_priv *priv = libipw_priv(dev);
9934 IPW_DEBUG_WX("RESET\n");
9935 queue_work(priv->workqueue, &priv->adapter_restart);
9936 return 0;
9937 }
9938
9939 static int ipw_wx_sw_reset(struct net_device *dev,
9940 struct iw_request_info *info,
9941 union iwreq_data *wrqu, char *extra)
9942 {
9943 struct ipw_priv *priv = libipw_priv(dev);
9944 union iwreq_data wrqu_sec = {
9945 .encoding = {
9946 .flags = IW_ENCODE_DISABLED,
9947 },
9948 };
9949 int ret;
9950
9951 IPW_DEBUG_WX("SW_RESET\n");
9952
9953 mutex_lock(&priv->mutex);
9954
9955 ret = ipw_sw_reset(priv, 2);
9956 if (!ret) {
9957 free_firmware();
9958 ipw_adapter_restart(priv);
9959 }
9960
9961 /* The SW reset bit might have been toggled on by the 'disable'
9962 * module parameter, so take appropriate action */
9963 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9964
9965 mutex_unlock(&priv->mutex);
9966 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9967 mutex_lock(&priv->mutex);
9968
9969 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9970 /* Configuration likely changed -- force [re]association */
9971 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9972 "reset.\n");
9973 if (!ipw_disassociate(priv))
9974 ipw_associate(priv);
9975 }
9976
9977 mutex_unlock(&priv->mutex);
9978
9979 return 0;
9980 }
9981
9982 /* Rebase the WE IOCTLs to zero for the handler array */
9983 static iw_handler ipw_wx_handlers[] = {
9984 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9985 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9986 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9987 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9988 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9989 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9990 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9991 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9992 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9993 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9994 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9995 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9996 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9997 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9998 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9999 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10000 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10001 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10002 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10003 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10004 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10005 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10006 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10007 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10008 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10009 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10010 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10011 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10012 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10013 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10014 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10015 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10016 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10017 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10018 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10019 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10020 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10021 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10022 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10023 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10024 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10025 };
10026
10027 enum {
10028 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10029 IPW_PRIV_GET_POWER,
10030 IPW_PRIV_SET_MODE,
10031 IPW_PRIV_GET_MODE,
10032 IPW_PRIV_SET_PREAMBLE,
10033 IPW_PRIV_GET_PREAMBLE,
10034 IPW_PRIV_RESET,
10035 IPW_PRIV_SW_RESET,
10036 #ifdef CONFIG_IPW2200_MONITOR
10037 IPW_PRIV_SET_MONITOR,
10038 #endif
10039 };
10040
10041 static struct iw_priv_args ipw_priv_args[] = {
10042 {
10043 .cmd = IPW_PRIV_SET_POWER,
10044 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10045 .name = "set_power"},
10046 {
10047 .cmd = IPW_PRIV_GET_POWER,
10048 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10049 .name = "get_power"},
10050 {
10051 .cmd = IPW_PRIV_SET_MODE,
10052 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10053 .name = "set_mode"},
10054 {
10055 .cmd = IPW_PRIV_GET_MODE,
10056 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10057 .name = "get_mode"},
10058 {
10059 .cmd = IPW_PRIV_SET_PREAMBLE,
10060 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10061 .name = "set_preamble"},
10062 {
10063 .cmd = IPW_PRIV_GET_PREAMBLE,
10064 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10065 .name = "get_preamble"},
10066 {
10067 IPW_PRIV_RESET,
10068 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10069 {
10070 IPW_PRIV_SW_RESET,
10071 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10072 #ifdef CONFIG_IPW2200_MONITOR
10073 {
10074 IPW_PRIV_SET_MONITOR,
10075 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10076 #endif /* CONFIG_IPW2200_MONITOR */
10077 };
10078
10079 static iw_handler ipw_priv_handler[] = {
10080 ipw_wx_set_powermode,
10081 ipw_wx_get_powermode,
10082 ipw_wx_set_wireless_mode,
10083 ipw_wx_get_wireless_mode,
10084 ipw_wx_set_preamble,
10085 ipw_wx_get_preamble,
10086 ipw_wx_reset,
10087 ipw_wx_sw_reset,
10088 #ifdef CONFIG_IPW2200_MONITOR
10089 ipw_wx_set_monitor,
10090 #endif
10091 };
10092
10093 static struct iw_handler_def ipw_wx_handler_def = {
10094 .standard = ipw_wx_handlers,
10095 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10096 .num_private = ARRAY_SIZE(ipw_priv_handler),
10097 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10098 .private = ipw_priv_handler,
10099 .private_args = ipw_priv_args,
10100 .get_wireless_stats = ipw_get_wireless_stats,
10101 };
10102
10103 /*
10104 * Get wireless statistics.
10105 * Called by /proc/net/wireless
10106 * Also called by SIOCGIWSTATS
10107 */
10108 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10109 {
10110 struct ipw_priv *priv = libipw_priv(dev);
10111 struct iw_statistics *wstats;
10112
10113 wstats = &priv->wstats;
10114
10115 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10116 * netdev->get_wireless_stats seems to be called before fw is
10117 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10118 * and associated; if not associcated, the values are all meaningless
10119 * anyway, so set them all to NULL and INVALID */
10120 if (!(priv->status & STATUS_ASSOCIATED)) {
10121 wstats->miss.beacon = 0;
10122 wstats->discard.retries = 0;
10123 wstats->qual.qual = 0;
10124 wstats->qual.level = 0;
10125 wstats->qual.noise = 0;
10126 wstats->qual.updated = 7;
10127 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10128 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10129 return wstats;
10130 }
10131
10132 wstats->qual.qual = priv->quality;
10133 wstats->qual.level = priv->exp_avg_rssi;
10134 wstats->qual.noise = priv->exp_avg_noise;
10135 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10136 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10137
10138 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10139 wstats->discard.retries = priv->last_tx_failures;
10140 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10141
10142 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10143 goto fail_get_ordinal;
10144 wstats->discard.retries += tx_retry; */
10145
10146 return wstats;
10147 }
10148
10149 /* net device stuff */
10150
10151 static void init_sys_config(struct ipw_sys_config *sys_config)
10152 {
10153 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10154 sys_config->bt_coexistence = 0;
10155 sys_config->answer_broadcast_ssid_probe = 0;
10156 sys_config->accept_all_data_frames = 0;
10157 sys_config->accept_non_directed_frames = 1;
10158 sys_config->exclude_unicast_unencrypted = 0;
10159 sys_config->disable_unicast_decryption = 1;
10160 sys_config->exclude_multicast_unencrypted = 0;
10161 sys_config->disable_multicast_decryption = 1;
10162 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10163 antenna = CFG_SYS_ANTENNA_BOTH;
10164 sys_config->antenna_diversity = antenna;
10165 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10166 sys_config->dot11g_auto_detection = 0;
10167 sys_config->enable_cts_to_self = 0;
10168 sys_config->bt_coexist_collision_thr = 0;
10169 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10170 sys_config->silence_threshold = 0x1e;
10171 }
10172
10173 static int ipw_net_open(struct net_device *dev)
10174 {
10175 IPW_DEBUG_INFO("dev->open\n");
10176 netif_start_queue(dev);
10177 return 0;
10178 }
10179
10180 static int ipw_net_stop(struct net_device *dev)
10181 {
10182 IPW_DEBUG_INFO("dev->close\n");
10183 netif_stop_queue(dev);
10184 return 0;
10185 }
10186
10187 /*
10188 todo:
10189
10190 modify to send one tfd per fragment instead of using chunking. otherwise
10191 we need to heavily modify the libipw_skb_to_txb.
10192 */
10193
10194 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10195 int pri)
10196 {
10197 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10198 txb->fragments[0]->data;
10199 int i = 0;
10200 struct tfd_frame *tfd;
10201 #ifdef CONFIG_IPW2200_QOS
10202 int tx_id = ipw_get_tx_queue_number(priv, pri);
10203 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10204 #else
10205 struct clx2_tx_queue *txq = &priv->txq[0];
10206 #endif
10207 struct clx2_queue *q = &txq->q;
10208 u8 id, hdr_len, unicast;
10209 int fc;
10210
10211 if (!(priv->status & STATUS_ASSOCIATED))
10212 goto drop;
10213
10214 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10215 switch (priv->ieee->iw_mode) {
10216 case IW_MODE_ADHOC:
10217 unicast = !is_multicast_ether_addr(hdr->addr1);
10218 id = ipw_find_station(priv, hdr->addr1);
10219 if (id == IPW_INVALID_STATION) {
10220 id = ipw_add_station(priv, hdr->addr1);
10221 if (id == IPW_INVALID_STATION) {
10222 IPW_WARNING("Attempt to send data to "
10223 "invalid cell: %pM\n",
10224 hdr->addr1);
10225 goto drop;
10226 }
10227 }
10228 break;
10229
10230 case IW_MODE_INFRA:
10231 default:
10232 unicast = !is_multicast_ether_addr(hdr->addr3);
10233 id = 0;
10234 break;
10235 }
10236
10237 tfd = &txq->bd[q->first_empty];
10238 txq->txb[q->first_empty] = txb;
10239 memset(tfd, 0, sizeof(*tfd));
10240 tfd->u.data.station_number = id;
10241
10242 tfd->control_flags.message_type = TX_FRAME_TYPE;
10243 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10244
10245 tfd->u.data.cmd_id = DINO_CMD_TX;
10246 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10247
10248 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10249 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10250 else
10251 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10252
10253 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10254 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10255
10256 fc = le16_to_cpu(hdr->frame_ctl);
10257 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10258
10259 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10260
10261 if (likely(unicast))
10262 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10263
10264 if (txb->encrypted && !priv->ieee->host_encrypt) {
10265 switch (priv->ieee->sec.level) {
10266 case SEC_LEVEL_3:
10267 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10268 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10269 /* XXX: ACK flag must be set for CCMP even if it
10270 * is a multicast/broadcast packet, because CCMP
10271 * group communication encrypted by GTK is
10272 * actually done by the AP. */
10273 if (!unicast)
10274 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10275
10276 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10277 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10278 tfd->u.data.key_index = 0;
10279 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10280 break;
10281 case SEC_LEVEL_2:
10282 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10283 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10284 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10285 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10286 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10287 break;
10288 case SEC_LEVEL_1:
10289 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10290 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10291 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10292 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10293 40)
10294 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10295 else
10296 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10297 break;
10298 case SEC_LEVEL_0:
10299 break;
10300 default:
10301 printk(KERN_ERR "Unknown security level %d\n",
10302 priv->ieee->sec.level);
10303 break;
10304 }
10305 } else
10306 /* No hardware encryption */
10307 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10308
10309 #ifdef CONFIG_IPW2200_QOS
10310 if (fc & IEEE80211_STYPE_QOS_DATA)
10311 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10312 #endif /* CONFIG_IPW2200_QOS */
10313
10314 /* payload */
10315 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10316 txb->nr_frags));
10317 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10318 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10319 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10320 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10321 i, le32_to_cpu(tfd->u.data.num_chunks),
10322 txb->fragments[i]->len - hdr_len);
10323 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10324 i, tfd->u.data.num_chunks,
10325 txb->fragments[i]->len - hdr_len);
10326 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10327 txb->fragments[i]->len - hdr_len);
10328
10329 tfd->u.data.chunk_ptr[i] =
10330 cpu_to_le32(pci_map_single
10331 (priv->pci_dev,
10332 txb->fragments[i]->data + hdr_len,
10333 txb->fragments[i]->len - hdr_len,
10334 PCI_DMA_TODEVICE));
10335 tfd->u.data.chunk_len[i] =
10336 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10337 }
10338
10339 if (i != txb->nr_frags) {
10340 struct sk_buff *skb;
10341 u16 remaining_bytes = 0;
10342 int j;
10343
10344 for (j = i; j < txb->nr_frags; j++)
10345 remaining_bytes += txb->fragments[j]->len - hdr_len;
10346
10347 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10348 remaining_bytes);
10349 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10350 if (skb != NULL) {
10351 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10352 for (j = i; j < txb->nr_frags; j++) {
10353 int size = txb->fragments[j]->len - hdr_len;
10354
10355 printk(KERN_INFO "Adding frag %d %d...\n",
10356 j, size);
10357 memcpy(skb_put(skb, size),
10358 txb->fragments[j]->data + hdr_len, size);
10359 }
10360 dev_kfree_skb_any(txb->fragments[i]);
10361 txb->fragments[i] = skb;
10362 tfd->u.data.chunk_ptr[i] =
10363 cpu_to_le32(pci_map_single
10364 (priv->pci_dev, skb->data,
10365 remaining_bytes,
10366 PCI_DMA_TODEVICE));
10367
10368 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10369 }
10370 }
10371
10372 /* kick DMA */
10373 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10374 ipw_write32(priv, q->reg_w, q->first_empty);
10375
10376 if (ipw_tx_queue_space(q) < q->high_mark)
10377 netif_stop_queue(priv->net_dev);
10378
10379 return NETDEV_TX_OK;
10380
10381 drop:
10382 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10383 libipw_txb_free(txb);
10384 return NETDEV_TX_OK;
10385 }
10386
10387 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10388 {
10389 struct ipw_priv *priv = libipw_priv(dev);
10390 #ifdef CONFIG_IPW2200_QOS
10391 int tx_id = ipw_get_tx_queue_number(priv, pri);
10392 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10393 #else
10394 struct clx2_tx_queue *txq = &priv->txq[0];
10395 #endif /* CONFIG_IPW2200_QOS */
10396
10397 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10398 return 1;
10399
10400 return 0;
10401 }
10402
10403 #ifdef CONFIG_IPW2200_PROMISCUOUS
10404 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10405 struct libipw_txb *txb)
10406 {
10407 struct libipw_rx_stats dummystats;
10408 struct ieee80211_hdr *hdr;
10409 u8 n;
10410 u16 filter = priv->prom_priv->filter;
10411 int hdr_only = 0;
10412
10413 if (filter & IPW_PROM_NO_TX)
10414 return;
10415
10416 memset(&dummystats, 0, sizeof(dummystats));
10417
10418 /* Filtering of fragment chains is done agains the first fragment */
10419 hdr = (void *)txb->fragments[0]->data;
10420 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10421 if (filter & IPW_PROM_NO_MGMT)
10422 return;
10423 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10424 hdr_only = 1;
10425 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10426 if (filter & IPW_PROM_NO_CTL)
10427 return;
10428 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10429 hdr_only = 1;
10430 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10431 if (filter & IPW_PROM_NO_DATA)
10432 return;
10433 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10434 hdr_only = 1;
10435 }
10436
10437 for(n=0; n<txb->nr_frags; ++n) {
10438 struct sk_buff *src = txb->fragments[n];
10439 struct sk_buff *dst;
10440 struct ieee80211_radiotap_header *rt_hdr;
10441 int len;
10442
10443 if (hdr_only) {
10444 hdr = (void *)src->data;
10445 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10446 } else
10447 len = src->len;
10448
10449 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10450 if (!dst)
10451 continue;
10452
10453 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10454
10455 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10456 rt_hdr->it_pad = 0;
10457 rt_hdr->it_present = 0; /* after all, it's just an idea */
10458 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10459
10460 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10461 ieee80211chan2mhz(priv->channel));
10462 if (priv->channel > 14) /* 802.11a */
10463 *(__le16*)skb_put(dst, sizeof(u16)) =
10464 cpu_to_le16(IEEE80211_CHAN_OFDM |
10465 IEEE80211_CHAN_5GHZ);
10466 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10467 *(__le16*)skb_put(dst, sizeof(u16)) =
10468 cpu_to_le16(IEEE80211_CHAN_CCK |
10469 IEEE80211_CHAN_2GHZ);
10470 else /* 802.11g */
10471 *(__le16*)skb_put(dst, sizeof(u16)) =
10472 cpu_to_le16(IEEE80211_CHAN_OFDM |
10473 IEEE80211_CHAN_2GHZ);
10474
10475 rt_hdr->it_len = cpu_to_le16(dst->len);
10476
10477 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10478
10479 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10480 dev_kfree_skb_any(dst);
10481 }
10482 }
10483 #endif
10484
10485 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10486 struct net_device *dev, int pri)
10487 {
10488 struct ipw_priv *priv = libipw_priv(dev);
10489 unsigned long flags;
10490 netdev_tx_t ret;
10491
10492 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10493 spin_lock_irqsave(&priv->lock, flags);
10494
10495 #ifdef CONFIG_IPW2200_PROMISCUOUS
10496 if (rtap_iface && netif_running(priv->prom_net_dev))
10497 ipw_handle_promiscuous_tx(priv, txb);
10498 #endif
10499
10500 ret = ipw_tx_skb(priv, txb, pri);
10501 if (ret == NETDEV_TX_OK)
10502 __ipw_led_activity_on(priv);
10503 spin_unlock_irqrestore(&priv->lock, flags);
10504
10505 return ret;
10506 }
10507
10508 static void ipw_net_set_multicast_list(struct net_device *dev)
10509 {
10510
10511 }
10512
10513 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10514 {
10515 struct ipw_priv *priv = libipw_priv(dev);
10516 struct sockaddr *addr = p;
10517
10518 if (!is_valid_ether_addr(addr->sa_data))
10519 return -EADDRNOTAVAIL;
10520 mutex_lock(&priv->mutex);
10521 priv->config |= CFG_CUSTOM_MAC;
10522 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10523 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10524 priv->net_dev->name, priv->mac_addr);
10525 queue_work(priv->workqueue, &priv->adapter_restart);
10526 mutex_unlock(&priv->mutex);
10527 return 0;
10528 }
10529
10530 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10531 struct ethtool_drvinfo *info)
10532 {
10533 struct ipw_priv *p = libipw_priv(dev);
10534 char vers[64];
10535 char date[32];
10536 u32 len;
10537
10538 strcpy(info->driver, DRV_NAME);
10539 strcpy(info->version, DRV_VERSION);
10540
10541 len = sizeof(vers);
10542 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10543 len = sizeof(date);
10544 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10545
10546 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10547 vers, date);
10548 strcpy(info->bus_info, pci_name(p->pci_dev));
10549 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10550 }
10551
10552 static u32 ipw_ethtool_get_link(struct net_device *dev)
10553 {
10554 struct ipw_priv *priv = libipw_priv(dev);
10555 return (priv->status & STATUS_ASSOCIATED) != 0;
10556 }
10557
10558 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10559 {
10560 return IPW_EEPROM_IMAGE_SIZE;
10561 }
10562
10563 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10564 struct ethtool_eeprom *eeprom, u8 * bytes)
10565 {
10566 struct ipw_priv *p = libipw_priv(dev);
10567
10568 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10569 return -EINVAL;
10570 mutex_lock(&p->mutex);
10571 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10572 mutex_unlock(&p->mutex);
10573 return 0;
10574 }
10575
10576 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10577 struct ethtool_eeprom *eeprom, u8 * bytes)
10578 {
10579 struct ipw_priv *p = libipw_priv(dev);
10580 int i;
10581
10582 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10583 return -EINVAL;
10584 mutex_lock(&p->mutex);
10585 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10586 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10587 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10588 mutex_unlock(&p->mutex);
10589 return 0;
10590 }
10591
10592 static const struct ethtool_ops ipw_ethtool_ops = {
10593 .get_link = ipw_ethtool_get_link,
10594 .get_drvinfo = ipw_ethtool_get_drvinfo,
10595 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10596 .get_eeprom = ipw_ethtool_get_eeprom,
10597 .set_eeprom = ipw_ethtool_set_eeprom,
10598 };
10599
10600 static irqreturn_t ipw_isr(int irq, void *data)
10601 {
10602 struct ipw_priv *priv = data;
10603 u32 inta, inta_mask;
10604
10605 if (!priv)
10606 return IRQ_NONE;
10607
10608 spin_lock(&priv->irq_lock);
10609
10610 if (!(priv->status & STATUS_INT_ENABLED)) {
10611 /* IRQ is disabled */
10612 goto none;
10613 }
10614
10615 inta = ipw_read32(priv, IPW_INTA_RW);
10616 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10617
10618 if (inta == 0xFFFFFFFF) {
10619 /* Hardware disappeared */
10620 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10621 goto none;
10622 }
10623
10624 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10625 /* Shared interrupt */
10626 goto none;
10627 }
10628
10629 /* tell the device to stop sending interrupts */
10630 __ipw_disable_interrupts(priv);
10631
10632 /* ack current interrupts */
10633 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10634 ipw_write32(priv, IPW_INTA_RW, inta);
10635
10636 /* Cache INTA value for our tasklet */
10637 priv->isr_inta = inta;
10638
10639 tasklet_schedule(&priv->irq_tasklet);
10640
10641 spin_unlock(&priv->irq_lock);
10642
10643 return IRQ_HANDLED;
10644 none:
10645 spin_unlock(&priv->irq_lock);
10646 return IRQ_NONE;
10647 }
10648
10649 static void ipw_rf_kill(void *adapter)
10650 {
10651 struct ipw_priv *priv = adapter;
10652 unsigned long flags;
10653
10654 spin_lock_irqsave(&priv->lock, flags);
10655
10656 if (rf_kill_active(priv)) {
10657 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10658 if (priv->workqueue)
10659 queue_delayed_work(priv->workqueue,
10660 &priv->rf_kill, 2 * HZ);
10661 goto exit_unlock;
10662 }
10663
10664 /* RF Kill is now disabled, so bring the device back up */
10665
10666 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10667 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10668 "device\n");
10669
10670 /* we can not do an adapter restart while inside an irq lock */
10671 queue_work(priv->workqueue, &priv->adapter_restart);
10672 } else
10673 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10674 "enabled\n");
10675
10676 exit_unlock:
10677 spin_unlock_irqrestore(&priv->lock, flags);
10678 }
10679
10680 static void ipw_bg_rf_kill(struct work_struct *work)
10681 {
10682 struct ipw_priv *priv =
10683 container_of(work, struct ipw_priv, rf_kill.work);
10684 mutex_lock(&priv->mutex);
10685 ipw_rf_kill(priv);
10686 mutex_unlock(&priv->mutex);
10687 }
10688
10689 static void ipw_link_up(struct ipw_priv *priv)
10690 {
10691 priv->last_seq_num = -1;
10692 priv->last_frag_num = -1;
10693 priv->last_packet_time = 0;
10694
10695 netif_carrier_on(priv->net_dev);
10696
10697 cancel_delayed_work(&priv->request_scan);
10698 cancel_delayed_work(&priv->request_direct_scan);
10699 cancel_delayed_work(&priv->request_passive_scan);
10700 cancel_delayed_work(&priv->scan_event);
10701 ipw_reset_stats(priv);
10702 /* Ensure the rate is updated immediately */
10703 priv->last_rate = ipw_get_current_rate(priv);
10704 ipw_gather_stats(priv);
10705 ipw_led_link_up(priv);
10706 notify_wx_assoc_event(priv);
10707
10708 if (priv->config & CFG_BACKGROUND_SCAN)
10709 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10710 }
10711
10712 static void ipw_bg_link_up(struct work_struct *work)
10713 {
10714 struct ipw_priv *priv =
10715 container_of(work, struct ipw_priv, link_up);
10716 mutex_lock(&priv->mutex);
10717 ipw_link_up(priv);
10718 mutex_unlock(&priv->mutex);
10719 }
10720
10721 static void ipw_link_down(struct ipw_priv *priv)
10722 {
10723 ipw_led_link_down(priv);
10724 netif_carrier_off(priv->net_dev);
10725 notify_wx_assoc_event(priv);
10726
10727 /* Cancel any queued work ... */
10728 cancel_delayed_work(&priv->request_scan);
10729 cancel_delayed_work(&priv->request_direct_scan);
10730 cancel_delayed_work(&priv->request_passive_scan);
10731 cancel_delayed_work(&priv->adhoc_check);
10732 cancel_delayed_work(&priv->gather_stats);
10733
10734 ipw_reset_stats(priv);
10735
10736 if (!(priv->status & STATUS_EXIT_PENDING)) {
10737 /* Queue up another scan... */
10738 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10739 } else
10740 cancel_delayed_work(&priv->scan_event);
10741 }
10742
10743 static void ipw_bg_link_down(struct work_struct *work)
10744 {
10745 struct ipw_priv *priv =
10746 container_of(work, struct ipw_priv, link_down);
10747 mutex_lock(&priv->mutex);
10748 ipw_link_down(priv);
10749 mutex_unlock(&priv->mutex);
10750 }
10751
10752 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10753 {
10754 int ret = 0;
10755
10756 priv->workqueue = create_workqueue(DRV_NAME);
10757 init_waitqueue_head(&priv->wait_command_queue);
10758 init_waitqueue_head(&priv->wait_state);
10759
10760 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10761 INIT_WORK(&priv->associate, ipw_bg_associate);
10762 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10763 INIT_WORK(&priv->system_config, ipw_system_config);
10764 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10765 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10766 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10767 INIT_WORK(&priv->up, ipw_bg_up);
10768 INIT_WORK(&priv->down, ipw_bg_down);
10769 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10770 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10771 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10772 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10773 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10774 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10775 INIT_WORK(&priv->roam, ipw_bg_roam);
10776 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10777 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10778 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10779 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10780 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10781 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10782 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10783
10784 #ifdef CONFIG_IPW2200_QOS
10785 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10786 #endif /* CONFIG_IPW2200_QOS */
10787
10788 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10789 ipw_irq_tasklet, (unsigned long)priv);
10790
10791 return ret;
10792 }
10793
10794 static void shim__set_security(struct net_device *dev,
10795 struct libipw_security *sec)
10796 {
10797 struct ipw_priv *priv = libipw_priv(dev);
10798 int i;
10799 for (i = 0; i < 4; i++) {
10800 if (sec->flags & (1 << i)) {
10801 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10802 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10803 if (sec->key_sizes[i] == 0)
10804 priv->ieee->sec.flags &= ~(1 << i);
10805 else {
10806 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10807 sec->key_sizes[i]);
10808 priv->ieee->sec.flags |= (1 << i);
10809 }
10810 priv->status |= STATUS_SECURITY_UPDATED;
10811 } else if (sec->level != SEC_LEVEL_1)
10812 priv->ieee->sec.flags &= ~(1 << i);
10813 }
10814
10815 if (sec->flags & SEC_ACTIVE_KEY) {
10816 if (sec->active_key <= 3) {
10817 priv->ieee->sec.active_key = sec->active_key;
10818 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10819 } else
10820 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10821 priv->status |= STATUS_SECURITY_UPDATED;
10822 } else
10823 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10824
10825 if ((sec->flags & SEC_AUTH_MODE) &&
10826 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10827 priv->ieee->sec.auth_mode = sec->auth_mode;
10828 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10829 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10830 priv->capability |= CAP_SHARED_KEY;
10831 else
10832 priv->capability &= ~CAP_SHARED_KEY;
10833 priv->status |= STATUS_SECURITY_UPDATED;
10834 }
10835
10836 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10837 priv->ieee->sec.flags |= SEC_ENABLED;
10838 priv->ieee->sec.enabled = sec->enabled;
10839 priv->status |= STATUS_SECURITY_UPDATED;
10840 if (sec->enabled)
10841 priv->capability |= CAP_PRIVACY_ON;
10842 else
10843 priv->capability &= ~CAP_PRIVACY_ON;
10844 }
10845
10846 if (sec->flags & SEC_ENCRYPT)
10847 priv->ieee->sec.encrypt = sec->encrypt;
10848
10849 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10850 priv->ieee->sec.level = sec->level;
10851 priv->ieee->sec.flags |= SEC_LEVEL;
10852 priv->status |= STATUS_SECURITY_UPDATED;
10853 }
10854
10855 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10856 ipw_set_hwcrypto_keys(priv);
10857
10858 /* To match current functionality of ipw2100 (which works well w/
10859 * various supplicants, we don't force a disassociate if the
10860 * privacy capability changes ... */
10861 #if 0
10862 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10863 (((priv->assoc_request.capability &
10864 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10865 (!(priv->assoc_request.capability &
10866 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10867 IPW_DEBUG_ASSOC("Disassociating due to capability "
10868 "change.\n");
10869 ipw_disassociate(priv);
10870 }
10871 #endif
10872 }
10873
10874 static int init_supported_rates(struct ipw_priv *priv,
10875 struct ipw_supported_rates *rates)
10876 {
10877 /* TODO: Mask out rates based on priv->rates_mask */
10878
10879 memset(rates, 0, sizeof(*rates));
10880 /* configure supported rates */
10881 switch (priv->ieee->freq_band) {
10882 case LIBIPW_52GHZ_BAND:
10883 rates->ieee_mode = IPW_A_MODE;
10884 rates->purpose = IPW_RATE_CAPABILITIES;
10885 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10886 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10887 break;
10888
10889 default: /* Mixed or 2.4Ghz */
10890 rates->ieee_mode = IPW_G_MODE;
10891 rates->purpose = IPW_RATE_CAPABILITIES;
10892 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10893 LIBIPW_CCK_DEFAULT_RATES_MASK);
10894 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10895 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10896 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10897 }
10898 break;
10899 }
10900
10901 return 0;
10902 }
10903
10904 static int ipw_config(struct ipw_priv *priv)
10905 {
10906 /* This is only called from ipw_up, which resets/reloads the firmware
10907 so, we don't need to first disable the card before we configure
10908 it */
10909 if (ipw_set_tx_power(priv))
10910 goto error;
10911
10912 /* initialize adapter address */
10913 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10914 goto error;
10915
10916 /* set basic system config settings */
10917 init_sys_config(&priv->sys_config);
10918
10919 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10920 * Does not support BT priority yet (don't abort or defer our Tx) */
10921 if (bt_coexist) {
10922 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10923
10924 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10925 priv->sys_config.bt_coexistence
10926 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10927 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10928 priv->sys_config.bt_coexistence
10929 |= CFG_BT_COEXISTENCE_OOB;
10930 }
10931
10932 #ifdef CONFIG_IPW2200_PROMISCUOUS
10933 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10934 priv->sys_config.accept_all_data_frames = 1;
10935 priv->sys_config.accept_non_directed_frames = 1;
10936 priv->sys_config.accept_all_mgmt_bcpr = 1;
10937 priv->sys_config.accept_all_mgmt_frames = 1;
10938 }
10939 #endif
10940
10941 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10942 priv->sys_config.answer_broadcast_ssid_probe = 1;
10943 else
10944 priv->sys_config.answer_broadcast_ssid_probe = 0;
10945
10946 if (ipw_send_system_config(priv))
10947 goto error;
10948
10949 init_supported_rates(priv, &priv->rates);
10950 if (ipw_send_supported_rates(priv, &priv->rates))
10951 goto error;
10952
10953 /* Set request-to-send threshold */
10954 if (priv->rts_threshold) {
10955 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10956 goto error;
10957 }
10958 #ifdef CONFIG_IPW2200_QOS
10959 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10960 ipw_qos_activate(priv, NULL);
10961 #endif /* CONFIG_IPW2200_QOS */
10962
10963 if (ipw_set_random_seed(priv))
10964 goto error;
10965
10966 /* final state transition to the RUN state */
10967 if (ipw_send_host_complete(priv))
10968 goto error;
10969
10970 priv->status |= STATUS_INIT;
10971
10972 ipw_led_init(priv);
10973 ipw_led_radio_on(priv);
10974 priv->notif_missed_beacons = 0;
10975
10976 /* Set hardware WEP key if it is configured. */
10977 if ((priv->capability & CAP_PRIVACY_ON) &&
10978 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10979 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10980 ipw_set_hwcrypto_keys(priv);
10981
10982 return 0;
10983
10984 error:
10985 return -EIO;
10986 }
10987
10988 /*
10989 * NOTE:
10990 *
10991 * These tables have been tested in conjunction with the
10992 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10993 *
10994 * Altering this values, using it on other hardware, or in geographies
10995 * not intended for resale of the above mentioned Intel adapters has
10996 * not been tested.
10997 *
10998 * Remember to update the table in README.ipw2200 when changing this
10999 * table.
11000 *
11001 */
11002 static const struct libipw_geo ipw_geos[] = {
11003 { /* Restricted */
11004 "---",
11005 .bg_channels = 11,
11006 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11007 {2427, 4}, {2432, 5}, {2437, 6},
11008 {2442, 7}, {2447, 8}, {2452, 9},
11009 {2457, 10}, {2462, 11}},
11010 },
11011
11012 { /* Custom US/Canada */
11013 "ZZF",
11014 .bg_channels = 11,
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}},
11019 .a_channels = 8,
11020 .a = {{5180, 36},
11021 {5200, 40},
11022 {5220, 44},
11023 {5240, 48},
11024 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11025 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11026 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11027 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11028 },
11029
11030 { /* Rest of World */
11031 "ZZD",
11032 .bg_channels = 13,
11033 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11034 {2427, 4}, {2432, 5}, {2437, 6},
11035 {2442, 7}, {2447, 8}, {2452, 9},
11036 {2457, 10}, {2462, 11}, {2467, 12},
11037 {2472, 13}},
11038 },
11039
11040 { /* Custom USA & Europe & High */
11041 "ZZA",
11042 .bg_channels = 11,
11043 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044 {2427, 4}, {2432, 5}, {2437, 6},
11045 {2442, 7}, {2447, 8}, {2452, 9},
11046 {2457, 10}, {2462, 11}},
11047 .a_channels = 13,
11048 .a = {{5180, 36},
11049 {5200, 40},
11050 {5220, 44},
11051 {5240, 48},
11052 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11053 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11054 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11055 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11056 {5745, 149},
11057 {5765, 153},
11058 {5785, 157},
11059 {5805, 161},
11060 {5825, 165}},
11061 },
11062
11063 { /* Custom NA & Europe */
11064 "ZZB",
11065 .bg_channels = 11,
11066 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11067 {2427, 4}, {2432, 5}, {2437, 6},
11068 {2442, 7}, {2447, 8}, {2452, 9},
11069 {2457, 10}, {2462, 11}},
11070 .a_channels = 13,
11071 .a = {{5180, 36},
11072 {5200, 40},
11073 {5220, 44},
11074 {5240, 48},
11075 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11076 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11077 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11078 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11079 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11080 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11081 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11082 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11083 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11084 },
11085
11086 { /* Custom Japan */
11087 "ZZC",
11088 .bg_channels = 11,
11089 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}},
11093 .a_channels = 4,
11094 .a = {{5170, 34}, {5190, 38},
11095 {5210, 42}, {5230, 46}},
11096 },
11097
11098 { /* Custom */
11099 "ZZM",
11100 .bg_channels = 11,
11101 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11102 {2427, 4}, {2432, 5}, {2437, 6},
11103 {2442, 7}, {2447, 8}, {2452, 9},
11104 {2457, 10}, {2462, 11}},
11105 },
11106
11107 { /* Europe */
11108 "ZZE",
11109 .bg_channels = 13,
11110 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11111 {2427, 4}, {2432, 5}, {2437, 6},
11112 {2442, 7}, {2447, 8}, {2452, 9},
11113 {2457, 10}, {2462, 11}, {2467, 12},
11114 {2472, 13}},
11115 .a_channels = 19,
11116 .a = {{5180, 36},
11117 {5200, 40},
11118 {5220, 44},
11119 {5240, 48},
11120 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11121 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11122 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11123 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11124 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11125 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11126 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11127 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11128 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11129 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11130 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11131 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11132 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11133 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11134 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11135 },
11136
11137 { /* Custom Japan */
11138 "ZZJ",
11139 .bg_channels = 14,
11140 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11141 {2427, 4}, {2432, 5}, {2437, 6},
11142 {2442, 7}, {2447, 8}, {2452, 9},
11143 {2457, 10}, {2462, 11}, {2467, 12},
11144 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11145 .a_channels = 4,
11146 .a = {{5170, 34}, {5190, 38},
11147 {5210, 42}, {5230, 46}},
11148 },
11149
11150 { /* Rest of World */
11151 "ZZR",
11152 .bg_channels = 14,
11153 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11154 {2427, 4}, {2432, 5}, {2437, 6},
11155 {2442, 7}, {2447, 8}, {2452, 9},
11156 {2457, 10}, {2462, 11}, {2467, 12},
11157 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11158 LIBIPW_CH_PASSIVE_ONLY}},
11159 },
11160
11161 { /* High Band */
11162 "ZZH",
11163 .bg_channels = 13,
11164 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11165 {2427, 4}, {2432, 5}, {2437, 6},
11166 {2442, 7}, {2447, 8}, {2452, 9},
11167 {2457, 10}, {2462, 11},
11168 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11169 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11170 .a_channels = 4,
11171 .a = {{5745, 149}, {5765, 153},
11172 {5785, 157}, {5805, 161}},
11173 },
11174
11175 { /* Custom Europe */
11176 "ZZG",
11177 .bg_channels = 13,
11178 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11179 {2427, 4}, {2432, 5}, {2437, 6},
11180 {2442, 7}, {2447, 8}, {2452, 9},
11181 {2457, 10}, {2462, 11},
11182 {2467, 12}, {2472, 13}},
11183 .a_channels = 4,
11184 .a = {{5180, 36}, {5200, 40},
11185 {5220, 44}, {5240, 48}},
11186 },
11187
11188 { /* Europe */
11189 "ZZK",
11190 .bg_channels = 13,
11191 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11192 {2427, 4}, {2432, 5}, {2437, 6},
11193 {2442, 7}, {2447, 8}, {2452, 9},
11194 {2457, 10}, {2462, 11},
11195 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11196 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11197 .a_channels = 24,
11198 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11199 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11200 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11201 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11202 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11203 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11204 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11205 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11206 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11207 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11208 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11209 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11210 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11211 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11212 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11213 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11214 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11215 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11216 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11217 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11218 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11219 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11220 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11221 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11222 },
11223
11224 { /* Europe */
11225 "ZZL",
11226 .bg_channels = 11,
11227 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11228 {2427, 4}, {2432, 5}, {2437, 6},
11229 {2442, 7}, {2447, 8}, {2452, 9},
11230 {2457, 10}, {2462, 11}},
11231 .a_channels = 13,
11232 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11233 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11234 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11235 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11236 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11237 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11238 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11239 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11240 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11241 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11242 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11243 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11244 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11245 }
11246 };
11247
11248 #define MAX_HW_RESTARTS 5
11249 static int ipw_up(struct ipw_priv *priv)
11250 {
11251 int rc, i, j;
11252
11253 /* Age scan list entries found before suspend */
11254 if (priv->suspend_time) {
11255 libipw_networks_age(priv->ieee, priv->suspend_time);
11256 priv->suspend_time = 0;
11257 }
11258
11259 if (priv->status & STATUS_EXIT_PENDING)
11260 return -EIO;
11261
11262 if (cmdlog && !priv->cmdlog) {
11263 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11264 GFP_KERNEL);
11265 if (priv->cmdlog == NULL) {
11266 IPW_ERROR("Error allocating %d command log entries.\n",
11267 cmdlog);
11268 return -ENOMEM;
11269 } else {
11270 priv->cmdlog_len = cmdlog;
11271 }
11272 }
11273
11274 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11275 /* Load the microcode, firmware, and eeprom.
11276 * Also start the clocks. */
11277 rc = ipw_load(priv);
11278 if (rc) {
11279 IPW_ERROR("Unable to load firmware: %d\n", rc);
11280 return rc;
11281 }
11282
11283 ipw_init_ordinals(priv);
11284 if (!(priv->config & CFG_CUSTOM_MAC))
11285 eeprom_parse_mac(priv, priv->mac_addr);
11286 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11287 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11288
11289 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11290 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11291 ipw_geos[j].name, 3))
11292 break;
11293 }
11294 if (j == ARRAY_SIZE(ipw_geos)) {
11295 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11296 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11297 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11298 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11299 j = 0;
11300 }
11301 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11302 IPW_WARNING("Could not set geography.");
11303 return 0;
11304 }
11305
11306 if (priv->status & STATUS_RF_KILL_SW) {
11307 IPW_WARNING("Radio disabled by module parameter.\n");
11308 return 0;
11309 } else if (rf_kill_active(priv)) {
11310 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11311 "Kill switch must be turned off for "
11312 "wireless networking to work.\n");
11313 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11314 2 * HZ);
11315 return 0;
11316 }
11317
11318 rc = ipw_config(priv);
11319 if (!rc) {
11320 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11321
11322 /* If configure to try and auto-associate, kick
11323 * off a scan. */
11324 queue_delayed_work(priv->workqueue,
11325 &priv->request_scan, 0);
11326
11327 return 0;
11328 }
11329
11330 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11331 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11332 i, MAX_HW_RESTARTS);
11333
11334 /* We had an error bringing up the hardware, so take it
11335 * all the way back down so we can try again */
11336 ipw_down(priv);
11337 }
11338
11339 /* tried to restart and config the device for as long as our
11340 * patience could withstand */
11341 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11342
11343 return -EIO;
11344 }
11345
11346 static void ipw_bg_up(struct work_struct *work)
11347 {
11348 struct ipw_priv *priv =
11349 container_of(work, struct ipw_priv, up);
11350 mutex_lock(&priv->mutex);
11351 ipw_up(priv);
11352 mutex_unlock(&priv->mutex);
11353 }
11354
11355 static void ipw_deinit(struct ipw_priv *priv)
11356 {
11357 int i;
11358
11359 if (priv->status & STATUS_SCANNING) {
11360 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11361 ipw_abort_scan(priv);
11362 }
11363
11364 if (priv->status & STATUS_ASSOCIATED) {
11365 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11366 ipw_disassociate(priv);
11367 }
11368
11369 ipw_led_shutdown(priv);
11370
11371 /* Wait up to 1s for status to change to not scanning and not
11372 * associated (disassociation can take a while for a ful 802.11
11373 * exchange */
11374 for (i = 1000; i && (priv->status &
11375 (STATUS_DISASSOCIATING |
11376 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11377 udelay(10);
11378
11379 if (priv->status & (STATUS_DISASSOCIATING |
11380 STATUS_ASSOCIATED | STATUS_SCANNING))
11381 IPW_DEBUG_INFO("Still associated or scanning...\n");
11382 else
11383 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11384
11385 /* Attempt to disable the card */
11386 ipw_send_card_disable(priv, 0);
11387
11388 priv->status &= ~STATUS_INIT;
11389 }
11390
11391 static void ipw_down(struct ipw_priv *priv)
11392 {
11393 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11394
11395 priv->status |= STATUS_EXIT_PENDING;
11396
11397 if (ipw_is_init(priv))
11398 ipw_deinit(priv);
11399
11400 /* Wipe out the EXIT_PENDING status bit if we are not actually
11401 * exiting the module */
11402 if (!exit_pending)
11403 priv->status &= ~STATUS_EXIT_PENDING;
11404
11405 /* tell the device to stop sending interrupts */
11406 ipw_disable_interrupts(priv);
11407
11408 /* Clear all bits but the RF Kill */
11409 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11410 netif_carrier_off(priv->net_dev);
11411
11412 ipw_stop_nic(priv);
11413
11414 ipw_led_radio_off(priv);
11415 }
11416
11417 static void ipw_bg_down(struct work_struct *work)
11418 {
11419 struct ipw_priv *priv =
11420 container_of(work, struct ipw_priv, down);
11421 mutex_lock(&priv->mutex);
11422 ipw_down(priv);
11423 mutex_unlock(&priv->mutex);
11424 }
11425
11426 /* Called by register_netdev() */
11427 static int ipw_net_init(struct net_device *dev)
11428 {
11429 int i, rc = 0;
11430 struct ipw_priv *priv = libipw_priv(dev);
11431 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11432 struct wireless_dev *wdev = &priv->ieee->wdev;
11433 mutex_lock(&priv->mutex);
11434
11435 if (ipw_up(priv)) {
11436 rc = -EIO;
11437 goto out;
11438 }
11439
11440 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11441
11442 /* fill-out priv->ieee->bg_band */
11443 if (geo->bg_channels) {
11444 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11445
11446 bg_band->band = IEEE80211_BAND_2GHZ;
11447 bg_band->n_channels = geo->bg_channels;
11448 bg_band->channels =
11449 kzalloc(geo->bg_channels *
11450 sizeof(struct ieee80211_channel), GFP_KERNEL);
11451 /* translate geo->bg to bg_band.channels */
11452 for (i = 0; i < geo->bg_channels; i++) {
11453 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11454 bg_band->channels[i].center_freq = geo->bg[i].freq;
11455 bg_band->channels[i].hw_value = geo->bg[i].channel;
11456 bg_band->channels[i].max_power = geo->bg[i].max_power;
11457 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11458 bg_band->channels[i].flags |=
11459 IEEE80211_CHAN_PASSIVE_SCAN;
11460 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11461 bg_band->channels[i].flags |=
11462 IEEE80211_CHAN_NO_IBSS;
11463 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11464 bg_band->channels[i].flags |=
11465 IEEE80211_CHAN_RADAR;
11466 /* No equivalent for LIBIPW_CH_80211H_RULES,
11467 LIBIPW_CH_UNIFORM_SPREADING, or
11468 LIBIPW_CH_B_ONLY... */
11469 }
11470 /* point at bitrate info */
11471 bg_band->bitrates = ipw2200_bg_rates;
11472 bg_band->n_bitrates = ipw2200_num_bg_rates;
11473
11474 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11475 }
11476
11477 /* fill-out priv->ieee->a_band */
11478 if (geo->a_channels) {
11479 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11480
11481 a_band->band = IEEE80211_BAND_5GHZ;
11482 a_band->n_channels = geo->a_channels;
11483 a_band->channels =
11484 kzalloc(geo->a_channels *
11485 sizeof(struct ieee80211_channel), GFP_KERNEL);
11486 /* translate geo->bg to a_band.channels */
11487 for (i = 0; i < geo->a_channels; i++) {
11488 a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11489 a_band->channels[i].center_freq = geo->a[i].freq;
11490 a_band->channels[i].hw_value = geo->a[i].channel;
11491 a_band->channels[i].max_power = geo->a[i].max_power;
11492 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11493 a_band->channels[i].flags |=
11494 IEEE80211_CHAN_PASSIVE_SCAN;
11495 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11496 a_band->channels[i].flags |=
11497 IEEE80211_CHAN_NO_IBSS;
11498 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11499 a_band->channels[i].flags |=
11500 IEEE80211_CHAN_RADAR;
11501 /* No equivalent for LIBIPW_CH_80211H_RULES,
11502 LIBIPW_CH_UNIFORM_SPREADING, or
11503 LIBIPW_CH_B_ONLY... */
11504 }
11505 /* point at bitrate info */
11506 a_band->bitrates = ipw2200_a_rates;
11507 a_band->n_bitrates = ipw2200_num_a_rates;
11508
11509 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11510 }
11511
11512 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11513
11514 /* With that information in place, we can now register the wiphy... */
11515 if (wiphy_register(wdev->wiphy)) {
11516 rc = -EIO;
11517 goto out;
11518 }
11519
11520 out:
11521 mutex_unlock(&priv->mutex);
11522 return rc;
11523 }
11524
11525 /* PCI driver stuff */
11526 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11527 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11528 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11529 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11530 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11531 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11532 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11533 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11534 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11535 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11536 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11537 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11538 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11539 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11540 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11541 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11542 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11543 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11544 {PCI_VDEVICE(INTEL, 0x104f), 0},
11545 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11546 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11547 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11548 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11549
11550 /* required last entry */
11551 {0,}
11552 };
11553
11554 MODULE_DEVICE_TABLE(pci, card_ids);
11555
11556 static struct attribute *ipw_sysfs_entries[] = {
11557 &dev_attr_rf_kill.attr,
11558 &dev_attr_direct_dword.attr,
11559 &dev_attr_indirect_byte.attr,
11560 &dev_attr_indirect_dword.attr,
11561 &dev_attr_mem_gpio_reg.attr,
11562 &dev_attr_command_event_reg.attr,
11563 &dev_attr_nic_type.attr,
11564 &dev_attr_status.attr,
11565 &dev_attr_cfg.attr,
11566 &dev_attr_error.attr,
11567 &dev_attr_event_log.attr,
11568 &dev_attr_cmd_log.attr,
11569 &dev_attr_eeprom_delay.attr,
11570 &dev_attr_ucode_version.attr,
11571 &dev_attr_rtc.attr,
11572 &dev_attr_scan_age.attr,
11573 &dev_attr_led.attr,
11574 &dev_attr_speed_scan.attr,
11575 &dev_attr_net_stats.attr,
11576 &dev_attr_channels.attr,
11577 #ifdef CONFIG_IPW2200_PROMISCUOUS
11578 &dev_attr_rtap_iface.attr,
11579 &dev_attr_rtap_filter.attr,
11580 #endif
11581 NULL
11582 };
11583
11584 static struct attribute_group ipw_attribute_group = {
11585 .name = NULL, /* put in device directory */
11586 .attrs = ipw_sysfs_entries,
11587 };
11588
11589 #ifdef CONFIG_IPW2200_PROMISCUOUS
11590 static int ipw_prom_open(struct net_device *dev)
11591 {
11592 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11593 struct ipw_priv *priv = prom_priv->priv;
11594
11595 IPW_DEBUG_INFO("prom dev->open\n");
11596 netif_carrier_off(dev);
11597
11598 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11599 priv->sys_config.accept_all_data_frames = 1;
11600 priv->sys_config.accept_non_directed_frames = 1;
11601 priv->sys_config.accept_all_mgmt_bcpr = 1;
11602 priv->sys_config.accept_all_mgmt_frames = 1;
11603
11604 ipw_send_system_config(priv);
11605 }
11606
11607 return 0;
11608 }
11609
11610 static int ipw_prom_stop(struct net_device *dev)
11611 {
11612 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11613 struct ipw_priv *priv = prom_priv->priv;
11614
11615 IPW_DEBUG_INFO("prom dev->stop\n");
11616
11617 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11618 priv->sys_config.accept_all_data_frames = 0;
11619 priv->sys_config.accept_non_directed_frames = 0;
11620 priv->sys_config.accept_all_mgmt_bcpr = 0;
11621 priv->sys_config.accept_all_mgmt_frames = 0;
11622
11623 ipw_send_system_config(priv);
11624 }
11625
11626 return 0;
11627 }
11628
11629 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11630 struct net_device *dev)
11631 {
11632 IPW_DEBUG_INFO("prom dev->xmit\n");
11633 dev_kfree_skb(skb);
11634 return NETDEV_TX_OK;
11635 }
11636
11637 static const struct net_device_ops ipw_prom_netdev_ops = {
11638 .ndo_open = ipw_prom_open,
11639 .ndo_stop = ipw_prom_stop,
11640 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11641 .ndo_change_mtu = libipw_change_mtu,
11642 .ndo_set_mac_address = eth_mac_addr,
11643 .ndo_validate_addr = eth_validate_addr,
11644 };
11645
11646 static int ipw_prom_alloc(struct ipw_priv *priv)
11647 {
11648 int rc = 0;
11649
11650 if (priv->prom_net_dev)
11651 return -EPERM;
11652
11653 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11654 if (priv->prom_net_dev == NULL)
11655 return -ENOMEM;
11656
11657 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11658 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11659 priv->prom_priv->priv = priv;
11660
11661 strcpy(priv->prom_net_dev->name, "rtap%d");
11662 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11663
11664 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11665 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11666
11667 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11668 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11669
11670 rc = register_netdev(priv->prom_net_dev);
11671 if (rc) {
11672 free_libipw(priv->prom_net_dev, 1);
11673 priv->prom_net_dev = NULL;
11674 return rc;
11675 }
11676
11677 return 0;
11678 }
11679
11680 static void ipw_prom_free(struct ipw_priv *priv)
11681 {
11682 if (!priv->prom_net_dev)
11683 return;
11684
11685 unregister_netdev(priv->prom_net_dev);
11686 free_libipw(priv->prom_net_dev, 1);
11687
11688 priv->prom_net_dev = NULL;
11689 }
11690
11691 #endif
11692
11693 static const struct net_device_ops ipw_netdev_ops = {
11694 .ndo_init = ipw_net_init,
11695 .ndo_open = ipw_net_open,
11696 .ndo_stop = ipw_net_stop,
11697 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11698 .ndo_set_mac_address = ipw_net_set_mac_address,
11699 .ndo_start_xmit = libipw_xmit,
11700 .ndo_change_mtu = libipw_change_mtu,
11701 .ndo_validate_addr = eth_validate_addr,
11702 };
11703
11704 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11705 const struct pci_device_id *ent)
11706 {
11707 int err = 0;
11708 struct net_device *net_dev;
11709 void __iomem *base;
11710 u32 length, val;
11711 struct ipw_priv *priv;
11712 int i;
11713
11714 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11715 if (net_dev == NULL) {
11716 err = -ENOMEM;
11717 goto out;
11718 }
11719
11720 priv = libipw_priv(net_dev);
11721 priv->ieee = netdev_priv(net_dev);
11722
11723 priv->net_dev = net_dev;
11724 priv->pci_dev = pdev;
11725 ipw_debug_level = debug;
11726 spin_lock_init(&priv->irq_lock);
11727 spin_lock_init(&priv->lock);
11728 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11729 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11730
11731 mutex_init(&priv->mutex);
11732 if (pci_enable_device(pdev)) {
11733 err = -ENODEV;
11734 goto out_free_libipw;
11735 }
11736
11737 pci_set_master(pdev);
11738
11739 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11740 if (!err)
11741 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11742 if (err) {
11743 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11744 goto out_pci_disable_device;
11745 }
11746
11747 pci_set_drvdata(pdev, priv);
11748
11749 err = pci_request_regions(pdev, DRV_NAME);
11750 if (err)
11751 goto out_pci_disable_device;
11752
11753 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11754 * PCI Tx retries from interfering with C3 CPU state */
11755 pci_read_config_dword(pdev, 0x40, &val);
11756 if ((val & 0x0000ff00) != 0)
11757 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11758
11759 length = pci_resource_len(pdev, 0);
11760 priv->hw_len = length;
11761
11762 base = pci_ioremap_bar(pdev, 0);
11763 if (!base) {
11764 err = -ENODEV;
11765 goto out_pci_release_regions;
11766 }
11767
11768 priv->hw_base = base;
11769 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11770 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11771
11772 err = ipw_setup_deferred_work(priv);
11773 if (err) {
11774 IPW_ERROR("Unable to setup deferred work\n");
11775 goto out_iounmap;
11776 }
11777
11778 ipw_sw_reset(priv, 1);
11779
11780 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11781 if (err) {
11782 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11783 goto out_destroy_workqueue;
11784 }
11785
11786 SET_NETDEV_DEV(net_dev, &pdev->dev);
11787
11788 mutex_lock(&priv->mutex);
11789
11790 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11791 priv->ieee->set_security = shim__set_security;
11792 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11793
11794 #ifdef CONFIG_IPW2200_QOS
11795 priv->ieee->is_qos_active = ipw_is_qos_active;
11796 priv->ieee->handle_probe_response = ipw_handle_beacon;
11797 priv->ieee->handle_beacon = ipw_handle_probe_response;
11798 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11799 #endif /* CONFIG_IPW2200_QOS */
11800
11801 priv->ieee->perfect_rssi = -20;
11802 priv->ieee->worst_rssi = -85;
11803
11804 net_dev->netdev_ops = &ipw_netdev_ops;
11805 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11806 net_dev->wireless_data = &priv->wireless_data;
11807 net_dev->wireless_handlers = &ipw_wx_handler_def;
11808 net_dev->ethtool_ops = &ipw_ethtool_ops;
11809 net_dev->irq = pdev->irq;
11810 net_dev->base_addr = (unsigned long)priv->hw_base;
11811 net_dev->mem_start = pci_resource_start(pdev, 0);
11812 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11813
11814 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11815 if (err) {
11816 IPW_ERROR("failed to create sysfs device attributes\n");
11817 mutex_unlock(&priv->mutex);
11818 goto out_release_irq;
11819 }
11820
11821 mutex_unlock(&priv->mutex);
11822 err = register_netdev(net_dev);
11823 if (err) {
11824 IPW_ERROR("failed to register network device\n");
11825 goto out_remove_sysfs;
11826 }
11827
11828 #ifdef CONFIG_IPW2200_PROMISCUOUS
11829 if (rtap_iface) {
11830 err = ipw_prom_alloc(priv);
11831 if (err) {
11832 IPW_ERROR("Failed to register promiscuous network "
11833 "device (error %d).\n", err);
11834 unregister_netdev(priv->net_dev);
11835 goto out_remove_sysfs;
11836 }
11837 }
11838 #endif
11839
11840 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11841 "channels, %d 802.11a channels)\n",
11842 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11843 priv->ieee->geo.a_channels);
11844
11845 return 0;
11846
11847 out_remove_sysfs:
11848 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11849 out_release_irq:
11850 free_irq(pdev->irq, priv);
11851 out_destroy_workqueue:
11852 destroy_workqueue(priv->workqueue);
11853 priv->workqueue = NULL;
11854 out_iounmap:
11855 iounmap(priv->hw_base);
11856 out_pci_release_regions:
11857 pci_release_regions(pdev);
11858 out_pci_disable_device:
11859 pci_disable_device(pdev);
11860 pci_set_drvdata(pdev, NULL);
11861 out_free_libipw:
11862 free_libipw(priv->net_dev, 0);
11863 out:
11864 return err;
11865 }
11866
11867 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11868 {
11869 struct ipw_priv *priv = pci_get_drvdata(pdev);
11870 struct list_head *p, *q;
11871 int i;
11872
11873 if (!priv)
11874 return;
11875
11876 mutex_lock(&priv->mutex);
11877
11878 priv->status |= STATUS_EXIT_PENDING;
11879 ipw_down(priv);
11880 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11881
11882 mutex_unlock(&priv->mutex);
11883
11884 unregister_netdev(priv->net_dev);
11885
11886 if (priv->rxq) {
11887 ipw_rx_queue_free(priv, priv->rxq);
11888 priv->rxq = NULL;
11889 }
11890 ipw_tx_queue_free(priv);
11891
11892 if (priv->cmdlog) {
11893 kfree(priv->cmdlog);
11894 priv->cmdlog = NULL;
11895 }
11896 /* ipw_down will ensure that there is no more pending work
11897 * in the workqueue's, so we can safely remove them now. */
11898 cancel_delayed_work(&priv->adhoc_check);
11899 cancel_delayed_work(&priv->gather_stats);
11900 cancel_delayed_work(&priv->request_scan);
11901 cancel_delayed_work(&priv->request_direct_scan);
11902 cancel_delayed_work(&priv->request_passive_scan);
11903 cancel_delayed_work(&priv->scan_event);
11904 cancel_delayed_work(&priv->rf_kill);
11905 cancel_delayed_work(&priv->scan_check);
11906 destroy_workqueue(priv->workqueue);
11907 priv->workqueue = NULL;
11908
11909 /* Free MAC hash list for ADHOC */
11910 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11911 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11912 list_del(p);
11913 kfree(list_entry(p, struct ipw_ibss_seq, list));
11914 }
11915 }
11916
11917 kfree(priv->error);
11918 priv->error = NULL;
11919
11920 #ifdef CONFIG_IPW2200_PROMISCUOUS
11921 ipw_prom_free(priv);
11922 #endif
11923
11924 free_irq(pdev->irq, priv);
11925 iounmap(priv->hw_base);
11926 pci_release_regions(pdev);
11927 pci_disable_device(pdev);
11928 pci_set_drvdata(pdev, NULL);
11929 /* wiphy_unregister needs to be here, before free_libipw */
11930 wiphy_unregister(priv->ieee->wdev.wiphy);
11931 kfree(priv->ieee->a_band.channels);
11932 kfree(priv->ieee->bg_band.channels);
11933 free_libipw(priv->net_dev, 0);
11934 free_firmware();
11935 }
11936
11937 #ifdef CONFIG_PM
11938 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11939 {
11940 struct ipw_priv *priv = pci_get_drvdata(pdev);
11941 struct net_device *dev = priv->net_dev;
11942
11943 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11944
11945 /* Take down the device; powers it off, etc. */
11946 ipw_down(priv);
11947
11948 /* Remove the PRESENT state of the device */
11949 netif_device_detach(dev);
11950
11951 pci_save_state(pdev);
11952 pci_disable_device(pdev);
11953 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11954
11955 priv->suspend_at = get_seconds();
11956
11957 return 0;
11958 }
11959
11960 static int ipw_pci_resume(struct pci_dev *pdev)
11961 {
11962 struct ipw_priv *priv = pci_get_drvdata(pdev);
11963 struct net_device *dev = priv->net_dev;
11964 int err;
11965 u32 val;
11966
11967 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11968
11969 pci_set_power_state(pdev, PCI_D0);
11970 err = pci_enable_device(pdev);
11971 if (err) {
11972 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11973 dev->name);
11974 return err;
11975 }
11976 pci_restore_state(pdev);
11977
11978 /*
11979 * Suspend/Resume resets the PCI configuration space, so we have to
11980 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11981 * from interfering with C3 CPU state. pci_restore_state won't help
11982 * here since it only restores the first 64 bytes pci config header.
11983 */
11984 pci_read_config_dword(pdev, 0x40, &val);
11985 if ((val & 0x0000ff00) != 0)
11986 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11987
11988 /* Set the device back into the PRESENT state; this will also wake
11989 * the queue of needed */
11990 netif_device_attach(dev);
11991
11992 priv->suspend_time = get_seconds() - priv->suspend_at;
11993
11994 /* Bring the device back up */
11995 queue_work(priv->workqueue, &priv->up);
11996
11997 return 0;
11998 }
11999 #endif
12000
12001 static void ipw_pci_shutdown(struct pci_dev *pdev)
12002 {
12003 struct ipw_priv *priv = pci_get_drvdata(pdev);
12004
12005 /* Take down the device; powers it off, etc. */
12006 ipw_down(priv);
12007
12008 pci_disable_device(pdev);
12009 }
12010
12011 /* driver initialization stuff */
12012 static struct pci_driver ipw_driver = {
12013 .name = DRV_NAME,
12014 .id_table = card_ids,
12015 .probe = ipw_pci_probe,
12016 .remove = __devexit_p(ipw_pci_remove),
12017 #ifdef CONFIG_PM
12018 .suspend = ipw_pci_suspend,
12019 .resume = ipw_pci_resume,
12020 #endif
12021 .shutdown = ipw_pci_shutdown,
12022 };
12023
12024 static int __init ipw_init(void)
12025 {
12026 int ret;
12027
12028 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12029 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12030
12031 ret = pci_register_driver(&ipw_driver);
12032 if (ret) {
12033 IPW_ERROR("Unable to initialize PCI module\n");
12034 return ret;
12035 }
12036
12037 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12038 if (ret) {
12039 IPW_ERROR("Unable to create driver sysfs file\n");
12040 pci_unregister_driver(&ipw_driver);
12041 return ret;
12042 }
12043
12044 return ret;
12045 }
12046
12047 static void __exit ipw_exit(void)
12048 {
12049 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12050 pci_unregister_driver(&ipw_driver);
12051 }
12052
12053 module_param(disable, int, 0444);
12054 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12055
12056 module_param(associate, int, 0444);
12057 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12058
12059 module_param(auto_create, int, 0444);
12060 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12061
12062 module_param_named(led, led_support, int, 0444);
12063 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12064
12065 module_param(debug, int, 0444);
12066 MODULE_PARM_DESC(debug, "debug output mask");
12067
12068 module_param_named(channel, default_channel, int, 0444);
12069 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12070
12071 #ifdef CONFIG_IPW2200_PROMISCUOUS
12072 module_param(rtap_iface, int, 0444);
12073 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12074 #endif
12075
12076 #ifdef CONFIG_IPW2200_QOS
12077 module_param(qos_enable, int, 0444);
12078 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12079
12080 module_param(qos_burst_enable, int, 0444);
12081 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12082
12083 module_param(qos_no_ack_mask, int, 0444);
12084 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12085
12086 module_param(burst_duration_CCK, int, 0444);
12087 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12088
12089 module_param(burst_duration_OFDM, int, 0444);
12090 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12091 #endif /* CONFIG_IPW2200_QOS */
12092
12093 #ifdef CONFIG_IPW2200_MONITOR
12094 module_param_named(mode, network_mode, int, 0444);
12095 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12096 #else
12097 module_param_named(mode, network_mode, int, 0444);
12098 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12099 #endif
12100
12101 module_param(bt_coexist, int, 0444);
12102 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12103
12104 module_param(hwcrypto, int, 0444);
12105 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12106
12107 module_param(cmdlog, int, 0444);
12108 MODULE_PARM_DESC(cmdlog,
12109 "allocate a ring buffer for logging firmware commands");
12110
12111 module_param(roaming, int, 0444);
12112 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12113
12114 module_param(antenna, int, 0444);
12115 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12116
12117 module_exit(ipw_exit);
12118 module_init(ipw_init);