1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
43 #ifdef CONFIG_IPW2200_DEBUG
49 #ifdef CONFIG_IPW2200_MONITOR
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
61 #ifdef CONFIG_IPW2200_RADIOTAP
67 #ifdef CONFIG_IPW2200_QOS
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
81 MODULE_VERSION(DRV_VERSION
);
82 MODULE_AUTHOR(DRV_COPYRIGHT
);
83 MODULE_LICENSE("GPL");
84 MODULE_FIRMWARE("ipw2200-ibss.fw");
85 #ifdef CONFIG_IPW2200_MONITOR
86 MODULE_FIRMWARE("ipw2200-sniffer.fw");
88 MODULE_FIRMWARE("ipw2200-bss.fw");
90 static int cmdlog
= 0;
92 static int default_channel
= 0;
93 static int network_mode
= 0;
95 static u32 ipw_debug_level
;
97 static int auto_create
= 1;
98 static int led_support
= 0;
99 static int disable
= 0;
100 static int bt_coexist
= 0;
101 static int hwcrypto
= 0;
102 static int roaming
= 1;
103 static const char ipw_modes
[] = {
106 static int antenna
= CFG_SYS_ANTENNA_BOTH
;
108 #ifdef CONFIG_IPW2200_PROMISCUOUS
109 static int rtap_iface
= 0; /* def: 0 -- do not create rtap interface */
112 static struct ieee80211_rate ipw2200_rates
[] = {
114 { .bitrate
= 20, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
115 { .bitrate
= 55, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
116 { .bitrate
= 110, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
127 #define ipw2200_a_rates (ipw2200_rates + 4)
128 #define ipw2200_num_a_rates 8
129 #define ipw2200_bg_rates (ipw2200_rates + 0)
130 #define ipw2200_num_bg_rates 12
132 #ifdef CONFIG_IPW2200_QOS
133 static int qos_enable
= 0;
134 static int qos_burst_enable
= 0;
135 static int qos_no_ack_mask
= 0;
136 static int burst_duration_CCK
= 0;
137 static int burst_duration_OFDM
= 0;
139 static struct libipw_qos_parameters def_qos_parameters_OFDM
= {
140 {QOS_TX0_CW_MIN_OFDM
, QOS_TX1_CW_MIN_OFDM
, QOS_TX2_CW_MIN_OFDM
,
141 QOS_TX3_CW_MIN_OFDM
},
142 {QOS_TX0_CW_MAX_OFDM
, QOS_TX1_CW_MAX_OFDM
, QOS_TX2_CW_MAX_OFDM
,
143 QOS_TX3_CW_MAX_OFDM
},
144 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
145 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
146 {QOS_TX0_TXOP_LIMIT_OFDM
, QOS_TX1_TXOP_LIMIT_OFDM
,
147 QOS_TX2_TXOP_LIMIT_OFDM
, QOS_TX3_TXOP_LIMIT_OFDM
}
150 static struct libipw_qos_parameters def_qos_parameters_CCK
= {
151 {QOS_TX0_CW_MIN_CCK
, QOS_TX1_CW_MIN_CCK
, QOS_TX2_CW_MIN_CCK
,
153 {QOS_TX0_CW_MAX_CCK
, QOS_TX1_CW_MAX_CCK
, QOS_TX2_CW_MAX_CCK
,
155 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
156 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
157 {QOS_TX0_TXOP_LIMIT_CCK
, QOS_TX1_TXOP_LIMIT_CCK
, QOS_TX2_TXOP_LIMIT_CCK
,
158 QOS_TX3_TXOP_LIMIT_CCK
}
161 static struct libipw_qos_parameters def_parameters_OFDM
= {
162 {DEF_TX0_CW_MIN_OFDM
, DEF_TX1_CW_MIN_OFDM
, DEF_TX2_CW_MIN_OFDM
,
163 DEF_TX3_CW_MIN_OFDM
},
164 {DEF_TX0_CW_MAX_OFDM
, DEF_TX1_CW_MAX_OFDM
, DEF_TX2_CW_MAX_OFDM
,
165 DEF_TX3_CW_MAX_OFDM
},
166 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
167 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
168 {DEF_TX0_TXOP_LIMIT_OFDM
, DEF_TX1_TXOP_LIMIT_OFDM
,
169 DEF_TX2_TXOP_LIMIT_OFDM
, DEF_TX3_TXOP_LIMIT_OFDM
}
172 static struct libipw_qos_parameters def_parameters_CCK
= {
173 {DEF_TX0_CW_MIN_CCK
, DEF_TX1_CW_MIN_CCK
, DEF_TX2_CW_MIN_CCK
,
175 {DEF_TX0_CW_MAX_CCK
, DEF_TX1_CW_MAX_CCK
, DEF_TX2_CW_MAX_CCK
,
177 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
178 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
179 {DEF_TX0_TXOP_LIMIT_CCK
, DEF_TX1_TXOP_LIMIT_CCK
, DEF_TX2_TXOP_LIMIT_CCK
,
180 DEF_TX3_TXOP_LIMIT_CCK
}
183 static u8 qos_oui
[QOS_OUI_LEN
] = { 0x00, 0x50, 0xF2 };
185 static int from_priority_to_tx_queue
[] = {
186 IPW_TX_QUEUE_1
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_1
,
187 IPW_TX_QUEUE_3
, IPW_TX_QUEUE_3
, IPW_TX_QUEUE_4
, IPW_TX_QUEUE_4
190 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
);
192 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
194 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
196 #endif /* CONFIG_IPW2200_QOS */
198 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
);
199 static void ipw_remove_current_network(struct ipw_priv
*priv
);
200 static void ipw_rx(struct ipw_priv
*priv
);
201 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
202 struct clx2_tx_queue
*txq
, int qindex
);
203 static int ipw_queue_reset(struct ipw_priv
*priv
);
205 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
208 static void ipw_tx_queue_free(struct ipw_priv
*);
210 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*);
211 static void ipw_rx_queue_free(struct ipw_priv
*, struct ipw_rx_queue
*);
212 static void ipw_rx_queue_replenish(void *);
213 static int ipw_up(struct ipw_priv
*);
214 static void ipw_bg_up(struct work_struct
*work
);
215 static void ipw_down(struct ipw_priv
*);
216 static void ipw_bg_down(struct work_struct
*work
);
217 static int ipw_config(struct ipw_priv
*);
218 static int init_supported_rates(struct ipw_priv
*priv
,
219 struct ipw_supported_rates
*prates
);
220 static void ipw_set_hwcrypto_keys(struct ipw_priv
*);
221 static void ipw_send_wep_keys(struct ipw_priv
*, int);
223 static int snprint_line(char *buf
, size_t count
,
224 const u8
* data
, u32 len
, u32 ofs
)
229 out
= snprintf(buf
, count
, "%08X", ofs
);
231 for (l
= 0, i
= 0; i
< 2; i
++) {
232 out
+= snprintf(buf
+ out
, count
- out
, " ");
233 for (j
= 0; j
< 8 && l
< len
; j
++, l
++)
234 out
+= snprintf(buf
+ out
, count
- out
, "%02X ",
237 out
+= snprintf(buf
+ out
, count
- out
, " ");
240 out
+= snprintf(buf
+ out
, count
- out
, " ");
241 for (l
= 0, i
= 0; i
< 2; i
++) {
242 out
+= snprintf(buf
+ out
, count
- out
, " ");
243 for (j
= 0; j
< 8 && l
< len
; j
++, l
++) {
244 c
= data
[(i
* 8 + j
)];
245 if (!isascii(c
) || !isprint(c
))
248 out
+= snprintf(buf
+ out
, count
- out
, "%c", c
);
252 out
+= snprintf(buf
+ out
, count
- out
, " ");
258 static void printk_buf(int level
, const u8
* data
, u32 len
)
262 if (!(ipw_debug_level
& level
))
266 snprint_line(line
, sizeof(line
), &data
[ofs
],
268 printk(KERN_DEBUG
"%s\n", line
);
270 len
-= min(len
, 16U);
274 static int snprintk_buf(u8
* output
, size_t size
, const u8
* data
, size_t len
)
280 while (size
&& len
) {
281 out
= snprint_line(output
, size
, &data
[ofs
],
282 min_t(size_t, len
, 16U), ofs
);
287 len
-= min_t(size_t, len
, 16U);
293 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
294 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
);
295 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
297 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
298 static u8
_ipw_read_reg8(struct ipw_priv
*ipw
, u32 reg
);
299 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
301 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
302 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
);
303 static inline void ipw_write_reg8(struct ipw_priv
*a
, u32 b
, u8 c
)
305 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__
,
306 __LINE__
, (u32
) (b
), (u32
) (c
));
307 _ipw_write_reg8(a
, b
, c
);
310 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
311 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
);
312 static inline void ipw_write_reg16(struct ipw_priv
*a
, u32 b
, u16 c
)
314 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__
,
315 __LINE__
, (u32
) (b
), (u32
) (c
));
316 _ipw_write_reg16(a
, b
, c
);
319 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
320 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
);
321 static inline void ipw_write_reg32(struct ipw_priv
*a
, u32 b
, u32 c
)
323 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__
,
324 __LINE__
, (u32
) (b
), (u32
) (c
));
325 _ipw_write_reg32(a
, b
, c
);
328 /* 8-bit direct write (low 4K) */
329 static inline void _ipw_write8(struct ipw_priv
*ipw
, unsigned long ofs
,
332 writeb(val
, ipw
->hw_base
+ ofs
);
335 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
336 #define ipw_write8(ipw, ofs, val) do { \
337 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
338 __LINE__, (u32)(ofs), (u32)(val)); \
339 _ipw_write8(ipw, ofs, val); \
342 /* 16-bit direct write (low 4K) */
343 static inline void _ipw_write16(struct ipw_priv
*ipw
, unsigned long ofs
,
346 writew(val
, ipw
->hw_base
+ ofs
);
349 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
350 #define ipw_write16(ipw, ofs, val) do { \
351 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
352 __LINE__, (u32)(ofs), (u32)(val)); \
353 _ipw_write16(ipw, ofs, val); \
356 /* 32-bit direct write (low 4K) */
357 static inline void _ipw_write32(struct ipw_priv
*ipw
, unsigned long ofs
,
360 writel(val
, ipw
->hw_base
+ ofs
);
363 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
364 #define ipw_write32(ipw, ofs, val) do { \
365 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
366 __LINE__, (u32)(ofs), (u32)(val)); \
367 _ipw_write32(ipw, ofs, val); \
370 /* 8-bit direct read (low 4K) */
371 static inline u8
_ipw_read8(struct ipw_priv
*ipw
, unsigned long ofs
)
373 return readb(ipw
->hw_base
+ ofs
);
376 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
377 #define ipw_read8(ipw, ofs) ({ \
378 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
380 _ipw_read8(ipw, ofs); \
383 /* 16-bit direct read (low 4K) */
384 static inline u16
_ipw_read16(struct ipw_priv
*ipw
, unsigned long ofs
)
386 return readw(ipw
->hw_base
+ ofs
);
389 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
390 #define ipw_read16(ipw, ofs) ({ \
391 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
393 _ipw_read16(ipw, ofs); \
396 /* 32-bit direct read (low 4K) */
397 static inline u32
_ipw_read32(struct ipw_priv
*ipw
, unsigned long ofs
)
399 return readl(ipw
->hw_base
+ ofs
);
402 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
403 #define ipw_read32(ipw, ofs) ({ \
404 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
406 _ipw_read32(ipw, ofs); \
409 static void _ipw_read_indirect(struct ipw_priv
*, u32
, u8
*, int);
410 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
411 #define ipw_read_indirect(a, b, c, d) ({ \
412 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
413 __LINE__, (u32)(b), (u32)(d)); \
414 _ipw_read_indirect(a, b, c, d); \
417 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
418 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* data
,
420 #define ipw_write_indirect(a, b, c, d) do { \
421 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
422 __LINE__, (u32)(b), (u32)(d)); \
423 _ipw_write_indirect(a, b, c, d); \
426 /* 32-bit indirect write (above 4K) */
427 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
)
429 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv
, reg
, value
);
430 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
431 _ipw_write32(priv
, IPW_INDIRECT_DATA
, value
);
434 /* 8-bit indirect write (above 4K) */
435 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
)
437 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
438 u32 dif_len
= reg
- aligned_addr
;
440 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
441 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
442 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
445 /* 16-bit indirect write (above 4K) */
446 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
)
448 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
449 u32 dif_len
= (reg
- aligned_addr
) & (~0x1ul
);
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
452 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
453 _ipw_write16(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
456 /* 8-bit indirect read (above 4K) */
457 static u8
_ipw_read_reg8(struct ipw_priv
*priv
, u32 reg
)
460 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
& IPW_INDIRECT_ADDR_MASK
);
461 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg
);
462 word
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
463 return (word
>> ((reg
& 0x3) * 8)) & 0xff;
466 /* 32-bit indirect read (above 4K) */
467 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
)
471 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv
, reg
);
473 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
474 value
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
475 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg
, value
);
479 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
480 /* for area above 1st 4K of SRAM/reg space */
481 static void _ipw_read_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
484 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
485 u32 dif_len
= addr
- aligned_addr
;
488 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
494 /* Read the first dword (or portion) byte by byte */
495 if (unlikely(dif_len
)) {
496 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
497 /* Start reading at aligned_addr + dif_len */
498 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--)
499 *buf
++ = _ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
503 /* Read all of the middle dwords as dwords, with auto-increment */
504 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
505 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
506 *(u32
*) buf
= _ipw_read32(priv
, IPW_AUTOINC_DATA
);
508 /* Read the last dword (or portion) byte by byte */
510 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
511 for (i
= 0; num
> 0; i
++, num
--)
512 *buf
++ = ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /* for area above 1st 4K of SRAM/reg space */
518 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
521 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
522 u32 dif_len
= addr
- aligned_addr
;
525 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
531 /* Write the first dword (or portion) byte by byte */
532 if (unlikely(dif_len
)) {
533 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
534 /* Start writing at aligned_addr + dif_len */
535 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--, buf
++)
536 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
540 /* Write all of the middle dwords as dwords, with auto-increment */
541 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
542 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
543 _ipw_write32(priv
, IPW_AUTOINC_DATA
, *(u32
*) buf
);
545 /* Write the last dword (or portion) byte by byte */
547 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
548 for (i
= 0; num
> 0; i
++, num
--, buf
++)
549 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
553 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
554 /* for 1st 4K of SRAM/regs space */
555 static void ipw_write_direct(struct ipw_priv
*priv
, u32 addr
, void *buf
,
558 memcpy_toio((priv
->hw_base
+ addr
), buf
, num
);
561 /* Set bit(s) in low 4K of SRAM/regs */
562 static inline void ipw_set_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
564 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) | mask
);
567 /* Clear bit(s) in low 4K of SRAM/regs */
568 static inline void ipw_clear_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
570 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) & ~mask
);
573 static inline void __ipw_enable_interrupts(struct ipw_priv
*priv
)
575 if (priv
->status
& STATUS_INT_ENABLED
)
577 priv
->status
|= STATUS_INT_ENABLED
;
578 ipw_write32(priv
, IPW_INTA_MASK_R
, IPW_INTA_MASK_ALL
);
581 static inline void __ipw_disable_interrupts(struct ipw_priv
*priv
)
583 if (!(priv
->status
& STATUS_INT_ENABLED
))
585 priv
->status
&= ~STATUS_INT_ENABLED
;
586 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
589 static inline void ipw_enable_interrupts(struct ipw_priv
*priv
)
593 spin_lock_irqsave(&priv
->irq_lock
, flags
);
594 __ipw_enable_interrupts(priv
);
595 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
598 static inline void ipw_disable_interrupts(struct ipw_priv
*priv
)
602 spin_lock_irqsave(&priv
->irq_lock
, flags
);
603 __ipw_disable_interrupts(priv
);
604 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
607 static char *ipw_error_desc(u32 val
)
610 case IPW_FW_ERROR_OK
:
612 case IPW_FW_ERROR_FAIL
:
614 case IPW_FW_ERROR_MEMORY_UNDERFLOW
:
615 return "MEMORY_UNDERFLOW";
616 case IPW_FW_ERROR_MEMORY_OVERFLOW
:
617 return "MEMORY_OVERFLOW";
618 case IPW_FW_ERROR_BAD_PARAM
:
620 case IPW_FW_ERROR_BAD_CHECKSUM
:
621 return "BAD_CHECKSUM";
622 case IPW_FW_ERROR_NMI_INTERRUPT
:
623 return "NMI_INTERRUPT";
624 case IPW_FW_ERROR_BAD_DATABASE
:
625 return "BAD_DATABASE";
626 case IPW_FW_ERROR_ALLOC_FAIL
:
628 case IPW_FW_ERROR_DMA_UNDERRUN
:
629 return "DMA_UNDERRUN";
630 case IPW_FW_ERROR_DMA_STATUS
:
632 case IPW_FW_ERROR_DINO_ERROR
:
634 case IPW_FW_ERROR_EEPROM_ERROR
:
635 return "EEPROM_ERROR";
636 case IPW_FW_ERROR_SYSASSERT
:
638 case IPW_FW_ERROR_FATAL_ERROR
:
639 return "FATAL_ERROR";
641 return "UNKNOWN_ERROR";
645 static void ipw_dump_error_log(struct ipw_priv
*priv
,
646 struct ipw_fw_error
*error
)
651 IPW_ERROR("Error allocating and capturing error log. "
652 "Nothing to dump.\n");
656 IPW_ERROR("Start IPW Error Log Dump:\n");
657 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
658 error
->status
, error
->config
);
660 for (i
= 0; i
< error
->elem_len
; i
++)
661 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
662 ipw_error_desc(error
->elem
[i
].desc
),
664 error
->elem
[i
].blink1
,
665 error
->elem
[i
].blink2
,
666 error
->elem
[i
].link1
,
667 error
->elem
[i
].link2
, error
->elem
[i
].data
);
668 for (i
= 0; i
< error
->log_len
; i
++)
669 IPW_ERROR("%i\t0x%08x\t%i\n",
671 error
->log
[i
].data
, error
->log
[i
].event
);
674 static inline int ipw_is_init(struct ipw_priv
*priv
)
676 return (priv
->status
& STATUS_INIT
) ? 1 : 0;
679 static int ipw_get_ordinal(struct ipw_priv
*priv
, u32 ord
, void *val
, u32
* len
)
681 u32 addr
, field_info
, field_len
, field_count
, total_len
;
683 IPW_DEBUG_ORD("ordinal = %i\n", ord
);
685 if (!priv
|| !val
|| !len
) {
686 IPW_DEBUG_ORD("Invalid argument\n");
690 /* verify device ordinal tables have been initialized */
691 if (!priv
->table0_addr
|| !priv
->table1_addr
|| !priv
->table2_addr
) {
692 IPW_DEBUG_ORD("Access ordinals before initialization\n");
696 switch (IPW_ORD_TABLE_ID_MASK
& ord
) {
697 case IPW_ORD_TABLE_0_MASK
:
699 * TABLE 0: Direct access to a table of 32 bit values
701 * This is a very simple table with the data directly
702 * read from the table
705 /* remove the table id from the ordinal */
706 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
709 if (ord
> priv
->table0_len
) {
710 IPW_DEBUG_ORD("ordinal value (%i) longer then "
711 "max (%i)\n", ord
, priv
->table0_len
);
715 /* verify we have enough room to store the value */
716 if (*len
< sizeof(u32
)) {
717 IPW_DEBUG_ORD("ordinal buffer length too small, "
718 "need %zd\n", sizeof(u32
));
722 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
723 ord
, priv
->table0_addr
+ (ord
<< 2));
727 *((u32
*) val
) = ipw_read32(priv
, priv
->table0_addr
+ ord
);
730 case IPW_ORD_TABLE_1_MASK
:
732 * TABLE 1: Indirect access to a table of 32 bit values
734 * This is a fairly large table of u32 values each
735 * representing starting addr for the data (which is
739 /* remove the table id from the ordinal */
740 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
743 if (ord
> priv
->table1_len
) {
744 IPW_DEBUG_ORD("ordinal value too long\n");
748 /* verify we have enough room to store the value */
749 if (*len
< sizeof(u32
)) {
750 IPW_DEBUG_ORD("ordinal buffer length too small, "
751 "need %zd\n", sizeof(u32
));
756 ipw_read_reg32(priv
, (priv
->table1_addr
+ (ord
<< 2)));
760 case IPW_ORD_TABLE_2_MASK
:
762 * TABLE 2: Indirect access to a table of variable sized values
764 * This table consist of six values, each containing
765 * - dword containing the starting offset of the data
766 * - dword containing the lengh in the first 16bits
767 * and the count in the second 16bits
770 /* remove the table id from the ordinal */
771 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
774 if (ord
> priv
->table2_len
) {
775 IPW_DEBUG_ORD("ordinal value too long\n");
779 /* get the address of statistic */
780 addr
= ipw_read_reg32(priv
, priv
->table2_addr
+ (ord
<< 3));
782 /* get the second DW of statistics ;
783 * two 16-bit words - first is length, second is count */
786 priv
->table2_addr
+ (ord
<< 3) +
789 /* get each entry length */
790 field_len
= *((u16
*) & field_info
);
792 /* get number of entries */
793 field_count
= *(((u16
*) & field_info
) + 1);
795 /* abort if not enough memory */
796 total_len
= field_len
* field_count
;
797 if (total_len
> *len
) {
806 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
807 "field_info = 0x%08x\n",
808 addr
, total_len
, field_info
);
809 ipw_read_indirect(priv
, addr
, val
, total_len
);
813 IPW_DEBUG_ORD("Invalid ordinal!\n");
821 static void ipw_init_ordinals(struct ipw_priv
*priv
)
823 priv
->table0_addr
= IPW_ORDINALS_TABLE_LOWER
;
824 priv
->table0_len
= ipw_read32(priv
, priv
->table0_addr
);
826 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
827 priv
->table0_addr
, priv
->table0_len
);
829 priv
->table1_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_1
);
830 priv
->table1_len
= ipw_read_reg32(priv
, priv
->table1_addr
);
832 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
833 priv
->table1_addr
, priv
->table1_len
);
835 priv
->table2_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_2
);
836 priv
->table2_len
= ipw_read_reg32(priv
, priv
->table2_addr
);
837 priv
->table2_len
&= 0x0000ffff; /* use first two bytes */
839 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
840 priv
->table2_addr
, priv
->table2_len
);
844 static u32
ipw_register_toggle(u32 reg
)
846 reg
&= ~IPW_START_STANDBY
;
847 if (reg
& IPW_GATE_ODMA
)
848 reg
&= ~IPW_GATE_ODMA
;
849 if (reg
& IPW_GATE_IDMA
)
850 reg
&= ~IPW_GATE_IDMA
;
851 if (reg
& IPW_GATE_ADMA
)
852 reg
&= ~IPW_GATE_ADMA
;
858 * - On radio ON, turn on any LEDs that require to be on during start
859 * - On initialization, start unassociated blink
860 * - On association, disable unassociated blink
861 * - On disassociation, start unassociated blink
862 * - On radio OFF, turn off any LEDs started during radio on
865 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
866 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
867 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
869 static void ipw_led_link_on(struct ipw_priv
*priv
)
874 /* If configured to not use LEDs, or nic_type is 1,
875 * then we don't toggle a LINK led */
876 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
879 spin_lock_irqsave(&priv
->lock
, flags
);
881 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
882 !(priv
->status
& STATUS_LED_LINK_ON
)) {
883 IPW_DEBUG_LED("Link LED On\n");
884 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
885 led
|= priv
->led_association_on
;
887 led
= ipw_register_toggle(led
);
889 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
890 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
892 priv
->status
|= STATUS_LED_LINK_ON
;
894 /* If we aren't associated, schedule turning the LED off */
895 if (!(priv
->status
& STATUS_ASSOCIATED
))
896 queue_delayed_work(priv
->workqueue
,
901 spin_unlock_irqrestore(&priv
->lock
, flags
);
904 static void ipw_bg_led_link_on(struct work_struct
*work
)
906 struct ipw_priv
*priv
=
907 container_of(work
, struct ipw_priv
, led_link_on
.work
);
908 mutex_lock(&priv
->mutex
);
909 ipw_led_link_on(priv
);
910 mutex_unlock(&priv
->mutex
);
913 static void ipw_led_link_off(struct ipw_priv
*priv
)
918 /* If configured not to use LEDs, or nic type is 1,
919 * then we don't goggle the LINK led. */
920 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
923 spin_lock_irqsave(&priv
->lock
, flags
);
925 if (priv
->status
& STATUS_LED_LINK_ON
) {
926 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
927 led
&= priv
->led_association_off
;
928 led
= ipw_register_toggle(led
);
930 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
931 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
933 IPW_DEBUG_LED("Link LED Off\n");
935 priv
->status
&= ~STATUS_LED_LINK_ON
;
937 /* If we aren't associated and the radio is on, schedule
938 * turning the LED on (blink while unassociated) */
939 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
940 !(priv
->status
& STATUS_ASSOCIATED
))
941 queue_delayed_work(priv
->workqueue
, &priv
->led_link_on
,
946 spin_unlock_irqrestore(&priv
->lock
, flags
);
949 static void ipw_bg_led_link_off(struct work_struct
*work
)
951 struct ipw_priv
*priv
=
952 container_of(work
, struct ipw_priv
, led_link_off
.work
);
953 mutex_lock(&priv
->mutex
);
954 ipw_led_link_off(priv
);
955 mutex_unlock(&priv
->mutex
);
958 static void __ipw_led_activity_on(struct ipw_priv
*priv
)
962 if (priv
->config
& CFG_NO_LED
)
965 if (priv
->status
& STATUS_RF_KILL_MASK
)
968 if (!(priv
->status
& STATUS_LED_ACT_ON
)) {
969 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
970 led
|= priv
->led_activity_on
;
972 led
= ipw_register_toggle(led
);
974 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
975 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
977 IPW_DEBUG_LED("Activity LED On\n");
979 priv
->status
|= STATUS_LED_ACT_ON
;
981 cancel_delayed_work(&priv
->led_act_off
);
982 queue_delayed_work(priv
->workqueue
, &priv
->led_act_off
,
985 /* Reschedule LED off for full time period */
986 cancel_delayed_work(&priv
->led_act_off
);
987 queue_delayed_work(priv
->workqueue
, &priv
->led_act_off
,
993 void ipw_led_activity_on(struct ipw_priv
*priv
)
996 spin_lock_irqsave(&priv
->lock
, flags
);
997 __ipw_led_activity_on(priv
);
998 spin_unlock_irqrestore(&priv
->lock
, flags
);
1002 static void ipw_led_activity_off(struct ipw_priv
*priv
)
1004 unsigned long flags
;
1007 if (priv
->config
& CFG_NO_LED
)
1010 spin_lock_irqsave(&priv
->lock
, flags
);
1012 if (priv
->status
& STATUS_LED_ACT_ON
) {
1013 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1014 led
&= priv
->led_activity_off
;
1016 led
= ipw_register_toggle(led
);
1018 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1019 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1021 IPW_DEBUG_LED("Activity LED Off\n");
1023 priv
->status
&= ~STATUS_LED_ACT_ON
;
1026 spin_unlock_irqrestore(&priv
->lock
, flags
);
1029 static void ipw_bg_led_activity_off(struct work_struct
*work
)
1031 struct ipw_priv
*priv
=
1032 container_of(work
, struct ipw_priv
, led_act_off
.work
);
1033 mutex_lock(&priv
->mutex
);
1034 ipw_led_activity_off(priv
);
1035 mutex_unlock(&priv
->mutex
);
1038 static void ipw_led_band_on(struct ipw_priv
*priv
)
1040 unsigned long flags
;
1043 /* Only nic type 1 supports mode LEDs */
1044 if (priv
->config
& CFG_NO_LED
||
1045 priv
->nic_type
!= EEPROM_NIC_TYPE_1
|| !priv
->assoc_network
)
1048 spin_lock_irqsave(&priv
->lock
, flags
);
1050 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1051 if (priv
->assoc_network
->mode
== IEEE_A
) {
1052 led
|= priv
->led_ofdm_on
;
1053 led
&= priv
->led_association_off
;
1054 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1055 } else if (priv
->assoc_network
->mode
== IEEE_G
) {
1056 led
|= priv
->led_ofdm_on
;
1057 led
|= priv
->led_association_on
;
1058 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1060 led
&= priv
->led_ofdm_off
;
1061 led
|= priv
->led_association_on
;
1062 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1065 led
= ipw_register_toggle(led
);
1067 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1068 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1070 spin_unlock_irqrestore(&priv
->lock
, flags
);
1073 static void ipw_led_band_off(struct ipw_priv
*priv
)
1075 unsigned long flags
;
1078 /* Only nic type 1 supports mode LEDs */
1079 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
!= EEPROM_NIC_TYPE_1
)
1082 spin_lock_irqsave(&priv
->lock
, flags
);
1084 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1085 led
&= priv
->led_ofdm_off
;
1086 led
&= priv
->led_association_off
;
1088 led
= ipw_register_toggle(led
);
1090 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1091 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1093 spin_unlock_irqrestore(&priv
->lock
, flags
);
1096 static void ipw_led_radio_on(struct ipw_priv
*priv
)
1098 ipw_led_link_on(priv
);
1101 static void ipw_led_radio_off(struct ipw_priv
*priv
)
1103 ipw_led_activity_off(priv
);
1104 ipw_led_link_off(priv
);
1107 static void ipw_led_link_up(struct ipw_priv
*priv
)
1109 /* Set the Link Led on for all nic types */
1110 ipw_led_link_on(priv
);
1113 static void ipw_led_link_down(struct ipw_priv
*priv
)
1115 ipw_led_activity_off(priv
);
1116 ipw_led_link_off(priv
);
1118 if (priv
->status
& STATUS_RF_KILL_MASK
)
1119 ipw_led_radio_off(priv
);
1122 static void ipw_led_init(struct ipw_priv
*priv
)
1124 priv
->nic_type
= priv
->eeprom
[EEPROM_NIC_TYPE
];
1126 /* Set the default PINs for the link and activity leds */
1127 priv
->led_activity_on
= IPW_ACTIVITY_LED
;
1128 priv
->led_activity_off
= ~(IPW_ACTIVITY_LED
);
1130 priv
->led_association_on
= IPW_ASSOCIATED_LED
;
1131 priv
->led_association_off
= ~(IPW_ASSOCIATED_LED
);
1133 /* Set the default PINs for the OFDM leds */
1134 priv
->led_ofdm_on
= IPW_OFDM_LED
;
1135 priv
->led_ofdm_off
= ~(IPW_OFDM_LED
);
1137 switch (priv
->nic_type
) {
1138 case EEPROM_NIC_TYPE_1
:
1139 /* In this NIC type, the LEDs are reversed.... */
1140 priv
->led_activity_on
= IPW_ASSOCIATED_LED
;
1141 priv
->led_activity_off
= ~(IPW_ASSOCIATED_LED
);
1142 priv
->led_association_on
= IPW_ACTIVITY_LED
;
1143 priv
->led_association_off
= ~(IPW_ACTIVITY_LED
);
1145 if (!(priv
->config
& CFG_NO_LED
))
1146 ipw_led_band_on(priv
);
1148 /* And we don't blink link LEDs for this nic, so
1149 * just return here */
1152 case EEPROM_NIC_TYPE_3
:
1153 case EEPROM_NIC_TYPE_2
:
1154 case EEPROM_NIC_TYPE_4
:
1155 case EEPROM_NIC_TYPE_0
:
1159 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1161 priv
->nic_type
= EEPROM_NIC_TYPE_0
;
1165 if (!(priv
->config
& CFG_NO_LED
)) {
1166 if (priv
->status
& STATUS_ASSOCIATED
)
1167 ipw_led_link_on(priv
);
1169 ipw_led_link_off(priv
);
1173 static void ipw_led_shutdown(struct ipw_priv
*priv
)
1175 ipw_led_activity_off(priv
);
1176 ipw_led_link_off(priv
);
1177 ipw_led_band_off(priv
);
1178 cancel_delayed_work(&priv
->led_link_on
);
1179 cancel_delayed_work(&priv
->led_link_off
);
1180 cancel_delayed_work(&priv
->led_act_off
);
1184 * The following adds a new attribute to the sysfs representation
1185 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1186 * used for controling the debug level.
1188 * See the level definitions in ipw for details.
1190 static ssize_t
show_debug_level(struct device_driver
*d
, char *buf
)
1192 return sprintf(buf
, "0x%08X\n", ipw_debug_level
);
1195 static ssize_t
store_debug_level(struct device_driver
*d
, const char *buf
,
1198 char *p
= (char *)buf
;
1201 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1203 if (p
[0] == 'x' || p
[0] == 'X')
1205 val
= simple_strtoul(p
, &p
, 16);
1207 val
= simple_strtoul(p
, &p
, 10);
1209 printk(KERN_INFO DRV_NAME
1210 ": %s is not in hex or decimal form.\n", buf
);
1212 ipw_debug_level
= val
;
1214 return strnlen(buf
, count
);
1217 static DRIVER_ATTR(debug_level
, S_IWUSR
| S_IRUGO
,
1218 show_debug_level
, store_debug_level
);
1220 static inline u32
ipw_get_event_log_len(struct ipw_priv
*priv
)
1222 /* length = 1st dword in log */
1223 return ipw_read_reg32(priv
, ipw_read32(priv
, IPW_EVENT_LOG
));
1226 static void ipw_capture_event_log(struct ipw_priv
*priv
,
1227 u32 log_len
, struct ipw_event
*log
)
1232 base
= ipw_read32(priv
, IPW_EVENT_LOG
);
1233 ipw_read_indirect(priv
, base
+ sizeof(base
) + sizeof(u32
),
1234 (u8
*) log
, sizeof(*log
) * log_len
);
1238 static struct ipw_fw_error
*ipw_alloc_error_log(struct ipw_priv
*priv
)
1240 struct ipw_fw_error
*error
;
1241 u32 log_len
= ipw_get_event_log_len(priv
);
1242 u32 base
= ipw_read32(priv
, IPW_ERROR_LOG
);
1243 u32 elem_len
= ipw_read_reg32(priv
, base
);
1245 error
= kmalloc(sizeof(*error
) +
1246 sizeof(*error
->elem
) * elem_len
+
1247 sizeof(*error
->log
) * log_len
, GFP_ATOMIC
);
1249 IPW_ERROR("Memory allocation for firmware error log "
1253 error
->jiffies
= jiffies
;
1254 error
->status
= priv
->status
;
1255 error
->config
= priv
->config
;
1256 error
->elem_len
= elem_len
;
1257 error
->log_len
= log_len
;
1258 error
->elem
= (struct ipw_error_elem
*)error
->payload
;
1259 error
->log
= (struct ipw_event
*)(error
->elem
+ elem_len
);
1261 ipw_capture_event_log(priv
, log_len
, error
->log
);
1264 ipw_read_indirect(priv
, base
+ sizeof(base
), (u8
*) error
->elem
,
1265 sizeof(*error
->elem
) * elem_len
);
1270 static ssize_t
show_event_log(struct device
*d
,
1271 struct device_attribute
*attr
, char *buf
)
1273 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1274 u32 log_len
= ipw_get_event_log_len(priv
);
1276 struct ipw_event
*log
;
1279 /* not using min() because of its strict type checking */
1280 log_size
= PAGE_SIZE
/ sizeof(*log
) > log_len
?
1281 sizeof(*log
) * log_len
: PAGE_SIZE
;
1282 log
= kzalloc(log_size
, GFP_KERNEL
);
1284 IPW_ERROR("Unable to allocate memory for log\n");
1287 log_len
= log_size
/ sizeof(*log
);
1288 ipw_capture_event_log(priv
, log_len
, log
);
1290 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "%08X", log_len
);
1291 for (i
= 0; i
< log_len
; i
++)
1292 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1294 log
[i
].time
, log
[i
].event
, log
[i
].data
);
1295 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1300 static DEVICE_ATTR(event_log
, S_IRUGO
, show_event_log
, NULL
);
1302 static ssize_t
show_error(struct device
*d
,
1303 struct device_attribute
*attr
, char *buf
)
1305 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1309 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1310 "%08lX%08X%08X%08X",
1311 priv
->error
->jiffies
,
1312 priv
->error
->status
,
1313 priv
->error
->config
, priv
->error
->elem_len
);
1314 for (i
= 0; i
< priv
->error
->elem_len
; i
++)
1315 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1316 "\n%08X%08X%08X%08X%08X%08X%08X",
1317 priv
->error
->elem
[i
].time
,
1318 priv
->error
->elem
[i
].desc
,
1319 priv
->error
->elem
[i
].blink1
,
1320 priv
->error
->elem
[i
].blink2
,
1321 priv
->error
->elem
[i
].link1
,
1322 priv
->error
->elem
[i
].link2
,
1323 priv
->error
->elem
[i
].data
);
1325 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1326 "\n%08X", priv
->error
->log_len
);
1327 for (i
= 0; i
< priv
->error
->log_len
; i
++)
1328 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1330 priv
->error
->log
[i
].time
,
1331 priv
->error
->log
[i
].event
,
1332 priv
->error
->log
[i
].data
);
1333 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1337 static ssize_t
clear_error(struct device
*d
,
1338 struct device_attribute
*attr
,
1339 const char *buf
, size_t count
)
1341 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1348 static DEVICE_ATTR(error
, S_IRUGO
| S_IWUSR
, show_error
, clear_error
);
1350 static ssize_t
show_cmd_log(struct device
*d
,
1351 struct device_attribute
*attr
, char *buf
)
1353 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1357 for (i
= (priv
->cmdlog_pos
+ 1) % priv
->cmdlog_len
;
1358 (i
!= priv
->cmdlog_pos
) && (PAGE_SIZE
- len
);
1359 i
= (i
+ 1) % priv
->cmdlog_len
) {
1361 snprintf(buf
+ len
, PAGE_SIZE
- len
,
1362 "\n%08lX%08X%08X%08X\n", priv
->cmdlog
[i
].jiffies
,
1363 priv
->cmdlog
[i
].retcode
, priv
->cmdlog
[i
].cmd
.cmd
,
1364 priv
->cmdlog
[i
].cmd
.len
);
1366 snprintk_buf(buf
+ len
, PAGE_SIZE
- len
,
1367 (u8
*) priv
->cmdlog
[i
].cmd
.param
,
1368 priv
->cmdlog
[i
].cmd
.len
);
1369 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1371 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1375 static DEVICE_ATTR(cmd_log
, S_IRUGO
, show_cmd_log
, NULL
);
1377 #ifdef CONFIG_IPW2200_PROMISCUOUS
1378 static void ipw_prom_free(struct ipw_priv
*priv
);
1379 static int ipw_prom_alloc(struct ipw_priv
*priv
);
1380 static ssize_t
store_rtap_iface(struct device
*d
,
1381 struct device_attribute
*attr
,
1382 const char *buf
, size_t count
)
1384 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1395 if (netif_running(priv
->prom_net_dev
)) {
1396 IPW_WARNING("Interface is up. Cannot unregister.\n");
1400 ipw_prom_free(priv
);
1408 rc
= ipw_prom_alloc(priv
);
1418 IPW_ERROR("Failed to register promiscuous network "
1419 "device (error %d).\n", rc
);
1425 static ssize_t
show_rtap_iface(struct device
*d
,
1426 struct device_attribute
*attr
,
1429 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1431 return sprintf(buf
, "%s", priv
->prom_net_dev
->name
);
1440 static DEVICE_ATTR(rtap_iface
, S_IWUSR
| S_IRUSR
, show_rtap_iface
,
1443 static ssize_t
store_rtap_filter(struct device
*d
,
1444 struct device_attribute
*attr
,
1445 const char *buf
, size_t count
)
1447 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1449 if (!priv
->prom_priv
) {
1450 IPW_ERROR("Attempting to set filter without "
1451 "rtap_iface enabled.\n");
1455 priv
->prom_priv
->filter
= simple_strtol(buf
, NULL
, 0);
1457 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16
"\n",
1458 BIT_ARG16(priv
->prom_priv
->filter
));
1463 static ssize_t
show_rtap_filter(struct device
*d
,
1464 struct device_attribute
*attr
,
1467 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1468 return sprintf(buf
, "0x%04X",
1469 priv
->prom_priv
? priv
->prom_priv
->filter
: 0);
1472 static DEVICE_ATTR(rtap_filter
, S_IWUSR
| S_IRUSR
, show_rtap_filter
,
1476 static ssize_t
show_scan_age(struct device
*d
, struct device_attribute
*attr
,
1479 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1480 return sprintf(buf
, "%d\n", priv
->ieee
->scan_age
);
1483 static ssize_t
store_scan_age(struct device
*d
, struct device_attribute
*attr
,
1484 const char *buf
, size_t count
)
1486 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1487 struct net_device
*dev
= priv
->net_dev
;
1488 char buffer
[] = "00000000";
1490 (sizeof(buffer
) - 1) > count
? count
: sizeof(buffer
) - 1;
1494 IPW_DEBUG_INFO("enter\n");
1496 strncpy(buffer
, buf
, len
);
1499 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1501 if (p
[0] == 'x' || p
[0] == 'X')
1503 val
= simple_strtoul(p
, &p
, 16);
1505 val
= simple_strtoul(p
, &p
, 10);
1507 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev
->name
);
1509 priv
->ieee
->scan_age
= val
;
1510 IPW_DEBUG_INFO("set scan_age = %u\n", priv
->ieee
->scan_age
);
1513 IPW_DEBUG_INFO("exit\n");
1517 static DEVICE_ATTR(scan_age
, S_IWUSR
| S_IRUGO
, show_scan_age
, store_scan_age
);
1519 static ssize_t
show_led(struct device
*d
, struct device_attribute
*attr
,
1522 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1523 return sprintf(buf
, "%d\n", (priv
->config
& CFG_NO_LED
) ? 0 : 1);
1526 static ssize_t
store_led(struct device
*d
, struct device_attribute
*attr
,
1527 const char *buf
, size_t count
)
1529 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1531 IPW_DEBUG_INFO("enter\n");
1537 IPW_DEBUG_LED("Disabling LED control.\n");
1538 priv
->config
|= CFG_NO_LED
;
1539 ipw_led_shutdown(priv
);
1541 IPW_DEBUG_LED("Enabling LED control.\n");
1542 priv
->config
&= ~CFG_NO_LED
;
1546 IPW_DEBUG_INFO("exit\n");
1550 static DEVICE_ATTR(led
, S_IWUSR
| S_IRUGO
, show_led
, store_led
);
1552 static ssize_t
show_status(struct device
*d
,
1553 struct device_attribute
*attr
, char *buf
)
1555 struct ipw_priv
*p
= dev_get_drvdata(d
);
1556 return sprintf(buf
, "0x%08x\n", (int)p
->status
);
1559 static DEVICE_ATTR(status
, S_IRUGO
, show_status
, NULL
);
1561 static ssize_t
show_cfg(struct device
*d
, struct device_attribute
*attr
,
1564 struct ipw_priv
*p
= dev_get_drvdata(d
);
1565 return sprintf(buf
, "0x%08x\n", (int)p
->config
);
1568 static DEVICE_ATTR(cfg
, S_IRUGO
, show_cfg
, NULL
);
1570 static ssize_t
show_nic_type(struct device
*d
,
1571 struct device_attribute
*attr
, char *buf
)
1573 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1574 return sprintf(buf
, "TYPE: %d\n", priv
->nic_type
);
1577 static DEVICE_ATTR(nic_type
, S_IRUGO
, show_nic_type
, NULL
);
1579 static ssize_t
show_ucode_version(struct device
*d
,
1580 struct device_attribute
*attr
, char *buf
)
1582 u32 len
= sizeof(u32
), tmp
= 0;
1583 struct ipw_priv
*p
= dev_get_drvdata(d
);
1585 if (ipw_get_ordinal(p
, IPW_ORD_STAT_UCODE_VERSION
, &tmp
, &len
))
1588 return sprintf(buf
, "0x%08x\n", tmp
);
1591 static DEVICE_ATTR(ucode_version
, S_IWUSR
| S_IRUGO
, show_ucode_version
, NULL
);
1593 static ssize_t
show_rtc(struct device
*d
, struct device_attribute
*attr
,
1596 u32 len
= sizeof(u32
), tmp
= 0;
1597 struct ipw_priv
*p
= dev_get_drvdata(d
);
1599 if (ipw_get_ordinal(p
, IPW_ORD_STAT_RTC
, &tmp
, &len
))
1602 return sprintf(buf
, "0x%08x\n", tmp
);
1605 static DEVICE_ATTR(rtc
, S_IWUSR
| S_IRUGO
, show_rtc
, NULL
);
1608 * Add a device attribute to view/control the delay between eeprom
1611 static ssize_t
show_eeprom_delay(struct device
*d
,
1612 struct device_attribute
*attr
, char *buf
)
1614 struct ipw_priv
*p
= dev_get_drvdata(d
);
1615 int n
= p
->eeprom_delay
;
1616 return sprintf(buf
, "%i\n", n
);
1618 static ssize_t
store_eeprom_delay(struct device
*d
,
1619 struct device_attribute
*attr
,
1620 const char *buf
, size_t count
)
1622 struct ipw_priv
*p
= dev_get_drvdata(d
);
1623 sscanf(buf
, "%i", &p
->eeprom_delay
);
1624 return strnlen(buf
, count
);
1627 static DEVICE_ATTR(eeprom_delay
, S_IWUSR
| S_IRUGO
,
1628 show_eeprom_delay
, store_eeprom_delay
);
1630 static ssize_t
show_command_event_reg(struct device
*d
,
1631 struct device_attribute
*attr
, char *buf
)
1634 struct ipw_priv
*p
= dev_get_drvdata(d
);
1636 reg
= ipw_read_reg32(p
, IPW_INTERNAL_CMD_EVENT
);
1637 return sprintf(buf
, "0x%08x\n", reg
);
1639 static ssize_t
store_command_event_reg(struct device
*d
,
1640 struct device_attribute
*attr
,
1641 const char *buf
, size_t count
)
1644 struct ipw_priv
*p
= dev_get_drvdata(d
);
1646 sscanf(buf
, "%x", ®
);
1647 ipw_write_reg32(p
, IPW_INTERNAL_CMD_EVENT
, reg
);
1648 return strnlen(buf
, count
);
1651 static DEVICE_ATTR(command_event_reg
, S_IWUSR
| S_IRUGO
,
1652 show_command_event_reg
, store_command_event_reg
);
1654 static ssize_t
show_mem_gpio_reg(struct device
*d
,
1655 struct device_attribute
*attr
, char *buf
)
1658 struct ipw_priv
*p
= dev_get_drvdata(d
);
1660 reg
= ipw_read_reg32(p
, 0x301100);
1661 return sprintf(buf
, "0x%08x\n", reg
);
1663 static ssize_t
store_mem_gpio_reg(struct device
*d
,
1664 struct device_attribute
*attr
,
1665 const char *buf
, size_t count
)
1668 struct ipw_priv
*p
= dev_get_drvdata(d
);
1670 sscanf(buf
, "%x", ®
);
1671 ipw_write_reg32(p
, 0x301100, reg
);
1672 return strnlen(buf
, count
);
1675 static DEVICE_ATTR(mem_gpio_reg
, S_IWUSR
| S_IRUGO
,
1676 show_mem_gpio_reg
, store_mem_gpio_reg
);
1678 static ssize_t
show_indirect_dword(struct device
*d
,
1679 struct device_attribute
*attr
, char *buf
)
1682 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1684 if (priv
->status
& STATUS_INDIRECT_DWORD
)
1685 reg
= ipw_read_reg32(priv
, priv
->indirect_dword
);
1689 return sprintf(buf
, "0x%08x\n", reg
);
1691 static ssize_t
store_indirect_dword(struct device
*d
,
1692 struct device_attribute
*attr
,
1693 const char *buf
, size_t count
)
1695 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1697 sscanf(buf
, "%x", &priv
->indirect_dword
);
1698 priv
->status
|= STATUS_INDIRECT_DWORD
;
1699 return strnlen(buf
, count
);
1702 static DEVICE_ATTR(indirect_dword
, S_IWUSR
| S_IRUGO
,
1703 show_indirect_dword
, store_indirect_dword
);
1705 static ssize_t
show_indirect_byte(struct device
*d
,
1706 struct device_attribute
*attr
, char *buf
)
1709 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1711 if (priv
->status
& STATUS_INDIRECT_BYTE
)
1712 reg
= ipw_read_reg8(priv
, priv
->indirect_byte
);
1716 return sprintf(buf
, "0x%02x\n", reg
);
1718 static ssize_t
store_indirect_byte(struct device
*d
,
1719 struct device_attribute
*attr
,
1720 const char *buf
, size_t count
)
1722 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1724 sscanf(buf
, "%x", &priv
->indirect_byte
);
1725 priv
->status
|= STATUS_INDIRECT_BYTE
;
1726 return strnlen(buf
, count
);
1729 static DEVICE_ATTR(indirect_byte
, S_IWUSR
| S_IRUGO
,
1730 show_indirect_byte
, store_indirect_byte
);
1732 static ssize_t
show_direct_dword(struct device
*d
,
1733 struct device_attribute
*attr
, char *buf
)
1736 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1738 if (priv
->status
& STATUS_DIRECT_DWORD
)
1739 reg
= ipw_read32(priv
, priv
->direct_dword
);
1743 return sprintf(buf
, "0x%08x\n", reg
);
1745 static ssize_t
store_direct_dword(struct device
*d
,
1746 struct device_attribute
*attr
,
1747 const char *buf
, size_t count
)
1749 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1751 sscanf(buf
, "%x", &priv
->direct_dword
);
1752 priv
->status
|= STATUS_DIRECT_DWORD
;
1753 return strnlen(buf
, count
);
1756 static DEVICE_ATTR(direct_dword
, S_IWUSR
| S_IRUGO
,
1757 show_direct_dword
, store_direct_dword
);
1759 static int rf_kill_active(struct ipw_priv
*priv
)
1761 if (0 == (ipw_read32(priv
, 0x30) & 0x10000)) {
1762 priv
->status
|= STATUS_RF_KILL_HW
;
1763 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
1765 priv
->status
&= ~STATUS_RF_KILL_HW
;
1766 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, false);
1769 return (priv
->status
& STATUS_RF_KILL_HW
) ? 1 : 0;
1772 static ssize_t
show_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1775 /* 0 - RF kill not enabled
1776 1 - SW based RF kill active (sysfs)
1777 2 - HW based RF kill active
1778 3 - Both HW and SW baed RF kill active */
1779 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1780 int val
= ((priv
->status
& STATUS_RF_KILL_SW
) ? 0x1 : 0x0) |
1781 (rf_kill_active(priv
) ? 0x2 : 0x0);
1782 return sprintf(buf
, "%i\n", val
);
1785 static int ipw_radio_kill_sw(struct ipw_priv
*priv
, int disable_radio
)
1787 if ((disable_radio
? 1 : 0) ==
1788 ((priv
->status
& STATUS_RF_KILL_SW
) ? 1 : 0))
1791 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1792 disable_radio
? "OFF" : "ON");
1794 if (disable_radio
) {
1795 priv
->status
|= STATUS_RF_KILL_SW
;
1797 if (priv
->workqueue
) {
1798 cancel_delayed_work(&priv
->request_scan
);
1799 cancel_delayed_work(&priv
->request_direct_scan
);
1800 cancel_delayed_work(&priv
->request_passive_scan
);
1801 cancel_delayed_work(&priv
->scan_event
);
1803 queue_work(priv
->workqueue
, &priv
->down
);
1805 priv
->status
&= ~STATUS_RF_KILL_SW
;
1806 if (rf_kill_active(priv
)) {
1807 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1808 "disabled by HW switch\n");
1809 /* Make sure the RF_KILL check timer is running */
1810 cancel_delayed_work(&priv
->rf_kill
);
1811 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
,
1812 round_jiffies_relative(2 * HZ
));
1814 queue_work(priv
->workqueue
, &priv
->up
);
1820 static ssize_t
store_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1821 const char *buf
, size_t count
)
1823 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1825 ipw_radio_kill_sw(priv
, buf
[0] == '1');
1830 static DEVICE_ATTR(rf_kill
, S_IWUSR
| S_IRUGO
, show_rf_kill
, store_rf_kill
);
1832 static ssize_t
show_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1835 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1836 int pos
= 0, len
= 0;
1837 if (priv
->config
& CFG_SPEED_SCAN
) {
1838 while (priv
->speed_scan
[pos
] != 0)
1839 len
+= sprintf(&buf
[len
], "%d ",
1840 priv
->speed_scan
[pos
++]);
1841 return len
+ sprintf(&buf
[len
], "\n");
1844 return sprintf(buf
, "0\n");
1847 static ssize_t
store_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1848 const char *buf
, size_t count
)
1850 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1851 int channel
, pos
= 0;
1852 const char *p
= buf
;
1854 /* list of space separated channels to scan, optionally ending with 0 */
1855 while ((channel
= simple_strtol(p
, NULL
, 0))) {
1856 if (pos
== MAX_SPEED_SCAN
- 1) {
1857 priv
->speed_scan
[pos
] = 0;
1861 if (libipw_is_valid_channel(priv
->ieee
, channel
))
1862 priv
->speed_scan
[pos
++] = channel
;
1864 IPW_WARNING("Skipping invalid channel request: %d\n",
1869 while (*p
== ' ' || *p
== '\t')
1874 priv
->config
&= ~CFG_SPEED_SCAN
;
1876 priv
->speed_scan_pos
= 0;
1877 priv
->config
|= CFG_SPEED_SCAN
;
1883 static DEVICE_ATTR(speed_scan
, S_IWUSR
| S_IRUGO
, show_speed_scan
,
1886 static ssize_t
show_net_stats(struct device
*d
, struct device_attribute
*attr
,
1889 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1890 return sprintf(buf
, "%c\n", (priv
->config
& CFG_NET_STATS
) ? '1' : '0');
1893 static ssize_t
store_net_stats(struct device
*d
, struct device_attribute
*attr
,
1894 const char *buf
, size_t count
)
1896 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1898 priv
->config
|= CFG_NET_STATS
;
1900 priv
->config
&= ~CFG_NET_STATS
;
1905 static DEVICE_ATTR(net_stats
, S_IWUSR
| S_IRUGO
,
1906 show_net_stats
, store_net_stats
);
1908 static ssize_t
show_channels(struct device
*d
,
1909 struct device_attribute
*attr
,
1912 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1913 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
1916 len
= sprintf(&buf
[len
],
1917 "Displaying %d channels in 2.4Ghz band "
1918 "(802.11bg):\n", geo
->bg_channels
);
1920 for (i
= 0; i
< geo
->bg_channels
; i
++) {
1921 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s, Band %s.\n",
1923 geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1924 " (radar spectrum)" : "",
1925 ((geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1926 (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1928 geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1929 "passive only" : "active/passive",
1930 geo
->bg
[i
].flags
& LIBIPW_CH_B_ONLY
?
1934 len
+= sprintf(&buf
[len
],
1935 "Displaying %d channels in 5.2Ghz band "
1936 "(802.11a):\n", geo
->a_channels
);
1937 for (i
= 0; i
< geo
->a_channels
; i
++) {
1938 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s.\n",
1940 geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1941 " (radar spectrum)" : "",
1942 ((geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1943 (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1945 geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1946 "passive only" : "active/passive");
1952 static DEVICE_ATTR(channels
, S_IRUSR
, show_channels
, NULL
);
1954 static void notify_wx_assoc_event(struct ipw_priv
*priv
)
1956 union iwreq_data wrqu
;
1957 wrqu
.ap_addr
.sa_family
= ARPHRD_ETHER
;
1958 if (priv
->status
& STATUS_ASSOCIATED
)
1959 memcpy(wrqu
.ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
1961 memset(wrqu
.ap_addr
.sa_data
, 0, ETH_ALEN
);
1962 wireless_send_event(priv
->net_dev
, SIOCGIWAP
, &wrqu
, NULL
);
1965 static void ipw_irq_tasklet(struct ipw_priv
*priv
)
1967 u32 inta
, inta_mask
, handled
= 0;
1968 unsigned long flags
;
1971 spin_lock_irqsave(&priv
->irq_lock
, flags
);
1973 inta
= ipw_read32(priv
, IPW_INTA_RW
);
1974 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
1975 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
1977 /* Add any cached INTA values that need to be handled */
1978 inta
|= priv
->isr_inta
;
1980 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
1982 spin_lock_irqsave(&priv
->lock
, flags
);
1984 /* handle all the justifications for the interrupt */
1985 if (inta
& IPW_INTA_BIT_RX_TRANSFER
) {
1987 handled
|= IPW_INTA_BIT_RX_TRANSFER
;
1990 if (inta
& IPW_INTA_BIT_TX_CMD_QUEUE
) {
1991 IPW_DEBUG_HC("Command completed.\n");
1992 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq_cmd
, -1);
1993 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
1994 wake_up_interruptible(&priv
->wait_command_queue
);
1995 handled
|= IPW_INTA_BIT_TX_CMD_QUEUE
;
1998 if (inta
& IPW_INTA_BIT_TX_QUEUE_1
) {
1999 IPW_DEBUG_TX("TX_QUEUE_1\n");
2000 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[0], 0);
2001 handled
|= IPW_INTA_BIT_TX_QUEUE_1
;
2004 if (inta
& IPW_INTA_BIT_TX_QUEUE_2
) {
2005 IPW_DEBUG_TX("TX_QUEUE_2\n");
2006 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[1], 1);
2007 handled
|= IPW_INTA_BIT_TX_QUEUE_2
;
2010 if (inta
& IPW_INTA_BIT_TX_QUEUE_3
) {
2011 IPW_DEBUG_TX("TX_QUEUE_3\n");
2012 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[2], 2);
2013 handled
|= IPW_INTA_BIT_TX_QUEUE_3
;
2016 if (inta
& IPW_INTA_BIT_TX_QUEUE_4
) {
2017 IPW_DEBUG_TX("TX_QUEUE_4\n");
2018 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[3], 3);
2019 handled
|= IPW_INTA_BIT_TX_QUEUE_4
;
2022 if (inta
& IPW_INTA_BIT_STATUS_CHANGE
) {
2023 IPW_WARNING("STATUS_CHANGE\n");
2024 handled
|= IPW_INTA_BIT_STATUS_CHANGE
;
2027 if (inta
& IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
) {
2028 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2029 handled
|= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
;
2032 if (inta
& IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
) {
2033 IPW_WARNING("HOST_CMD_DONE\n");
2034 handled
|= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
;
2037 if (inta
& IPW_INTA_BIT_FW_INITIALIZATION_DONE
) {
2038 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2039 handled
|= IPW_INTA_BIT_FW_INITIALIZATION_DONE
;
2042 if (inta
& IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
) {
2043 IPW_WARNING("PHY_OFF_DONE\n");
2044 handled
|= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
;
2047 if (inta
& IPW_INTA_BIT_RF_KILL_DONE
) {
2048 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2049 priv
->status
|= STATUS_RF_KILL_HW
;
2050 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
2051 wake_up_interruptible(&priv
->wait_command_queue
);
2052 priv
->status
&= ~(STATUS_ASSOCIATED
| STATUS_ASSOCIATING
);
2053 cancel_delayed_work(&priv
->request_scan
);
2054 cancel_delayed_work(&priv
->request_direct_scan
);
2055 cancel_delayed_work(&priv
->request_passive_scan
);
2056 cancel_delayed_work(&priv
->scan_event
);
2057 schedule_work(&priv
->link_down
);
2058 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
, 2 * HZ
);
2059 handled
|= IPW_INTA_BIT_RF_KILL_DONE
;
2062 if (inta
& IPW_INTA_BIT_FATAL_ERROR
) {
2063 IPW_WARNING("Firmware error detected. Restarting.\n");
2065 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2066 if (ipw_debug_level
& IPW_DL_FW_ERRORS
) {
2067 struct ipw_fw_error
*error
=
2068 ipw_alloc_error_log(priv
);
2069 ipw_dump_error_log(priv
, error
);
2073 priv
->error
= ipw_alloc_error_log(priv
);
2075 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2077 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2079 if (ipw_debug_level
& IPW_DL_FW_ERRORS
)
2080 ipw_dump_error_log(priv
, priv
->error
);
2083 /* XXX: If hardware encryption is for WPA/WPA2,
2084 * we have to notify the supplicant. */
2085 if (priv
->ieee
->sec
.encrypt
) {
2086 priv
->status
&= ~STATUS_ASSOCIATED
;
2087 notify_wx_assoc_event(priv
);
2090 /* Keep the restart process from trying to send host
2091 * commands by clearing the INIT status bit */
2092 priv
->status
&= ~STATUS_INIT
;
2094 /* Cancel currently queued command. */
2095 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2096 wake_up_interruptible(&priv
->wait_command_queue
);
2098 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
2099 handled
|= IPW_INTA_BIT_FATAL_ERROR
;
2102 if (inta
& IPW_INTA_BIT_PARITY_ERROR
) {
2103 IPW_ERROR("Parity error\n");
2104 handled
|= IPW_INTA_BIT_PARITY_ERROR
;
2107 if (handled
!= inta
) {
2108 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
2111 spin_unlock_irqrestore(&priv
->lock
, flags
);
2113 /* enable all interrupts */
2114 ipw_enable_interrupts(priv
);
2117 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2118 static char *get_cmd_string(u8 cmd
)
2121 IPW_CMD(HOST_COMPLETE
);
2122 IPW_CMD(POWER_DOWN
);
2123 IPW_CMD(SYSTEM_CONFIG
);
2124 IPW_CMD(MULTICAST_ADDRESS
);
2126 IPW_CMD(ADAPTER_ADDRESS
);
2128 IPW_CMD(RTS_THRESHOLD
);
2129 IPW_CMD(FRAG_THRESHOLD
);
2130 IPW_CMD(POWER_MODE
);
2132 IPW_CMD(TGI_TX_KEY
);
2133 IPW_CMD(SCAN_REQUEST
);
2134 IPW_CMD(SCAN_REQUEST_EXT
);
2136 IPW_CMD(SUPPORTED_RATES
);
2137 IPW_CMD(SCAN_ABORT
);
2139 IPW_CMD(QOS_PARAMETERS
);
2140 IPW_CMD(DINO_CONFIG
);
2141 IPW_CMD(RSN_CAPABILITIES
);
2143 IPW_CMD(CARD_DISABLE
);
2144 IPW_CMD(SEED_NUMBER
);
2146 IPW_CMD(COUNTRY_INFO
);
2147 IPW_CMD(AIRONET_INFO
);
2148 IPW_CMD(AP_TX_POWER
);
2150 IPW_CMD(CCX_VER_INFO
);
2151 IPW_CMD(SET_CALIBRATION
);
2152 IPW_CMD(SENSITIVITY_CALIB
);
2153 IPW_CMD(RETRY_LIMIT
);
2154 IPW_CMD(IPW_PRE_POWER_DOWN
);
2155 IPW_CMD(VAP_BEACON_TEMPLATE
);
2156 IPW_CMD(VAP_DTIM_PERIOD
);
2157 IPW_CMD(EXT_SUPPORTED_RATES
);
2158 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT
);
2159 IPW_CMD(VAP_QUIET_INTERVALS
);
2160 IPW_CMD(VAP_CHANNEL_SWITCH
);
2161 IPW_CMD(VAP_MANDATORY_CHANNELS
);
2162 IPW_CMD(VAP_CELL_PWR_LIMIT
);
2163 IPW_CMD(VAP_CF_PARAM_SET
);
2164 IPW_CMD(VAP_SET_BEACONING_STATE
);
2165 IPW_CMD(MEASUREMENT
);
2166 IPW_CMD(POWER_CAPABILITY
);
2167 IPW_CMD(SUPPORTED_CHANNELS
);
2168 IPW_CMD(TPC_REPORT
);
2170 IPW_CMD(PRODUCTION_COMMAND
);
2176 #define HOST_COMPLETE_TIMEOUT HZ
2178 static int __ipw_send_cmd(struct ipw_priv
*priv
, struct host_cmd
*cmd
)
2181 unsigned long flags
;
2183 spin_lock_irqsave(&priv
->lock
, flags
);
2184 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2185 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2186 get_cmd_string(cmd
->cmd
));
2187 spin_unlock_irqrestore(&priv
->lock
, flags
);
2191 priv
->status
|= STATUS_HCMD_ACTIVE
;
2194 priv
->cmdlog
[priv
->cmdlog_pos
].jiffies
= jiffies
;
2195 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.cmd
= cmd
->cmd
;
2196 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.len
= cmd
->len
;
2197 memcpy(priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.param
, cmd
->param
,
2199 priv
->cmdlog
[priv
->cmdlog_pos
].retcode
= -1;
2202 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2203 get_cmd_string(cmd
->cmd
), cmd
->cmd
, cmd
->len
,
2206 #ifndef DEBUG_CMD_WEP_KEY
2207 if (cmd
->cmd
== IPW_CMD_WEP_KEY
)
2208 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2211 printk_buf(IPW_DL_HOST_COMMAND
, (u8
*) cmd
->param
, cmd
->len
);
2213 rc
= ipw_queue_tx_hcmd(priv
, cmd
->cmd
, cmd
->param
, cmd
->len
, 0);
2215 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2216 IPW_ERROR("Failed to send %s: Reason %d\n",
2217 get_cmd_string(cmd
->cmd
), rc
);
2218 spin_unlock_irqrestore(&priv
->lock
, flags
);
2221 spin_unlock_irqrestore(&priv
->lock
, flags
);
2223 rc
= wait_event_interruptible_timeout(priv
->wait_command_queue
,
2225 status
& STATUS_HCMD_ACTIVE
),
2226 HOST_COMPLETE_TIMEOUT
);
2228 spin_lock_irqsave(&priv
->lock
, flags
);
2229 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2230 IPW_ERROR("Failed to send %s: Command timed out.\n",
2231 get_cmd_string(cmd
->cmd
));
2232 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2233 spin_unlock_irqrestore(&priv
->lock
, flags
);
2237 spin_unlock_irqrestore(&priv
->lock
, flags
);
2241 if (priv
->status
& STATUS_RF_KILL_HW
) {
2242 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2243 get_cmd_string(cmd
->cmd
));
2250 priv
->cmdlog
[priv
->cmdlog_pos
++].retcode
= rc
;
2251 priv
->cmdlog_pos
%= priv
->cmdlog_len
;
2256 static int ipw_send_cmd_simple(struct ipw_priv
*priv
, u8 command
)
2258 struct host_cmd cmd
= {
2262 return __ipw_send_cmd(priv
, &cmd
);
2265 static int ipw_send_cmd_pdu(struct ipw_priv
*priv
, u8 command
, u8 len
,
2268 struct host_cmd cmd
= {
2274 return __ipw_send_cmd(priv
, &cmd
);
2277 static int ipw_send_host_complete(struct ipw_priv
*priv
)
2280 IPW_ERROR("Invalid args\n");
2284 return ipw_send_cmd_simple(priv
, IPW_CMD_HOST_COMPLETE
);
2287 static int ipw_send_system_config(struct ipw_priv
*priv
)
2289 return ipw_send_cmd_pdu(priv
, IPW_CMD_SYSTEM_CONFIG
,
2290 sizeof(priv
->sys_config
),
2294 static int ipw_send_ssid(struct ipw_priv
*priv
, u8
* ssid
, int len
)
2296 if (!priv
|| !ssid
) {
2297 IPW_ERROR("Invalid args\n");
2301 return ipw_send_cmd_pdu(priv
, IPW_CMD_SSID
, min(len
, IW_ESSID_MAX_SIZE
),
2305 static int ipw_send_adapter_address(struct ipw_priv
*priv
, u8
* mac
)
2307 if (!priv
|| !mac
) {
2308 IPW_ERROR("Invalid args\n");
2312 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2313 priv
->net_dev
->name
, mac
);
2315 return ipw_send_cmd_pdu(priv
, IPW_CMD_ADAPTER_ADDRESS
, ETH_ALEN
, mac
);
2319 * NOTE: This must be executed from our workqueue as it results in udelay
2320 * being called which may corrupt the keyboard if executed on default
2323 static void ipw_adapter_restart(void *adapter
)
2325 struct ipw_priv
*priv
= adapter
;
2327 if (priv
->status
& STATUS_RF_KILL_MASK
)
2332 if (priv
->assoc_network
&&
2333 (priv
->assoc_network
->capability
& WLAN_CAPABILITY_IBSS
))
2334 ipw_remove_current_network(priv
);
2337 IPW_ERROR("Failed to up device\n");
2342 static void ipw_bg_adapter_restart(struct work_struct
*work
)
2344 struct ipw_priv
*priv
=
2345 container_of(work
, struct ipw_priv
, adapter_restart
);
2346 mutex_lock(&priv
->mutex
);
2347 ipw_adapter_restart(priv
);
2348 mutex_unlock(&priv
->mutex
);
2351 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2353 static void ipw_scan_check(void *data
)
2355 struct ipw_priv
*priv
= data
;
2356 if (priv
->status
& (STATUS_SCANNING
| STATUS_SCAN_ABORTING
)) {
2357 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358 "adapter after (%dms).\n",
2359 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG
));
2360 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
2364 static void ipw_bg_scan_check(struct work_struct
*work
)
2366 struct ipw_priv
*priv
=
2367 container_of(work
, struct ipw_priv
, scan_check
.work
);
2368 mutex_lock(&priv
->mutex
);
2369 ipw_scan_check(priv
);
2370 mutex_unlock(&priv
->mutex
);
2373 static int ipw_send_scan_request_ext(struct ipw_priv
*priv
,
2374 struct ipw_scan_request_ext
*request
)
2376 return ipw_send_cmd_pdu(priv
, IPW_CMD_SCAN_REQUEST_EXT
,
2377 sizeof(*request
), request
);
2380 static int ipw_send_scan_abort(struct ipw_priv
*priv
)
2383 IPW_ERROR("Invalid args\n");
2387 return ipw_send_cmd_simple(priv
, IPW_CMD_SCAN_ABORT
);
2390 static int ipw_set_sensitivity(struct ipw_priv
*priv
, u16 sens
)
2392 struct ipw_sensitivity_calib calib
= {
2393 .beacon_rssi_raw
= cpu_to_le16(sens
),
2396 return ipw_send_cmd_pdu(priv
, IPW_CMD_SENSITIVITY_CALIB
, sizeof(calib
),
2400 static int ipw_send_associate(struct ipw_priv
*priv
,
2401 struct ipw_associate
*associate
)
2403 if (!priv
|| !associate
) {
2404 IPW_ERROR("Invalid args\n");
2408 return ipw_send_cmd_pdu(priv
, IPW_CMD_ASSOCIATE
, sizeof(*associate
),
2412 static int ipw_send_supported_rates(struct ipw_priv
*priv
,
2413 struct ipw_supported_rates
*rates
)
2415 if (!priv
|| !rates
) {
2416 IPW_ERROR("Invalid args\n");
2420 return ipw_send_cmd_pdu(priv
, IPW_CMD_SUPPORTED_RATES
, sizeof(*rates
),
2424 static int ipw_set_random_seed(struct ipw_priv
*priv
)
2429 IPW_ERROR("Invalid args\n");
2433 get_random_bytes(&val
, sizeof(val
));
2435 return ipw_send_cmd_pdu(priv
, IPW_CMD_SEED_NUMBER
, sizeof(val
), &val
);
2438 static int ipw_send_card_disable(struct ipw_priv
*priv
, u32 phy_off
)
2440 __le32 v
= cpu_to_le32(phy_off
);
2442 IPW_ERROR("Invalid args\n");
2446 return ipw_send_cmd_pdu(priv
, IPW_CMD_CARD_DISABLE
, sizeof(v
), &v
);
2449 static int ipw_send_tx_power(struct ipw_priv
*priv
, struct ipw_tx_power
*power
)
2451 if (!priv
|| !power
) {
2452 IPW_ERROR("Invalid args\n");
2456 return ipw_send_cmd_pdu(priv
, IPW_CMD_TX_POWER
, sizeof(*power
), power
);
2459 static int ipw_set_tx_power(struct ipw_priv
*priv
)
2461 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
2462 struct ipw_tx_power tx_power
;
2466 memset(&tx_power
, 0, sizeof(tx_power
));
2468 /* configure device for 'G' band */
2469 tx_power
.ieee_mode
= IPW_G_MODE
;
2470 tx_power
.num_channels
= geo
->bg_channels
;
2471 for (i
= 0; i
< geo
->bg_channels
; i
++) {
2472 max_power
= geo
->bg
[i
].max_power
;
2473 tx_power
.channels_tx_power
[i
].channel_number
=
2475 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2476 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2478 if (ipw_send_tx_power(priv
, &tx_power
))
2481 /* configure device to also handle 'B' band */
2482 tx_power
.ieee_mode
= IPW_B_MODE
;
2483 if (ipw_send_tx_power(priv
, &tx_power
))
2486 /* configure device to also handle 'A' band */
2487 if (priv
->ieee
->abg_true
) {
2488 tx_power
.ieee_mode
= IPW_A_MODE
;
2489 tx_power
.num_channels
= geo
->a_channels
;
2490 for (i
= 0; i
< tx_power
.num_channels
; i
++) {
2491 max_power
= geo
->a
[i
].max_power
;
2492 tx_power
.channels_tx_power
[i
].channel_number
=
2494 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2495 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2497 if (ipw_send_tx_power(priv
, &tx_power
))
2503 static int ipw_send_rts_threshold(struct ipw_priv
*priv
, u16 rts
)
2505 struct ipw_rts_threshold rts_threshold
= {
2506 .rts_threshold
= cpu_to_le16(rts
),
2510 IPW_ERROR("Invalid args\n");
2514 return ipw_send_cmd_pdu(priv
, IPW_CMD_RTS_THRESHOLD
,
2515 sizeof(rts_threshold
), &rts_threshold
);
2518 static int ipw_send_frag_threshold(struct ipw_priv
*priv
, u16 frag
)
2520 struct ipw_frag_threshold frag_threshold
= {
2521 .frag_threshold
= cpu_to_le16(frag
),
2525 IPW_ERROR("Invalid args\n");
2529 return ipw_send_cmd_pdu(priv
, IPW_CMD_FRAG_THRESHOLD
,
2530 sizeof(frag_threshold
), &frag_threshold
);
2533 static int ipw_send_power_mode(struct ipw_priv
*priv
, u32 mode
)
2538 IPW_ERROR("Invalid args\n");
2542 /* If on battery, set to 3, if AC set to CAM, else user
2545 case IPW_POWER_BATTERY
:
2546 param
= cpu_to_le32(IPW_POWER_INDEX_3
);
2549 param
= cpu_to_le32(IPW_POWER_MODE_CAM
);
2552 param
= cpu_to_le32(mode
);
2556 return ipw_send_cmd_pdu(priv
, IPW_CMD_POWER_MODE
, sizeof(param
),
2560 static int ipw_send_retry_limit(struct ipw_priv
*priv
, u8 slimit
, u8 llimit
)
2562 struct ipw_retry_limit retry_limit
= {
2563 .short_retry_limit
= slimit
,
2564 .long_retry_limit
= llimit
2568 IPW_ERROR("Invalid args\n");
2572 return ipw_send_cmd_pdu(priv
, IPW_CMD_RETRY_LIMIT
, sizeof(retry_limit
),
2577 * The IPW device contains a Microwire compatible EEPROM that stores
2578 * various data like the MAC address. Usually the firmware has exclusive
2579 * access to the eeprom, but during device initialization (before the
2580 * device driver has sent the HostComplete command to the firmware) the
2581 * device driver has read access to the EEPROM by way of indirect addressing
2582 * through a couple of memory mapped registers.
2584 * The following is a simplified implementation for pulling data out of the
2585 * the eeprom, along with some helper functions to find information in
2586 * the per device private data's copy of the eeprom.
2588 * NOTE: To better understand how these functions work (i.e what is a chip
2589 * select and why do have to keep driving the eeprom clock?), read
2590 * just about any data sheet for a Microwire compatible EEPROM.
2593 /* write a 32 bit value into the indirect accessor register */
2594 static inline void eeprom_write_reg(struct ipw_priv
*p
, u32 data
)
2596 ipw_write_reg32(p
, FW_MEM_REG_EEPROM_ACCESS
, data
);
2598 /* the eeprom requires some time to complete the operation */
2599 udelay(p
->eeprom_delay
);
2604 /* perform a chip select operation */
2605 static void eeprom_cs(struct ipw_priv
*priv
)
2607 eeprom_write_reg(priv
, 0);
2608 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2609 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2610 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2613 /* perform a chip select operation */
2614 static void eeprom_disable_cs(struct ipw_priv
*priv
)
2616 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2617 eeprom_write_reg(priv
, 0);
2618 eeprom_write_reg(priv
, EEPROM_BIT_SK
);
2621 /* push a single bit down to the eeprom */
2622 static inline void eeprom_write_bit(struct ipw_priv
*p
, u8 bit
)
2624 int d
= (bit
? EEPROM_BIT_DI
: 0);
2625 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
);
2626 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
| EEPROM_BIT_SK
);
2629 /* push an opcode followed by an address down to the eeprom */
2630 static void eeprom_op(struct ipw_priv
*priv
, u8 op
, u8 addr
)
2635 eeprom_write_bit(priv
, 1);
2636 eeprom_write_bit(priv
, op
& 2);
2637 eeprom_write_bit(priv
, op
& 1);
2638 for (i
= 7; i
>= 0; i
--) {
2639 eeprom_write_bit(priv
, addr
& (1 << i
));
2643 /* pull 16 bits off the eeprom, one bit at a time */
2644 static u16
eeprom_read_u16(struct ipw_priv
*priv
, u8 addr
)
2649 /* Send READ Opcode */
2650 eeprom_op(priv
, EEPROM_CMD_READ
, addr
);
2652 /* Send dummy bit */
2653 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2655 /* Read the byte off the eeprom one bit at a time */
2656 for (i
= 0; i
< 16; i
++) {
2658 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2659 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2660 data
= ipw_read_reg32(priv
, FW_MEM_REG_EEPROM_ACCESS
);
2661 r
= (r
<< 1) | ((data
& EEPROM_BIT_DO
) ? 1 : 0);
2664 /* Send another dummy bit */
2665 eeprom_write_reg(priv
, 0);
2666 eeprom_disable_cs(priv
);
2671 /* helper function for pulling the mac address out of the private */
2672 /* data's copy of the eeprom data */
2673 static void eeprom_parse_mac(struct ipw_priv
*priv
, u8
* mac
)
2675 memcpy(mac
, &priv
->eeprom
[EEPROM_MAC_ADDRESS
], 6);
2679 * Either the device driver (i.e. the host) or the firmware can
2680 * load eeprom data into the designated region in SRAM. If neither
2681 * happens then the FW will shutdown with a fatal error.
2683 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2684 * bit needs region of shared SRAM needs to be non-zero.
2686 static void ipw_eeprom_init_sram(struct ipw_priv
*priv
)
2689 __le16
*eeprom
= (__le16
*) priv
->eeprom
;
2691 IPW_DEBUG_TRACE(">>\n");
2693 /* read entire contents of eeprom into private buffer */
2694 for (i
= 0; i
< 128; i
++)
2695 eeprom
[i
] = cpu_to_le16(eeprom_read_u16(priv
, (u8
) i
));
2698 If the data looks correct, then copy it to our private
2699 copy. Otherwise let the firmware know to perform the operation
2702 if (priv
->eeprom
[EEPROM_VERSION
] != 0) {
2703 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2705 /* write the eeprom data to sram */
2706 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
2707 ipw_write8(priv
, IPW_EEPROM_DATA
+ i
, priv
->eeprom
[i
]);
2709 /* Do not load eeprom data on fatal error or suspend */
2710 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
2712 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2714 /* Load eeprom data on fatal error or suspend */
2715 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 1);
2718 IPW_DEBUG_TRACE("<<\n");
2721 static void ipw_zero_memory(struct ipw_priv
*priv
, u32 start
, u32 count
)
2726 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, start
);
2728 _ipw_write32(priv
, IPW_AUTOINC_DATA
, 0);
2731 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv
*priv
)
2733 ipw_zero_memory(priv
, IPW_SHARED_SRAM_DMA_CONTROL
,
2734 CB_NUMBER_OF_ELEMENTS_SMALL
*
2735 sizeof(struct command_block
));
2738 static int ipw_fw_dma_enable(struct ipw_priv
*priv
)
2739 { /* start dma engine but no transfers yet */
2741 IPW_DEBUG_FW(">> : \n");
2744 ipw_fw_dma_reset_command_blocks(priv
);
2746 /* Write CB base address */
2747 ipw_write_reg32(priv
, IPW_DMA_I_CB_BASE
, IPW_SHARED_SRAM_DMA_CONTROL
);
2749 IPW_DEBUG_FW("<< : \n");
2753 static void ipw_fw_dma_abort(struct ipw_priv
*priv
)
2757 IPW_DEBUG_FW(">> :\n");
2759 /* set the Stop and Abort bit */
2760 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_STOP_AND_ABORT
;
2761 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2762 priv
->sram_desc
.last_cb_index
= 0;
2764 IPW_DEBUG_FW("<< \n");
2767 static int ipw_fw_dma_write_command_block(struct ipw_priv
*priv
, int index
,
2768 struct command_block
*cb
)
2771 IPW_SHARED_SRAM_DMA_CONTROL
+
2772 (sizeof(struct command_block
) * index
);
2773 IPW_DEBUG_FW(">> :\n");
2775 ipw_write_indirect(priv
, address
, (u8
*) cb
,
2776 (int)sizeof(struct command_block
));
2778 IPW_DEBUG_FW("<< :\n");
2783 static int ipw_fw_dma_kick(struct ipw_priv
*priv
)
2788 IPW_DEBUG_FW(">> :\n");
2790 for (index
= 0; index
< priv
->sram_desc
.last_cb_index
; index
++)
2791 ipw_fw_dma_write_command_block(priv
, index
,
2792 &priv
->sram_desc
.cb_list
[index
]);
2794 /* Enable the DMA in the CSR register */
2795 ipw_clear_bit(priv
, IPW_RESET_REG
,
2796 IPW_RESET_REG_MASTER_DISABLED
|
2797 IPW_RESET_REG_STOP_MASTER
);
2799 /* Set the Start bit. */
2800 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_START
;
2801 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2803 IPW_DEBUG_FW("<< :\n");
2807 static void ipw_fw_dma_dump_command_block(struct ipw_priv
*priv
)
2810 u32 register_value
= 0;
2811 u32 cb_fields_address
= 0;
2813 IPW_DEBUG_FW(">> :\n");
2814 address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2815 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address
);
2817 /* Read the DMA Controlor register */
2818 register_value
= ipw_read_reg32(priv
, IPW_DMA_I_DMA_CONTROL
);
2819 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value
);
2821 /* Print the CB values */
2822 cb_fields_address
= address
;
2823 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2824 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value
);
2826 cb_fields_address
+= sizeof(u32
);
2827 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2828 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value
);
2830 cb_fields_address
+= sizeof(u32
);
2831 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2832 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2835 cb_fields_address
+= sizeof(u32
);
2836 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2837 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value
);
2839 IPW_DEBUG_FW(">> :\n");
2842 static int ipw_fw_dma_command_block_index(struct ipw_priv
*priv
)
2844 u32 current_cb_address
= 0;
2845 u32 current_cb_index
= 0;
2847 IPW_DEBUG_FW("<< :\n");
2848 current_cb_address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2850 current_cb_index
= (current_cb_address
- IPW_SHARED_SRAM_DMA_CONTROL
) /
2851 sizeof(struct command_block
);
2853 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2854 current_cb_index
, current_cb_address
);
2856 IPW_DEBUG_FW(">> :\n");
2857 return current_cb_index
;
2861 static int ipw_fw_dma_add_command_block(struct ipw_priv
*priv
,
2865 int interrupt_enabled
, int is_last
)
2868 u32 control
= CB_VALID
| CB_SRC_LE
| CB_DEST_LE
| CB_SRC_AUTOINC
|
2869 CB_SRC_IO_GATED
| CB_DEST_AUTOINC
| CB_SRC_SIZE_LONG
|
2871 struct command_block
*cb
;
2872 u32 last_cb_element
= 0;
2874 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2875 src_address
, dest_address
, length
);
2877 if (priv
->sram_desc
.last_cb_index
>= CB_NUMBER_OF_ELEMENTS_SMALL
)
2880 last_cb_element
= priv
->sram_desc
.last_cb_index
;
2881 cb
= &priv
->sram_desc
.cb_list
[last_cb_element
];
2882 priv
->sram_desc
.last_cb_index
++;
2884 /* Calculate the new CB control word */
2885 if (interrupt_enabled
)
2886 control
|= CB_INT_ENABLED
;
2889 control
|= CB_LAST_VALID
;
2893 /* Calculate the CB Element's checksum value */
2894 cb
->status
= control
^ src_address
^ dest_address
;
2896 /* Copy the Source and Destination addresses */
2897 cb
->dest_addr
= dest_address
;
2898 cb
->source_addr
= src_address
;
2900 /* Copy the Control Word last */
2901 cb
->control
= control
;
2906 static int ipw_fw_dma_add_buffer(struct ipw_priv
*priv
, dma_addr_t
*src_address
,
2907 int nr
, u32 dest_address
, u32 len
)
2912 IPW_DEBUG_FW(">> \n");
2913 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2914 nr
, dest_address
, len
);
2916 for (i
= 0; i
< nr
; i
++) {
2917 size
= min_t(u32
, len
- i
* CB_MAX_LENGTH
, CB_MAX_LENGTH
);
2918 ret
= ipw_fw_dma_add_command_block(priv
, src_address
[i
],
2920 i
* CB_MAX_LENGTH
, size
,
2923 IPW_DEBUG_FW_INFO(": Failed\n");
2926 IPW_DEBUG_FW_INFO(": Added new cb\n");
2929 IPW_DEBUG_FW("<< \n");
2933 static int ipw_fw_dma_wait(struct ipw_priv
*priv
)
2935 u32 current_index
= 0, previous_index
;
2938 IPW_DEBUG_FW(">> : \n");
2940 current_index
= ipw_fw_dma_command_block_index(priv
);
2941 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2942 (int)priv
->sram_desc
.last_cb_index
);
2944 while (current_index
< priv
->sram_desc
.last_cb_index
) {
2946 previous_index
= current_index
;
2947 current_index
= ipw_fw_dma_command_block_index(priv
);
2949 if (previous_index
< current_index
) {
2953 if (++watchdog
> 400) {
2954 IPW_DEBUG_FW_INFO("Timeout\n");
2955 ipw_fw_dma_dump_command_block(priv
);
2956 ipw_fw_dma_abort(priv
);
2961 ipw_fw_dma_abort(priv
);
2963 /*Disable the DMA in the CSR register */
2964 ipw_set_bit(priv
, IPW_RESET_REG
,
2965 IPW_RESET_REG_MASTER_DISABLED
| IPW_RESET_REG_STOP_MASTER
);
2967 IPW_DEBUG_FW("<< dmaWaitSync \n");
2971 static void ipw_remove_current_network(struct ipw_priv
*priv
)
2973 struct list_head
*element
, *safe
;
2974 struct libipw_network
*network
= NULL
;
2975 unsigned long flags
;
2977 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
2978 list_for_each_safe(element
, safe
, &priv
->ieee
->network_list
) {
2979 network
= list_entry(element
, struct libipw_network
, list
);
2980 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
2982 list_add_tail(&network
->list
,
2983 &priv
->ieee
->network_free_list
);
2986 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
2990 * Check that card is still alive.
2991 * Reads debug register from domain0.
2992 * If card is present, pre-defined value should
2996 * @return 1 if card is present, 0 otherwise
2998 static inline int ipw_alive(struct ipw_priv
*priv
)
3000 return ipw_read32(priv
, 0x90) == 0xd55555d5;
3003 /* timeout in msec, attempted in 10-msec quanta */
3004 static int ipw_poll_bit(struct ipw_priv
*priv
, u32 addr
, u32 mask
,
3010 if ((ipw_read32(priv
, addr
) & mask
) == mask
)
3014 } while (i
< timeout
);
3019 /* These functions load the firmware and micro code for the operation of
3020 * the ipw hardware. It assumes the buffer has all the bits for the
3021 * image and the caller is handling the memory allocation and clean up.
3024 static int ipw_stop_master(struct ipw_priv
*priv
)
3028 IPW_DEBUG_TRACE(">> \n");
3029 /* stop master. typical delay - 0 */
3030 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3032 /* timeout is in msec, polled in 10-msec quanta */
3033 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3034 IPW_RESET_REG_MASTER_DISABLED
, 100);
3036 IPW_ERROR("wait for stop master failed after 100ms\n");
3040 IPW_DEBUG_INFO("stop master %dms\n", rc
);
3045 static void ipw_arc_release(struct ipw_priv
*priv
)
3047 IPW_DEBUG_TRACE(">> \n");
3050 ipw_clear_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3052 /* no one knows timing, for safety add some delay */
3061 static int ipw_load_ucode(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3063 int rc
= 0, i
, addr
;
3067 image
= (__le16
*) data
;
3069 IPW_DEBUG_TRACE(">> \n");
3071 rc
= ipw_stop_master(priv
);
3076 for (addr
= IPW_SHARED_LOWER_BOUND
;
3077 addr
< IPW_REGISTER_DOMAIN1_END
; addr
+= 4) {
3078 ipw_write32(priv
, addr
, 0);
3081 /* no ucode (yet) */
3082 memset(&priv
->dino_alive
, 0, sizeof(priv
->dino_alive
));
3083 /* destroy DMA queues */
3084 /* reset sequence */
3086 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_ON
);
3087 ipw_arc_release(priv
);
3088 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_OFF
);
3092 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, IPW_BASEBAND_POWER_DOWN
);
3095 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, 0);
3098 /* enable ucode store */
3099 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0x0);
3100 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_CS
);
3106 * Do NOT set indirect address register once and then
3107 * store data to indirect data register in the loop.
3108 * It seems very reasonable, but in this case DINO do not
3109 * accept ucode. It is essential to set address each time.
3111 /* load new ipw uCode */
3112 for (i
= 0; i
< len
/ 2; i
++)
3113 ipw_write_reg16(priv
, IPW_BASEBAND_CONTROL_STORE
,
3114 le16_to_cpu(image
[i
]));
3117 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3118 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_SYSTEM
);
3120 /* this is where the igx / win driver deveates from the VAP driver. */
3122 /* wait for alive response */
3123 for (i
= 0; i
< 100; i
++) {
3124 /* poll for incoming data */
3125 cr
= ipw_read_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
);
3126 if (cr
& DINO_RXFIFO_DATA
)
3131 if (cr
& DINO_RXFIFO_DATA
) {
3132 /* alive_command_responce size is NOT multiple of 4 */
3133 __le32 response_buffer
[(sizeof(priv
->dino_alive
) + 3) / 4];
3135 for (i
= 0; i
< ARRAY_SIZE(response_buffer
); i
++)
3136 response_buffer
[i
] =
3137 cpu_to_le32(ipw_read_reg32(priv
,
3138 IPW_BASEBAND_RX_FIFO_READ
));
3139 memcpy(&priv
->dino_alive
, response_buffer
,
3140 sizeof(priv
->dino_alive
));
3141 if (priv
->dino_alive
.alive_command
== 1
3142 && priv
->dino_alive
.ucode_valid
== 1) {
3145 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3146 "of %02d/%02d/%02d %02d:%02d\n",
3147 priv
->dino_alive
.software_revision
,
3148 priv
->dino_alive
.software_revision
,
3149 priv
->dino_alive
.device_identifier
,
3150 priv
->dino_alive
.device_identifier
,
3151 priv
->dino_alive
.time_stamp
[0],
3152 priv
->dino_alive
.time_stamp
[1],
3153 priv
->dino_alive
.time_stamp
[2],
3154 priv
->dino_alive
.time_stamp
[3],
3155 priv
->dino_alive
.time_stamp
[4]);
3157 IPW_DEBUG_INFO("Microcode is not alive\n");
3161 IPW_DEBUG_INFO("No alive response from DINO\n");
3165 /* disable DINO, otherwise for some reason
3166 firmware have problem getting alive resp. */
3167 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3172 static int ipw_load_firmware(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3176 struct fw_chunk
*chunk
;
3179 struct pci_pool
*pool
;
3180 u32
*virts
[CB_NUMBER_OF_ELEMENTS_SMALL
];
3181 dma_addr_t phys
[CB_NUMBER_OF_ELEMENTS_SMALL
];
3183 IPW_DEBUG_TRACE("<< : \n");
3185 pool
= pci_pool_create("ipw2200", priv
->pci_dev
, CB_MAX_LENGTH
, 0, 0);
3187 IPW_ERROR("pci_pool_create failed\n");
3192 ret
= ipw_fw_dma_enable(priv
);
3194 /* the DMA is already ready this would be a bug. */
3195 BUG_ON(priv
->sram_desc
.last_cb_index
> 0);
3203 chunk
= (struct fw_chunk
*)(data
+ offset
);
3204 offset
+= sizeof(struct fw_chunk
);
3205 chunk_len
= le32_to_cpu(chunk
->length
);
3206 start
= data
+ offset
;
3208 nr
= (chunk_len
+ CB_MAX_LENGTH
- 1) / CB_MAX_LENGTH
;
3209 for (i
= 0; i
< nr
; i
++) {
3210 virts
[total_nr
] = pci_pool_alloc(pool
, GFP_KERNEL
,
3212 if (!virts
[total_nr
]) {
3216 size
= min_t(u32
, chunk_len
- i
* CB_MAX_LENGTH
,
3218 memcpy(virts
[total_nr
], start
, size
);
3221 /* We don't support fw chunk larger than 64*8K */
3222 BUG_ON(total_nr
> CB_NUMBER_OF_ELEMENTS_SMALL
);
3225 /* build DMA packet and queue up for sending */
3226 /* dma to chunk->address, the chunk->length bytes from data +
3229 ret
= ipw_fw_dma_add_buffer(priv
, &phys
[total_nr
- nr
],
3230 nr
, le32_to_cpu(chunk
->address
),
3233 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3237 offset
+= chunk_len
;
3238 } while (offset
< len
);
3240 /* Run the DMA and wait for the answer */
3241 ret
= ipw_fw_dma_kick(priv
);
3243 IPW_ERROR("dmaKick Failed\n");
3247 ret
= ipw_fw_dma_wait(priv
);
3249 IPW_ERROR("dmaWaitSync Failed\n");
3253 for (i
= 0; i
< total_nr
; i
++)
3254 pci_pool_free(pool
, virts
[i
], phys
[i
]);
3256 pci_pool_destroy(pool
);
3262 static int ipw_stop_nic(struct ipw_priv
*priv
)
3267 ipw_write32(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3269 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3270 IPW_RESET_REG_MASTER_DISABLED
, 500);
3272 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3276 ipw_set_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3281 static void ipw_start_nic(struct ipw_priv
*priv
)
3283 IPW_DEBUG_TRACE(">>\n");
3285 /* prvHwStartNic release ARC */
3286 ipw_clear_bit(priv
, IPW_RESET_REG
,
3287 IPW_RESET_REG_MASTER_DISABLED
|
3288 IPW_RESET_REG_STOP_MASTER
|
3289 CBD_RESET_REG_PRINCETON_RESET
);
3291 /* enable power management */
3292 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
,
3293 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY
);
3295 IPW_DEBUG_TRACE("<<\n");
3298 static int ipw_init_nic(struct ipw_priv
*priv
)
3302 IPW_DEBUG_TRACE(">>\n");
3305 /* set "initialization complete" bit to move adapter to D0 state */
3306 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3308 /* low-level PLL activation */
3309 ipw_write32(priv
, IPW_READ_INT_REGISTER
,
3310 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER
);
3312 /* wait for clock stabilization */
3313 rc
= ipw_poll_bit(priv
, IPW_GP_CNTRL_RW
,
3314 IPW_GP_CNTRL_BIT_CLOCK_READY
, 250);
3316 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3318 /* assert SW reset */
3319 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_SW_RESET
);
3323 /* set "initialization complete" bit to move adapter to D0 state */
3324 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3326 IPW_DEBUG_TRACE(">>\n");
3330 /* Call this function from process context, it will sleep in request_firmware.
3331 * Probe is an ok place to call this from.
3333 static int ipw_reset_nic(struct ipw_priv
*priv
)
3336 unsigned long flags
;
3338 IPW_DEBUG_TRACE(">>\n");
3340 rc
= ipw_init_nic(priv
);
3342 spin_lock_irqsave(&priv
->lock
, flags
);
3343 /* Clear the 'host command active' bit... */
3344 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
3345 wake_up_interruptible(&priv
->wait_command_queue
);
3346 priv
->status
&= ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
3347 wake_up_interruptible(&priv
->wait_state
);
3348 spin_unlock_irqrestore(&priv
->lock
, flags
);
3350 IPW_DEBUG_TRACE("<<\n");
3363 static int ipw_get_fw(struct ipw_priv
*priv
,
3364 const struct firmware
**raw
, const char *name
)
3369 /* ask firmware_class module to get the boot firmware off disk */
3370 rc
= request_firmware(raw
, name
, &priv
->pci_dev
->dev
);
3372 IPW_ERROR("%s request_firmware failed: Reason %d\n", name
, rc
);
3376 if ((*raw
)->size
< sizeof(*fw
)) {
3377 IPW_ERROR("%s is too small (%zd)\n", name
, (*raw
)->size
);
3381 fw
= (void *)(*raw
)->data
;
3383 if ((*raw
)->size
< sizeof(*fw
) + le32_to_cpu(fw
->boot_size
) +
3384 le32_to_cpu(fw
->ucode_size
) + le32_to_cpu(fw
->fw_size
)) {
3385 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3386 name
, (*raw
)->size
);
3390 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3392 le32_to_cpu(fw
->ver
) >> 16,
3393 le32_to_cpu(fw
->ver
) & 0xff,
3394 (*raw
)->size
- sizeof(*fw
));
3398 #define IPW_RX_BUF_SIZE (3000)
3400 static void ipw_rx_queue_reset(struct ipw_priv
*priv
,
3401 struct ipw_rx_queue
*rxq
)
3403 unsigned long flags
;
3406 spin_lock_irqsave(&rxq
->lock
, flags
);
3408 INIT_LIST_HEAD(&rxq
->rx_free
);
3409 INIT_LIST_HEAD(&rxq
->rx_used
);
3411 /* Fill the rx_used queue with _all_ of the Rx buffers */
3412 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
3413 /* In the reset function, these buffers may have been allocated
3414 * to an SKB, so we need to unmap and free potential storage */
3415 if (rxq
->pool
[i
].skb
!= NULL
) {
3416 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
3417 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
3418 dev_kfree_skb(rxq
->pool
[i
].skb
);
3419 rxq
->pool
[i
].skb
= NULL
;
3421 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
3424 /* Set us so that we have processed and used all buffers, but have
3425 * not restocked the Rx queue with fresh buffers */
3426 rxq
->read
= rxq
->write
= 0;
3427 rxq
->free_count
= 0;
3428 spin_unlock_irqrestore(&rxq
->lock
, flags
);
3432 static int fw_loaded
= 0;
3433 static const struct firmware
*raw
= NULL
;
3435 static void free_firmware(void)
3438 release_firmware(raw
);
3444 #define free_firmware() do {} while (0)
3447 static int ipw_load(struct ipw_priv
*priv
)
3450 const struct firmware
*raw
= NULL
;
3453 u8
*boot_img
, *ucode_img
, *fw_img
;
3455 int rc
= 0, retries
= 3;
3457 switch (priv
->ieee
->iw_mode
) {
3459 name
= "ipw2200-ibss.fw";
3461 #ifdef CONFIG_IPW2200_MONITOR
3462 case IW_MODE_MONITOR
:
3463 name
= "ipw2200-sniffer.fw";
3467 name
= "ipw2200-bss.fw";
3479 rc
= ipw_get_fw(priv
, &raw
, name
);
3486 fw
= (void *)raw
->data
;
3487 boot_img
= &fw
->data
[0];
3488 ucode_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
)];
3489 fw_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
) +
3490 le32_to_cpu(fw
->ucode_size
)];
3496 priv
->rxq
= ipw_rx_queue_alloc(priv
);
3498 ipw_rx_queue_reset(priv
, priv
->rxq
);
3500 IPW_ERROR("Unable to initialize Rx queue\n");
3505 /* Ensure interrupts are disabled */
3506 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3507 priv
->status
&= ~STATUS_INT_ENABLED
;
3509 /* ack pending interrupts */
3510 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3514 rc
= ipw_reset_nic(priv
);
3516 IPW_ERROR("Unable to reset NIC\n");
3520 ipw_zero_memory(priv
, IPW_NIC_SRAM_LOWER_BOUND
,
3521 IPW_NIC_SRAM_UPPER_BOUND
- IPW_NIC_SRAM_LOWER_BOUND
);
3523 /* DMA the initial boot firmware into the device */
3524 rc
= ipw_load_firmware(priv
, boot_img
, le32_to_cpu(fw
->boot_size
));
3526 IPW_ERROR("Unable to load boot firmware: %d\n", rc
);
3530 /* kick start the device */
3531 ipw_start_nic(priv
);
3533 /* wait for the device to finish its initial startup sequence */
3534 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3535 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3537 IPW_ERROR("device failed to boot initial fw image\n");
3540 IPW_DEBUG_INFO("initial device response after %dms\n", rc
);
3542 /* ack fw init done interrupt */
3543 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3545 /* DMA the ucode into the device */
3546 rc
= ipw_load_ucode(priv
, ucode_img
, le32_to_cpu(fw
->ucode_size
));
3548 IPW_ERROR("Unable to load ucode: %d\n", rc
);
3555 /* DMA bss firmware into the device */
3556 rc
= ipw_load_firmware(priv
, fw_img
, le32_to_cpu(fw
->fw_size
));
3558 IPW_ERROR("Unable to load firmware: %d\n", rc
);
3565 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
3567 rc
= ipw_queue_reset(priv
);
3569 IPW_ERROR("Unable to initialize queues\n");
3573 /* Ensure interrupts are disabled */
3574 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3575 /* ack pending interrupts */
3576 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3578 /* kick start the device */
3579 ipw_start_nic(priv
);
3581 if (ipw_read32(priv
, IPW_INTA_RW
) & IPW_INTA_BIT_PARITY_ERROR
) {
3583 IPW_WARNING("Parity error. Retrying init.\n");
3588 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3593 /* wait for the device */
3594 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3595 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3597 IPW_ERROR("device failed to start within 500ms\n");
3600 IPW_DEBUG_INFO("device response after %dms\n", rc
);
3602 /* ack fw init done interrupt */
3603 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3605 /* read eeprom data and initialize the eeprom region of sram */
3606 priv
->eeprom_delay
= 1;
3607 ipw_eeprom_init_sram(priv
);
3609 /* enable interrupts */
3610 ipw_enable_interrupts(priv
);
3612 /* Ensure our queue has valid packets */
3613 ipw_rx_queue_replenish(priv
);
3615 ipw_write32(priv
, IPW_RX_READ_INDEX
, priv
->rxq
->read
);
3617 /* ack pending interrupts */
3618 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3621 release_firmware(raw
);
3627 ipw_rx_queue_free(priv
, priv
->rxq
);
3630 ipw_tx_queue_free(priv
);
3632 release_firmware(raw
);
3644 * Theory of operation
3646 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3647 * 2 empty entries always kept in the buffer to protect from overflow.
3649 * For Tx queue, there are low mark and high mark limits. If, after queuing
3650 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3651 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3654 * The IPW operates with six queues, one receive queue in the device's
3655 * sram, one transmit queue for sending commands to the device firmware,
3656 * and four transmit queues for data.
3658 * The four transmit queues allow for performing quality of service (qos)
3659 * transmissions as per the 802.11 protocol. Currently Linux does not
3660 * provide a mechanism to the user for utilizing prioritized queues, so
3661 * we only utilize the first data transmit queue (queue1).
3665 * Driver allocates buffers of this size for Rx
3669 * ipw_rx_queue_space - Return number of free slots available in queue.
3671 static int ipw_rx_queue_space(const struct ipw_rx_queue
*q
)
3673 int s
= q
->read
- q
->write
;
3676 /* keep some buffer to not confuse full and empty queue */
3683 static inline int ipw_tx_queue_space(const struct clx2_queue
*q
)
3685 int s
= q
->last_used
- q
->first_empty
;
3688 s
-= 2; /* keep some reserve to not confuse empty and full situations */
3694 static inline int ipw_queue_inc_wrap(int index
, int n_bd
)
3696 return (++index
== n_bd
) ? 0 : index
;
3700 * Initialize common DMA queue structure
3702 * @param q queue to init
3703 * @param count Number of BD's to allocate. Should be power of 2
3704 * @param read_register Address for 'read' register
3705 * (not offset within BAR, full address)
3706 * @param write_register Address for 'write' register
3707 * (not offset within BAR, full address)
3708 * @param base_register Address for 'base' register
3709 * (not offset within BAR, full address)
3710 * @param size Address for 'size' register
3711 * (not offset within BAR, full address)
3713 static void ipw_queue_init(struct ipw_priv
*priv
, struct clx2_queue
*q
,
3714 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3718 q
->low_mark
= q
->n_bd
/ 4;
3719 if (q
->low_mark
< 4)
3722 q
->high_mark
= q
->n_bd
/ 8;
3723 if (q
->high_mark
< 2)
3726 q
->first_empty
= q
->last_used
= 0;
3730 ipw_write32(priv
, base
, q
->dma_addr
);
3731 ipw_write32(priv
, size
, count
);
3732 ipw_write32(priv
, read
, 0);
3733 ipw_write32(priv
, write
, 0);
3735 _ipw_read32(priv
, 0x90);
3738 static int ipw_queue_tx_init(struct ipw_priv
*priv
,
3739 struct clx2_tx_queue
*q
,
3740 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3742 struct pci_dev
*dev
= priv
->pci_dev
;
3744 q
->txb
= kmalloc(sizeof(q
->txb
[0]) * count
, GFP_KERNEL
);
3746 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3751 pci_alloc_consistent(dev
, sizeof(q
->bd
[0]) * count
, &q
->q
.dma_addr
);
3753 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3754 sizeof(q
->bd
[0]) * count
);
3760 ipw_queue_init(priv
, &q
->q
, count
, read
, write
, base
, size
);
3765 * Free one TFD, those at index [txq->q.last_used].
3766 * Do NOT advance any indexes
3771 static void ipw_queue_tx_free_tfd(struct ipw_priv
*priv
,
3772 struct clx2_tx_queue
*txq
)
3774 struct tfd_frame
*bd
= &txq
->bd
[txq
->q
.last_used
];
3775 struct pci_dev
*dev
= priv
->pci_dev
;
3779 if (bd
->control_flags
.message_type
== TX_HOST_COMMAND_TYPE
)
3780 /* nothing to cleanup after for host commands */
3784 if (le32_to_cpu(bd
->u
.data
.num_chunks
) > NUM_TFD_CHUNKS
) {
3785 IPW_ERROR("Too many chunks: %i\n",
3786 le32_to_cpu(bd
->u
.data
.num_chunks
));
3787 /** @todo issue fatal error, it is quite serious situation */
3791 /* unmap chunks if any */
3792 for (i
= 0; i
< le32_to_cpu(bd
->u
.data
.num_chunks
); i
++) {
3793 pci_unmap_single(dev
, le32_to_cpu(bd
->u
.data
.chunk_ptr
[i
]),
3794 le16_to_cpu(bd
->u
.data
.chunk_len
[i
]),
3796 if (txq
->txb
[txq
->q
.last_used
]) {
3797 libipw_txb_free(txq
->txb
[txq
->q
.last_used
]);
3798 txq
->txb
[txq
->q
.last_used
] = NULL
;
3804 * Deallocate DMA queue.
3806 * Empty queue by removing and destroying all BD's.
3812 static void ipw_queue_tx_free(struct ipw_priv
*priv
, struct clx2_tx_queue
*txq
)
3814 struct clx2_queue
*q
= &txq
->q
;
3815 struct pci_dev
*dev
= priv
->pci_dev
;
3820 /* first, empty all BD's */
3821 for (; q
->first_empty
!= q
->last_used
;
3822 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
3823 ipw_queue_tx_free_tfd(priv
, txq
);
3826 /* free buffers belonging to queue itself */
3827 pci_free_consistent(dev
, sizeof(txq
->bd
[0]) * q
->n_bd
, txq
->bd
,
3831 /* 0 fill whole structure */
3832 memset(txq
, 0, sizeof(*txq
));
3836 * Destroy all DMA queues and structures
3840 static void ipw_tx_queue_free(struct ipw_priv
*priv
)
3843 ipw_queue_tx_free(priv
, &priv
->txq_cmd
);
3846 ipw_queue_tx_free(priv
, &priv
->txq
[0]);
3847 ipw_queue_tx_free(priv
, &priv
->txq
[1]);
3848 ipw_queue_tx_free(priv
, &priv
->txq
[2]);
3849 ipw_queue_tx_free(priv
, &priv
->txq
[3]);
3852 static void ipw_create_bssid(struct ipw_priv
*priv
, u8
* bssid
)
3854 /* First 3 bytes are manufacturer */
3855 bssid
[0] = priv
->mac_addr
[0];
3856 bssid
[1] = priv
->mac_addr
[1];
3857 bssid
[2] = priv
->mac_addr
[2];
3859 /* Last bytes are random */
3860 get_random_bytes(&bssid
[3], ETH_ALEN
- 3);
3862 bssid
[0] &= 0xfe; /* clear multicast bit */
3863 bssid
[0] |= 0x02; /* set local assignment bit (IEEE802) */
3866 static u8
ipw_add_station(struct ipw_priv
*priv
, u8
* bssid
)
3868 struct ipw_station_entry entry
;
3871 for (i
= 0; i
< priv
->num_stations
; i
++) {
3872 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
)) {
3873 /* Another node is active in network */
3874 priv
->missed_adhoc_beacons
= 0;
3875 if (!(priv
->config
& CFG_STATIC_CHANNEL
))
3876 /* when other nodes drop out, we drop out */
3877 priv
->config
&= ~CFG_ADHOC_PERSIST
;
3883 if (i
== MAX_STATIONS
)
3884 return IPW_INVALID_STATION
;
3886 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid
);
3889 entry
.support_mode
= 0;
3890 memcpy(entry
.mac_addr
, bssid
, ETH_ALEN
);
3891 memcpy(priv
->stations
[i
], bssid
, ETH_ALEN
);
3892 ipw_write_direct(priv
, IPW_STATION_TABLE_LOWER
+ i
* sizeof(entry
),
3893 &entry
, sizeof(entry
));
3894 priv
->num_stations
++;
3899 static u8
ipw_find_station(struct ipw_priv
*priv
, u8
* bssid
)
3903 for (i
= 0; i
< priv
->num_stations
; i
++)
3904 if (!memcmp(priv
->stations
[i
], bssid
, ETH_ALEN
))
3907 return IPW_INVALID_STATION
;
3910 static void ipw_send_disassociate(struct ipw_priv
*priv
, int quiet
)
3914 if (priv
->status
& STATUS_ASSOCIATING
) {
3915 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3916 queue_work(priv
->workqueue
, &priv
->disassociate
);
3920 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
3921 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3925 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3927 priv
->assoc_request
.bssid
,
3928 priv
->assoc_request
.channel
);
3930 priv
->status
&= ~(STATUS_ASSOCIATING
| STATUS_ASSOCIATED
);
3931 priv
->status
|= STATUS_DISASSOCIATING
;
3934 priv
->assoc_request
.assoc_type
= HC_DISASSOC_QUIET
;
3936 priv
->assoc_request
.assoc_type
= HC_DISASSOCIATE
;
3938 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
3940 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3947 static int ipw_disassociate(void *data
)
3949 struct ipw_priv
*priv
= data
;
3950 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)))
3952 ipw_send_disassociate(data
, 0);
3953 netif_carrier_off(priv
->net_dev
);
3957 static void ipw_bg_disassociate(struct work_struct
*work
)
3959 struct ipw_priv
*priv
=
3960 container_of(work
, struct ipw_priv
, disassociate
);
3961 mutex_lock(&priv
->mutex
);
3962 ipw_disassociate(priv
);
3963 mutex_unlock(&priv
->mutex
);
3966 static void ipw_system_config(struct work_struct
*work
)
3968 struct ipw_priv
*priv
=
3969 container_of(work
, struct ipw_priv
, system_config
);
3971 #ifdef CONFIG_IPW2200_PROMISCUOUS
3972 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
3973 priv
->sys_config
.accept_all_data_frames
= 1;
3974 priv
->sys_config
.accept_non_directed_frames
= 1;
3975 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
3976 priv
->sys_config
.accept_all_mgmt_frames
= 1;
3980 ipw_send_system_config(priv
);
3983 struct ipw_status_code
{
3988 static const struct ipw_status_code ipw_status_codes
[] = {
3989 {0x00, "Successful"},
3990 {0x01, "Unspecified failure"},
3991 {0x0A, "Cannot support all requested capabilities in the "
3992 "Capability information field"},
3993 {0x0B, "Reassociation denied due to inability to confirm that "
3994 "association exists"},
3995 {0x0C, "Association denied due to reason outside the scope of this "
3998 "Responding station does not support the specified authentication "
4001 "Received an Authentication frame with authentication sequence "
4002 "transaction sequence number out of expected sequence"},
4003 {0x0F, "Authentication rejected because of challenge failure"},
4004 {0x10, "Authentication rejected due to timeout waiting for next "
4005 "frame in sequence"},
4006 {0x11, "Association denied because AP is unable to handle additional "
4007 "associated stations"},
4009 "Association denied due to requesting station not supporting all "
4010 "of the datarates in the BSSBasicServiceSet Parameter"},
4012 "Association denied due to requesting station not supporting "
4013 "short preamble operation"},
4015 "Association denied due to requesting station not supporting "
4018 "Association denied due to requesting station not supporting "
4021 "Association denied due to requesting station not supporting "
4022 "short slot operation"},
4024 "Association denied due to requesting station not supporting "
4025 "DSSS-OFDM operation"},
4026 {0x28, "Invalid Information Element"},
4027 {0x29, "Group Cipher is not valid"},
4028 {0x2A, "Pairwise Cipher is not valid"},
4029 {0x2B, "AKMP is not valid"},
4030 {0x2C, "Unsupported RSN IE version"},
4031 {0x2D, "Invalid RSN IE Capabilities"},
4032 {0x2E, "Cipher suite is rejected per security policy"},
4035 static const char *ipw_get_status_code(u16 status
)
4038 for (i
= 0; i
< ARRAY_SIZE(ipw_status_codes
); i
++)
4039 if (ipw_status_codes
[i
].status
== (status
& 0xff))
4040 return ipw_status_codes
[i
].reason
;
4041 return "Unknown status value.";
4044 static void inline average_init(struct average
*avg
)
4046 memset(avg
, 0, sizeof(*avg
));
4049 #define DEPTH_RSSI 8
4050 #define DEPTH_NOISE 16
4051 static s16
exponential_average(s16 prev_avg
, s16 val
, u8 depth
)
4053 return ((depth
-1)*prev_avg
+ val
)/depth
;
4056 static void average_add(struct average
*avg
, s16 val
)
4058 avg
->sum
-= avg
->entries
[avg
->pos
];
4060 avg
->entries
[avg
->pos
++] = val
;
4061 if (unlikely(avg
->pos
== AVG_ENTRIES
)) {
4067 static s16
average_value(struct average
*avg
)
4069 if (!unlikely(avg
->init
)) {
4071 return avg
->sum
/ avg
->pos
;
4075 return avg
->sum
/ AVG_ENTRIES
;
4078 static void ipw_reset_stats(struct ipw_priv
*priv
)
4080 u32 len
= sizeof(u32
);
4084 average_init(&priv
->average_missed_beacons
);
4085 priv
->exp_avg_rssi
= -60;
4086 priv
->exp_avg_noise
= -85 + 0x100;
4088 priv
->last_rate
= 0;
4089 priv
->last_missed_beacons
= 0;
4090 priv
->last_rx_packets
= 0;
4091 priv
->last_tx_packets
= 0;
4092 priv
->last_tx_failures
= 0;
4094 /* Firmware managed, reset only when NIC is restarted, so we have to
4095 * normalize on the current value */
4096 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
,
4097 &priv
->last_rx_err
, &len
);
4098 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
,
4099 &priv
->last_tx_failures
, &len
);
4101 /* Driver managed, reset with each association */
4102 priv
->missed_adhoc_beacons
= 0;
4103 priv
->missed_beacons
= 0;
4104 priv
->tx_packets
= 0;
4105 priv
->rx_packets
= 0;
4109 static u32
ipw_get_max_rate(struct ipw_priv
*priv
)
4112 u32 mask
= priv
->rates_mask
;
4113 /* If currently associated in B mode, restrict the maximum
4114 * rate match to B rates */
4115 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
4116 mask
&= LIBIPW_CCK_RATES_MASK
;
4118 /* TODO: Verify that the rate is supported by the current rates
4121 while (i
&& !(mask
& i
))
4124 case LIBIPW_CCK_RATE_1MB_MASK
:
4126 case LIBIPW_CCK_RATE_2MB_MASK
:
4128 case LIBIPW_CCK_RATE_5MB_MASK
:
4130 case LIBIPW_OFDM_RATE_6MB_MASK
:
4132 case LIBIPW_OFDM_RATE_9MB_MASK
:
4134 case LIBIPW_CCK_RATE_11MB_MASK
:
4136 case LIBIPW_OFDM_RATE_12MB_MASK
:
4138 case LIBIPW_OFDM_RATE_18MB_MASK
:
4140 case LIBIPW_OFDM_RATE_24MB_MASK
:
4142 case LIBIPW_OFDM_RATE_36MB_MASK
:
4144 case LIBIPW_OFDM_RATE_48MB_MASK
:
4146 case LIBIPW_OFDM_RATE_54MB_MASK
:
4150 if (priv
->ieee
->mode
== IEEE_B
)
4156 static u32
ipw_get_current_rate(struct ipw_priv
*priv
)
4158 u32 rate
, len
= sizeof(rate
);
4161 if (!(priv
->status
& STATUS_ASSOCIATED
))
4164 if (priv
->tx_packets
> IPW_REAL_RATE_RX_PACKET_THRESHOLD
) {
4165 err
= ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_CURR_RATE
, &rate
,
4168 IPW_DEBUG_INFO("failed querying ordinals.\n");
4172 return ipw_get_max_rate(priv
);
4175 case IPW_TX_RATE_1MB
:
4177 case IPW_TX_RATE_2MB
:
4179 case IPW_TX_RATE_5MB
:
4181 case IPW_TX_RATE_6MB
:
4183 case IPW_TX_RATE_9MB
:
4185 case IPW_TX_RATE_11MB
:
4187 case IPW_TX_RATE_12MB
:
4189 case IPW_TX_RATE_18MB
:
4191 case IPW_TX_RATE_24MB
:
4193 case IPW_TX_RATE_36MB
:
4195 case IPW_TX_RATE_48MB
:
4197 case IPW_TX_RATE_54MB
:
4204 #define IPW_STATS_INTERVAL (2 * HZ)
4205 static void ipw_gather_stats(struct ipw_priv
*priv
)
4207 u32 rx_err
, rx_err_delta
, rx_packets_delta
;
4208 u32 tx_failures
, tx_failures_delta
, tx_packets_delta
;
4209 u32 missed_beacons_percent
, missed_beacons_delta
;
4211 u32 len
= sizeof(u32
);
4213 u32 beacon_quality
, signal_quality
, tx_quality
, rx_quality
,
4217 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
4222 /* Update the statistics */
4223 ipw_get_ordinal(priv
, IPW_ORD_STAT_MISSED_BEACONS
,
4224 &priv
->missed_beacons
, &len
);
4225 missed_beacons_delta
= priv
->missed_beacons
- priv
->last_missed_beacons
;
4226 priv
->last_missed_beacons
= priv
->missed_beacons
;
4227 if (priv
->assoc_request
.beacon_interval
) {
4228 missed_beacons_percent
= missed_beacons_delta
*
4229 (HZ
* le16_to_cpu(priv
->assoc_request
.beacon_interval
)) /
4230 (IPW_STATS_INTERVAL
* 10);
4232 missed_beacons_percent
= 0;
4234 average_add(&priv
->average_missed_beacons
, missed_beacons_percent
);
4236 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
, &rx_err
, &len
);
4237 rx_err_delta
= rx_err
- priv
->last_rx_err
;
4238 priv
->last_rx_err
= rx_err
;
4240 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
, &tx_failures
, &len
);
4241 tx_failures_delta
= tx_failures
- priv
->last_tx_failures
;
4242 priv
->last_tx_failures
= tx_failures
;
4244 rx_packets_delta
= priv
->rx_packets
- priv
->last_rx_packets
;
4245 priv
->last_rx_packets
= priv
->rx_packets
;
4247 tx_packets_delta
= priv
->tx_packets
- priv
->last_tx_packets
;
4248 priv
->last_tx_packets
= priv
->tx_packets
;
4250 /* Calculate quality based on the following:
4252 * Missed beacon: 100% = 0, 0% = 70% missed
4253 * Rate: 60% = 1Mbs, 100% = Max
4254 * Rx and Tx errors represent a straight % of total Rx/Tx
4255 * RSSI: 100% = > -50, 0% = < -80
4256 * Rx errors: 100% = 0, 0% = 50% missed
4258 * The lowest computed quality is used.
4261 #define BEACON_THRESHOLD 5
4262 beacon_quality
= 100 - missed_beacons_percent
;
4263 if (beacon_quality
< BEACON_THRESHOLD
)
4266 beacon_quality
= (beacon_quality
- BEACON_THRESHOLD
) * 100 /
4267 (100 - BEACON_THRESHOLD
);
4268 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4269 beacon_quality
, missed_beacons_percent
);
4271 priv
->last_rate
= ipw_get_current_rate(priv
);
4272 max_rate
= ipw_get_max_rate(priv
);
4273 rate_quality
= priv
->last_rate
* 40 / max_rate
+ 60;
4274 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4275 rate_quality
, priv
->last_rate
/ 1000000);
4277 if (rx_packets_delta
> 100 && rx_packets_delta
+ rx_err_delta
)
4278 rx_quality
= 100 - (rx_err_delta
* 100) /
4279 (rx_packets_delta
+ rx_err_delta
);
4282 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4283 rx_quality
, rx_err_delta
, rx_packets_delta
);
4285 if (tx_packets_delta
> 100 && tx_packets_delta
+ tx_failures_delta
)
4286 tx_quality
= 100 - (tx_failures_delta
* 100) /
4287 (tx_packets_delta
+ tx_failures_delta
);
4290 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4291 tx_quality
, tx_failures_delta
, tx_packets_delta
);
4293 rssi
= priv
->exp_avg_rssi
;
4296 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4297 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) -
4298 (priv
->ieee
->perfect_rssi
- rssi
) *
4299 (15 * (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) +
4300 62 * (priv
->ieee
->perfect_rssi
- rssi
))) /
4301 ((priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4302 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
));
4303 if (signal_quality
> 100)
4304 signal_quality
= 100;
4305 else if (signal_quality
< 1)
4308 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4309 signal_quality
, rssi
);
4311 quality
= min(rx_quality
, signal_quality
);
4312 quality
= min(tx_quality
, quality
);
4313 quality
= min(rate_quality
, quality
);
4314 quality
= min(beacon_quality
, quality
);
4315 if (quality
== beacon_quality
)
4316 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4318 if (quality
== rate_quality
)
4319 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4321 if (quality
== tx_quality
)
4322 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4324 if (quality
== rx_quality
)
4325 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4327 if (quality
== signal_quality
)
4328 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4331 priv
->quality
= quality
;
4333 queue_delayed_work(priv
->workqueue
, &priv
->gather_stats
,
4334 IPW_STATS_INTERVAL
);
4337 static void ipw_bg_gather_stats(struct work_struct
*work
)
4339 struct ipw_priv
*priv
=
4340 container_of(work
, struct ipw_priv
, gather_stats
.work
);
4341 mutex_lock(&priv
->mutex
);
4342 ipw_gather_stats(priv
);
4343 mutex_unlock(&priv
->mutex
);
4346 /* Missed beacon behavior:
4347 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4348 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4349 * Above disassociate threshold, give up and stop scanning.
4350 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4351 static void ipw_handle_missed_beacon(struct ipw_priv
*priv
,
4354 priv
->notif_missed_beacons
= missed_count
;
4356 if (missed_count
> priv
->disassociate_threshold
&&
4357 priv
->status
& STATUS_ASSOCIATED
) {
4358 /* If associated and we've hit the missed
4359 * beacon threshold, disassociate, turn
4360 * off roaming, and abort any active scans */
4361 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4362 IPW_DL_STATE
| IPW_DL_ASSOC
,
4363 "Missed beacon: %d - disassociate\n", missed_count
);
4364 priv
->status
&= ~STATUS_ROAMING
;
4365 if (priv
->status
& STATUS_SCANNING
) {
4366 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4368 "Aborting scan with missed beacon.\n");
4369 queue_work(priv
->workqueue
, &priv
->abort_scan
);
4372 queue_work(priv
->workqueue
, &priv
->disassociate
);
4376 if (priv
->status
& STATUS_ROAMING
) {
4377 /* If we are currently roaming, then just
4378 * print a debug statement... */
4379 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4380 "Missed beacon: %d - roam in progress\n",
4386 (missed_count
> priv
->roaming_threshold
&&
4387 missed_count
<= priv
->disassociate_threshold
)) {
4388 /* If we are not already roaming, set the ROAM
4389 * bit in the status and kick off a scan.
4390 * This can happen several times before we reach
4391 * disassociate_threshold. */
4392 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4393 "Missed beacon: %d - initiate "
4394 "roaming\n", missed_count
);
4395 if (!(priv
->status
& STATUS_ROAMING
)) {
4396 priv
->status
|= STATUS_ROAMING
;
4397 if (!(priv
->status
& STATUS_SCANNING
))
4398 queue_delayed_work(priv
->workqueue
,
4399 &priv
->request_scan
, 0);
4404 if (priv
->status
& STATUS_SCANNING
&&
4405 missed_count
> IPW_MB_SCAN_CANCEL_THRESHOLD
) {
4406 /* Stop scan to keep fw from getting
4407 * stuck (only if we aren't roaming --
4408 * otherwise we'll never scan more than 2 or 3
4410 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
| IPW_DL_STATE
,
4411 "Aborting scan with missed beacon.\n");
4412 queue_work(priv
->workqueue
, &priv
->abort_scan
);
4415 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count
);
4418 static void ipw_scan_event(struct work_struct
*work
)
4420 union iwreq_data wrqu
;
4422 struct ipw_priv
*priv
=
4423 container_of(work
, struct ipw_priv
, scan_event
.work
);
4425 wrqu
.data
.length
= 0;
4426 wrqu
.data
.flags
= 0;
4427 wireless_send_event(priv
->net_dev
, SIOCGIWSCAN
, &wrqu
, NULL
);
4430 static void handle_scan_event(struct ipw_priv
*priv
)
4432 /* Only userspace-requested scan completion events go out immediately */
4433 if (!priv
->user_requested_scan
) {
4434 if (!delayed_work_pending(&priv
->scan_event
))
4435 queue_delayed_work(priv
->workqueue
, &priv
->scan_event
,
4436 round_jiffies_relative(msecs_to_jiffies(4000)));
4438 union iwreq_data wrqu
;
4440 priv
->user_requested_scan
= 0;
4441 cancel_delayed_work(&priv
->scan_event
);
4443 wrqu
.data
.length
= 0;
4444 wrqu
.data
.flags
= 0;
4445 wireless_send_event(priv
->net_dev
, SIOCGIWSCAN
, &wrqu
, NULL
);
4450 * Handle host notification packet.
4451 * Called from interrupt routine
4453 static void ipw_rx_notification(struct ipw_priv
*priv
,
4454 struct ipw_rx_notification
*notif
)
4456 DECLARE_SSID_BUF(ssid
);
4457 u16 size
= le16_to_cpu(notif
->size
);
4459 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif
->subtype
, size
);
4461 switch (notif
->subtype
) {
4462 case HOST_NOTIFICATION_STATUS_ASSOCIATED
:{
4463 struct notif_association
*assoc
= ¬if
->u
.assoc
;
4465 switch (assoc
->state
) {
4466 case CMAS_ASSOCIATED
:{
4467 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4469 "associated: '%s' %pM \n",
4470 print_ssid(ssid
, priv
->essid
,
4474 switch (priv
->ieee
->iw_mode
) {
4476 memcpy(priv
->ieee
->bssid
,
4477 priv
->bssid
, ETH_ALEN
);
4481 memcpy(priv
->ieee
->bssid
,
4482 priv
->bssid
, ETH_ALEN
);
4484 /* clear out the station table */
4485 priv
->num_stations
= 0;
4488 ("queueing adhoc check\n");
4489 queue_delayed_work(priv
->
4499 priv
->status
&= ~STATUS_ASSOCIATING
;
4500 priv
->status
|= STATUS_ASSOCIATED
;
4501 queue_work(priv
->workqueue
,
4502 &priv
->system_config
);
4504 #ifdef CONFIG_IPW2200_QOS
4505 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4506 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4507 if ((priv
->status
& STATUS_AUTH
) &&
4508 (IPW_GET_PACKET_STYPE(¬if
->u
.raw
)
4509 == IEEE80211_STYPE_ASSOC_RESP
)) {
4512 libipw_assoc_response
)
4514 && (size
<= 2314)) {
4524 libipw_rx_mgt(priv
->
4529 ¬if
->u
.raw
, &stats
);
4534 schedule_work(&priv
->link_up
);
4539 case CMAS_AUTHENTICATED
:{
4541 status
& (STATUS_ASSOCIATED
|
4543 struct notif_authenticate
*auth
4545 IPW_DEBUG(IPW_DL_NOTIF
|
4548 "deauthenticated: '%s' "
4550 ": (0x%04X) - %s \n",
4557 le16_to_cpu(auth
->status
),
4563 ~(STATUS_ASSOCIATING
|
4567 schedule_work(&priv
->link_down
);
4571 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4573 "authenticated: '%s' %pM\n",
4574 print_ssid(ssid
, priv
->essid
,
4581 if (priv
->status
& STATUS_AUTH
) {
4583 libipw_assoc_response
4587 libipw_assoc_response
4589 IPW_DEBUG(IPW_DL_NOTIF
|
4592 "association failed (0x%04X): %s\n",
4593 le16_to_cpu(resp
->status
),
4599 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4601 "disassociated: '%s' %pM \n",
4602 print_ssid(ssid
, priv
->essid
,
4607 ~(STATUS_DISASSOCIATING
|
4608 STATUS_ASSOCIATING
|
4609 STATUS_ASSOCIATED
| STATUS_AUTH
);
4610 if (priv
->assoc_network
4611 && (priv
->assoc_network
->
4613 WLAN_CAPABILITY_IBSS
))
4614 ipw_remove_current_network
4617 schedule_work(&priv
->link_down
);
4622 case CMAS_RX_ASSOC_RESP
:
4626 IPW_ERROR("assoc: unknown (%d)\n",
4634 case HOST_NOTIFICATION_STATUS_AUTHENTICATE
:{
4635 struct notif_authenticate
*auth
= ¬if
->u
.auth
;
4636 switch (auth
->state
) {
4637 case CMAS_AUTHENTICATED
:
4638 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4639 "authenticated: '%s' %pM \n",
4640 print_ssid(ssid
, priv
->essid
,
4643 priv
->status
|= STATUS_AUTH
;
4647 if (priv
->status
& STATUS_AUTH
) {
4648 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4650 "authentication failed (0x%04X): %s\n",
4651 le16_to_cpu(auth
->status
),
4652 ipw_get_status_code(le16_to_cpu
4656 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4658 "deauthenticated: '%s' %pM\n",
4659 print_ssid(ssid
, priv
->essid
,
4663 priv
->status
&= ~(STATUS_ASSOCIATING
|
4667 schedule_work(&priv
->link_down
);
4670 case CMAS_TX_AUTH_SEQ_1
:
4671 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4672 IPW_DL_ASSOC
, "AUTH_SEQ_1\n");
4674 case CMAS_RX_AUTH_SEQ_2
:
4675 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4676 IPW_DL_ASSOC
, "AUTH_SEQ_2\n");
4678 case CMAS_AUTH_SEQ_1_PASS
:
4679 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4680 IPW_DL_ASSOC
, "AUTH_SEQ_1_PASS\n");
4682 case CMAS_AUTH_SEQ_1_FAIL
:
4683 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4684 IPW_DL_ASSOC
, "AUTH_SEQ_1_FAIL\n");
4686 case CMAS_TX_AUTH_SEQ_3
:
4687 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4688 IPW_DL_ASSOC
, "AUTH_SEQ_3\n");
4690 case CMAS_RX_AUTH_SEQ_4
:
4691 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4692 IPW_DL_ASSOC
, "RX_AUTH_SEQ_4\n");
4694 case CMAS_AUTH_SEQ_2_PASS
:
4695 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4696 IPW_DL_ASSOC
, "AUTH_SEQ_2_PASS\n");
4698 case CMAS_AUTH_SEQ_2_FAIL
:
4699 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4700 IPW_DL_ASSOC
, "AUT_SEQ_2_FAIL\n");
4703 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4704 IPW_DL_ASSOC
, "TX_ASSOC\n");
4706 case CMAS_RX_ASSOC_RESP
:
4707 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4708 IPW_DL_ASSOC
, "RX_ASSOC_RESP\n");
4711 case CMAS_ASSOCIATED
:
4712 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4713 IPW_DL_ASSOC
, "ASSOCIATED\n");
4716 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4723 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT
:{
4724 struct notif_channel_result
*x
=
4725 ¬if
->u
.channel_result
;
4727 if (size
== sizeof(*x
)) {
4728 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4731 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4732 "(should be %zd)\n",
4738 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED
:{
4739 struct notif_scan_complete
*x
= ¬if
->u
.scan_complete
;
4740 if (size
== sizeof(*x
)) {
4742 ("Scan completed: type %d, %d channels, "
4743 "%d status\n", x
->scan_type
,
4744 x
->num_channels
, x
->status
);
4746 IPW_ERROR("Scan completed of wrong size %d "
4747 "(should be %zd)\n",
4752 ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
4754 wake_up_interruptible(&priv
->wait_state
);
4755 cancel_delayed_work(&priv
->scan_check
);
4757 if (priv
->status
& STATUS_EXIT_PENDING
)
4760 priv
->ieee
->scans
++;
4762 #ifdef CONFIG_IPW2200_MONITOR
4763 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
4764 priv
->status
|= STATUS_SCAN_FORCED
;
4765 queue_delayed_work(priv
->workqueue
,
4766 &priv
->request_scan
, 0);
4769 priv
->status
&= ~STATUS_SCAN_FORCED
;
4770 #endif /* CONFIG_IPW2200_MONITOR */
4772 /* Do queued direct scans first */
4773 if (priv
->status
& STATUS_DIRECT_SCAN_PENDING
) {
4774 queue_delayed_work(priv
->workqueue
,
4775 &priv
->request_direct_scan
, 0);
4778 if (!(priv
->status
& (STATUS_ASSOCIATED
|
4779 STATUS_ASSOCIATING
|
4781 STATUS_DISASSOCIATING
)))
4782 queue_work(priv
->workqueue
, &priv
->associate
);
4783 else if (priv
->status
& STATUS_ROAMING
) {
4784 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4785 /* If a scan completed and we are in roam mode, then
4786 * the scan that completed was the one requested as a
4787 * result of entering roam... so, schedule the
4789 queue_work(priv
->workqueue
,
4792 /* Don't schedule if we aborted the scan */
4793 priv
->status
&= ~STATUS_ROAMING
;
4794 } else if (priv
->status
& STATUS_SCAN_PENDING
)
4795 queue_delayed_work(priv
->workqueue
,
4796 &priv
->request_scan
, 0);
4797 else if (priv
->config
& CFG_BACKGROUND_SCAN
4798 && priv
->status
& STATUS_ASSOCIATED
)
4799 queue_delayed_work(priv
->workqueue
,
4800 &priv
->request_scan
,
4801 round_jiffies_relative(HZ
));
4803 /* Send an empty event to user space.
4804 * We don't send the received data on the event because
4805 * it would require us to do complex transcoding, and
4806 * we want to minimise the work done in the irq handler
4807 * Use a request to extract the data.
4808 * Also, we generate this even for any scan, regardless
4809 * on how the scan was initiated. User space can just
4810 * sync on periodic scan to get fresh data...
4812 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4813 handle_scan_event(priv
);
4817 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH
:{
4818 struct notif_frag_length
*x
= ¬if
->u
.frag_len
;
4820 if (size
== sizeof(*x
))
4821 IPW_ERROR("Frag length: %d\n",
4822 le16_to_cpu(x
->frag_length
));
4824 IPW_ERROR("Frag length of wrong size %d "
4825 "(should be %zd)\n",
4830 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION
:{
4831 struct notif_link_deterioration
*x
=
4832 ¬if
->u
.link_deterioration
;
4834 if (size
== sizeof(*x
)) {
4835 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4836 "link deterioration: type %d, cnt %d\n",
4837 x
->silence_notification_type
,
4839 memcpy(&priv
->last_link_deterioration
, x
,
4842 IPW_ERROR("Link Deterioration of wrong size %d "
4843 "(should be %zd)\n",
4849 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE
:{
4850 IPW_ERROR("Dino config\n");
4852 && priv
->hcmd
->cmd
!= HOST_CMD_DINO_CONFIG
)
4853 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4858 case HOST_NOTIFICATION_STATUS_BEACON_STATE
:{
4859 struct notif_beacon_state
*x
= ¬if
->u
.beacon_state
;
4860 if (size
!= sizeof(*x
)) {
4862 ("Beacon state of wrong size %d (should "
4863 "be %zd)\n", size
, sizeof(*x
));
4867 if (le32_to_cpu(x
->state
) ==
4868 HOST_NOTIFICATION_STATUS_BEACON_MISSING
)
4869 ipw_handle_missed_beacon(priv
,
4876 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY
:{
4877 struct notif_tgi_tx_key
*x
= ¬if
->u
.tgi_tx_key
;
4878 if (size
== sizeof(*x
)) {
4879 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4880 "0x%02x station %d\n",
4881 x
->key_state
, x
->security_type
,
4887 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4892 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS
:{
4893 struct notif_calibration
*x
= ¬if
->u
.calibration
;
4895 if (size
== sizeof(*x
)) {
4896 memcpy(&priv
->calib
, x
, sizeof(*x
));
4897 IPW_DEBUG_INFO("TODO: Calibration\n");
4902 ("Calibration of wrong size %d (should be %zd)\n",
4907 case HOST_NOTIFICATION_NOISE_STATS
:{
4908 if (size
== sizeof(u32
)) {
4909 priv
->exp_avg_noise
=
4910 exponential_average(priv
->exp_avg_noise
,
4911 (u8
) (le32_to_cpu(notif
->u
.noise
.value
) & 0xff),
4917 ("Noise stat is wrong size %d (should be %zd)\n",
4923 IPW_DEBUG_NOTIF("Unknown notification: "
4924 "subtype=%d,flags=0x%2x,size=%d\n",
4925 notif
->subtype
, notif
->flags
, size
);
4930 * Destroys all DMA structures and initialise them again
4933 * @return error code
4935 static int ipw_queue_reset(struct ipw_priv
*priv
)
4938 /** @todo customize queue sizes */
4939 int nTx
= 64, nTxCmd
= 8;
4940 ipw_tx_queue_free(priv
);
4942 rc
= ipw_queue_tx_init(priv
, &priv
->txq_cmd
, nTxCmd
,
4943 IPW_TX_CMD_QUEUE_READ_INDEX
,
4944 IPW_TX_CMD_QUEUE_WRITE_INDEX
,
4945 IPW_TX_CMD_QUEUE_BD_BASE
,
4946 IPW_TX_CMD_QUEUE_BD_SIZE
);
4948 IPW_ERROR("Tx Cmd queue init failed\n");
4952 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[0], nTx
,
4953 IPW_TX_QUEUE_0_READ_INDEX
,
4954 IPW_TX_QUEUE_0_WRITE_INDEX
,
4955 IPW_TX_QUEUE_0_BD_BASE
, IPW_TX_QUEUE_0_BD_SIZE
);
4957 IPW_ERROR("Tx 0 queue init failed\n");
4960 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[1], nTx
,
4961 IPW_TX_QUEUE_1_READ_INDEX
,
4962 IPW_TX_QUEUE_1_WRITE_INDEX
,
4963 IPW_TX_QUEUE_1_BD_BASE
, IPW_TX_QUEUE_1_BD_SIZE
);
4965 IPW_ERROR("Tx 1 queue init failed\n");
4968 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[2], nTx
,
4969 IPW_TX_QUEUE_2_READ_INDEX
,
4970 IPW_TX_QUEUE_2_WRITE_INDEX
,
4971 IPW_TX_QUEUE_2_BD_BASE
, IPW_TX_QUEUE_2_BD_SIZE
);
4973 IPW_ERROR("Tx 2 queue init failed\n");
4976 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[3], nTx
,
4977 IPW_TX_QUEUE_3_READ_INDEX
,
4978 IPW_TX_QUEUE_3_WRITE_INDEX
,
4979 IPW_TX_QUEUE_3_BD_BASE
, IPW_TX_QUEUE_3_BD_SIZE
);
4981 IPW_ERROR("Tx 3 queue init failed\n");
4985 priv
->rx_bufs_min
= 0;
4986 priv
->rx_pend_max
= 0;
4990 ipw_tx_queue_free(priv
);
4995 * Reclaim Tx queue entries no more used by NIC.
4997 * When FW advances 'R' index, all entries between old and
4998 * new 'R' index need to be reclaimed. As result, some free space
4999 * forms. If there is enough free space (> low mark), wake Tx queue.
5001 * @note Need to protect against garbage in 'R' index
5005 * @return Number of used entries remains in the queue
5007 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
5008 struct clx2_tx_queue
*txq
, int qindex
)
5012 struct clx2_queue
*q
= &txq
->q
;
5014 hw_tail
= ipw_read32(priv
, q
->reg_r
);
5015 if (hw_tail
>= q
->n_bd
) {
5017 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5021 for (; q
->last_used
!= hw_tail
;
5022 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
5023 ipw_queue_tx_free_tfd(priv
, txq
);
5027 if ((ipw_tx_queue_space(q
) > q
->low_mark
) &&
5029 netif_wake_queue(priv
->net_dev
);
5030 used
= q
->first_empty
- q
->last_used
;
5037 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
5040 struct clx2_tx_queue
*txq
= &priv
->txq_cmd
;
5041 struct clx2_queue
*q
= &txq
->q
;
5042 struct tfd_frame
*tfd
;
5044 if (ipw_tx_queue_space(q
) < (sync
? 1 : 2)) {
5045 IPW_ERROR("No space for Tx\n");
5049 tfd
= &txq
->bd
[q
->first_empty
];
5050 txq
->txb
[q
->first_empty
] = NULL
;
5052 memset(tfd
, 0, sizeof(*tfd
));
5053 tfd
->control_flags
.message_type
= TX_HOST_COMMAND_TYPE
;
5054 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
5056 tfd
->u
.cmd
.index
= hcmd
;
5057 tfd
->u
.cmd
.length
= len
;
5058 memcpy(tfd
->u
.cmd
.payload
, buf
, len
);
5059 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
5060 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
5061 _ipw_read32(priv
, 0x90);
5067 * Rx theory of operation
5069 * The host allocates 32 DMA target addresses and passes the host address
5070 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5074 * The host/firmware share two index registers for managing the Rx buffers.
5076 * The READ index maps to the first position that the firmware may be writing
5077 * to -- the driver can read up to (but not including) this position and get
5079 * The READ index is managed by the firmware once the card is enabled.
5081 * The WRITE index maps to the last position the driver has read from -- the
5082 * position preceding WRITE is the last slot the firmware can place a packet.
5084 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5087 * During initialization the host sets up the READ queue position to the first
5088 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5090 * When the firmware places a packet in a buffer it will advance the READ index
5091 * and fire the RX interrupt. The driver can then query the READ index and
5092 * process as many packets as possible, moving the WRITE index forward as it
5093 * resets the Rx queue buffers with new memory.
5095 * The management in the driver is as follows:
5096 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5097 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5098 * to replensish the ipw->rxq->rx_free.
5099 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5100 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5101 * 'processed' and 'read' driver indexes as well)
5102 * + A received packet is processed and handed to the kernel network stack,
5103 * detached from the ipw->rxq. The driver 'processed' index is updated.
5104 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5105 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5106 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5107 * were enough free buffers and RX_STALLED is set it is cleared.
5112 * ipw_rx_queue_alloc() Allocates rx_free
5113 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5114 * ipw_rx_queue_restock
5115 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5116 * queue, updates firmware pointers, and updates
5117 * the WRITE index. If insufficient rx_free buffers
5118 * are available, schedules ipw_rx_queue_replenish
5120 * -- enable interrupts --
5121 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5122 * READ INDEX, detaching the SKB from the pool.
5123 * Moves the packet buffer from queue to rx_used.
5124 * Calls ipw_rx_queue_restock to refill any empty
5131 * If there are slots in the RX queue that need to be restocked,
5132 * and we have free pre-allocated buffers, fill the ranks as much
5133 * as we can pulling from rx_free.
5135 * This moves the 'write' index forward to catch up with 'processed', and
5136 * also updates the memory address in the firmware to reference the new
5139 static void ipw_rx_queue_restock(struct ipw_priv
*priv
)
5141 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5142 struct list_head
*element
;
5143 struct ipw_rx_mem_buffer
*rxb
;
5144 unsigned long flags
;
5147 spin_lock_irqsave(&rxq
->lock
, flags
);
5149 while ((ipw_rx_queue_space(rxq
) > 0) && (rxq
->free_count
)) {
5150 element
= rxq
->rx_free
.next
;
5151 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5154 ipw_write32(priv
, IPW_RFDS_TABLE_LOWER
+ rxq
->write
* RFD_SIZE
,
5156 rxq
->queue
[rxq
->write
] = rxb
;
5157 rxq
->write
= (rxq
->write
+ 1) % RX_QUEUE_SIZE
;
5160 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5162 /* If the pre-allocated buffer pool is dropping low, schedule to
5164 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
5165 queue_work(priv
->workqueue
, &priv
->rx_replenish
);
5167 /* If we've added more space for the firmware to place data, tell it */
5168 if (write
!= rxq
->write
)
5169 ipw_write32(priv
, IPW_RX_WRITE_INDEX
, rxq
->write
);
5173 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5174 * Also restock the Rx queue via ipw_rx_queue_restock.
5176 * This is called as a scheduled work item (except for during intialization)
5178 static void ipw_rx_queue_replenish(void *data
)
5180 struct ipw_priv
*priv
= data
;
5181 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5182 struct list_head
*element
;
5183 struct ipw_rx_mem_buffer
*rxb
;
5184 unsigned long flags
;
5186 spin_lock_irqsave(&rxq
->lock
, flags
);
5187 while (!list_empty(&rxq
->rx_used
)) {
5188 element
= rxq
->rx_used
.next
;
5189 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5190 rxb
->skb
= alloc_skb(IPW_RX_BUF_SIZE
, GFP_ATOMIC
);
5192 printk(KERN_CRIT
"%s: Can not allocate SKB buffers.\n",
5193 priv
->net_dev
->name
);
5194 /* We don't reschedule replenish work here -- we will
5195 * call the restock method and if it still needs
5196 * more buffers it will schedule replenish */
5202 pci_map_single(priv
->pci_dev
, rxb
->skb
->data
,
5203 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5205 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
5208 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5210 ipw_rx_queue_restock(priv
);
5213 static void ipw_bg_rx_queue_replenish(struct work_struct
*work
)
5215 struct ipw_priv
*priv
=
5216 container_of(work
, struct ipw_priv
, rx_replenish
);
5217 mutex_lock(&priv
->mutex
);
5218 ipw_rx_queue_replenish(priv
);
5219 mutex_unlock(&priv
->mutex
);
5222 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5223 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5224 * This free routine walks the list of POOL entries and if SKB is set to
5225 * non NULL it is unmapped and freed
5227 static void ipw_rx_queue_free(struct ipw_priv
*priv
, struct ipw_rx_queue
*rxq
)
5234 for (i
= 0; i
< RX_QUEUE_SIZE
+ RX_FREE_BUFFERS
; i
++) {
5235 if (rxq
->pool
[i
].skb
!= NULL
) {
5236 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
5237 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5238 dev_kfree_skb(rxq
->pool
[i
].skb
);
5245 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*priv
)
5247 struct ipw_rx_queue
*rxq
;
5250 rxq
= kzalloc(sizeof(*rxq
), GFP_KERNEL
);
5251 if (unlikely(!rxq
)) {
5252 IPW_ERROR("memory allocation failed\n");
5255 spin_lock_init(&rxq
->lock
);
5256 INIT_LIST_HEAD(&rxq
->rx_free
);
5257 INIT_LIST_HEAD(&rxq
->rx_used
);
5259 /* Fill the rx_used queue with _all_ of the Rx buffers */
5260 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
5261 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
5263 /* Set us so that we have processed and used all buffers, but have
5264 * not restocked the Rx queue with fresh buffers */
5265 rxq
->read
= rxq
->write
= 0;
5266 rxq
->free_count
= 0;
5271 static int ipw_is_rate_in_mask(struct ipw_priv
*priv
, int ieee_mode
, u8 rate
)
5273 rate
&= ~LIBIPW_BASIC_RATE_MASK
;
5274 if (ieee_mode
== IEEE_A
) {
5276 case LIBIPW_OFDM_RATE_6MB
:
5277 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
?
5279 case LIBIPW_OFDM_RATE_9MB
:
5280 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
?
5282 case LIBIPW_OFDM_RATE_12MB
:
5284 rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5285 case LIBIPW_OFDM_RATE_18MB
:
5287 rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5288 case LIBIPW_OFDM_RATE_24MB
:
5290 rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5291 case LIBIPW_OFDM_RATE_36MB
:
5293 rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5294 case LIBIPW_OFDM_RATE_48MB
:
5296 rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5297 case LIBIPW_OFDM_RATE_54MB
:
5299 rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5307 case LIBIPW_CCK_RATE_1MB
:
5308 return priv
->rates_mask
& LIBIPW_CCK_RATE_1MB_MASK
? 1 : 0;
5309 case LIBIPW_CCK_RATE_2MB
:
5310 return priv
->rates_mask
& LIBIPW_CCK_RATE_2MB_MASK
? 1 : 0;
5311 case LIBIPW_CCK_RATE_5MB
:
5312 return priv
->rates_mask
& LIBIPW_CCK_RATE_5MB_MASK
? 1 : 0;
5313 case LIBIPW_CCK_RATE_11MB
:
5314 return priv
->rates_mask
& LIBIPW_CCK_RATE_11MB_MASK
? 1 : 0;
5317 /* If we are limited to B modulations, bail at this point */
5318 if (ieee_mode
== IEEE_B
)
5323 case LIBIPW_OFDM_RATE_6MB
:
5324 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
? 1 : 0;
5325 case LIBIPW_OFDM_RATE_9MB
:
5326 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
? 1 : 0;
5327 case LIBIPW_OFDM_RATE_12MB
:
5328 return priv
->rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5329 case LIBIPW_OFDM_RATE_18MB
:
5330 return priv
->rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5331 case LIBIPW_OFDM_RATE_24MB
:
5332 return priv
->rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5333 case LIBIPW_OFDM_RATE_36MB
:
5334 return priv
->rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5335 case LIBIPW_OFDM_RATE_48MB
:
5336 return priv
->rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5337 case LIBIPW_OFDM_RATE_54MB
:
5338 return priv
->rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5344 static int ipw_compatible_rates(struct ipw_priv
*priv
,
5345 const struct libipw_network
*network
,
5346 struct ipw_supported_rates
*rates
)
5350 memset(rates
, 0, sizeof(*rates
));
5351 num_rates
= min(network
->rates_len
, (u8
) IPW_MAX_RATES
);
5352 rates
->num_rates
= 0;
5353 for (i
= 0; i
< num_rates
; i
++) {
5354 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5355 network
->rates
[i
])) {
5357 if (network
->rates
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5358 IPW_DEBUG_SCAN("Adding masked mandatory "
5361 rates
->supported_rates
[rates
->num_rates
++] =
5366 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367 network
->rates
[i
], priv
->rates_mask
);
5371 rates
->supported_rates
[rates
->num_rates
++] = network
->rates
[i
];
5374 num_rates
= min(network
->rates_ex_len
,
5375 (u8
) (IPW_MAX_RATES
- num_rates
));
5376 for (i
= 0; i
< num_rates
; i
++) {
5377 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5378 network
->rates_ex
[i
])) {
5379 if (network
->rates_ex
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5380 IPW_DEBUG_SCAN("Adding masked mandatory "
5382 network
->rates_ex
[i
]);
5383 rates
->supported_rates
[rates
->num_rates
++] =
5388 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389 network
->rates_ex
[i
], priv
->rates_mask
);
5393 rates
->supported_rates
[rates
->num_rates
++] =
5394 network
->rates_ex
[i
];
5400 static void ipw_copy_rates(struct ipw_supported_rates
*dest
,
5401 const struct ipw_supported_rates
*src
)
5404 for (i
= 0; i
< src
->num_rates
; i
++)
5405 dest
->supported_rates
[i
] = src
->supported_rates
[i
];
5406 dest
->num_rates
= src
->num_rates
;
5409 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5410 * mask should ever be used -- right now all callers to add the scan rates are
5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5412 static void ipw_add_cck_scan_rates(struct ipw_supported_rates
*rates
,
5413 u8 modulation
, u32 rate_mask
)
5415 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5416 LIBIPW_BASIC_RATE_MASK
: 0;
5418 if (rate_mask
& LIBIPW_CCK_RATE_1MB_MASK
)
5419 rates
->supported_rates
[rates
->num_rates
++] =
5420 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_1MB
;
5422 if (rate_mask
& LIBIPW_CCK_RATE_2MB_MASK
)
5423 rates
->supported_rates
[rates
->num_rates
++] =
5424 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_2MB
;
5426 if (rate_mask
& LIBIPW_CCK_RATE_5MB_MASK
)
5427 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5428 LIBIPW_CCK_RATE_5MB
;
5430 if (rate_mask
& LIBIPW_CCK_RATE_11MB_MASK
)
5431 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5432 LIBIPW_CCK_RATE_11MB
;
5435 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates
*rates
,
5436 u8 modulation
, u32 rate_mask
)
5438 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5439 LIBIPW_BASIC_RATE_MASK
: 0;
5441 if (rate_mask
& LIBIPW_OFDM_RATE_6MB_MASK
)
5442 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5443 LIBIPW_OFDM_RATE_6MB
;
5445 if (rate_mask
& LIBIPW_OFDM_RATE_9MB_MASK
)
5446 rates
->supported_rates
[rates
->num_rates
++] =
5447 LIBIPW_OFDM_RATE_9MB
;
5449 if (rate_mask
& LIBIPW_OFDM_RATE_12MB_MASK
)
5450 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5451 LIBIPW_OFDM_RATE_12MB
;
5453 if (rate_mask
& LIBIPW_OFDM_RATE_18MB_MASK
)
5454 rates
->supported_rates
[rates
->num_rates
++] =
5455 LIBIPW_OFDM_RATE_18MB
;
5457 if (rate_mask
& LIBIPW_OFDM_RATE_24MB_MASK
)
5458 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5459 LIBIPW_OFDM_RATE_24MB
;
5461 if (rate_mask
& LIBIPW_OFDM_RATE_36MB_MASK
)
5462 rates
->supported_rates
[rates
->num_rates
++] =
5463 LIBIPW_OFDM_RATE_36MB
;
5465 if (rate_mask
& LIBIPW_OFDM_RATE_48MB_MASK
)
5466 rates
->supported_rates
[rates
->num_rates
++] =
5467 LIBIPW_OFDM_RATE_48MB
;
5469 if (rate_mask
& LIBIPW_OFDM_RATE_54MB_MASK
)
5470 rates
->supported_rates
[rates
->num_rates
++] =
5471 LIBIPW_OFDM_RATE_54MB
;
5474 struct ipw_network_match
{
5475 struct libipw_network
*network
;
5476 struct ipw_supported_rates rates
;
5479 static int ipw_find_adhoc_network(struct ipw_priv
*priv
,
5480 struct ipw_network_match
*match
,
5481 struct libipw_network
*network
,
5484 struct ipw_supported_rates rates
;
5485 DECLARE_SSID_BUF(ssid
);
5487 /* Verify that this network's capability is compatible with the
5488 * current mode (AdHoc or Infrastructure) */
5489 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5490 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5491 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5492 "capability mismatch.\n",
5493 print_ssid(ssid
, network
->ssid
,
5499 if (unlikely(roaming
)) {
5500 /* If we are roaming, then ensure check if this is a valid
5501 * network to try and roam to */
5502 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5503 memcmp(network
->ssid
, match
->network
->ssid
,
5504 network
->ssid_len
)) {
5505 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5506 "because of non-network ESSID.\n",
5507 print_ssid(ssid
, network
->ssid
,
5513 /* If an ESSID has been configured then compare the broadcast
5515 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5516 ((network
->ssid_len
!= priv
->essid_len
) ||
5517 memcmp(network
->ssid
, priv
->essid
,
5518 min(network
->ssid_len
, priv
->essid_len
)))) {
5519 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5522 print_ssid(ssid
, network
->ssid
,
5525 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526 "because of ESSID mismatch: '%s'.\n",
5527 escaped
, network
->bssid
,
5528 print_ssid(ssid
, priv
->essid
,
5534 /* If the old network rate is better than this one, don't bother
5535 * testing everything else. */
5537 if (network
->time_stamp
[0] < match
->network
->time_stamp
[0]) {
5538 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5539 "current network.\n",
5540 print_ssid(ssid
, match
->network
->ssid
,
5541 match
->network
->ssid_len
));
5543 } else if (network
->time_stamp
[1] < match
->network
->time_stamp
[1]) {
5544 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5545 "current network.\n",
5546 print_ssid(ssid
, match
->network
->ssid
,
5547 match
->network
->ssid_len
));
5551 /* Now go through and see if the requested network is valid... */
5552 if (priv
->ieee
->scan_age
!= 0 &&
5553 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5554 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5555 "because of age: %ums.\n",
5556 print_ssid(ssid
, network
->ssid
,
5559 jiffies_to_msecs(jiffies
-
5560 network
->last_scanned
));
5564 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5565 (network
->channel
!= priv
->channel
)) {
5566 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5567 "because of channel mismatch: %d != %d.\n",
5568 print_ssid(ssid
, network
->ssid
,
5571 network
->channel
, priv
->channel
);
5575 /* Verify privacy compatability */
5576 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5577 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5578 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5579 "because of privacy mismatch: %s != %s.\n",
5580 print_ssid(ssid
, network
->ssid
,
5584 capability
& CAP_PRIVACY_ON
? "on" : "off",
5586 capability
& WLAN_CAPABILITY_PRIVACY
? "on" :
5591 if (!memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5592 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5593 "because of the same BSSID match: %pM"
5594 ".\n", print_ssid(ssid
, network
->ssid
,
5601 /* Filter out any incompatible freq / mode combinations */
5602 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5603 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5604 "because of invalid frequency/mode "
5606 print_ssid(ssid
, network
->ssid
,
5612 /* Ensure that the rates supported by the driver are compatible with
5613 * this AP, including verification of basic rates (mandatory) */
5614 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5615 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5616 "because configured rate mask excludes "
5617 "AP mandatory rate.\n",
5618 print_ssid(ssid
, network
->ssid
,
5624 if (rates
.num_rates
== 0) {
5625 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5626 "because of no compatible rates.\n",
5627 print_ssid(ssid
, network
->ssid
,
5633 /* TODO: Perform any further minimal comparititive tests. We do not
5634 * want to put too much policy logic here; intelligent scan selection
5635 * should occur within a generic IEEE 802.11 user space tool. */
5637 /* Set up 'new' AP to this network */
5638 ipw_copy_rates(&match
->rates
, &rates
);
5639 match
->network
= network
;
5640 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5641 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5647 static void ipw_merge_adhoc_network(struct work_struct
*work
)
5649 DECLARE_SSID_BUF(ssid
);
5650 struct ipw_priv
*priv
=
5651 container_of(work
, struct ipw_priv
, merge_networks
);
5652 struct libipw_network
*network
= NULL
;
5653 struct ipw_network_match match
= {
5654 .network
= priv
->assoc_network
5657 if ((priv
->status
& STATUS_ASSOCIATED
) &&
5658 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5659 /* First pass through ROAM process -- look for a better
5661 unsigned long flags
;
5663 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
5664 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
5665 if (network
!= priv
->assoc_network
)
5666 ipw_find_adhoc_network(priv
, &match
, network
,
5669 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
5671 if (match
.network
== priv
->assoc_network
) {
5672 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5677 mutex_lock(&priv
->mutex
);
5678 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5679 IPW_DEBUG_MERGE("remove network %s\n",
5680 print_ssid(ssid
, priv
->essid
,
5682 ipw_remove_current_network(priv
);
5685 ipw_disassociate(priv
);
5686 priv
->assoc_network
= match
.network
;
5687 mutex_unlock(&priv
->mutex
);
5692 static int ipw_best_network(struct ipw_priv
*priv
,
5693 struct ipw_network_match
*match
,
5694 struct libipw_network
*network
, int roaming
)
5696 struct ipw_supported_rates rates
;
5697 DECLARE_SSID_BUF(ssid
);
5699 /* Verify that this network's capability is compatible with the
5700 * current mode (AdHoc or Infrastructure) */
5701 if ((priv
->ieee
->iw_mode
== IW_MODE_INFRA
&&
5702 !(network
->capability
& WLAN_CAPABILITY_ESS
)) ||
5703 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5704 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5705 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5706 "capability mismatch.\n",
5707 print_ssid(ssid
, network
->ssid
,
5713 if (unlikely(roaming
)) {
5714 /* If we are roaming, then ensure check if this is a valid
5715 * network to try and roam to */
5716 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5717 memcmp(network
->ssid
, match
->network
->ssid
,
5718 network
->ssid_len
)) {
5719 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5720 "because of non-network ESSID.\n",
5721 print_ssid(ssid
, network
->ssid
,
5727 /* If an ESSID has been configured then compare the broadcast
5729 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5730 ((network
->ssid_len
!= priv
->essid_len
) ||
5731 memcmp(network
->ssid
, priv
->essid
,
5732 min(network
->ssid_len
, priv
->essid_len
)))) {
5733 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5735 print_ssid(ssid
, network
->ssid
,
5738 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739 "because of ESSID mismatch: '%s'.\n",
5740 escaped
, network
->bssid
,
5741 print_ssid(ssid
, priv
->essid
,
5747 /* If the old network rate is better than this one, don't bother
5748 * testing everything else. */
5749 if (match
->network
&& match
->network
->stats
.rssi
> network
->stats
.rssi
) {
5750 char escaped
[IW_ESSID_MAX_SIZE
* 2 + 1];
5752 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5754 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5755 "'%s (%pM)' has a stronger signal.\n",
5756 escaped
, network
->bssid
,
5757 print_ssid(ssid
, match
->network
->ssid
,
5758 match
->network
->ssid_len
),
5759 match
->network
->bssid
);
5763 /* If this network has already had an association attempt within the
5764 * last 3 seconds, do not try and associate again... */
5765 if (network
->last_associate
&&
5766 time_after(network
->last_associate
+ (HZ
* 3UL), jiffies
)) {
5767 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5768 "because of storming (%ums since last "
5769 "assoc attempt).\n",
5770 print_ssid(ssid
, network
->ssid
,
5773 jiffies_to_msecs(jiffies
-
5774 network
->last_associate
));
5778 /* Now go through and see if the requested network is valid... */
5779 if (priv
->ieee
->scan_age
!= 0 &&
5780 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5781 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5782 "because of age: %ums.\n",
5783 print_ssid(ssid
, network
->ssid
,
5786 jiffies_to_msecs(jiffies
-
5787 network
->last_scanned
));
5791 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5792 (network
->channel
!= priv
->channel
)) {
5793 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5794 "because of channel mismatch: %d != %d.\n",
5795 print_ssid(ssid
, network
->ssid
,
5798 network
->channel
, priv
->channel
);
5802 /* Verify privacy compatability */
5803 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5804 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5805 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5806 "because of privacy mismatch: %s != %s.\n",
5807 print_ssid(ssid
, network
->ssid
,
5810 priv
->capability
& CAP_PRIVACY_ON
? "on" :
5812 network
->capability
&
5813 WLAN_CAPABILITY_PRIVACY
? "on" : "off");
5817 if ((priv
->config
& CFG_STATIC_BSSID
) &&
5818 memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
)) {
5819 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5820 "because of BSSID mismatch: %pM.\n",
5821 print_ssid(ssid
, network
->ssid
,
5823 network
->bssid
, priv
->bssid
);
5827 /* Filter out any incompatible freq / mode combinations */
5828 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5829 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5830 "because of invalid frequency/mode "
5832 print_ssid(ssid
, network
->ssid
,
5838 /* Filter out invalid channel in current GEO */
5839 if (!libipw_is_valid_channel(priv
->ieee
, network
->channel
)) {
5840 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5841 "because of invalid channel in current GEO\n",
5842 print_ssid(ssid
, network
->ssid
,
5848 /* Ensure that the rates supported by the driver are compatible with
5849 * this AP, including verification of basic rates (mandatory) */
5850 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5851 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5852 "because configured rate mask excludes "
5853 "AP mandatory rate.\n",
5854 print_ssid(ssid
, network
->ssid
,
5860 if (rates
.num_rates
== 0) {
5861 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5862 "because of no compatible rates.\n",
5863 print_ssid(ssid
, network
->ssid
,
5869 /* TODO: Perform any further minimal comparititive tests. We do not
5870 * want to put too much policy logic here; intelligent scan selection
5871 * should occur within a generic IEEE 802.11 user space tool. */
5873 /* Set up 'new' AP to this network */
5874 ipw_copy_rates(&match
->rates
, &rates
);
5875 match
->network
= network
;
5877 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5878 print_ssid(ssid
, network
->ssid
, network
->ssid_len
),
5884 static void ipw_adhoc_create(struct ipw_priv
*priv
,
5885 struct libipw_network
*network
)
5887 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
5891 * For the purposes of scanning, we can set our wireless mode
5892 * to trigger scans across combinations of bands, but when it
5893 * comes to creating a new ad-hoc network, we have tell the FW
5894 * exactly which band to use.
5896 * We also have the possibility of an invalid channel for the
5897 * chossen band. Attempting to create a new ad-hoc network
5898 * with an invalid channel for wireless mode will trigger a
5902 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
5903 case LIBIPW_52GHZ_BAND
:
5904 network
->mode
= IEEE_A
;
5905 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5907 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5908 IPW_WARNING("Overriding invalid channel\n");
5909 priv
->channel
= geo
->a
[0].channel
;
5913 case LIBIPW_24GHZ_BAND
:
5914 if (priv
->ieee
->mode
& IEEE_G
)
5915 network
->mode
= IEEE_G
;
5917 network
->mode
= IEEE_B
;
5918 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5920 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5921 IPW_WARNING("Overriding invalid channel\n");
5922 priv
->channel
= geo
->bg
[0].channel
;
5927 IPW_WARNING("Overriding invalid channel\n");
5928 if (priv
->ieee
->mode
& IEEE_A
) {
5929 network
->mode
= IEEE_A
;
5930 priv
->channel
= geo
->a
[0].channel
;
5931 } else if (priv
->ieee
->mode
& IEEE_G
) {
5932 network
->mode
= IEEE_G
;
5933 priv
->channel
= geo
->bg
[0].channel
;
5935 network
->mode
= IEEE_B
;
5936 priv
->channel
= geo
->bg
[0].channel
;
5941 network
->channel
= priv
->channel
;
5942 priv
->config
|= CFG_ADHOC_PERSIST
;
5943 ipw_create_bssid(priv
, network
->bssid
);
5944 network
->ssid_len
= priv
->essid_len
;
5945 memcpy(network
->ssid
, priv
->essid
, priv
->essid_len
);
5946 memset(&network
->stats
, 0, sizeof(network
->stats
));
5947 network
->capability
= WLAN_CAPABILITY_IBSS
;
5948 if (!(priv
->config
& CFG_PREAMBLE_LONG
))
5949 network
->capability
|= WLAN_CAPABILITY_SHORT_PREAMBLE
;
5950 if (priv
->capability
& CAP_PRIVACY_ON
)
5951 network
->capability
|= WLAN_CAPABILITY_PRIVACY
;
5952 network
->rates_len
= min(priv
->rates
.num_rates
, MAX_RATES_LENGTH
);
5953 memcpy(network
->rates
, priv
->rates
.supported_rates
, network
->rates_len
);
5954 network
->rates_ex_len
= priv
->rates
.num_rates
- network
->rates_len
;
5955 memcpy(network
->rates_ex
,
5956 &priv
->rates
.supported_rates
[network
->rates_len
],
5957 network
->rates_ex_len
);
5958 network
->last_scanned
= 0;
5960 network
->last_associate
= 0;
5961 network
->time_stamp
[0] = 0;
5962 network
->time_stamp
[1] = 0;
5963 network
->beacon_interval
= 100; /* Default */
5964 network
->listen_interval
= 10; /* Default */
5965 network
->atim_window
= 0; /* Default */
5966 network
->wpa_ie_len
= 0;
5967 network
->rsn_ie_len
= 0;
5970 static void ipw_send_tgi_tx_key(struct ipw_priv
*priv
, int type
, int index
)
5972 struct ipw_tgi_tx_key key
;
5974 if (!(priv
->ieee
->sec
.flags
& (1 << index
)))
5978 memcpy(key
.key
, priv
->ieee
->sec
.keys
[index
], SCM_TEMPORAL_KEY_LENGTH
);
5979 key
.security_type
= type
;
5980 key
.station_index
= 0; /* always 0 for BSS */
5982 /* 0 for new key; previous value of counter (after fatal error) */
5983 key
.tx_counter
[0] = cpu_to_le32(0);
5984 key
.tx_counter
[1] = cpu_to_le32(0);
5986 ipw_send_cmd_pdu(priv
, IPW_CMD_TGI_TX_KEY
, sizeof(key
), &key
);
5989 static void ipw_send_wep_keys(struct ipw_priv
*priv
, int type
)
5991 struct ipw_wep_key key
;
5994 key
.cmd_id
= DINO_CMD_WEP_KEY
;
5997 /* Note: AES keys cannot be set for multiple times.
5998 * Only set it at the first time. */
5999 for (i
= 0; i
< 4; i
++) {
6000 key
.key_index
= i
| type
;
6001 if (!(priv
->ieee
->sec
.flags
& (1 << i
))) {
6006 key
.key_size
= priv
->ieee
->sec
.key_sizes
[i
];
6007 memcpy(key
.key
, priv
->ieee
->sec
.keys
[i
], key
.key_size
);
6009 ipw_send_cmd_pdu(priv
, IPW_CMD_WEP_KEY
, sizeof(key
), &key
);
6013 static void ipw_set_hw_decrypt_unicast(struct ipw_priv
*priv
, int level
)
6015 if (priv
->ieee
->host_encrypt
)
6020 priv
->sys_config
.disable_unicast_decryption
= 0;
6021 priv
->ieee
->host_decrypt
= 0;
6024 priv
->sys_config
.disable_unicast_decryption
= 1;
6025 priv
->ieee
->host_decrypt
= 1;
6028 priv
->sys_config
.disable_unicast_decryption
= 0;
6029 priv
->ieee
->host_decrypt
= 0;
6032 priv
->sys_config
.disable_unicast_decryption
= 1;
6039 static void ipw_set_hw_decrypt_multicast(struct ipw_priv
*priv
, int level
)
6041 if (priv
->ieee
->host_encrypt
)
6046 priv
->sys_config
.disable_multicast_decryption
= 0;
6049 priv
->sys_config
.disable_multicast_decryption
= 1;
6052 priv
->sys_config
.disable_multicast_decryption
= 0;
6055 priv
->sys_config
.disable_multicast_decryption
= 1;
6062 static void ipw_set_hwcrypto_keys(struct ipw_priv
*priv
)
6064 switch (priv
->ieee
->sec
.level
) {
6066 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6067 ipw_send_tgi_tx_key(priv
,
6068 DCT_FLAG_EXT_SECURITY_CCM
,
6069 priv
->ieee
->sec
.active_key
);
6071 if (!priv
->ieee
->host_mc_decrypt
)
6072 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_CCM
);
6075 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6076 ipw_send_tgi_tx_key(priv
,
6077 DCT_FLAG_EXT_SECURITY_TKIP
,
6078 priv
->ieee
->sec
.active_key
);
6081 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
6082 ipw_set_hw_decrypt_unicast(priv
, priv
->ieee
->sec
.level
);
6083 ipw_set_hw_decrypt_multicast(priv
, priv
->ieee
->sec
.level
);
6091 static void ipw_adhoc_check(void *data
)
6093 struct ipw_priv
*priv
= data
;
6095 if (priv
->missed_adhoc_beacons
++ > priv
->disassociate_threshold
&&
6096 !(priv
->config
& CFG_ADHOC_PERSIST
)) {
6097 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
6098 IPW_DL_STATE
| IPW_DL_ASSOC
,
6099 "Missed beacon: %d - disassociate\n",
6100 priv
->missed_adhoc_beacons
);
6101 ipw_remove_current_network(priv
);
6102 ipw_disassociate(priv
);
6106 queue_delayed_work(priv
->workqueue
, &priv
->adhoc_check
,
6107 le16_to_cpu(priv
->assoc_request
.beacon_interval
));
6110 static void ipw_bg_adhoc_check(struct work_struct
*work
)
6112 struct ipw_priv
*priv
=
6113 container_of(work
, struct ipw_priv
, adhoc_check
.work
);
6114 mutex_lock(&priv
->mutex
);
6115 ipw_adhoc_check(priv
);
6116 mutex_unlock(&priv
->mutex
);
6119 static void ipw_debug_config(struct ipw_priv
*priv
)
6121 DECLARE_SSID_BUF(ssid
);
6122 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6123 "[CFG 0x%08X]\n", priv
->config
);
6124 if (priv
->config
& CFG_STATIC_CHANNEL
)
6125 IPW_DEBUG_INFO("Channel locked to %d\n", priv
->channel
);
6127 IPW_DEBUG_INFO("Channel unlocked.\n");
6128 if (priv
->config
& CFG_STATIC_ESSID
)
6129 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6130 print_ssid(ssid
, priv
->essid
, priv
->essid_len
));
6132 IPW_DEBUG_INFO("ESSID unlocked.\n");
6133 if (priv
->config
& CFG_STATIC_BSSID
)
6134 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv
->bssid
);
6136 IPW_DEBUG_INFO("BSSID unlocked.\n");
6137 if (priv
->capability
& CAP_PRIVACY_ON
)
6138 IPW_DEBUG_INFO("PRIVACY on\n");
6140 IPW_DEBUG_INFO("PRIVACY off\n");
6141 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv
->rates_mask
);
6144 static void ipw_set_fixed_rate(struct ipw_priv
*priv
, int mode
)
6146 /* TODO: Verify that this works... */
6147 struct ipw_fixed_rate fr
;
6150 u16 new_tx_rates
= priv
->rates_mask
;
6152 /* Identify 'current FW band' and match it with the fixed
6155 switch (priv
->ieee
->freq_band
) {
6156 case LIBIPW_52GHZ_BAND
: /* A only */
6158 if (priv
->rates_mask
& ~LIBIPW_OFDM_RATES_MASK
) {
6159 /* Invalid fixed rate mask */
6161 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6166 new_tx_rates
>>= LIBIPW_OFDM_SHIFT_MASK_A
;
6169 default: /* 2.4Ghz or Mixed */
6171 if (mode
== IEEE_B
) {
6172 if (new_tx_rates
& ~LIBIPW_CCK_RATES_MASK
) {
6173 /* Invalid fixed rate mask */
6175 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6182 if (new_tx_rates
& ~(LIBIPW_CCK_RATES_MASK
|
6183 LIBIPW_OFDM_RATES_MASK
)) {
6184 /* Invalid fixed rate mask */
6186 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6191 if (LIBIPW_OFDM_RATE_6MB_MASK
& new_tx_rates
) {
6192 mask
|= (LIBIPW_OFDM_RATE_6MB_MASK
>> 1);
6193 new_tx_rates
&= ~LIBIPW_OFDM_RATE_6MB_MASK
;
6196 if (LIBIPW_OFDM_RATE_9MB_MASK
& new_tx_rates
) {
6197 mask
|= (LIBIPW_OFDM_RATE_9MB_MASK
>> 1);
6198 new_tx_rates
&= ~LIBIPW_OFDM_RATE_9MB_MASK
;
6201 if (LIBIPW_OFDM_RATE_12MB_MASK
& new_tx_rates
) {
6202 mask
|= (LIBIPW_OFDM_RATE_12MB_MASK
>> 1);
6203 new_tx_rates
&= ~LIBIPW_OFDM_RATE_12MB_MASK
;
6206 new_tx_rates
|= mask
;
6210 fr
.tx_rates
= cpu_to_le16(new_tx_rates
);
6212 reg
= ipw_read32(priv
, IPW_MEM_FIXED_OVERRIDE
);
6213 ipw_write_reg32(priv
, reg
, *(u32
*) & fr
);
6216 static void ipw_abort_scan(struct ipw_priv
*priv
)
6220 if (priv
->status
& STATUS_SCAN_ABORTING
) {
6221 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6224 priv
->status
|= STATUS_SCAN_ABORTING
;
6226 err
= ipw_send_scan_abort(priv
);
6228 IPW_DEBUG_HC("Request to abort scan failed.\n");
6231 static void ipw_add_scan_channels(struct ipw_priv
*priv
,
6232 struct ipw_scan_request_ext
*scan
,
6235 int channel_index
= 0;
6236 const struct libipw_geo
*geo
;
6239 geo
= libipw_get_geo(priv
->ieee
);
6241 if (priv
->ieee
->freq_band
& LIBIPW_52GHZ_BAND
) {
6242 int start
= channel_index
;
6243 for (i
= 0; i
< geo
->a_channels
; i
++) {
6244 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6245 geo
->a
[i
].channel
== priv
->channel
)
6248 scan
->channels_list
[channel_index
] = geo
->a
[i
].channel
;
6249 ipw_set_scan_type(scan
, channel_index
,
6251 flags
& LIBIPW_CH_PASSIVE_ONLY
?
6252 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
:
6256 if (start
!= channel_index
) {
6257 scan
->channels_list
[start
] = (u8
) (IPW_A_MODE
<< 6) |
6258 (channel_index
- start
);
6263 if (priv
->ieee
->freq_band
& LIBIPW_24GHZ_BAND
) {
6264 int start
= channel_index
;
6265 if (priv
->config
& CFG_SPEED_SCAN
) {
6267 u8 channels
[LIBIPW_24GHZ_CHANNELS
] = {
6268 /* nop out the list */
6273 while (channel_index
< IPW_SCAN_CHANNELS
- 1) {
6275 priv
->speed_scan
[priv
->speed_scan_pos
];
6277 priv
->speed_scan_pos
= 0;
6278 channel
= priv
->speed_scan
[0];
6280 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6281 channel
== priv
->channel
) {
6282 priv
->speed_scan_pos
++;
6286 /* If this channel has already been
6287 * added in scan, break from loop
6288 * and this will be the first channel
6291 if (channels
[channel
- 1] != 0)
6294 channels
[channel
- 1] = 1;
6295 priv
->speed_scan_pos
++;
6297 scan
->channels_list
[channel_index
] = channel
;
6299 libipw_channel_to_index(priv
->ieee
, channel
);
6300 ipw_set_scan_type(scan
, channel_index
,
6303 LIBIPW_CH_PASSIVE_ONLY
?
6304 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6308 for (i
= 0; i
< geo
->bg_channels
; i
++) {
6309 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6310 geo
->bg
[i
].channel
== priv
->channel
)
6313 scan
->channels_list
[channel_index
] =
6315 ipw_set_scan_type(scan
, channel_index
,
6318 LIBIPW_CH_PASSIVE_ONLY
?
6319 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6324 if (start
!= channel_index
) {
6325 scan
->channels_list
[start
] = (u8
) (IPW_B_MODE
<< 6) |
6326 (channel_index
- start
);
6331 static int ipw_passive_dwell_time(struct ipw_priv
*priv
)
6333 /* staying on passive channels longer than the DTIM interval during a
6334 * scan, while associated, causes the firmware to cancel the scan
6335 * without notification. Hence, don't stay on passive channels longer
6336 * than the beacon interval.
6338 if (priv
->status
& STATUS_ASSOCIATED
6339 && priv
->assoc_network
->beacon_interval
> 10)
6340 return priv
->assoc_network
->beacon_interval
- 10;
6345 static int ipw_request_scan_helper(struct ipw_priv
*priv
, int type
, int direct
)
6347 struct ipw_scan_request_ext scan
;
6348 int err
= 0, scan_type
;
6350 if (!(priv
->status
& STATUS_INIT
) ||
6351 (priv
->status
& STATUS_EXIT_PENDING
))
6354 mutex_lock(&priv
->mutex
);
6356 if (direct
&& (priv
->direct_scan_ssid_len
== 0)) {
6357 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6358 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6362 if (priv
->status
& STATUS_SCANNING
) {
6363 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6364 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6365 STATUS_SCAN_PENDING
;
6369 if (!(priv
->status
& STATUS_SCAN_FORCED
) &&
6370 priv
->status
& STATUS_SCAN_ABORTING
) {
6371 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6372 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6373 STATUS_SCAN_PENDING
;
6377 if (priv
->status
& STATUS_RF_KILL_MASK
) {
6378 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6379 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6380 STATUS_SCAN_PENDING
;
6384 memset(&scan
, 0, sizeof(scan
));
6385 scan
.full_scan_index
= cpu_to_le32(libipw_get_scans(priv
->ieee
));
6387 if (type
== IW_SCAN_TYPE_PASSIVE
) {
6388 IPW_DEBUG_WX("use passive scanning\n");
6389 scan_type
= IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
;
6390 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6391 cpu_to_le16(ipw_passive_dwell_time(priv
));
6392 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6396 /* Use active scan by default. */
6397 if (priv
->config
& CFG_SPEED_SCAN
)
6398 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6401 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6404 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
] =
6407 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6408 cpu_to_le16(ipw_passive_dwell_time(priv
));
6409 scan
.dwell_time
[IPW_SCAN_ACTIVE_DIRECT_SCAN
] = cpu_to_le16(20);
6411 #ifdef CONFIG_IPW2200_MONITOR
6412 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
6416 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
6417 case LIBIPW_52GHZ_BAND
:
6418 band
= (u8
) (IPW_A_MODE
<< 6) | 1;
6419 channel
= priv
->channel
;
6422 case LIBIPW_24GHZ_BAND
:
6423 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6424 channel
= priv
->channel
;
6428 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6433 scan
.channels_list
[0] = band
;
6434 scan
.channels_list
[1] = channel
;
6435 ipw_set_scan_type(&scan
, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
);
6437 /* NOTE: The card will sit on this channel for this time
6438 * period. Scan aborts are timing sensitive and frequently
6439 * result in firmware restarts. As such, it is best to
6440 * set a small dwell_time here and just keep re-issuing
6441 * scans. Otherwise fast channel hopping will not actually
6444 * TODO: Move SPEED SCAN support to all modes and bands */
6445 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6448 #endif /* CONFIG_IPW2200_MONITOR */
6449 /* Honor direct scans first, otherwise if we are roaming make
6450 * this a direct scan for the current network. Finally,
6451 * ensure that every other scan is a fast channel hop scan */
6453 err
= ipw_send_ssid(priv
, priv
->direct_scan_ssid
,
6454 priv
->direct_scan_ssid_len
);
6456 IPW_DEBUG_HC("Attempt to send SSID command "
6461 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6462 } else if ((priv
->status
& STATUS_ROAMING
)
6463 || (!(priv
->status
& STATUS_ASSOCIATED
)
6464 && (priv
->config
& CFG_STATIC_ESSID
)
6465 && (le32_to_cpu(scan
.full_scan_index
) % 2))) {
6466 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
6468 IPW_DEBUG_HC("Attempt to send SSID command "
6473 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6475 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_SCAN
;
6477 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6478 #ifdef CONFIG_IPW2200_MONITOR
6483 err
= ipw_send_scan_request_ext(priv
, &scan
);
6485 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err
);
6489 priv
->status
|= STATUS_SCANNING
;
6491 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6492 priv
->direct_scan_ssid_len
= 0;
6494 priv
->status
&= ~STATUS_SCAN_PENDING
;
6496 queue_delayed_work(priv
->workqueue
, &priv
->scan_check
,
6497 IPW_SCAN_CHECK_WATCHDOG
);
6499 mutex_unlock(&priv
->mutex
);
6503 static void ipw_request_passive_scan(struct work_struct
*work
)
6505 struct ipw_priv
*priv
=
6506 container_of(work
, struct ipw_priv
, request_passive_scan
.work
);
6507 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_PASSIVE
, 0);
6510 static void ipw_request_scan(struct work_struct
*work
)
6512 struct ipw_priv
*priv
=
6513 container_of(work
, struct ipw_priv
, request_scan
.work
);
6514 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 0);
6517 static void ipw_request_direct_scan(struct work_struct
*work
)
6519 struct ipw_priv
*priv
=
6520 container_of(work
, struct ipw_priv
, request_direct_scan
.work
);
6521 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 1);
6524 static void ipw_bg_abort_scan(struct work_struct
*work
)
6526 struct ipw_priv
*priv
=
6527 container_of(work
, struct ipw_priv
, abort_scan
);
6528 mutex_lock(&priv
->mutex
);
6529 ipw_abort_scan(priv
);
6530 mutex_unlock(&priv
->mutex
);
6533 static int ipw_wpa_enable(struct ipw_priv
*priv
, int value
)
6535 /* This is called when wpa_supplicant loads and closes the driver
6537 priv
->ieee
->wpa_enabled
= value
;
6541 static int ipw_wpa_set_auth_algs(struct ipw_priv
*priv
, int value
)
6543 struct libipw_device
*ieee
= priv
->ieee
;
6544 struct libipw_security sec
= {
6545 .flags
= SEC_AUTH_MODE
,
6549 if (value
& IW_AUTH_ALG_SHARED_KEY
) {
6550 sec
.auth_mode
= WLAN_AUTH_SHARED_KEY
;
6552 } else if (value
& IW_AUTH_ALG_OPEN_SYSTEM
) {
6553 sec
.auth_mode
= WLAN_AUTH_OPEN
;
6555 } else if (value
& IW_AUTH_ALG_LEAP
) {
6556 sec
.auth_mode
= WLAN_AUTH_LEAP
;
6561 if (ieee
->set_security
)
6562 ieee
->set_security(ieee
->dev
, &sec
);
6569 static void ipw_wpa_assoc_frame(struct ipw_priv
*priv
, char *wpa_ie
,
6572 /* make sure WPA is enabled */
6573 ipw_wpa_enable(priv
, 1);
6576 static int ipw_set_rsn_capa(struct ipw_priv
*priv
,
6577 char *capabilities
, int length
)
6579 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6581 return ipw_send_cmd_pdu(priv
, IPW_CMD_RSN_CAPABILITIES
, length
,
6590 static int ipw_wx_set_genie(struct net_device
*dev
,
6591 struct iw_request_info
*info
,
6592 union iwreq_data
*wrqu
, char *extra
)
6594 struct ipw_priv
*priv
= libipw_priv(dev
);
6595 struct libipw_device
*ieee
= priv
->ieee
;
6599 if (wrqu
->data
.length
> MAX_WPA_IE_LEN
||
6600 (wrqu
->data
.length
&& extra
== NULL
))
6603 if (wrqu
->data
.length
) {
6604 buf
= kmalloc(wrqu
->data
.length
, GFP_KERNEL
);
6610 memcpy(buf
, extra
, wrqu
->data
.length
);
6611 kfree(ieee
->wpa_ie
);
6613 ieee
->wpa_ie_len
= wrqu
->data
.length
;
6615 kfree(ieee
->wpa_ie
);
6616 ieee
->wpa_ie
= NULL
;
6617 ieee
->wpa_ie_len
= 0;
6620 ipw_wpa_assoc_frame(priv
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6626 static int ipw_wx_get_genie(struct net_device
*dev
,
6627 struct iw_request_info
*info
,
6628 union iwreq_data
*wrqu
, char *extra
)
6630 struct ipw_priv
*priv
= libipw_priv(dev
);
6631 struct libipw_device
*ieee
= priv
->ieee
;
6634 if (ieee
->wpa_ie_len
== 0 || ieee
->wpa_ie
== NULL
) {
6635 wrqu
->data
.length
= 0;
6639 if (wrqu
->data
.length
< ieee
->wpa_ie_len
) {
6644 wrqu
->data
.length
= ieee
->wpa_ie_len
;
6645 memcpy(extra
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6651 static int wext_cipher2level(int cipher
)
6654 case IW_AUTH_CIPHER_NONE
:
6656 case IW_AUTH_CIPHER_WEP40
:
6657 case IW_AUTH_CIPHER_WEP104
:
6659 case IW_AUTH_CIPHER_TKIP
:
6661 case IW_AUTH_CIPHER_CCMP
:
6669 static int ipw_wx_set_auth(struct net_device
*dev
,
6670 struct iw_request_info
*info
,
6671 union iwreq_data
*wrqu
, char *extra
)
6673 struct ipw_priv
*priv
= libipw_priv(dev
);
6674 struct libipw_device
*ieee
= priv
->ieee
;
6675 struct iw_param
*param
= &wrqu
->param
;
6676 struct lib80211_crypt_data
*crypt
;
6677 unsigned long flags
;
6680 switch (param
->flags
& IW_AUTH_INDEX
) {
6681 case IW_AUTH_WPA_VERSION
:
6683 case IW_AUTH_CIPHER_PAIRWISE
:
6684 ipw_set_hw_decrypt_unicast(priv
,
6685 wext_cipher2level(param
->value
));
6687 case IW_AUTH_CIPHER_GROUP
:
6688 ipw_set_hw_decrypt_multicast(priv
,
6689 wext_cipher2level(param
->value
));
6691 case IW_AUTH_KEY_MGMT
:
6693 * ipw2200 does not use these parameters
6697 case IW_AUTH_TKIP_COUNTERMEASURES
:
6698 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6699 if (!crypt
|| !crypt
->ops
->set_flags
|| !crypt
->ops
->get_flags
)
6702 flags
= crypt
->ops
->get_flags(crypt
->priv
);
6705 flags
|= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6707 flags
&= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6709 crypt
->ops
->set_flags(flags
, crypt
->priv
);
6713 case IW_AUTH_DROP_UNENCRYPTED
:{
6716 * wpa_supplicant calls set_wpa_enabled when the driver
6717 * is loaded and unloaded, regardless of if WPA is being
6718 * used. No other calls are made which can be used to
6719 * determine if encryption will be used or not prior to
6720 * association being expected. If encryption is not being
6721 * used, drop_unencrypted is set to false, else true -- we
6722 * can use this to determine if the CAP_PRIVACY_ON bit should
6725 struct libipw_security sec
= {
6726 .flags
= SEC_ENABLED
,
6727 .enabled
= param
->value
,
6729 priv
->ieee
->drop_unencrypted
= param
->value
;
6730 /* We only change SEC_LEVEL for open mode. Others
6731 * are set by ipw_wpa_set_encryption.
6733 if (!param
->value
) {
6734 sec
.flags
|= SEC_LEVEL
;
6735 sec
.level
= SEC_LEVEL_0
;
6737 sec
.flags
|= SEC_LEVEL
;
6738 sec
.level
= SEC_LEVEL_1
;
6740 if (priv
->ieee
->set_security
)
6741 priv
->ieee
->set_security(priv
->ieee
->dev
, &sec
);
6745 case IW_AUTH_80211_AUTH_ALG
:
6746 ret
= ipw_wpa_set_auth_algs(priv
, param
->value
);
6749 case IW_AUTH_WPA_ENABLED
:
6750 ret
= ipw_wpa_enable(priv
, param
->value
);
6751 ipw_disassociate(priv
);
6754 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6755 ieee
->ieee802_1x
= param
->value
;
6758 case IW_AUTH_PRIVACY_INVOKED
:
6759 ieee
->privacy_invoked
= param
->value
;
6769 static int ipw_wx_get_auth(struct net_device
*dev
,
6770 struct iw_request_info
*info
,
6771 union iwreq_data
*wrqu
, char *extra
)
6773 struct ipw_priv
*priv
= libipw_priv(dev
);
6774 struct libipw_device
*ieee
= priv
->ieee
;
6775 struct lib80211_crypt_data
*crypt
;
6776 struct iw_param
*param
= &wrqu
->param
;
6779 switch (param
->flags
& IW_AUTH_INDEX
) {
6780 case IW_AUTH_WPA_VERSION
:
6781 case IW_AUTH_CIPHER_PAIRWISE
:
6782 case IW_AUTH_CIPHER_GROUP
:
6783 case IW_AUTH_KEY_MGMT
:
6785 * wpa_supplicant will control these internally
6790 case IW_AUTH_TKIP_COUNTERMEASURES
:
6791 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6792 if (!crypt
|| !crypt
->ops
->get_flags
)
6795 param
->value
= (crypt
->ops
->get_flags(crypt
->priv
) &
6796 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
) ? 1 : 0;
6800 case IW_AUTH_DROP_UNENCRYPTED
:
6801 param
->value
= ieee
->drop_unencrypted
;
6804 case IW_AUTH_80211_AUTH_ALG
:
6805 param
->value
= ieee
->sec
.auth_mode
;
6808 case IW_AUTH_WPA_ENABLED
:
6809 param
->value
= ieee
->wpa_enabled
;
6812 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6813 param
->value
= ieee
->ieee802_1x
;
6816 case IW_AUTH_ROAMING_CONTROL
:
6817 case IW_AUTH_PRIVACY_INVOKED
:
6818 param
->value
= ieee
->privacy_invoked
;
6827 /* SIOCSIWENCODEEXT */
6828 static int ipw_wx_set_encodeext(struct net_device
*dev
,
6829 struct iw_request_info
*info
,
6830 union iwreq_data
*wrqu
, char *extra
)
6832 struct ipw_priv
*priv
= libipw_priv(dev
);
6833 struct iw_encode_ext
*ext
= (struct iw_encode_ext
*)extra
;
6836 if (ext
->alg
== IW_ENCODE_ALG_TKIP
) {
6837 /* IPW HW can't build TKIP MIC,
6838 host decryption still needed */
6839 if (ext
->ext_flags
& IW_ENCODE_EXT_GROUP_KEY
)
6840 priv
->ieee
->host_mc_decrypt
= 1;
6842 priv
->ieee
->host_encrypt
= 0;
6843 priv
->ieee
->host_encrypt_msdu
= 1;
6844 priv
->ieee
->host_decrypt
= 1;
6847 priv
->ieee
->host_encrypt
= 0;
6848 priv
->ieee
->host_encrypt_msdu
= 0;
6849 priv
->ieee
->host_decrypt
= 0;
6850 priv
->ieee
->host_mc_decrypt
= 0;
6854 return libipw_wx_set_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6857 /* SIOCGIWENCODEEXT */
6858 static int ipw_wx_get_encodeext(struct net_device
*dev
,
6859 struct iw_request_info
*info
,
6860 union iwreq_data
*wrqu
, char *extra
)
6862 struct ipw_priv
*priv
= libipw_priv(dev
);
6863 return libipw_wx_get_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6867 static int ipw_wx_set_mlme(struct net_device
*dev
,
6868 struct iw_request_info
*info
,
6869 union iwreq_data
*wrqu
, char *extra
)
6871 struct ipw_priv
*priv
= libipw_priv(dev
);
6872 struct iw_mlme
*mlme
= (struct iw_mlme
*)extra
;
6875 reason
= cpu_to_le16(mlme
->reason_code
);
6877 switch (mlme
->cmd
) {
6878 case IW_MLME_DEAUTH
:
6879 /* silently ignore */
6882 case IW_MLME_DISASSOC
:
6883 ipw_disassociate(priv
);
6892 #ifdef CONFIG_IPW2200_QOS
6896 * get the modulation type of the current network or
6897 * the card current mode
6899 static u8
ipw_qos_current_mode(struct ipw_priv
* priv
)
6903 if (priv
->status
& STATUS_ASSOCIATED
) {
6904 unsigned long flags
;
6906 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6907 mode
= priv
->assoc_network
->mode
;
6908 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6910 mode
= priv
->ieee
->mode
;
6912 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode
);
6917 * Handle management frame beacon and probe response
6919 static int ipw_qos_handle_probe_response(struct ipw_priv
*priv
,
6921 struct libipw_network
*network
)
6923 u32 size
= sizeof(struct libipw_qos_parameters
);
6925 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6926 network
->qos_data
.active
= network
->qos_data
.supported
;
6928 if (network
->flags
& NETWORK_HAS_QOS_MASK
) {
6929 if (active_network
&&
6930 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
))
6931 network
->qos_data
.active
= network
->qos_data
.supported
;
6933 if ((network
->qos_data
.active
== 1) && (active_network
== 1) &&
6934 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) &&
6935 (network
->qos_data
.old_param_count
!=
6936 network
->qos_data
.param_count
)) {
6937 network
->qos_data
.old_param_count
=
6938 network
->qos_data
.param_count
;
6939 schedule_work(&priv
->qos_activate
);
6940 IPW_DEBUG_QOS("QoS parameters change call "
6944 if ((priv
->ieee
->mode
== IEEE_B
) || (network
->mode
== IEEE_B
))
6945 memcpy(&network
->qos_data
.parameters
,
6946 &def_parameters_CCK
, size
);
6948 memcpy(&network
->qos_data
.parameters
,
6949 &def_parameters_OFDM
, size
);
6951 if ((network
->qos_data
.active
== 1) && (active_network
== 1)) {
6952 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6953 schedule_work(&priv
->qos_activate
);
6956 network
->qos_data
.active
= 0;
6957 network
->qos_data
.supported
= 0;
6959 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6960 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) && (active_network
== 0)) {
6961 if (memcmp(network
->bssid
, priv
->bssid
, ETH_ALEN
))
6962 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6963 if ((network
->ssid_len
==
6964 priv
->assoc_network
->ssid_len
) &&
6965 !memcmp(network
->ssid
,
6966 priv
->assoc_network
->ssid
,
6967 network
->ssid_len
)) {
6968 queue_work(priv
->workqueue
,
6969 &priv
->merge_networks
);
6977 * This function set up the firmware to support QoS. It sends
6978 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6980 static int ipw_qos_activate(struct ipw_priv
*priv
,
6981 struct libipw_qos_data
*qos_network_data
)
6984 struct libipw_qos_parameters qos_parameters
[QOS_QOS_SETS
];
6985 struct libipw_qos_parameters
*active_one
= NULL
;
6986 u32 size
= sizeof(struct libipw_qos_parameters
);
6991 type
= ipw_qos_current_mode(priv
);
6993 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_CCK
]);
6994 memcpy(active_one
, priv
->qos_data
.def_qos_parm_CCK
, size
);
6995 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_OFDM
]);
6996 memcpy(active_one
, priv
->qos_data
.def_qos_parm_OFDM
, size
);
6998 if (qos_network_data
== NULL
) {
6999 if (type
== IEEE_B
) {
7000 IPW_DEBUG_QOS("QoS activate network mode %d\n", type
);
7001 active_one
= &def_parameters_CCK
;
7003 active_one
= &def_parameters_OFDM
;
7005 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7006 burst_duration
= ipw_qos_get_burst_duration(priv
);
7007 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
7008 qos_parameters
[QOS_PARAM_SET_ACTIVE
].tx_op_limit
[i
] =
7009 cpu_to_le16(burst_duration
);
7010 } else if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7011 if (type
== IEEE_B
) {
7012 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7014 if (priv
->qos_data
.qos_enable
== 0)
7015 active_one
= &def_parameters_CCK
;
7017 active_one
= priv
->qos_data
.def_qos_parm_CCK
;
7019 if (priv
->qos_data
.qos_enable
== 0)
7020 active_one
= &def_parameters_OFDM
;
7022 active_one
= priv
->qos_data
.def_qos_parm_OFDM
;
7024 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7026 unsigned long flags
;
7029 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7030 active_one
= &(qos_network_data
->parameters
);
7031 qos_network_data
->old_param_count
=
7032 qos_network_data
->param_count
;
7033 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
7034 active
= qos_network_data
->supported
;
7035 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7038 burst_duration
= ipw_qos_get_burst_duration(priv
);
7039 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
7040 qos_parameters
[QOS_PARAM_SET_ACTIVE
].
7041 tx_op_limit
[i
] = cpu_to_le16(burst_duration
);
7045 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7046 err
= ipw_send_qos_params_command(priv
,
7047 (struct libipw_qos_parameters
*)
7048 &(qos_parameters
[0]));
7050 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7056 * send IPW_CMD_WME_INFO to the firmware
7058 static int ipw_qos_set_info_element(struct ipw_priv
*priv
)
7061 struct libipw_qos_information_element qos_info
;
7066 qos_info
.elementID
= QOS_ELEMENT_ID
;
7067 qos_info
.length
= sizeof(struct libipw_qos_information_element
) - 2;
7069 qos_info
.version
= QOS_VERSION_1
;
7070 qos_info
.ac_info
= 0;
7072 memcpy(qos_info
.qui
, qos_oui
, QOS_OUI_LEN
);
7073 qos_info
.qui_type
= QOS_OUI_TYPE
;
7074 qos_info
.qui_subtype
= QOS_OUI_INFO_SUB_TYPE
;
7076 ret
= ipw_send_qos_info_command(priv
, &qos_info
);
7078 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7084 * Set the QoS parameter with the association request structure
7086 static int ipw_qos_association(struct ipw_priv
*priv
,
7087 struct libipw_network
*network
)
7090 struct libipw_qos_data
*qos_data
= NULL
;
7091 struct libipw_qos_data ibss_data
= {
7096 switch (priv
->ieee
->iw_mode
) {
7098 BUG_ON(!(network
->capability
& WLAN_CAPABILITY_IBSS
));
7100 qos_data
= &ibss_data
;
7104 qos_data
= &network
->qos_data
;
7112 err
= ipw_qos_activate(priv
, qos_data
);
7114 priv
->assoc_request
.policy_support
&= ~HC_QOS_SUPPORT_ASSOC
;
7118 if (priv
->qos_data
.qos_enable
&& qos_data
->supported
) {
7119 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7120 priv
->assoc_request
.policy_support
|= HC_QOS_SUPPORT_ASSOC
;
7121 return ipw_qos_set_info_element(priv
);
7128 * handling the beaconing responses. if we get different QoS setting
7129 * off the network from the associated setting, adjust the QoS
7132 static int ipw_qos_association_resp(struct ipw_priv
*priv
,
7133 struct libipw_network
*network
)
7136 unsigned long flags
;
7137 u32 size
= sizeof(struct libipw_qos_parameters
);
7138 int set_qos_param
= 0;
7140 if ((priv
== NULL
) || (network
== NULL
) ||
7141 (priv
->assoc_network
== NULL
))
7144 if (!(priv
->status
& STATUS_ASSOCIATED
))
7147 if ((priv
->ieee
->iw_mode
!= IW_MODE_INFRA
))
7150 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7151 if (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) {
7152 memcpy(&priv
->assoc_network
->qos_data
, &network
->qos_data
,
7153 sizeof(struct libipw_qos_data
));
7154 priv
->assoc_network
->qos_data
.active
= 1;
7155 if ((network
->qos_data
.old_param_count
!=
7156 network
->qos_data
.param_count
)) {
7158 network
->qos_data
.old_param_count
=
7159 network
->qos_data
.param_count
;
7163 if ((network
->mode
== IEEE_B
) || (priv
->ieee
->mode
== IEEE_B
))
7164 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7165 &def_parameters_CCK
, size
);
7167 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7168 &def_parameters_OFDM
, size
);
7169 priv
->assoc_network
->qos_data
.active
= 0;
7170 priv
->assoc_network
->qos_data
.supported
= 0;
7174 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7176 if (set_qos_param
== 1)
7177 schedule_work(&priv
->qos_activate
);
7182 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
)
7189 if (!(priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
))
7190 ret
= priv
->qos_data
.burst_duration_CCK
;
7192 ret
= priv
->qos_data
.burst_duration_OFDM
;
7198 * Initialize the setting of QoS global
7200 static void ipw_qos_init(struct ipw_priv
*priv
, int enable
,
7201 int burst_enable
, u32 burst_duration_CCK
,
7202 u32 burst_duration_OFDM
)
7204 priv
->qos_data
.qos_enable
= enable
;
7206 if (priv
->qos_data
.qos_enable
) {
7207 priv
->qos_data
.def_qos_parm_CCK
= &def_qos_parameters_CCK
;
7208 priv
->qos_data
.def_qos_parm_OFDM
= &def_qos_parameters_OFDM
;
7209 IPW_DEBUG_QOS("QoS is enabled\n");
7211 priv
->qos_data
.def_qos_parm_CCK
= &def_parameters_CCK
;
7212 priv
->qos_data
.def_qos_parm_OFDM
= &def_parameters_OFDM
;
7213 IPW_DEBUG_QOS("QoS is not enabled\n");
7216 priv
->qos_data
.burst_enable
= burst_enable
;
7219 priv
->qos_data
.burst_duration_CCK
= burst_duration_CCK
;
7220 priv
->qos_data
.burst_duration_OFDM
= burst_duration_OFDM
;
7222 priv
->qos_data
.burst_duration_CCK
= 0;
7223 priv
->qos_data
.burst_duration_OFDM
= 0;
7228 * map the packet priority to the right TX Queue
7230 static int ipw_get_tx_queue_number(struct ipw_priv
*priv
, u16 priority
)
7232 if (priority
> 7 || !priv
->qos_data
.qos_enable
)
7235 return from_priority_to_tx_queue
[priority
] - 1;
7238 static int ipw_is_qos_active(struct net_device
*dev
,
7239 struct sk_buff
*skb
)
7241 struct ipw_priv
*priv
= libipw_priv(dev
);
7242 struct libipw_qos_data
*qos_data
= NULL
;
7243 int active
, supported
;
7244 u8
*daddr
= skb
->data
+ ETH_ALEN
;
7245 int unicast
= !is_multicast_ether_addr(daddr
);
7247 if (!(priv
->status
& STATUS_ASSOCIATED
))
7250 qos_data
= &priv
->assoc_network
->qos_data
;
7252 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7254 qos_data
->active
= 0;
7256 qos_data
->active
= qos_data
->supported
;
7258 active
= qos_data
->active
;
7259 supported
= qos_data
->supported
;
7260 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7262 priv
->qos_data
.qos_enable
, active
, supported
, unicast
);
7263 if (active
&& priv
->qos_data
.qos_enable
)
7270 * add QoS parameter to the TX command
7272 static int ipw_qos_set_tx_queue_command(struct ipw_priv
*priv
,
7274 struct tfd_data
*tfd
)
7276 int tx_queue_id
= 0;
7279 tx_queue_id
= from_priority_to_tx_queue
[priority
] - 1;
7280 tfd
->tx_flags_ext
|= DCT_FLAG_EXT_QOS_ENABLED
;
7282 if (priv
->qos_data
.qos_no_ack_mask
& (1UL << tx_queue_id
)) {
7283 tfd
->tx_flags
&= ~DCT_FLAG_ACK_REQD
;
7284 tfd
->tfd
.tfd_26
.mchdr
.qos_ctrl
|= cpu_to_le16(CTRL_QOS_NO_ACK
);
7290 * background support to run QoS activate functionality
7292 static void ipw_bg_qos_activate(struct work_struct
*work
)
7294 struct ipw_priv
*priv
=
7295 container_of(work
, struct ipw_priv
, qos_activate
);
7297 mutex_lock(&priv
->mutex
);
7299 if (priv
->status
& STATUS_ASSOCIATED
)
7300 ipw_qos_activate(priv
, &(priv
->assoc_network
->qos_data
));
7302 mutex_unlock(&priv
->mutex
);
7305 static int ipw_handle_probe_response(struct net_device
*dev
,
7306 struct libipw_probe_response
*resp
,
7307 struct libipw_network
*network
)
7309 struct ipw_priv
*priv
= libipw_priv(dev
);
7310 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7311 (network
== priv
->assoc_network
));
7313 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7318 static int ipw_handle_beacon(struct net_device
*dev
,
7319 struct libipw_beacon
*resp
,
7320 struct libipw_network
*network
)
7322 struct ipw_priv
*priv
= libipw_priv(dev
);
7323 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7324 (network
== priv
->assoc_network
));
7326 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7331 static int ipw_handle_assoc_response(struct net_device
*dev
,
7332 struct libipw_assoc_response
*resp
,
7333 struct libipw_network
*network
)
7335 struct ipw_priv
*priv
= libipw_priv(dev
);
7336 ipw_qos_association_resp(priv
, network
);
7340 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
7343 return ipw_send_cmd_pdu(priv
, IPW_CMD_QOS_PARAMETERS
,
7344 sizeof(*qos_param
) * 3, qos_param
);
7347 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
7350 return ipw_send_cmd_pdu(priv
, IPW_CMD_WME_INFO
, sizeof(*qos_param
),
7354 #endif /* CONFIG_IPW2200_QOS */
7356 static int ipw_associate_network(struct ipw_priv
*priv
,
7357 struct libipw_network
*network
,
7358 struct ipw_supported_rates
*rates
, int roaming
)
7361 DECLARE_SSID_BUF(ssid
);
7363 if (priv
->config
& CFG_FIXED_RATE
)
7364 ipw_set_fixed_rate(priv
, network
->mode
);
7366 if (!(priv
->config
& CFG_STATIC_ESSID
)) {
7367 priv
->essid_len
= min(network
->ssid_len
,
7368 (u8
) IW_ESSID_MAX_SIZE
);
7369 memcpy(priv
->essid
, network
->ssid
, priv
->essid_len
);
7372 network
->last_associate
= jiffies
;
7374 memset(&priv
->assoc_request
, 0, sizeof(priv
->assoc_request
));
7375 priv
->assoc_request
.channel
= network
->channel
;
7376 priv
->assoc_request
.auth_key
= 0;
7378 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7379 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_SHARED_KEY
)) {
7380 priv
->assoc_request
.auth_type
= AUTH_SHARED_KEY
;
7381 priv
->assoc_request
.auth_key
= priv
->ieee
->sec
.active_key
;
7383 if (priv
->ieee
->sec
.level
== SEC_LEVEL_1
)
7384 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
7386 } else if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7387 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_LEAP
))
7388 priv
->assoc_request
.auth_type
= AUTH_LEAP
;
7390 priv
->assoc_request
.auth_type
= AUTH_OPEN
;
7392 if (priv
->ieee
->wpa_ie_len
) {
7393 priv
->assoc_request
.policy_support
= cpu_to_le16(0x02); /* RSN active */
7394 ipw_set_rsn_capa(priv
, priv
->ieee
->wpa_ie
,
7395 priv
->ieee
->wpa_ie_len
);
7399 * It is valid for our ieee device to support multiple modes, but
7400 * when it comes to associating to a given network we have to choose
7403 if (network
->mode
& priv
->ieee
->mode
& IEEE_A
)
7404 priv
->assoc_request
.ieee_mode
= IPW_A_MODE
;
7405 else if (network
->mode
& priv
->ieee
->mode
& IEEE_G
)
7406 priv
->assoc_request
.ieee_mode
= IPW_G_MODE
;
7407 else if (network
->mode
& priv
->ieee
->mode
& IEEE_B
)
7408 priv
->assoc_request
.ieee_mode
= IPW_B_MODE
;
7410 priv
->assoc_request
.capability
= cpu_to_le16(network
->capability
);
7411 if ((network
->capability
& WLAN_CAPABILITY_SHORT_PREAMBLE
)
7412 && !(priv
->config
& CFG_PREAMBLE_LONG
)) {
7413 priv
->assoc_request
.preamble_length
= DCT_FLAG_SHORT_PREAMBLE
;
7415 priv
->assoc_request
.preamble_length
= DCT_FLAG_LONG_PREAMBLE
;
7417 /* Clear the short preamble if we won't be supporting it */
7418 priv
->assoc_request
.capability
&=
7419 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE
);
7422 /* Clear capability bits that aren't used in Ad Hoc */
7423 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7424 priv
->assoc_request
.capability
&=
7425 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME
);
7427 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7428 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7429 roaming
? "Rea" : "A",
7430 print_ssid(ssid
, priv
->essid
, priv
->essid_len
),
7432 ipw_modes
[priv
->assoc_request
.ieee_mode
],
7434 (priv
->assoc_request
.preamble_length
==
7435 DCT_FLAG_LONG_PREAMBLE
) ? "long" : "short",
7436 network
->capability
&
7437 WLAN_CAPABILITY_SHORT_PREAMBLE
? "short" : "long",
7438 priv
->capability
& CAP_PRIVACY_ON
? "on " : "off",
7439 priv
->capability
& CAP_PRIVACY_ON
?
7440 (priv
->capability
& CAP_SHARED_KEY
? "(shared)" :
7442 priv
->capability
& CAP_PRIVACY_ON
? " key=" : "",
7443 priv
->capability
& CAP_PRIVACY_ON
?
7444 '1' + priv
->ieee
->sec
.active_key
: '.',
7445 priv
->capability
& CAP_PRIVACY_ON
? '.' : ' ');
7447 priv
->assoc_request
.beacon_interval
= cpu_to_le16(network
->beacon_interval
);
7448 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
7449 (network
->time_stamp
[0] == 0) && (network
->time_stamp
[1] == 0)) {
7450 priv
->assoc_request
.assoc_type
= HC_IBSS_START
;
7451 priv
->assoc_request
.assoc_tsf_msw
= 0;
7452 priv
->assoc_request
.assoc_tsf_lsw
= 0;
7454 if (unlikely(roaming
))
7455 priv
->assoc_request
.assoc_type
= HC_REASSOCIATE
;
7457 priv
->assoc_request
.assoc_type
= HC_ASSOCIATE
;
7458 priv
->assoc_request
.assoc_tsf_msw
= cpu_to_le32(network
->time_stamp
[1]);
7459 priv
->assoc_request
.assoc_tsf_lsw
= cpu_to_le32(network
->time_stamp
[0]);
7462 memcpy(priv
->assoc_request
.bssid
, network
->bssid
, ETH_ALEN
);
7464 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7465 memset(&priv
->assoc_request
.dest
, 0xFF, ETH_ALEN
);
7466 priv
->assoc_request
.atim_window
= cpu_to_le16(network
->atim_window
);
7468 memcpy(priv
->assoc_request
.dest
, network
->bssid
, ETH_ALEN
);
7469 priv
->assoc_request
.atim_window
= 0;
7472 priv
->assoc_request
.listen_interval
= cpu_to_le16(network
->listen_interval
);
7474 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
7476 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7480 rates
->ieee_mode
= priv
->assoc_request
.ieee_mode
;
7481 rates
->purpose
= IPW_RATE_CONNECT
;
7482 ipw_send_supported_rates(priv
, rates
);
7484 if (priv
->assoc_request
.ieee_mode
== IPW_G_MODE
)
7485 priv
->sys_config
.dot11g_auto_detection
= 1;
7487 priv
->sys_config
.dot11g_auto_detection
= 0;
7489 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7490 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
7492 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
7494 err
= ipw_send_system_config(priv
);
7496 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7500 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network
->stats
.rssi
);
7501 err
= ipw_set_sensitivity(priv
, network
->stats
.rssi
+ IPW_RSSI_TO_DBM
);
7503 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7508 * If preemption is enabled, it is possible for the association
7509 * to complete before we return from ipw_send_associate. Therefore
7510 * we have to be sure and update our priviate data first.
7512 priv
->channel
= network
->channel
;
7513 memcpy(priv
->bssid
, network
->bssid
, ETH_ALEN
);
7514 priv
->status
|= STATUS_ASSOCIATING
;
7515 priv
->status
&= ~STATUS_SECURITY_UPDATED
;
7517 priv
->assoc_network
= network
;
7519 #ifdef CONFIG_IPW2200_QOS
7520 ipw_qos_association(priv
, network
);
7523 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
7525 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7529 IPW_DEBUG(IPW_DL_STATE
, "associating: '%s' %pM \n",
7530 print_ssid(ssid
, priv
->essid
, priv
->essid_len
),
7536 static void ipw_roam(void *data
)
7538 struct ipw_priv
*priv
= data
;
7539 struct libipw_network
*network
= NULL
;
7540 struct ipw_network_match match
= {
7541 .network
= priv
->assoc_network
7544 /* The roaming process is as follows:
7546 * 1. Missed beacon threshold triggers the roaming process by
7547 * setting the status ROAM bit and requesting a scan.
7548 * 2. When the scan completes, it schedules the ROAM work
7549 * 3. The ROAM work looks at all of the known networks for one that
7550 * is a better network than the currently associated. If none
7551 * found, the ROAM process is over (ROAM bit cleared)
7552 * 4. If a better network is found, a disassociation request is
7554 * 5. When the disassociation completes, the roam work is again
7555 * scheduled. The second time through, the driver is no longer
7556 * associated, and the newly selected network is sent an
7557 * association request.
7558 * 6. At this point ,the roaming process is complete and the ROAM
7559 * status bit is cleared.
7562 /* If we are no longer associated, and the roaming bit is no longer
7563 * set, then we are not actively roaming, so just return */
7564 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ROAMING
)))
7567 if (priv
->status
& STATUS_ASSOCIATED
) {
7568 /* First pass through ROAM process -- look for a better
7570 unsigned long flags
;
7571 u8 rssi
= priv
->assoc_network
->stats
.rssi
;
7572 priv
->assoc_network
->stats
.rssi
= -128;
7573 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7574 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
7575 if (network
!= priv
->assoc_network
)
7576 ipw_best_network(priv
, &match
, network
, 1);
7578 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7579 priv
->assoc_network
->stats
.rssi
= rssi
;
7581 if (match
.network
== priv
->assoc_network
) {
7582 IPW_DEBUG_ASSOC("No better APs in this network to "
7584 priv
->status
&= ~STATUS_ROAMING
;
7585 ipw_debug_config(priv
);
7589 ipw_send_disassociate(priv
, 1);
7590 priv
->assoc_network
= match
.network
;
7595 /* Second pass through ROAM process -- request association */
7596 ipw_compatible_rates(priv
, priv
->assoc_network
, &match
.rates
);
7597 ipw_associate_network(priv
, priv
->assoc_network
, &match
.rates
, 1);
7598 priv
->status
&= ~STATUS_ROAMING
;
7601 static void ipw_bg_roam(struct work_struct
*work
)
7603 struct ipw_priv
*priv
=
7604 container_of(work
, struct ipw_priv
, roam
);
7605 mutex_lock(&priv
->mutex
);
7607 mutex_unlock(&priv
->mutex
);
7610 static int ipw_associate(void *data
)
7612 struct ipw_priv
*priv
= data
;
7614 struct libipw_network
*network
= NULL
;
7615 struct ipw_network_match match
= {
7618 struct ipw_supported_rates
*rates
;
7619 struct list_head
*element
;
7620 unsigned long flags
;
7621 DECLARE_SSID_BUF(ssid
);
7623 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
7624 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7628 if (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
7629 IPW_DEBUG_ASSOC("Not attempting association (already in "
7634 if (priv
->status
& STATUS_DISASSOCIATING
) {
7635 IPW_DEBUG_ASSOC("Not attempting association (in "
7636 "disassociating)\n ");
7637 queue_work(priv
->workqueue
, &priv
->associate
);
7641 if (!ipw_is_init(priv
) || (priv
->status
& STATUS_SCANNING
)) {
7642 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7647 if (!(priv
->config
& CFG_ASSOCIATE
) &&
7648 !(priv
->config
& (CFG_STATIC_ESSID
| CFG_STATIC_BSSID
))) {
7649 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7653 /* Protect our use of the network_list */
7654 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7655 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
)
7656 ipw_best_network(priv
, &match
, network
, 0);
7658 network
= match
.network
;
7659 rates
= &match
.rates
;
7661 if (network
== NULL
&&
7662 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
7663 priv
->config
& CFG_ADHOC_CREATE
&&
7664 priv
->config
& CFG_STATIC_ESSID
&&
7665 priv
->config
& CFG_STATIC_CHANNEL
) {
7666 /* Use oldest network if the free list is empty */
7667 if (list_empty(&priv
->ieee
->network_free_list
)) {
7668 struct libipw_network
*oldest
= NULL
;
7669 struct libipw_network
*target
;
7671 list_for_each_entry(target
, &priv
->ieee
->network_list
, list
) {
7672 if ((oldest
== NULL
) ||
7673 (target
->last_scanned
< oldest
->last_scanned
))
7677 /* If there are no more slots, expire the oldest */
7678 list_del(&oldest
->list
);
7680 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7682 print_ssid(ssid
, target
->ssid
,
7685 list_add_tail(&target
->list
,
7686 &priv
->ieee
->network_free_list
);
7689 element
= priv
->ieee
->network_free_list
.next
;
7690 network
= list_entry(element
, struct libipw_network
, list
);
7691 ipw_adhoc_create(priv
, network
);
7692 rates
= &priv
->rates
;
7694 list_add_tail(&network
->list
, &priv
->ieee
->network_list
);
7696 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7698 /* If we reached the end of the list, then we don't have any valid
7701 ipw_debug_config(priv
);
7703 if (!(priv
->status
& STATUS_SCANNING
)) {
7704 if (!(priv
->config
& CFG_SPEED_SCAN
))
7705 queue_delayed_work(priv
->workqueue
,
7706 &priv
->request_scan
,
7709 queue_delayed_work(priv
->workqueue
,
7710 &priv
->request_scan
, 0);
7716 ipw_associate_network(priv
, network
, rates
, 0);
7721 static void ipw_bg_associate(struct work_struct
*work
)
7723 struct ipw_priv
*priv
=
7724 container_of(work
, struct ipw_priv
, associate
);
7725 mutex_lock(&priv
->mutex
);
7726 ipw_associate(priv
);
7727 mutex_unlock(&priv
->mutex
);
7730 static void ipw_rebuild_decrypted_skb(struct ipw_priv
*priv
,
7731 struct sk_buff
*skb
)
7733 struct ieee80211_hdr
*hdr
;
7736 hdr
= (struct ieee80211_hdr
*)skb
->data
;
7737 fc
= le16_to_cpu(hdr
->frame_control
);
7738 if (!(fc
& IEEE80211_FCTL_PROTECTED
))
7741 fc
&= ~IEEE80211_FCTL_PROTECTED
;
7742 hdr
->frame_control
= cpu_to_le16(fc
);
7743 switch (priv
->ieee
->sec
.level
) {
7745 /* Remove CCMP HDR */
7746 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7747 skb
->data
+ LIBIPW_3ADDR_LEN
+ 8,
7748 skb
->len
- LIBIPW_3ADDR_LEN
- 8);
7749 skb_trim(skb
, skb
->len
- 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7755 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7756 skb
->data
+ LIBIPW_3ADDR_LEN
+ 4,
7757 skb
->len
- LIBIPW_3ADDR_LEN
- 4);
7758 skb_trim(skb
, skb
->len
- 8); /* IV + ICV */
7763 printk(KERN_ERR
"Unknown security level %d\n",
7764 priv
->ieee
->sec
.level
);
7769 static void ipw_handle_data_packet(struct ipw_priv
*priv
,
7770 struct ipw_rx_mem_buffer
*rxb
,
7771 struct libipw_rx_stats
*stats
)
7773 struct net_device
*dev
= priv
->net_dev
;
7774 struct libipw_hdr_4addr
*hdr
;
7775 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7777 /* We received data from the HW, so stop the watchdog */
7778 dev
->trans_start
= jiffies
;
7780 /* We only process data packets if the
7781 * interface is open */
7782 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7783 skb_tailroom(rxb
->skb
))) {
7784 dev
->stats
.rx_errors
++;
7785 priv
->wstats
.discard
.misc
++;
7786 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7788 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7789 dev
->stats
.rx_dropped
++;
7790 priv
->wstats
.discard
.misc
++;
7791 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7795 /* Advance skb->data to the start of the actual payload */
7796 skb_reserve(rxb
->skb
, offsetof(struct ipw_rx_packet
, u
.frame
.data
));
7798 /* Set the size of the skb to the size of the frame */
7799 skb_put(rxb
->skb
, le16_to_cpu(pkt
->u
.frame
.length
));
7801 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7803 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7804 hdr
= (struct libipw_hdr_4addr
*)rxb
->skb
->data
;
7805 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
&&
7806 (is_multicast_ether_addr(hdr
->addr1
) ?
7807 !priv
->ieee
->host_mc_decrypt
: !priv
->ieee
->host_decrypt
))
7808 ipw_rebuild_decrypted_skb(priv
, rxb
->skb
);
7810 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7811 dev
->stats
.rx_errors
++;
7812 else { /* libipw_rx succeeded, so it now owns the SKB */
7814 __ipw_led_activity_on(priv
);
7818 #ifdef CONFIG_IPW2200_RADIOTAP
7819 static void ipw_handle_data_packet_monitor(struct ipw_priv
*priv
,
7820 struct ipw_rx_mem_buffer
*rxb
,
7821 struct libipw_rx_stats
*stats
)
7823 struct net_device
*dev
= priv
->net_dev
;
7824 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7825 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
7827 /* initial pull of some data */
7828 u16 received_channel
= frame
->received_channel
;
7829 u8 antennaAndPhy
= frame
->antennaAndPhy
;
7830 s8 antsignal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
; /* call it signed anyhow */
7831 u16 pktrate
= frame
->rate
;
7833 /* Magic struct that slots into the radiotap header -- no reason
7834 * to build this manually element by element, we can write it much
7835 * more efficiently than we can parse it. ORDER MATTERS HERE */
7836 struct ipw_rt_hdr
*ipw_rt
;
7838 short len
= le16_to_cpu(pkt
->u
.frame
.length
);
7840 /* We received data from the HW, so stop the watchdog */
7841 dev
->trans_start
= jiffies
;
7843 /* We only process data packets if the
7844 * interface is open */
7845 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7846 skb_tailroom(rxb
->skb
))) {
7847 dev
->stats
.rx_errors
++;
7848 priv
->wstats
.discard
.misc
++;
7849 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7851 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7852 dev
->stats
.rx_dropped
++;
7853 priv
->wstats
.discard
.misc
++;
7854 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7858 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7860 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
7861 /* FIXME: Should alloc bigger skb instead */
7862 dev
->stats
.rx_dropped
++;
7863 priv
->wstats
.discard
.misc
++;
7864 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7868 /* copy the frame itself */
7869 memmove(rxb
->skb
->data
+ sizeof(struct ipw_rt_hdr
),
7870 rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
, len
);
7872 ipw_rt
= (struct ipw_rt_hdr
*)rxb
->skb
->data
;
7874 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
7875 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
7876 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(struct ipw_rt_hdr
)); /* total header+data */
7878 /* Big bitfield of all the fields we provide in radiotap */
7879 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
7880 (1 << IEEE80211_RADIOTAP_TSFT
) |
7881 (1 << IEEE80211_RADIOTAP_FLAGS
) |
7882 (1 << IEEE80211_RADIOTAP_RATE
) |
7883 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
7884 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
7885 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
7886 (1 << IEEE80211_RADIOTAP_ANTENNA
));
7888 /* Zero the flags, we'll add to them as we go */
7889 ipw_rt
->rt_flags
= 0;
7890 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
7891 frame
->parent_tsf
[2] << 16 |
7892 frame
->parent_tsf
[1] << 8 |
7893 frame
->parent_tsf
[0]);
7895 /* Convert signal to DBM */
7896 ipw_rt
->rt_dbmsignal
= antsignal
;
7897 ipw_rt
->rt_dbmnoise
= (s8
) le16_to_cpu(frame
->noise
);
7899 /* Convert the channel data and set the flags */
7900 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(received_channel
));
7901 if (received_channel
> 14) { /* 802.11a */
7902 ipw_rt
->rt_chbitmask
=
7903 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
7904 } else if (antennaAndPhy
& 32) { /* 802.11b */
7905 ipw_rt
->rt_chbitmask
=
7906 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
7907 } else { /* 802.11g */
7908 ipw_rt
->rt_chbitmask
=
7909 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
7912 /* set the rate in multiples of 500k/s */
7914 case IPW_TX_RATE_1MB
:
7915 ipw_rt
->rt_rate
= 2;
7917 case IPW_TX_RATE_2MB
:
7918 ipw_rt
->rt_rate
= 4;
7920 case IPW_TX_RATE_5MB
:
7921 ipw_rt
->rt_rate
= 10;
7923 case IPW_TX_RATE_6MB
:
7924 ipw_rt
->rt_rate
= 12;
7926 case IPW_TX_RATE_9MB
:
7927 ipw_rt
->rt_rate
= 18;
7929 case IPW_TX_RATE_11MB
:
7930 ipw_rt
->rt_rate
= 22;
7932 case IPW_TX_RATE_12MB
:
7933 ipw_rt
->rt_rate
= 24;
7935 case IPW_TX_RATE_18MB
:
7936 ipw_rt
->rt_rate
= 36;
7938 case IPW_TX_RATE_24MB
:
7939 ipw_rt
->rt_rate
= 48;
7941 case IPW_TX_RATE_36MB
:
7942 ipw_rt
->rt_rate
= 72;
7944 case IPW_TX_RATE_48MB
:
7945 ipw_rt
->rt_rate
= 96;
7947 case IPW_TX_RATE_54MB
:
7948 ipw_rt
->rt_rate
= 108;
7951 ipw_rt
->rt_rate
= 0;
7955 /* antenna number */
7956 ipw_rt
->rt_antenna
= (antennaAndPhy
& 3); /* Is this right? */
7958 /* set the preamble flag if we have it */
7959 if ((antennaAndPhy
& 64))
7960 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
7962 /* Set the size of the skb to the size of the frame */
7963 skb_put(rxb
->skb
, len
+ sizeof(struct ipw_rt_hdr
));
7965 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7967 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7968 dev
->stats
.rx_errors
++;
7969 else { /* libipw_rx succeeded, so it now owns the SKB */
7971 /* no LED during capture */
7976 #ifdef CONFIG_IPW2200_PROMISCUOUS
7977 #define libipw_is_probe_response(fc) \
7978 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7979 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7981 #define libipw_is_management(fc) \
7982 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7984 #define libipw_is_control(fc) \
7985 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7987 #define libipw_is_data(fc) \
7988 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7990 #define libipw_is_assoc_request(fc) \
7991 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7993 #define libipw_is_reassoc_request(fc) \
7994 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7996 static void ipw_handle_promiscuous_rx(struct ipw_priv
*priv
,
7997 struct ipw_rx_mem_buffer
*rxb
,
7998 struct libipw_rx_stats
*stats
)
8000 struct net_device
*dev
= priv
->prom_net_dev
;
8001 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
8002 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
8003 struct ipw_rt_hdr
*ipw_rt
;
8005 /* First cache any information we need before we overwrite
8006 * the information provided in the skb from the hardware */
8007 struct ieee80211_hdr
*hdr
;
8008 u16 channel
= frame
->received_channel
;
8009 u8 phy_flags
= frame
->antennaAndPhy
;
8010 s8 signal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
;
8011 s8 noise
= (s8
) le16_to_cpu(frame
->noise
);
8012 u8 rate
= frame
->rate
;
8013 short len
= le16_to_cpu(pkt
->u
.frame
.length
);
8014 struct sk_buff
*skb
;
8016 u16 filter
= priv
->prom_priv
->filter
;
8018 /* If the filter is set to not include Rx frames then return */
8019 if (filter
& IPW_PROM_NO_RX
)
8022 /* We received data from the HW, so stop the watchdog */
8023 dev
->trans_start
= jiffies
;
8025 if (unlikely((len
+ IPW_RX_FRAME_SIZE
) > skb_tailroom(rxb
->skb
))) {
8026 dev
->stats
.rx_errors
++;
8027 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8031 /* We only process data packets if the interface is open */
8032 if (unlikely(!netif_running(dev
))) {
8033 dev
->stats
.rx_dropped
++;
8034 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8038 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8040 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
8041 /* FIXME: Should alloc bigger skb instead */
8042 dev
->stats
.rx_dropped
++;
8043 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8047 hdr
= (void *)rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
;
8048 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
8049 if (filter
& IPW_PROM_NO_MGMT
)
8051 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
8053 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
8054 if (filter
& IPW_PROM_NO_CTL
)
8056 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
8058 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
8059 if (filter
& IPW_PROM_NO_DATA
)
8061 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
8065 /* Copy the SKB since this is for the promiscuous side */
8066 skb
= skb_copy(rxb
->skb
, GFP_ATOMIC
);
8068 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8072 /* copy the frame data to write after where the radiotap header goes */
8073 ipw_rt
= (void *)skb
->data
;
8076 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
8078 memcpy(ipw_rt
->payload
, hdr
, len
);
8080 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
8081 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
8082 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(*ipw_rt
)); /* total header+data */
8084 /* Set the size of the skb to the size of the frame */
8085 skb_put(skb
, sizeof(*ipw_rt
) + len
);
8087 /* Big bitfield of all the fields we provide in radiotap */
8088 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
8089 (1 << IEEE80211_RADIOTAP_TSFT
) |
8090 (1 << IEEE80211_RADIOTAP_FLAGS
) |
8091 (1 << IEEE80211_RADIOTAP_RATE
) |
8092 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
8093 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
8094 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
8095 (1 << IEEE80211_RADIOTAP_ANTENNA
));
8097 /* Zero the flags, we'll add to them as we go */
8098 ipw_rt
->rt_flags
= 0;
8099 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
8100 frame
->parent_tsf
[2] << 16 |
8101 frame
->parent_tsf
[1] << 8 |
8102 frame
->parent_tsf
[0]);
8104 /* Convert to DBM */
8105 ipw_rt
->rt_dbmsignal
= signal
;
8106 ipw_rt
->rt_dbmnoise
= noise
;
8108 /* Convert the channel data and set the flags */
8109 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(channel
));
8110 if (channel
> 14) { /* 802.11a */
8111 ipw_rt
->rt_chbitmask
=
8112 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
8113 } else if (phy_flags
& (1 << 5)) { /* 802.11b */
8114 ipw_rt
->rt_chbitmask
=
8115 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
8116 } else { /* 802.11g */
8117 ipw_rt
->rt_chbitmask
=
8118 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
8121 /* set the rate in multiples of 500k/s */
8123 case IPW_TX_RATE_1MB
:
8124 ipw_rt
->rt_rate
= 2;
8126 case IPW_TX_RATE_2MB
:
8127 ipw_rt
->rt_rate
= 4;
8129 case IPW_TX_RATE_5MB
:
8130 ipw_rt
->rt_rate
= 10;
8132 case IPW_TX_RATE_6MB
:
8133 ipw_rt
->rt_rate
= 12;
8135 case IPW_TX_RATE_9MB
:
8136 ipw_rt
->rt_rate
= 18;
8138 case IPW_TX_RATE_11MB
:
8139 ipw_rt
->rt_rate
= 22;
8141 case IPW_TX_RATE_12MB
:
8142 ipw_rt
->rt_rate
= 24;
8144 case IPW_TX_RATE_18MB
:
8145 ipw_rt
->rt_rate
= 36;
8147 case IPW_TX_RATE_24MB
:
8148 ipw_rt
->rt_rate
= 48;
8150 case IPW_TX_RATE_36MB
:
8151 ipw_rt
->rt_rate
= 72;
8153 case IPW_TX_RATE_48MB
:
8154 ipw_rt
->rt_rate
= 96;
8156 case IPW_TX_RATE_54MB
:
8157 ipw_rt
->rt_rate
= 108;
8160 ipw_rt
->rt_rate
= 0;
8164 /* antenna number */
8165 ipw_rt
->rt_antenna
= (phy_flags
& 3);
8167 /* set the preamble flag if we have it */
8168 if (phy_flags
& (1 << 6))
8169 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
8171 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb
->len
);
8173 if (!libipw_rx(priv
->prom_priv
->ieee
, skb
, stats
)) {
8174 dev
->stats
.rx_errors
++;
8175 dev_kfree_skb_any(skb
);
8180 static int is_network_packet(struct ipw_priv
*priv
,
8181 struct libipw_hdr_4addr
*header
)
8183 /* Filter incoming packets to determine if they are targetted toward
8184 * this network, discarding packets coming from ourselves */
8185 switch (priv
->ieee
->iw_mode
) {
8186 case IW_MODE_ADHOC
: /* Header: Dest. | Source | BSSID */
8187 /* packets from our adapter are dropped (echo) */
8188 if (!memcmp(header
->addr2
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
8191 /* {broad,multi}cast packets to our BSSID go through */
8192 if (is_multicast_ether_addr(header
->addr1
))
8193 return !memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
);
8195 /* packets to our adapter go through */
8196 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
8199 case IW_MODE_INFRA
: /* Header: Dest. | BSSID | Source */
8200 /* packets from our adapter are dropped (echo) */
8201 if (!memcmp(header
->addr3
, priv
->net_dev
->dev_addr
, ETH_ALEN
))
8204 /* {broad,multi}cast packets to our BSS go through */
8205 if (is_multicast_ether_addr(header
->addr1
))
8206 return !memcmp(header
->addr2
, priv
->bssid
, ETH_ALEN
);
8208 /* packets to our adapter go through */
8209 return !memcmp(header
->addr1
, priv
->net_dev
->dev_addr
,
8216 #define IPW_PACKET_RETRY_TIME HZ
8218 static int is_duplicate_packet(struct ipw_priv
*priv
,
8219 struct libipw_hdr_4addr
*header
)
8221 u16 sc
= le16_to_cpu(header
->seq_ctl
);
8222 u16 seq
= WLAN_GET_SEQ_SEQ(sc
);
8223 u16 frag
= WLAN_GET_SEQ_FRAG(sc
);
8224 u16
*last_seq
, *last_frag
;
8225 unsigned long *last_time
;
8227 switch (priv
->ieee
->iw_mode
) {
8230 struct list_head
*p
;
8231 struct ipw_ibss_seq
*entry
= NULL
;
8232 u8
*mac
= header
->addr2
;
8233 int index
= mac
[5] % IPW_IBSS_MAC_HASH_SIZE
;
8235 __list_for_each(p
, &priv
->ibss_mac_hash
[index
]) {
8237 list_entry(p
, struct ipw_ibss_seq
, list
);
8238 if (!memcmp(entry
->mac
, mac
, ETH_ALEN
))
8241 if (p
== &priv
->ibss_mac_hash
[index
]) {
8242 entry
= kmalloc(sizeof(*entry
), GFP_ATOMIC
);
8245 ("Cannot malloc new mac entry\n");
8248 memcpy(entry
->mac
, mac
, ETH_ALEN
);
8249 entry
->seq_num
= seq
;
8250 entry
->frag_num
= frag
;
8251 entry
->packet_time
= jiffies
;
8252 list_add(&entry
->list
,
8253 &priv
->ibss_mac_hash
[index
]);
8256 last_seq
= &entry
->seq_num
;
8257 last_frag
= &entry
->frag_num
;
8258 last_time
= &entry
->packet_time
;
8262 last_seq
= &priv
->last_seq_num
;
8263 last_frag
= &priv
->last_frag_num
;
8264 last_time
= &priv
->last_packet_time
;
8269 if ((*last_seq
== seq
) &&
8270 time_after(*last_time
+ IPW_PACKET_RETRY_TIME
, jiffies
)) {
8271 if (*last_frag
== frag
)
8273 if (*last_frag
+ 1 != frag
)
8274 /* out-of-order fragment */
8280 *last_time
= jiffies
;
8284 /* Comment this line now since we observed the card receives
8285 * duplicate packets but the FCTL_RETRY bit is not set in the
8286 * IBSS mode with fragmentation enabled.
8287 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8291 static void ipw_handle_mgmt_packet(struct ipw_priv
*priv
,
8292 struct ipw_rx_mem_buffer
*rxb
,
8293 struct libipw_rx_stats
*stats
)
8295 struct sk_buff
*skb
= rxb
->skb
;
8296 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)skb
->data
;
8297 struct libipw_hdr_4addr
*header
= (struct libipw_hdr_4addr
*)
8298 (skb
->data
+ IPW_RX_FRAME_SIZE
);
8300 libipw_rx_mgt(priv
->ieee
, header
, stats
);
8302 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
8303 ((WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8304 IEEE80211_STYPE_PROBE_RESP
) ||
8305 (WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8306 IEEE80211_STYPE_BEACON
))) {
8307 if (!memcmp(header
->addr3
, priv
->bssid
, ETH_ALEN
))
8308 ipw_add_station(priv
, header
->addr2
);
8311 if (priv
->config
& CFG_NET_STATS
) {
8312 IPW_DEBUG_HC("sending stat packet\n");
8314 /* Set the size of the skb to the size of the full
8315 * ipw header and 802.11 frame */
8316 skb_put(skb
, le16_to_cpu(pkt
->u
.frame
.length
) +
8319 /* Advance past the ipw packet header to the 802.11 frame */
8320 skb_pull(skb
, IPW_RX_FRAME_SIZE
);
8322 /* Push the libipw_rx_stats before the 802.11 frame */
8323 memcpy(skb_push(skb
, sizeof(*stats
)), stats
, sizeof(*stats
));
8325 skb
->dev
= priv
->ieee
->dev
;
8327 /* Point raw at the libipw_stats */
8328 skb_reset_mac_header(skb
);
8330 skb
->pkt_type
= PACKET_OTHERHOST
;
8331 skb
->protocol
= cpu_to_be16(ETH_P_80211_STATS
);
8332 memset(skb
->cb
, 0, sizeof(rxb
->skb
->cb
));
8339 * Main entry function for recieving a packet with 80211 headers. This
8340 * should be called when ever the FW has notified us that there is a new
8341 * skb in the recieve queue.
8343 static void ipw_rx(struct ipw_priv
*priv
)
8345 struct ipw_rx_mem_buffer
*rxb
;
8346 struct ipw_rx_packet
*pkt
;
8347 struct libipw_hdr_4addr
*header
;
8352 r
= ipw_read32(priv
, IPW_RX_READ_INDEX
);
8353 w
= ipw_read32(priv
, IPW_RX_WRITE_INDEX
);
8354 i
= priv
->rxq
->read
;
8356 if (ipw_rx_queue_space (priv
->rxq
) > (RX_QUEUE_SIZE
/ 2))
8360 rxb
= priv
->rxq
->queue
[i
];
8361 if (unlikely(rxb
== NULL
)) {
8362 printk(KERN_CRIT
"Queue not allocated!\n");
8365 priv
->rxq
->queue
[i
] = NULL
;
8367 pci_dma_sync_single_for_cpu(priv
->pci_dev
, rxb
->dma_addr
,
8369 PCI_DMA_FROMDEVICE
);
8371 pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
8372 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8373 pkt
->header
.message_type
,
8374 pkt
->header
.rx_seq_num
, pkt
->header
.control_bits
);
8376 switch (pkt
->header
.message_type
) {
8377 case RX_FRAME_TYPE
: /* 802.11 frame */ {
8378 struct libipw_rx_stats stats
= {
8379 .rssi
= pkt
->u
.frame
.rssi_dbm
-
8382 pkt
->u
.frame
.rssi_dbm
-
8383 IPW_RSSI_TO_DBM
+ 0x100,
8385 le16_to_cpu(pkt
->u
.frame
.noise
),
8386 .rate
= pkt
->u
.frame
.rate
,
8387 .mac_time
= jiffies
,
8389 pkt
->u
.frame
.received_channel
,
8392 control
& (1 << 0)) ?
8395 .len
= le16_to_cpu(pkt
->u
.frame
.length
),
8398 if (stats
.rssi
!= 0)
8399 stats
.mask
|= LIBIPW_STATMASK_RSSI
;
8400 if (stats
.signal
!= 0)
8401 stats
.mask
|= LIBIPW_STATMASK_SIGNAL
;
8402 if (stats
.noise
!= 0)
8403 stats
.mask
|= LIBIPW_STATMASK_NOISE
;
8404 if (stats
.rate
!= 0)
8405 stats
.mask
|= LIBIPW_STATMASK_RATE
;
8409 #ifdef CONFIG_IPW2200_PROMISCUOUS
8410 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
))
8411 ipw_handle_promiscuous_rx(priv
, rxb
, &stats
);
8414 #ifdef CONFIG_IPW2200_MONITOR
8415 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8416 #ifdef CONFIG_IPW2200_RADIOTAP
8418 ipw_handle_data_packet_monitor(priv
,
8422 ipw_handle_data_packet(priv
, rxb
,
8430 (struct libipw_hdr_4addr
*)(rxb
->skb
->
8433 /* TODO: Check Ad-Hoc dest/source and make sure
8434 * that we are actually parsing these packets
8435 * correctly -- we should probably use the
8436 * frame control of the packet and disregard
8437 * the current iw_mode */
8440 is_network_packet(priv
, header
);
8441 if (network_packet
&& priv
->assoc_network
) {
8442 priv
->assoc_network
->stats
.rssi
=
8444 priv
->exp_avg_rssi
=
8445 exponential_average(priv
->exp_avg_rssi
,
8446 stats
.rssi
, DEPTH_RSSI
);
8449 IPW_DEBUG_RX("Frame: len=%u\n",
8450 le16_to_cpu(pkt
->u
.frame
.length
));
8452 if (le16_to_cpu(pkt
->u
.frame
.length
) <
8453 libipw_get_hdrlen(le16_to_cpu(
8454 header
->frame_ctl
))) {
8456 ("Received packet is too small. "
8458 priv
->net_dev
->stats
.rx_errors
++;
8459 priv
->wstats
.discard
.misc
++;
8463 switch (WLAN_FC_GET_TYPE
8464 (le16_to_cpu(header
->frame_ctl
))) {
8466 case IEEE80211_FTYPE_MGMT
:
8467 ipw_handle_mgmt_packet(priv
, rxb
,
8471 case IEEE80211_FTYPE_CTL
:
8474 case IEEE80211_FTYPE_DATA
:
8475 if (unlikely(!network_packet
||
8476 is_duplicate_packet(priv
,
8479 IPW_DEBUG_DROP("Dropping: "
8489 ipw_handle_data_packet(priv
, rxb
,
8497 case RX_HOST_NOTIFICATION_TYPE
:{
8499 ("Notification: subtype=%02X flags=%02X size=%d\n",
8500 pkt
->u
.notification
.subtype
,
8501 pkt
->u
.notification
.flags
,
8502 le16_to_cpu(pkt
->u
.notification
.size
));
8503 ipw_rx_notification(priv
, &pkt
->u
.notification
);
8508 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8509 pkt
->header
.message_type
);
8513 /* For now we just don't re-use anything. We can tweak this
8514 * later to try and re-use notification packets and SKBs that
8515 * fail to Rx correctly */
8516 if (rxb
->skb
!= NULL
) {
8517 dev_kfree_skb_any(rxb
->skb
);
8521 pci_unmap_single(priv
->pci_dev
, rxb
->dma_addr
,
8522 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
8523 list_add_tail(&rxb
->list
, &priv
->rxq
->rx_used
);
8525 i
= (i
+ 1) % RX_QUEUE_SIZE
;
8527 /* If there are a lot of unsued frames, restock the Rx queue
8528 * so the ucode won't assert */
8530 priv
->rxq
->read
= i
;
8531 ipw_rx_queue_replenish(priv
);
8535 /* Backtrack one entry */
8536 priv
->rxq
->read
= i
;
8537 ipw_rx_queue_restock(priv
);
8540 #define DEFAULT_RTS_THRESHOLD 2304U
8541 #define MIN_RTS_THRESHOLD 1U
8542 #define MAX_RTS_THRESHOLD 2304U
8543 #define DEFAULT_BEACON_INTERVAL 100U
8544 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8545 #define DEFAULT_LONG_RETRY_LIMIT 4U
8549 * @option: options to control different reset behaviour
8550 * 0 = reset everything except the 'disable' module_param
8551 * 1 = reset everything and print out driver info (for probe only)
8552 * 2 = reset everything
8554 static int ipw_sw_reset(struct ipw_priv
*priv
, int option
)
8556 int band
, modulation
;
8557 int old_mode
= priv
->ieee
->iw_mode
;
8559 /* Initialize module parameter values here */
8562 /* We default to disabling the LED code as right now it causes
8563 * too many systems to lock up... */
8565 priv
->config
|= CFG_NO_LED
;
8568 priv
->config
|= CFG_ASSOCIATE
;
8570 IPW_DEBUG_INFO("Auto associate disabled.\n");
8573 priv
->config
|= CFG_ADHOC_CREATE
;
8575 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8577 priv
->config
&= ~CFG_STATIC_ESSID
;
8578 priv
->essid_len
= 0;
8579 memset(priv
->essid
, 0, IW_ESSID_MAX_SIZE
);
8581 if (disable
&& option
) {
8582 priv
->status
|= STATUS_RF_KILL_SW
;
8583 IPW_DEBUG_INFO("Radio disabled.\n");
8586 if (default_channel
!= 0) {
8587 priv
->config
|= CFG_STATIC_CHANNEL
;
8588 priv
->channel
= default_channel
;
8589 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel
);
8590 /* TODO: Validate that provided channel is in range */
8592 #ifdef CONFIG_IPW2200_QOS
8593 ipw_qos_init(priv
, qos_enable
, qos_burst_enable
,
8594 burst_duration_CCK
, burst_duration_OFDM
);
8595 #endif /* CONFIG_IPW2200_QOS */
8597 switch (network_mode
) {
8599 priv
->ieee
->iw_mode
= IW_MODE_ADHOC
;
8600 priv
->net_dev
->type
= ARPHRD_ETHER
;
8603 #ifdef CONFIG_IPW2200_MONITOR
8605 priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
8606 #ifdef CONFIG_IPW2200_RADIOTAP
8607 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8609 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8615 priv
->net_dev
->type
= ARPHRD_ETHER
;
8616 priv
->ieee
->iw_mode
= IW_MODE_INFRA
;
8621 priv
->ieee
->host_encrypt
= 0;
8622 priv
->ieee
->host_encrypt_msdu
= 0;
8623 priv
->ieee
->host_decrypt
= 0;
8624 priv
->ieee
->host_mc_decrypt
= 0;
8626 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto
? "on" : "off");
8628 /* IPW2200/2915 is abled to do hardware fragmentation. */
8629 priv
->ieee
->host_open_frag
= 0;
8631 if ((priv
->pci_dev
->device
== 0x4223) ||
8632 (priv
->pci_dev
->device
== 0x4224)) {
8634 printk(KERN_INFO DRV_NAME
8635 ": Detected Intel PRO/Wireless 2915ABG Network "
8637 priv
->ieee
->abg_true
= 1;
8638 band
= LIBIPW_52GHZ_BAND
| LIBIPW_24GHZ_BAND
;
8639 modulation
= LIBIPW_OFDM_MODULATION
|
8640 LIBIPW_CCK_MODULATION
;
8641 priv
->adapter
= IPW_2915ABG
;
8642 priv
->ieee
->mode
= IEEE_A
| IEEE_G
| IEEE_B
;
8645 printk(KERN_INFO DRV_NAME
8646 ": Detected Intel PRO/Wireless 2200BG Network "
8649 priv
->ieee
->abg_true
= 0;
8650 band
= LIBIPW_24GHZ_BAND
;
8651 modulation
= LIBIPW_OFDM_MODULATION
|
8652 LIBIPW_CCK_MODULATION
;
8653 priv
->adapter
= IPW_2200BG
;
8654 priv
->ieee
->mode
= IEEE_G
| IEEE_B
;
8657 priv
->ieee
->freq_band
= band
;
8658 priv
->ieee
->modulation
= modulation
;
8660 priv
->rates_mask
= LIBIPW_DEFAULT_RATES_MASK
;
8662 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
8663 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
8665 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
8666 priv
->short_retry_limit
= DEFAULT_SHORT_RETRY_LIMIT
;
8667 priv
->long_retry_limit
= DEFAULT_LONG_RETRY_LIMIT
;
8669 /* If power management is turned on, default to AC mode */
8670 priv
->power_mode
= IPW_POWER_AC
;
8671 priv
->tx_power
= IPW_TX_POWER_DEFAULT
;
8673 return old_mode
== priv
->ieee
->iw_mode
;
8677 * This file defines the Wireless Extension handlers. It does not
8678 * define any methods of hardware manipulation and relies on the
8679 * functions defined in ipw_main to provide the HW interaction.
8681 * The exception to this is the use of the ipw_get_ordinal()
8682 * function used to poll the hardware vs. making unecessary calls.
8686 static int ipw_set_channel(struct ipw_priv
*priv
, u8 channel
)
8689 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8690 priv
->config
&= ~CFG_STATIC_CHANNEL
;
8691 IPW_DEBUG_ASSOC("Attempting to associate with new "
8693 ipw_associate(priv
);
8697 priv
->config
|= CFG_STATIC_CHANNEL
;
8699 if (priv
->channel
== channel
) {
8700 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8705 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel
);
8706 priv
->channel
= channel
;
8708 #ifdef CONFIG_IPW2200_MONITOR
8709 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8711 if (priv
->status
& STATUS_SCANNING
) {
8712 IPW_DEBUG_SCAN("Scan abort triggered due to "
8713 "channel change.\n");
8714 ipw_abort_scan(priv
);
8717 for (i
= 1000; i
&& (priv
->status
& STATUS_SCANNING
); i
--)
8720 if (priv
->status
& STATUS_SCANNING
)
8721 IPW_DEBUG_SCAN("Still scanning...\n");
8723 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8728 #endif /* CONFIG_IPW2200_MONITOR */
8730 /* Network configuration changed -- force [re]association */
8731 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8732 if (!ipw_disassociate(priv
))
8733 ipw_associate(priv
);
8738 static int ipw_wx_set_freq(struct net_device
*dev
,
8739 struct iw_request_info
*info
,
8740 union iwreq_data
*wrqu
, char *extra
)
8742 struct ipw_priv
*priv
= libipw_priv(dev
);
8743 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8744 struct iw_freq
*fwrq
= &wrqu
->freq
;
8750 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8751 mutex_lock(&priv
->mutex
);
8752 ret
= ipw_set_channel(priv
, 0);
8753 mutex_unlock(&priv
->mutex
);
8756 /* if setting by freq convert to channel */
8758 channel
= libipw_freq_to_channel(priv
->ieee
, fwrq
->m
);
8764 if (!(band
= libipw_is_valid_channel(priv
->ieee
, channel
)))
8767 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
8768 i
= libipw_channel_to_index(priv
->ieee
, channel
);
8772 flags
= (band
== LIBIPW_24GHZ_BAND
) ?
8773 geo
->bg
[i
].flags
: geo
->a
[i
].flags
;
8774 if (flags
& LIBIPW_CH_PASSIVE_ONLY
) {
8775 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8780 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq
->m
);
8781 mutex_lock(&priv
->mutex
);
8782 ret
= ipw_set_channel(priv
, channel
);
8783 mutex_unlock(&priv
->mutex
);
8787 static int ipw_wx_get_freq(struct net_device
*dev
,
8788 struct iw_request_info
*info
,
8789 union iwreq_data
*wrqu
, char *extra
)
8791 struct ipw_priv
*priv
= libipw_priv(dev
);
8795 /* If we are associated, trying to associate, or have a statically
8796 * configured CHANNEL then return that; otherwise return ANY */
8797 mutex_lock(&priv
->mutex
);
8798 if (priv
->config
& CFG_STATIC_CHANNEL
||
8799 priv
->status
& (STATUS_ASSOCIATING
| STATUS_ASSOCIATED
)) {
8802 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
8806 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
8807 case LIBIPW_52GHZ_BAND
:
8808 wrqu
->freq
.m
= priv
->ieee
->geo
.a
[i
].freq
* 100000;
8811 case LIBIPW_24GHZ_BAND
:
8812 wrqu
->freq
.m
= priv
->ieee
->geo
.bg
[i
].freq
* 100000;
8821 mutex_unlock(&priv
->mutex
);
8822 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv
->channel
);
8826 static int ipw_wx_set_mode(struct net_device
*dev
,
8827 struct iw_request_info
*info
,
8828 union iwreq_data
*wrqu
, char *extra
)
8830 struct ipw_priv
*priv
= libipw_priv(dev
);
8833 IPW_DEBUG_WX("Set MODE: %d\n", wrqu
->mode
);
8835 switch (wrqu
->mode
) {
8836 #ifdef CONFIG_IPW2200_MONITOR
8837 case IW_MODE_MONITOR
:
8843 wrqu
->mode
= IW_MODE_INFRA
;
8848 if (wrqu
->mode
== priv
->ieee
->iw_mode
)
8851 mutex_lock(&priv
->mutex
);
8853 ipw_sw_reset(priv
, 0);
8855 #ifdef CONFIG_IPW2200_MONITOR
8856 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
)
8857 priv
->net_dev
->type
= ARPHRD_ETHER
;
8859 if (wrqu
->mode
== IW_MODE_MONITOR
)
8860 #ifdef CONFIG_IPW2200_RADIOTAP
8861 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8863 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8865 #endif /* CONFIG_IPW2200_MONITOR */
8867 /* Free the existing firmware and reset the fw_loaded
8868 * flag so ipw_load() will bring in the new firmware */
8871 priv
->ieee
->iw_mode
= wrqu
->mode
;
8873 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
8874 mutex_unlock(&priv
->mutex
);
8878 static int ipw_wx_get_mode(struct net_device
*dev
,
8879 struct iw_request_info
*info
,
8880 union iwreq_data
*wrqu
, char *extra
)
8882 struct ipw_priv
*priv
= libipw_priv(dev
);
8883 mutex_lock(&priv
->mutex
);
8884 wrqu
->mode
= priv
->ieee
->iw_mode
;
8885 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu
->mode
);
8886 mutex_unlock(&priv
->mutex
);
8890 /* Values are in microsecond */
8891 static const s32 timeout_duration
[] = {
8899 static const s32 period_duration
[] = {
8907 static int ipw_wx_get_range(struct net_device
*dev
,
8908 struct iw_request_info
*info
,
8909 union iwreq_data
*wrqu
, char *extra
)
8911 struct ipw_priv
*priv
= libipw_priv(dev
);
8912 struct iw_range
*range
= (struct iw_range
*)extra
;
8913 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8916 wrqu
->data
.length
= sizeof(*range
);
8917 memset(range
, 0, sizeof(*range
));
8919 /* 54Mbs == ~27 Mb/s real (802.11g) */
8920 range
->throughput
= 27 * 1000 * 1000;
8922 range
->max_qual
.qual
= 100;
8923 /* TODO: Find real max RSSI and stick here */
8924 range
->max_qual
.level
= 0;
8925 range
->max_qual
.noise
= 0;
8926 range
->max_qual
.updated
= 7; /* Updated all three */
8928 range
->avg_qual
.qual
= 70;
8929 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8930 range
->avg_qual
.level
= 0; /* FIXME to real average level */
8931 range
->avg_qual
.noise
= 0;
8932 range
->avg_qual
.updated
= 7; /* Updated all three */
8933 mutex_lock(&priv
->mutex
);
8934 range
->num_bitrates
= min(priv
->rates
.num_rates
, (u8
) IW_MAX_BITRATES
);
8936 for (i
= 0; i
< range
->num_bitrates
; i
++)
8937 range
->bitrate
[i
] = (priv
->rates
.supported_rates
[i
] & 0x7F) *
8940 range
->max_rts
= DEFAULT_RTS_THRESHOLD
;
8941 range
->min_frag
= MIN_FRAG_THRESHOLD
;
8942 range
->max_frag
= MAX_FRAG_THRESHOLD
;
8944 range
->encoding_size
[0] = 5;
8945 range
->encoding_size
[1] = 13;
8946 range
->num_encoding_sizes
= 2;
8947 range
->max_encoding_tokens
= WEP_KEYS
;
8949 /* Set the Wireless Extension versions */
8950 range
->we_version_compiled
= WIRELESS_EXT
;
8951 range
->we_version_source
= 18;
8954 if (priv
->ieee
->mode
& (IEEE_B
| IEEE_G
)) {
8955 for (j
= 0; j
< geo
->bg_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8956 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8957 (geo
->bg
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8960 range
->freq
[i
].i
= geo
->bg
[j
].channel
;
8961 range
->freq
[i
].m
= geo
->bg
[j
].freq
* 100000;
8962 range
->freq
[i
].e
= 1;
8967 if (priv
->ieee
->mode
& IEEE_A
) {
8968 for (j
= 0; j
< geo
->a_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8969 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8970 (geo
->a
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8973 range
->freq
[i
].i
= geo
->a
[j
].channel
;
8974 range
->freq
[i
].m
= geo
->a
[j
].freq
* 100000;
8975 range
->freq
[i
].e
= 1;
8980 range
->num_channels
= i
;
8981 range
->num_frequency
= i
;
8983 mutex_unlock(&priv
->mutex
);
8985 /* Event capability (kernel + driver) */
8986 range
->event_capa
[0] = (IW_EVENT_CAPA_K_0
|
8987 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY
) |
8988 IW_EVENT_CAPA_MASK(SIOCGIWAP
) |
8989 IW_EVENT_CAPA_MASK(SIOCGIWSCAN
));
8990 range
->event_capa
[1] = IW_EVENT_CAPA_K_1
;
8992 range
->enc_capa
= IW_ENC_CAPA_WPA
| IW_ENC_CAPA_WPA2
|
8993 IW_ENC_CAPA_CIPHER_TKIP
| IW_ENC_CAPA_CIPHER_CCMP
;
8995 range
->scan_capa
= IW_SCAN_CAPA_ESSID
| IW_SCAN_CAPA_TYPE
;
8997 IPW_DEBUG_WX("GET Range\n");
9001 static int ipw_wx_set_wap(struct net_device
*dev
,
9002 struct iw_request_info
*info
,
9003 union iwreq_data
*wrqu
, char *extra
)
9005 struct ipw_priv
*priv
= libipw_priv(dev
);
9007 static const unsigned char any
[] = {
9008 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9010 static const unsigned char off
[] = {
9011 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9014 if (wrqu
->ap_addr
.sa_family
!= ARPHRD_ETHER
)
9016 mutex_lock(&priv
->mutex
);
9017 if (!memcmp(any
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
) ||
9018 !memcmp(off
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
9019 /* we disable mandatory BSSID association */
9020 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9021 priv
->config
&= ~CFG_STATIC_BSSID
;
9022 IPW_DEBUG_ASSOC("Attempting to associate with new "
9024 ipw_associate(priv
);
9025 mutex_unlock(&priv
->mutex
);
9029 priv
->config
|= CFG_STATIC_BSSID
;
9030 if (!memcmp(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
)) {
9031 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9032 mutex_unlock(&priv
->mutex
);
9036 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9037 wrqu
->ap_addr
.sa_data
);
9039 memcpy(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
);
9041 /* Network configuration changed -- force [re]association */
9042 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9043 if (!ipw_disassociate(priv
))
9044 ipw_associate(priv
);
9046 mutex_unlock(&priv
->mutex
);
9050 static int ipw_wx_get_wap(struct net_device
*dev
,
9051 struct iw_request_info
*info
,
9052 union iwreq_data
*wrqu
, char *extra
)
9054 struct ipw_priv
*priv
= libipw_priv(dev
);
9056 /* If we are associated, trying to associate, or have a statically
9057 * configured BSSID then return that; otherwise return ANY */
9058 mutex_lock(&priv
->mutex
);
9059 if (priv
->config
& CFG_STATIC_BSSID
||
9060 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
9061 wrqu
->ap_addr
.sa_family
= ARPHRD_ETHER
;
9062 memcpy(wrqu
->ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
9064 memset(wrqu
->ap_addr
.sa_data
, 0, ETH_ALEN
);
9066 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9067 wrqu
->ap_addr
.sa_data
);
9068 mutex_unlock(&priv
->mutex
);
9072 static int ipw_wx_set_essid(struct net_device
*dev
,
9073 struct iw_request_info
*info
,
9074 union iwreq_data
*wrqu
, char *extra
)
9076 struct ipw_priv
*priv
= libipw_priv(dev
);
9078 DECLARE_SSID_BUF(ssid
);
9080 mutex_lock(&priv
->mutex
);
9082 if (!wrqu
->essid
.flags
)
9084 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9085 ipw_disassociate(priv
);
9086 priv
->config
&= ~CFG_STATIC_ESSID
;
9087 ipw_associate(priv
);
9088 mutex_unlock(&priv
->mutex
);
9092 length
= min((int)wrqu
->essid
.length
, IW_ESSID_MAX_SIZE
);
9094 priv
->config
|= CFG_STATIC_ESSID
;
9096 if (priv
->essid_len
== length
&& !memcmp(priv
->essid
, extra
, length
)
9097 && (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
))) {
9098 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9099 mutex_unlock(&priv
->mutex
);
9103 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9104 print_ssid(ssid
, extra
, length
), length
);
9106 priv
->essid_len
= length
;
9107 memcpy(priv
->essid
, extra
, priv
->essid_len
);
9109 /* Network configuration changed -- force [re]association */
9110 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9111 if (!ipw_disassociate(priv
))
9112 ipw_associate(priv
);
9114 mutex_unlock(&priv
->mutex
);
9118 static int ipw_wx_get_essid(struct net_device
*dev
,
9119 struct iw_request_info
*info
,
9120 union iwreq_data
*wrqu
, char *extra
)
9122 struct ipw_priv
*priv
= libipw_priv(dev
);
9123 DECLARE_SSID_BUF(ssid
);
9125 /* If we are associated, trying to associate, or have a statically
9126 * configured ESSID then return that; otherwise return ANY */
9127 mutex_lock(&priv
->mutex
);
9128 if (priv
->config
& CFG_STATIC_ESSID
||
9129 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
9130 IPW_DEBUG_WX("Getting essid: '%s'\n",
9131 print_ssid(ssid
, priv
->essid
, priv
->essid_len
));
9132 memcpy(extra
, priv
->essid
, priv
->essid_len
);
9133 wrqu
->essid
.length
= priv
->essid_len
;
9134 wrqu
->essid
.flags
= 1; /* active */
9136 IPW_DEBUG_WX("Getting essid: ANY\n");
9137 wrqu
->essid
.length
= 0;
9138 wrqu
->essid
.flags
= 0; /* active */
9140 mutex_unlock(&priv
->mutex
);
9144 static int ipw_wx_set_nick(struct net_device
*dev
,
9145 struct iw_request_info
*info
,
9146 union iwreq_data
*wrqu
, char *extra
)
9148 struct ipw_priv
*priv
= libipw_priv(dev
);
9150 IPW_DEBUG_WX("Setting nick to '%s'\n", extra
);
9151 if (wrqu
->data
.length
> IW_ESSID_MAX_SIZE
)
9153 mutex_lock(&priv
->mutex
);
9154 wrqu
->data
.length
= min((size_t) wrqu
->data
.length
, sizeof(priv
->nick
));
9155 memset(priv
->nick
, 0, sizeof(priv
->nick
));
9156 memcpy(priv
->nick
, extra
, wrqu
->data
.length
);
9157 IPW_DEBUG_TRACE("<<\n");
9158 mutex_unlock(&priv
->mutex
);
9163 static int ipw_wx_get_nick(struct net_device
*dev
,
9164 struct iw_request_info
*info
,
9165 union iwreq_data
*wrqu
, char *extra
)
9167 struct ipw_priv
*priv
= libipw_priv(dev
);
9168 IPW_DEBUG_WX("Getting nick\n");
9169 mutex_lock(&priv
->mutex
);
9170 wrqu
->data
.length
= strlen(priv
->nick
);
9171 memcpy(extra
, priv
->nick
, wrqu
->data
.length
);
9172 wrqu
->data
.flags
= 1; /* active */
9173 mutex_unlock(&priv
->mutex
);
9177 static int ipw_wx_set_sens(struct net_device
*dev
,
9178 struct iw_request_info
*info
,
9179 union iwreq_data
*wrqu
, char *extra
)
9181 struct ipw_priv
*priv
= libipw_priv(dev
);
9184 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu
->sens
.value
);
9185 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu
->sens
.value
);
9186 mutex_lock(&priv
->mutex
);
9188 if (wrqu
->sens
.fixed
== 0)
9190 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
9191 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
9194 if ((wrqu
->sens
.value
> IPW_MB_ROAMING_THRESHOLD_MAX
) ||
9195 (wrqu
->sens
.value
< IPW_MB_ROAMING_THRESHOLD_MIN
)) {
9200 priv
->roaming_threshold
= wrqu
->sens
.value
;
9201 priv
->disassociate_threshold
= 3*wrqu
->sens
.value
;
9203 mutex_unlock(&priv
->mutex
);
9207 static int ipw_wx_get_sens(struct net_device
*dev
,
9208 struct iw_request_info
*info
,
9209 union iwreq_data
*wrqu
, char *extra
)
9211 struct ipw_priv
*priv
= libipw_priv(dev
);
9212 mutex_lock(&priv
->mutex
);
9213 wrqu
->sens
.fixed
= 1;
9214 wrqu
->sens
.value
= priv
->roaming_threshold
;
9215 mutex_unlock(&priv
->mutex
);
9217 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9218 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9223 static int ipw_wx_set_rate(struct net_device
*dev
,
9224 struct iw_request_info
*info
,
9225 union iwreq_data
*wrqu
, char *extra
)
9227 /* TODO: We should use semaphores or locks for access to priv */
9228 struct ipw_priv
*priv
= libipw_priv(dev
);
9229 u32 target_rate
= wrqu
->bitrate
.value
;
9232 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9233 /* value = X, fixed = 1 means only rate X */
9234 /* value = X, fixed = 0 means all rates lower equal X */
9236 if (target_rate
== -1) {
9238 mask
= LIBIPW_DEFAULT_RATES_MASK
;
9239 /* Now we should reassociate */
9244 fixed
= wrqu
->bitrate
.fixed
;
9246 if (target_rate
== 1000000 || !fixed
)
9247 mask
|= LIBIPW_CCK_RATE_1MB_MASK
;
9248 if (target_rate
== 1000000)
9251 if (target_rate
== 2000000 || !fixed
)
9252 mask
|= LIBIPW_CCK_RATE_2MB_MASK
;
9253 if (target_rate
== 2000000)
9256 if (target_rate
== 5500000 || !fixed
)
9257 mask
|= LIBIPW_CCK_RATE_5MB_MASK
;
9258 if (target_rate
== 5500000)
9261 if (target_rate
== 6000000 || !fixed
)
9262 mask
|= LIBIPW_OFDM_RATE_6MB_MASK
;
9263 if (target_rate
== 6000000)
9266 if (target_rate
== 9000000 || !fixed
)
9267 mask
|= LIBIPW_OFDM_RATE_9MB_MASK
;
9268 if (target_rate
== 9000000)
9271 if (target_rate
== 11000000 || !fixed
)
9272 mask
|= LIBIPW_CCK_RATE_11MB_MASK
;
9273 if (target_rate
== 11000000)
9276 if (target_rate
== 12000000 || !fixed
)
9277 mask
|= LIBIPW_OFDM_RATE_12MB_MASK
;
9278 if (target_rate
== 12000000)
9281 if (target_rate
== 18000000 || !fixed
)
9282 mask
|= LIBIPW_OFDM_RATE_18MB_MASK
;
9283 if (target_rate
== 18000000)
9286 if (target_rate
== 24000000 || !fixed
)
9287 mask
|= LIBIPW_OFDM_RATE_24MB_MASK
;
9288 if (target_rate
== 24000000)
9291 if (target_rate
== 36000000 || !fixed
)
9292 mask
|= LIBIPW_OFDM_RATE_36MB_MASK
;
9293 if (target_rate
== 36000000)
9296 if (target_rate
== 48000000 || !fixed
)
9297 mask
|= LIBIPW_OFDM_RATE_48MB_MASK
;
9298 if (target_rate
== 48000000)
9301 if (target_rate
== 54000000 || !fixed
)
9302 mask
|= LIBIPW_OFDM_RATE_54MB_MASK
;
9303 if (target_rate
== 54000000)
9306 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9310 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9311 mask
, fixed
? "fixed" : "sub-rates");
9312 mutex_lock(&priv
->mutex
);
9313 if (mask
== LIBIPW_DEFAULT_RATES_MASK
) {
9314 priv
->config
&= ~CFG_FIXED_RATE
;
9315 ipw_set_fixed_rate(priv
, priv
->ieee
->mode
);
9317 priv
->config
|= CFG_FIXED_RATE
;
9319 if (priv
->rates_mask
== mask
) {
9320 IPW_DEBUG_WX("Mask set to current mask.\n");
9321 mutex_unlock(&priv
->mutex
);
9325 priv
->rates_mask
= mask
;
9327 /* Network configuration changed -- force [re]association */
9328 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9329 if (!ipw_disassociate(priv
))
9330 ipw_associate(priv
);
9332 mutex_unlock(&priv
->mutex
);
9336 static int ipw_wx_get_rate(struct net_device
*dev
,
9337 struct iw_request_info
*info
,
9338 union iwreq_data
*wrqu
, char *extra
)
9340 struct ipw_priv
*priv
= libipw_priv(dev
);
9341 mutex_lock(&priv
->mutex
);
9342 wrqu
->bitrate
.value
= priv
->last_rate
;
9343 wrqu
->bitrate
.fixed
= (priv
->config
& CFG_FIXED_RATE
) ? 1 : 0;
9344 mutex_unlock(&priv
->mutex
);
9345 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu
->bitrate
.value
);
9349 static int ipw_wx_set_rts(struct net_device
*dev
,
9350 struct iw_request_info
*info
,
9351 union iwreq_data
*wrqu
, char *extra
)
9353 struct ipw_priv
*priv
= libipw_priv(dev
);
9354 mutex_lock(&priv
->mutex
);
9355 if (wrqu
->rts
.disabled
|| !wrqu
->rts
.fixed
)
9356 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
9358 if (wrqu
->rts
.value
< MIN_RTS_THRESHOLD
||
9359 wrqu
->rts
.value
> MAX_RTS_THRESHOLD
) {
9360 mutex_unlock(&priv
->mutex
);
9363 priv
->rts_threshold
= wrqu
->rts
.value
;
9366 ipw_send_rts_threshold(priv
, priv
->rts_threshold
);
9367 mutex_unlock(&priv
->mutex
);
9368 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv
->rts_threshold
);
9372 static int ipw_wx_get_rts(struct net_device
*dev
,
9373 struct iw_request_info
*info
,
9374 union iwreq_data
*wrqu
, char *extra
)
9376 struct ipw_priv
*priv
= libipw_priv(dev
);
9377 mutex_lock(&priv
->mutex
);
9378 wrqu
->rts
.value
= priv
->rts_threshold
;
9379 wrqu
->rts
.fixed
= 0; /* no auto select */
9380 wrqu
->rts
.disabled
= (wrqu
->rts
.value
== DEFAULT_RTS_THRESHOLD
);
9381 mutex_unlock(&priv
->mutex
);
9382 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu
->rts
.value
);
9386 static int ipw_wx_set_txpow(struct net_device
*dev
,
9387 struct iw_request_info
*info
,
9388 union iwreq_data
*wrqu
, char *extra
)
9390 struct ipw_priv
*priv
= libipw_priv(dev
);
9393 mutex_lock(&priv
->mutex
);
9394 if (ipw_radio_kill_sw(priv
, wrqu
->power
.disabled
)) {
9399 if (!wrqu
->power
.fixed
)
9400 wrqu
->power
.value
= IPW_TX_POWER_DEFAULT
;
9402 if (wrqu
->power
.flags
!= IW_TXPOW_DBM
) {
9407 if ((wrqu
->power
.value
> IPW_TX_POWER_MAX
) ||
9408 (wrqu
->power
.value
< IPW_TX_POWER_MIN
)) {
9413 priv
->tx_power
= wrqu
->power
.value
;
9414 err
= ipw_set_tx_power(priv
);
9416 mutex_unlock(&priv
->mutex
);
9420 static int ipw_wx_get_txpow(struct net_device
*dev
,
9421 struct iw_request_info
*info
,
9422 union iwreq_data
*wrqu
, char *extra
)
9424 struct ipw_priv
*priv
= libipw_priv(dev
);
9425 mutex_lock(&priv
->mutex
);
9426 wrqu
->power
.value
= priv
->tx_power
;
9427 wrqu
->power
.fixed
= 1;
9428 wrqu
->power
.flags
= IW_TXPOW_DBM
;
9429 wrqu
->power
.disabled
= (priv
->status
& STATUS_RF_KILL_MASK
) ? 1 : 0;
9430 mutex_unlock(&priv
->mutex
);
9432 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9433 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9438 static int ipw_wx_set_frag(struct net_device
*dev
,
9439 struct iw_request_info
*info
,
9440 union iwreq_data
*wrqu
, char *extra
)
9442 struct ipw_priv
*priv
= libipw_priv(dev
);
9443 mutex_lock(&priv
->mutex
);
9444 if (wrqu
->frag
.disabled
|| !wrqu
->frag
.fixed
)
9445 priv
->ieee
->fts
= DEFAULT_FTS
;
9447 if (wrqu
->frag
.value
< MIN_FRAG_THRESHOLD
||
9448 wrqu
->frag
.value
> MAX_FRAG_THRESHOLD
) {
9449 mutex_unlock(&priv
->mutex
);
9453 priv
->ieee
->fts
= wrqu
->frag
.value
& ~0x1;
9456 ipw_send_frag_threshold(priv
, wrqu
->frag
.value
);
9457 mutex_unlock(&priv
->mutex
);
9458 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu
->frag
.value
);
9462 static int ipw_wx_get_frag(struct net_device
*dev
,
9463 struct iw_request_info
*info
,
9464 union iwreq_data
*wrqu
, char *extra
)
9466 struct ipw_priv
*priv
= libipw_priv(dev
);
9467 mutex_lock(&priv
->mutex
);
9468 wrqu
->frag
.value
= priv
->ieee
->fts
;
9469 wrqu
->frag
.fixed
= 0; /* no auto select */
9470 wrqu
->frag
.disabled
= (wrqu
->frag
.value
== DEFAULT_FTS
);
9471 mutex_unlock(&priv
->mutex
);
9472 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu
->frag
.value
);
9477 static int ipw_wx_set_retry(struct net_device
*dev
,
9478 struct iw_request_info
*info
,
9479 union iwreq_data
*wrqu
, char *extra
)
9481 struct ipw_priv
*priv
= libipw_priv(dev
);
9483 if (wrqu
->retry
.flags
& IW_RETRY_LIFETIME
|| wrqu
->retry
.disabled
)
9486 if (!(wrqu
->retry
.flags
& IW_RETRY_LIMIT
))
9489 if (wrqu
->retry
.value
< 0 || wrqu
->retry
.value
>= 255)
9492 mutex_lock(&priv
->mutex
);
9493 if (wrqu
->retry
.flags
& IW_RETRY_SHORT
)
9494 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9495 else if (wrqu
->retry
.flags
& IW_RETRY_LONG
)
9496 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9498 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9499 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9502 ipw_send_retry_limit(priv
, priv
->short_retry_limit
,
9503 priv
->long_retry_limit
);
9504 mutex_unlock(&priv
->mutex
);
9505 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9506 priv
->short_retry_limit
, priv
->long_retry_limit
);
9510 static int ipw_wx_get_retry(struct net_device
*dev
,
9511 struct iw_request_info
*info
,
9512 union iwreq_data
*wrqu
, char *extra
)
9514 struct ipw_priv
*priv
= libipw_priv(dev
);
9516 mutex_lock(&priv
->mutex
);
9517 wrqu
->retry
.disabled
= 0;
9519 if ((wrqu
->retry
.flags
& IW_RETRY_TYPE
) == IW_RETRY_LIFETIME
) {
9520 mutex_unlock(&priv
->mutex
);
9524 if (wrqu
->retry
.flags
& IW_RETRY_LONG
) {
9525 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_LONG
;
9526 wrqu
->retry
.value
= priv
->long_retry_limit
;
9527 } else if (wrqu
->retry
.flags
& IW_RETRY_SHORT
) {
9528 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_SHORT
;
9529 wrqu
->retry
.value
= priv
->short_retry_limit
;
9531 wrqu
->retry
.flags
= IW_RETRY_LIMIT
;
9532 wrqu
->retry
.value
= priv
->short_retry_limit
;
9534 mutex_unlock(&priv
->mutex
);
9536 IPW_DEBUG_WX("GET retry -> %d \n", wrqu
->retry
.value
);
9541 static int ipw_wx_set_scan(struct net_device
*dev
,
9542 struct iw_request_info
*info
,
9543 union iwreq_data
*wrqu
, char *extra
)
9545 struct ipw_priv
*priv
= libipw_priv(dev
);
9546 struct iw_scan_req
*req
= (struct iw_scan_req
*)extra
;
9547 struct delayed_work
*work
= NULL
;
9549 mutex_lock(&priv
->mutex
);
9551 priv
->user_requested_scan
= 1;
9553 if (wrqu
->data
.length
== sizeof(struct iw_scan_req
)) {
9554 if (wrqu
->data
.flags
& IW_SCAN_THIS_ESSID
) {
9555 int len
= min((int)req
->essid_len
,
9556 (int)sizeof(priv
->direct_scan_ssid
));
9557 memcpy(priv
->direct_scan_ssid
, req
->essid
, len
);
9558 priv
->direct_scan_ssid_len
= len
;
9559 work
= &priv
->request_direct_scan
;
9560 } else if (req
->scan_type
== IW_SCAN_TYPE_PASSIVE
) {
9561 work
= &priv
->request_passive_scan
;
9564 /* Normal active broadcast scan */
9565 work
= &priv
->request_scan
;
9568 mutex_unlock(&priv
->mutex
);
9570 IPW_DEBUG_WX("Start scan\n");
9572 queue_delayed_work(priv
->workqueue
, work
, 0);
9577 static int ipw_wx_get_scan(struct net_device
*dev
,
9578 struct iw_request_info
*info
,
9579 union iwreq_data
*wrqu
, char *extra
)
9581 struct ipw_priv
*priv
= libipw_priv(dev
);
9582 return libipw_wx_get_scan(priv
->ieee
, info
, wrqu
, extra
);
9585 static int ipw_wx_set_encode(struct net_device
*dev
,
9586 struct iw_request_info
*info
,
9587 union iwreq_data
*wrqu
, char *key
)
9589 struct ipw_priv
*priv
= libipw_priv(dev
);
9591 u32 cap
= priv
->capability
;
9593 mutex_lock(&priv
->mutex
);
9594 ret
= libipw_wx_set_encode(priv
->ieee
, info
, wrqu
, key
);
9596 /* In IBSS mode, we need to notify the firmware to update
9597 * the beacon info after we changed the capability. */
9598 if (cap
!= priv
->capability
&&
9599 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
9600 priv
->status
& STATUS_ASSOCIATED
)
9601 ipw_disassociate(priv
);
9603 mutex_unlock(&priv
->mutex
);
9607 static int ipw_wx_get_encode(struct net_device
*dev
,
9608 struct iw_request_info
*info
,
9609 union iwreq_data
*wrqu
, char *key
)
9611 struct ipw_priv
*priv
= libipw_priv(dev
);
9612 return libipw_wx_get_encode(priv
->ieee
, info
, wrqu
, key
);
9615 static int ipw_wx_set_power(struct net_device
*dev
,
9616 struct iw_request_info
*info
,
9617 union iwreq_data
*wrqu
, char *extra
)
9619 struct ipw_priv
*priv
= libipw_priv(dev
);
9621 mutex_lock(&priv
->mutex
);
9622 if (wrqu
->power
.disabled
) {
9623 priv
->power_mode
= IPW_POWER_LEVEL(priv
->power_mode
);
9624 err
= ipw_send_power_mode(priv
, IPW_POWER_MODE_CAM
);
9626 IPW_DEBUG_WX("failed setting power mode.\n");
9627 mutex_unlock(&priv
->mutex
);
9630 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9631 mutex_unlock(&priv
->mutex
);
9635 switch (wrqu
->power
.flags
& IW_POWER_MODE
) {
9636 case IW_POWER_ON
: /* If not specified */
9637 case IW_POWER_MODE
: /* If set all mask */
9638 case IW_POWER_ALL_R
: /* If explicitly state all */
9640 default: /* Otherwise we don't support it */
9641 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9643 mutex_unlock(&priv
->mutex
);
9647 /* If the user hasn't specified a power management mode yet, default
9649 if (IPW_POWER_LEVEL(priv
->power_mode
) == IPW_POWER_AC
)
9650 priv
->power_mode
= IPW_POWER_ENABLED
| IPW_POWER_BATTERY
;
9652 priv
->power_mode
= IPW_POWER_ENABLED
| priv
->power_mode
;
9654 err
= ipw_send_power_mode(priv
, IPW_POWER_LEVEL(priv
->power_mode
));
9656 IPW_DEBUG_WX("failed setting power mode.\n");
9657 mutex_unlock(&priv
->mutex
);
9661 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv
->power_mode
);
9662 mutex_unlock(&priv
->mutex
);
9666 static int ipw_wx_get_power(struct net_device
*dev
,
9667 struct iw_request_info
*info
,
9668 union iwreq_data
*wrqu
, char *extra
)
9670 struct ipw_priv
*priv
= libipw_priv(dev
);
9671 mutex_lock(&priv
->mutex
);
9672 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9673 wrqu
->power
.disabled
= 1;
9675 wrqu
->power
.disabled
= 0;
9677 mutex_unlock(&priv
->mutex
);
9678 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv
->power_mode
);
9683 static int ipw_wx_set_powermode(struct net_device
*dev
,
9684 struct iw_request_info
*info
,
9685 union iwreq_data
*wrqu
, char *extra
)
9687 struct ipw_priv
*priv
= libipw_priv(dev
);
9688 int mode
= *(int *)extra
;
9691 mutex_lock(&priv
->mutex
);
9692 if ((mode
< 1) || (mode
> IPW_POWER_LIMIT
))
9693 mode
= IPW_POWER_AC
;
9695 if (IPW_POWER_LEVEL(priv
->power_mode
) != mode
) {
9696 err
= ipw_send_power_mode(priv
, mode
);
9698 IPW_DEBUG_WX("failed setting power mode.\n");
9699 mutex_unlock(&priv
->mutex
);
9702 priv
->power_mode
= IPW_POWER_ENABLED
| mode
;
9704 mutex_unlock(&priv
->mutex
);
9708 #define MAX_WX_STRING 80
9709 static int ipw_wx_get_powermode(struct net_device
*dev
,
9710 struct iw_request_info
*info
,
9711 union iwreq_data
*wrqu
, char *extra
)
9713 struct ipw_priv
*priv
= libipw_priv(dev
);
9714 int level
= IPW_POWER_LEVEL(priv
->power_mode
);
9717 p
+= snprintf(p
, MAX_WX_STRING
, "Power save level: %d ", level
);
9721 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(AC)");
9723 case IPW_POWER_BATTERY
:
9724 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(BATTERY)");
9727 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
),
9728 "(Timeout %dms, Period %dms)",
9729 timeout_duration
[level
- 1] / 1000,
9730 period_duration
[level
- 1] / 1000);
9733 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9734 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), " OFF");
9736 wrqu
->data
.length
= p
- extra
+ 1;
9741 static int ipw_wx_set_wireless_mode(struct net_device
*dev
,
9742 struct iw_request_info
*info
,
9743 union iwreq_data
*wrqu
, char *extra
)
9745 struct ipw_priv
*priv
= libipw_priv(dev
);
9746 int mode
= *(int *)extra
;
9747 u8 band
= 0, modulation
= 0;
9749 if (mode
== 0 || mode
& ~IEEE_MODE_MASK
) {
9750 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode
);
9753 mutex_lock(&priv
->mutex
);
9754 if (priv
->adapter
== IPW_2915ABG
) {
9755 priv
->ieee
->abg_true
= 1;
9756 if (mode
& IEEE_A
) {
9757 band
|= LIBIPW_52GHZ_BAND
;
9758 modulation
|= LIBIPW_OFDM_MODULATION
;
9760 priv
->ieee
->abg_true
= 0;
9762 if (mode
& IEEE_A
) {
9763 IPW_WARNING("Attempt to set 2200BG into "
9765 mutex_unlock(&priv
->mutex
);
9769 priv
->ieee
->abg_true
= 0;
9772 if (mode
& IEEE_B
) {
9773 band
|= LIBIPW_24GHZ_BAND
;
9774 modulation
|= LIBIPW_CCK_MODULATION
;
9776 priv
->ieee
->abg_true
= 0;
9778 if (mode
& IEEE_G
) {
9779 band
|= LIBIPW_24GHZ_BAND
;
9780 modulation
|= LIBIPW_OFDM_MODULATION
;
9782 priv
->ieee
->abg_true
= 0;
9784 priv
->ieee
->mode
= mode
;
9785 priv
->ieee
->freq_band
= band
;
9786 priv
->ieee
->modulation
= modulation
;
9787 init_supported_rates(priv
, &priv
->rates
);
9789 /* Network configuration changed -- force [re]association */
9790 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9791 if (!ipw_disassociate(priv
)) {
9792 ipw_send_supported_rates(priv
, &priv
->rates
);
9793 ipw_associate(priv
);
9796 /* Update the band LEDs */
9797 ipw_led_band_on(priv
);
9799 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9800 mode
& IEEE_A
? 'a' : '.',
9801 mode
& IEEE_B
? 'b' : '.', mode
& IEEE_G
? 'g' : '.');
9802 mutex_unlock(&priv
->mutex
);
9806 static int ipw_wx_get_wireless_mode(struct net_device
*dev
,
9807 struct iw_request_info
*info
,
9808 union iwreq_data
*wrqu
, char *extra
)
9810 struct ipw_priv
*priv
= libipw_priv(dev
);
9811 mutex_lock(&priv
->mutex
);
9812 switch (priv
->ieee
->mode
) {
9814 strncpy(extra
, "802.11a (1)", MAX_WX_STRING
);
9817 strncpy(extra
, "802.11b (2)", MAX_WX_STRING
);
9819 case IEEE_A
| IEEE_B
:
9820 strncpy(extra
, "802.11ab (3)", MAX_WX_STRING
);
9823 strncpy(extra
, "802.11g (4)", MAX_WX_STRING
);
9825 case IEEE_A
| IEEE_G
:
9826 strncpy(extra
, "802.11ag (5)", MAX_WX_STRING
);
9828 case IEEE_B
| IEEE_G
:
9829 strncpy(extra
, "802.11bg (6)", MAX_WX_STRING
);
9831 case IEEE_A
| IEEE_B
| IEEE_G
:
9832 strncpy(extra
, "802.11abg (7)", MAX_WX_STRING
);
9835 strncpy(extra
, "unknown", MAX_WX_STRING
);
9839 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra
);
9841 wrqu
->data
.length
= strlen(extra
) + 1;
9842 mutex_unlock(&priv
->mutex
);
9847 static int ipw_wx_set_preamble(struct net_device
*dev
,
9848 struct iw_request_info
*info
,
9849 union iwreq_data
*wrqu
, char *extra
)
9851 struct ipw_priv
*priv
= libipw_priv(dev
);
9852 int mode
= *(int *)extra
;
9853 mutex_lock(&priv
->mutex
);
9854 /* Switching from SHORT -> LONG requires a disassociation */
9856 if (!(priv
->config
& CFG_PREAMBLE_LONG
)) {
9857 priv
->config
|= CFG_PREAMBLE_LONG
;
9859 /* Network configuration changed -- force [re]association */
9861 ("[re]association triggered due to preamble change.\n");
9862 if (!ipw_disassociate(priv
))
9863 ipw_associate(priv
);
9869 priv
->config
&= ~CFG_PREAMBLE_LONG
;
9872 mutex_unlock(&priv
->mutex
);
9876 mutex_unlock(&priv
->mutex
);
9880 static int ipw_wx_get_preamble(struct net_device
*dev
,
9881 struct iw_request_info
*info
,
9882 union iwreq_data
*wrqu
, char *extra
)
9884 struct ipw_priv
*priv
= libipw_priv(dev
);
9885 mutex_lock(&priv
->mutex
);
9886 if (priv
->config
& CFG_PREAMBLE_LONG
)
9887 snprintf(wrqu
->name
, IFNAMSIZ
, "long (1)");
9889 snprintf(wrqu
->name
, IFNAMSIZ
, "auto (0)");
9890 mutex_unlock(&priv
->mutex
);
9894 #ifdef CONFIG_IPW2200_MONITOR
9895 static int ipw_wx_set_monitor(struct net_device
*dev
,
9896 struct iw_request_info
*info
,
9897 union iwreq_data
*wrqu
, char *extra
)
9899 struct ipw_priv
*priv
= libipw_priv(dev
);
9900 int *parms
= (int *)extra
;
9901 int enable
= (parms
[0] > 0);
9902 mutex_lock(&priv
->mutex
);
9903 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable
, parms
[1]);
9905 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9906 #ifdef CONFIG_IPW2200_RADIOTAP
9907 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
9909 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
9911 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9914 ipw_set_channel(priv
, parms
[1]);
9916 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9917 mutex_unlock(&priv
->mutex
);
9920 priv
->net_dev
->type
= ARPHRD_ETHER
;
9921 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9923 mutex_unlock(&priv
->mutex
);
9927 #endif /* CONFIG_IPW2200_MONITOR */
9929 static int ipw_wx_reset(struct net_device
*dev
,
9930 struct iw_request_info
*info
,
9931 union iwreq_data
*wrqu
, char *extra
)
9933 struct ipw_priv
*priv
= libipw_priv(dev
);
9934 IPW_DEBUG_WX("RESET\n");
9935 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
9939 static int ipw_wx_sw_reset(struct net_device
*dev
,
9940 struct iw_request_info
*info
,
9941 union iwreq_data
*wrqu
, char *extra
)
9943 struct ipw_priv
*priv
= libipw_priv(dev
);
9944 union iwreq_data wrqu_sec
= {
9946 .flags
= IW_ENCODE_DISABLED
,
9951 IPW_DEBUG_WX("SW_RESET\n");
9953 mutex_lock(&priv
->mutex
);
9955 ret
= ipw_sw_reset(priv
, 2);
9958 ipw_adapter_restart(priv
);
9961 /* The SW reset bit might have been toggled on by the 'disable'
9962 * module parameter, so take appropriate action */
9963 ipw_radio_kill_sw(priv
, priv
->status
& STATUS_RF_KILL_SW
);
9965 mutex_unlock(&priv
->mutex
);
9966 libipw_wx_set_encode(priv
->ieee
, info
, &wrqu_sec
, NULL
);
9967 mutex_lock(&priv
->mutex
);
9969 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
9970 /* Configuration likely changed -- force [re]association */
9971 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9973 if (!ipw_disassociate(priv
))
9974 ipw_associate(priv
);
9977 mutex_unlock(&priv
->mutex
);
9982 /* Rebase the WE IOCTLs to zero for the handler array */
9983 static iw_handler ipw_wx_handlers
[] = {
9984 IW_HANDLER(SIOCGIWNAME
, (iw_handler
)cfg80211_wext_giwname
),
9985 IW_HANDLER(SIOCSIWFREQ
, ipw_wx_set_freq
),
9986 IW_HANDLER(SIOCGIWFREQ
, ipw_wx_get_freq
),
9987 IW_HANDLER(SIOCSIWMODE
, ipw_wx_set_mode
),
9988 IW_HANDLER(SIOCGIWMODE
, ipw_wx_get_mode
),
9989 IW_HANDLER(SIOCSIWSENS
, ipw_wx_set_sens
),
9990 IW_HANDLER(SIOCGIWSENS
, ipw_wx_get_sens
),
9991 IW_HANDLER(SIOCGIWRANGE
, ipw_wx_get_range
),
9992 IW_HANDLER(SIOCSIWAP
, ipw_wx_set_wap
),
9993 IW_HANDLER(SIOCGIWAP
, ipw_wx_get_wap
),
9994 IW_HANDLER(SIOCSIWSCAN
, ipw_wx_set_scan
),
9995 IW_HANDLER(SIOCGIWSCAN
, ipw_wx_get_scan
),
9996 IW_HANDLER(SIOCSIWESSID
, ipw_wx_set_essid
),
9997 IW_HANDLER(SIOCGIWESSID
, ipw_wx_get_essid
),
9998 IW_HANDLER(SIOCSIWNICKN
, ipw_wx_set_nick
),
9999 IW_HANDLER(SIOCGIWNICKN
, ipw_wx_get_nick
),
10000 IW_HANDLER(SIOCSIWRATE
, ipw_wx_set_rate
),
10001 IW_HANDLER(SIOCGIWRATE
, ipw_wx_get_rate
),
10002 IW_HANDLER(SIOCSIWRTS
, ipw_wx_set_rts
),
10003 IW_HANDLER(SIOCGIWRTS
, ipw_wx_get_rts
),
10004 IW_HANDLER(SIOCSIWFRAG
, ipw_wx_set_frag
),
10005 IW_HANDLER(SIOCGIWFRAG
, ipw_wx_get_frag
),
10006 IW_HANDLER(SIOCSIWTXPOW
, ipw_wx_set_txpow
),
10007 IW_HANDLER(SIOCGIWTXPOW
, ipw_wx_get_txpow
),
10008 IW_HANDLER(SIOCSIWRETRY
, ipw_wx_set_retry
),
10009 IW_HANDLER(SIOCGIWRETRY
, ipw_wx_get_retry
),
10010 IW_HANDLER(SIOCSIWENCODE
, ipw_wx_set_encode
),
10011 IW_HANDLER(SIOCGIWENCODE
, ipw_wx_get_encode
),
10012 IW_HANDLER(SIOCSIWPOWER
, ipw_wx_set_power
),
10013 IW_HANDLER(SIOCGIWPOWER
, ipw_wx_get_power
),
10014 IW_HANDLER(SIOCSIWSPY
, iw_handler_set_spy
),
10015 IW_HANDLER(SIOCGIWSPY
, iw_handler_get_spy
),
10016 IW_HANDLER(SIOCSIWTHRSPY
, iw_handler_set_thrspy
),
10017 IW_HANDLER(SIOCGIWTHRSPY
, iw_handler_get_thrspy
),
10018 IW_HANDLER(SIOCSIWGENIE
, ipw_wx_set_genie
),
10019 IW_HANDLER(SIOCGIWGENIE
, ipw_wx_get_genie
),
10020 IW_HANDLER(SIOCSIWMLME
, ipw_wx_set_mlme
),
10021 IW_HANDLER(SIOCSIWAUTH
, ipw_wx_set_auth
),
10022 IW_HANDLER(SIOCGIWAUTH
, ipw_wx_get_auth
),
10023 IW_HANDLER(SIOCSIWENCODEEXT
, ipw_wx_set_encodeext
),
10024 IW_HANDLER(SIOCGIWENCODEEXT
, ipw_wx_get_encodeext
),
10028 IPW_PRIV_SET_POWER
= SIOCIWFIRSTPRIV
,
10029 IPW_PRIV_GET_POWER
,
10032 IPW_PRIV_SET_PREAMBLE
,
10033 IPW_PRIV_GET_PREAMBLE
,
10036 #ifdef CONFIG_IPW2200_MONITOR
10037 IPW_PRIV_SET_MONITOR
,
10041 static struct iw_priv_args ipw_priv_args
[] = {
10043 .cmd
= IPW_PRIV_SET_POWER
,
10044 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10045 .name
= "set_power"},
10047 .cmd
= IPW_PRIV_GET_POWER
,
10048 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
10049 .name
= "get_power"},
10051 .cmd
= IPW_PRIV_SET_MODE
,
10052 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10053 .name
= "set_mode"},
10055 .cmd
= IPW_PRIV_GET_MODE
,
10056 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
10057 .name
= "get_mode"},
10059 .cmd
= IPW_PRIV_SET_PREAMBLE
,
10060 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
10061 .name
= "set_preamble"},
10063 .cmd
= IPW_PRIV_GET_PREAMBLE
,
10064 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| IFNAMSIZ
,
10065 .name
= "get_preamble"},
10068 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "reset"},
10071 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "sw_reset"},
10072 #ifdef CONFIG_IPW2200_MONITOR
10074 IPW_PRIV_SET_MONITOR
,
10075 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 2, 0, "monitor"},
10076 #endif /* CONFIG_IPW2200_MONITOR */
10079 static iw_handler ipw_priv_handler
[] = {
10080 ipw_wx_set_powermode
,
10081 ipw_wx_get_powermode
,
10082 ipw_wx_set_wireless_mode
,
10083 ipw_wx_get_wireless_mode
,
10084 ipw_wx_set_preamble
,
10085 ipw_wx_get_preamble
,
10088 #ifdef CONFIG_IPW2200_MONITOR
10089 ipw_wx_set_monitor
,
10093 static struct iw_handler_def ipw_wx_handler_def
= {
10094 .standard
= ipw_wx_handlers
,
10095 .num_standard
= ARRAY_SIZE(ipw_wx_handlers
),
10096 .num_private
= ARRAY_SIZE(ipw_priv_handler
),
10097 .num_private_args
= ARRAY_SIZE(ipw_priv_args
),
10098 .private = ipw_priv_handler
,
10099 .private_args
= ipw_priv_args
,
10100 .get_wireless_stats
= ipw_get_wireless_stats
,
10104 * Get wireless statistics.
10105 * Called by /proc/net/wireless
10106 * Also called by SIOCGIWSTATS
10108 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
)
10110 struct ipw_priv
*priv
= libipw_priv(dev
);
10111 struct iw_statistics
*wstats
;
10113 wstats
= &priv
->wstats
;
10115 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10116 * netdev->get_wireless_stats seems to be called before fw is
10117 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10118 * and associated; if not associcated, the values are all meaningless
10119 * anyway, so set them all to NULL and INVALID */
10120 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
10121 wstats
->miss
.beacon
= 0;
10122 wstats
->discard
.retries
= 0;
10123 wstats
->qual
.qual
= 0;
10124 wstats
->qual
.level
= 0;
10125 wstats
->qual
.noise
= 0;
10126 wstats
->qual
.updated
= 7;
10127 wstats
->qual
.updated
|= IW_QUAL_NOISE_INVALID
|
10128 IW_QUAL_QUAL_INVALID
| IW_QUAL_LEVEL_INVALID
;
10132 wstats
->qual
.qual
= priv
->quality
;
10133 wstats
->qual
.level
= priv
->exp_avg_rssi
;
10134 wstats
->qual
.noise
= priv
->exp_avg_noise
;
10135 wstats
->qual
.updated
= IW_QUAL_QUAL_UPDATED
| IW_QUAL_LEVEL_UPDATED
|
10136 IW_QUAL_NOISE_UPDATED
| IW_QUAL_DBM
;
10138 wstats
->miss
.beacon
= average_value(&priv
->average_missed_beacons
);
10139 wstats
->discard
.retries
= priv
->last_tx_failures
;
10140 wstats
->discard
.code
= priv
->ieee
->ieee_stats
.rx_discards_undecryptable
;
10142 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10143 goto fail_get_ordinal;
10144 wstats->discard.retries += tx_retry; */
10149 /* net device stuff */
10151 static void init_sys_config(struct ipw_sys_config
*sys_config
)
10153 memset(sys_config
, 0, sizeof(struct ipw_sys_config
));
10154 sys_config
->bt_coexistence
= 0;
10155 sys_config
->answer_broadcast_ssid_probe
= 0;
10156 sys_config
->accept_all_data_frames
= 0;
10157 sys_config
->accept_non_directed_frames
= 1;
10158 sys_config
->exclude_unicast_unencrypted
= 0;
10159 sys_config
->disable_unicast_decryption
= 1;
10160 sys_config
->exclude_multicast_unencrypted
= 0;
10161 sys_config
->disable_multicast_decryption
= 1;
10162 if (antenna
< CFG_SYS_ANTENNA_BOTH
|| antenna
> CFG_SYS_ANTENNA_B
)
10163 antenna
= CFG_SYS_ANTENNA_BOTH
;
10164 sys_config
->antenna_diversity
= antenna
;
10165 sys_config
->pass_crc_to_host
= 0; /* TODO: See if 1 gives us FCS */
10166 sys_config
->dot11g_auto_detection
= 0;
10167 sys_config
->enable_cts_to_self
= 0;
10168 sys_config
->bt_coexist_collision_thr
= 0;
10169 sys_config
->pass_noise_stats_to_host
= 1; /* 1 -- fix for 256 */
10170 sys_config
->silence_threshold
= 0x1e;
10173 static int ipw_net_open(struct net_device
*dev
)
10175 IPW_DEBUG_INFO("dev->open\n");
10176 netif_start_queue(dev
);
10180 static int ipw_net_stop(struct net_device
*dev
)
10182 IPW_DEBUG_INFO("dev->close\n");
10183 netif_stop_queue(dev
);
10190 modify to send one tfd per fragment instead of using chunking. otherwise
10191 we need to heavily modify the libipw_skb_to_txb.
10194 static int ipw_tx_skb(struct ipw_priv
*priv
, struct libipw_txb
*txb
,
10197 struct libipw_hdr_3addrqos
*hdr
= (struct libipw_hdr_3addrqos
*)
10198 txb
->fragments
[0]->data
;
10200 struct tfd_frame
*tfd
;
10201 #ifdef CONFIG_IPW2200_QOS
10202 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10203 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10205 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10207 struct clx2_queue
*q
= &txq
->q
;
10208 u8 id
, hdr_len
, unicast
;
10211 if (!(priv
->status
& STATUS_ASSOCIATED
))
10214 hdr_len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_ctl
));
10215 switch (priv
->ieee
->iw_mode
) {
10216 case IW_MODE_ADHOC
:
10217 unicast
= !is_multicast_ether_addr(hdr
->addr1
);
10218 id
= ipw_find_station(priv
, hdr
->addr1
);
10219 if (id
== IPW_INVALID_STATION
) {
10220 id
= ipw_add_station(priv
, hdr
->addr1
);
10221 if (id
== IPW_INVALID_STATION
) {
10222 IPW_WARNING("Attempt to send data to "
10223 "invalid cell: %pM\n",
10230 case IW_MODE_INFRA
:
10232 unicast
= !is_multicast_ether_addr(hdr
->addr3
);
10237 tfd
= &txq
->bd
[q
->first_empty
];
10238 txq
->txb
[q
->first_empty
] = txb
;
10239 memset(tfd
, 0, sizeof(*tfd
));
10240 tfd
->u
.data
.station_number
= id
;
10242 tfd
->control_flags
.message_type
= TX_FRAME_TYPE
;
10243 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
10245 tfd
->u
.data
.cmd_id
= DINO_CMD_TX
;
10246 tfd
->u
.data
.len
= cpu_to_le16(txb
->payload_size
);
10248 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
10249 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_CCK
;
10251 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_OFDM
;
10253 if (priv
->assoc_request
.preamble_length
== DCT_FLAG_SHORT_PREAMBLE
)
10254 tfd
->u
.data
.tx_flags
|= DCT_FLAG_SHORT_PREAMBLE
;
10256 fc
= le16_to_cpu(hdr
->frame_ctl
);
10257 hdr
->frame_ctl
= cpu_to_le16(fc
& ~IEEE80211_FCTL_MOREFRAGS
);
10259 memcpy(&tfd
->u
.data
.tfd
.tfd_24
.mchdr
, hdr
, hdr_len
);
10261 if (likely(unicast
))
10262 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10264 if (txb
->encrypted
&& !priv
->ieee
->host_encrypt
) {
10265 switch (priv
->ieee
->sec
.level
) {
10267 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10268 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10269 /* XXX: ACK flag must be set for CCMP even if it
10270 * is a multicast/broadcast packet, because CCMP
10271 * group communication encrypted by GTK is
10272 * actually done by the AP. */
10274 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10276 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10277 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_CCM
;
10278 tfd
->u
.data
.key_index
= 0;
10279 tfd
->u
.data
.key_index
|= DCT_WEP_INDEX_USE_IMMEDIATE
;
10282 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10283 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10284 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10285 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_TKIP
;
10286 tfd
->u
.data
.key_index
= DCT_WEP_INDEX_USE_IMMEDIATE
;
10289 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10290 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10291 tfd
->u
.data
.key_index
= priv
->ieee
->crypt_info
.tx_keyidx
;
10292 if (priv
->ieee
->sec
.key_sizes
[priv
->ieee
->crypt_info
.tx_keyidx
] <=
10294 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_64Bit
;
10296 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_128Bit
;
10301 printk(KERN_ERR
"Unknown security level %d\n",
10302 priv
->ieee
->sec
.level
);
10306 /* No hardware encryption */
10307 tfd
->u
.data
.tx_flags
|= DCT_FLAG_NO_WEP
;
10309 #ifdef CONFIG_IPW2200_QOS
10310 if (fc
& IEEE80211_STYPE_QOS_DATA
)
10311 ipw_qos_set_tx_queue_command(priv
, pri
, &(tfd
->u
.data
));
10312 #endif /* CONFIG_IPW2200_QOS */
10315 tfd
->u
.data
.num_chunks
= cpu_to_le32(min((u8
) (NUM_TFD_CHUNKS
- 2),
10317 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10318 txb
->nr_frags
, le32_to_cpu(tfd
->u
.data
.num_chunks
));
10319 for (i
= 0; i
< le32_to_cpu(tfd
->u
.data
.num_chunks
); i
++) {
10320 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10321 i
, le32_to_cpu(tfd
->u
.data
.num_chunks
),
10322 txb
->fragments
[i
]->len
- hdr_len
);
10323 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10324 i
, tfd
->u
.data
.num_chunks
,
10325 txb
->fragments
[i
]->len
- hdr_len
);
10326 printk_buf(IPW_DL_TX
, txb
->fragments
[i
]->data
+ hdr_len
,
10327 txb
->fragments
[i
]->len
- hdr_len
);
10329 tfd
->u
.data
.chunk_ptr
[i
] =
10330 cpu_to_le32(pci_map_single
10332 txb
->fragments
[i
]->data
+ hdr_len
,
10333 txb
->fragments
[i
]->len
- hdr_len
,
10334 PCI_DMA_TODEVICE
));
10335 tfd
->u
.data
.chunk_len
[i
] =
10336 cpu_to_le16(txb
->fragments
[i
]->len
- hdr_len
);
10339 if (i
!= txb
->nr_frags
) {
10340 struct sk_buff
*skb
;
10341 u16 remaining_bytes
= 0;
10344 for (j
= i
; j
< txb
->nr_frags
; j
++)
10345 remaining_bytes
+= txb
->fragments
[j
]->len
- hdr_len
;
10347 printk(KERN_INFO
"Trying to reallocate for %d bytes\n",
10349 skb
= alloc_skb(remaining_bytes
, GFP_ATOMIC
);
10351 tfd
->u
.data
.chunk_len
[i
] = cpu_to_le16(remaining_bytes
);
10352 for (j
= i
; j
< txb
->nr_frags
; j
++) {
10353 int size
= txb
->fragments
[j
]->len
- hdr_len
;
10355 printk(KERN_INFO
"Adding frag %d %d...\n",
10357 memcpy(skb_put(skb
, size
),
10358 txb
->fragments
[j
]->data
+ hdr_len
, size
);
10360 dev_kfree_skb_any(txb
->fragments
[i
]);
10361 txb
->fragments
[i
] = skb
;
10362 tfd
->u
.data
.chunk_ptr
[i
] =
10363 cpu_to_le32(pci_map_single
10364 (priv
->pci_dev
, skb
->data
,
10366 PCI_DMA_TODEVICE
));
10368 le32_add_cpu(&tfd
->u
.data
.num_chunks
, 1);
10373 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
10374 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
10376 if (ipw_tx_queue_space(q
) < q
->high_mark
)
10377 netif_stop_queue(priv
->net_dev
);
10379 return NETDEV_TX_OK
;
10382 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10383 libipw_txb_free(txb
);
10384 return NETDEV_TX_OK
;
10387 static int ipw_net_is_queue_full(struct net_device
*dev
, int pri
)
10389 struct ipw_priv
*priv
= libipw_priv(dev
);
10390 #ifdef CONFIG_IPW2200_QOS
10391 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10392 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10394 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10395 #endif /* CONFIG_IPW2200_QOS */
10397 if (ipw_tx_queue_space(&txq
->q
) < txq
->q
.high_mark
)
10403 #ifdef CONFIG_IPW2200_PROMISCUOUS
10404 static void ipw_handle_promiscuous_tx(struct ipw_priv
*priv
,
10405 struct libipw_txb
*txb
)
10407 struct libipw_rx_stats dummystats
;
10408 struct ieee80211_hdr
*hdr
;
10410 u16 filter
= priv
->prom_priv
->filter
;
10413 if (filter
& IPW_PROM_NO_TX
)
10416 memset(&dummystats
, 0, sizeof(dummystats
));
10418 /* Filtering of fragment chains is done agains the first fragment */
10419 hdr
= (void *)txb
->fragments
[0]->data
;
10420 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
10421 if (filter
& IPW_PROM_NO_MGMT
)
10423 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
10425 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
10426 if (filter
& IPW_PROM_NO_CTL
)
10428 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
10430 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
10431 if (filter
& IPW_PROM_NO_DATA
)
10433 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
10437 for(n
=0; n
<txb
->nr_frags
; ++n
) {
10438 struct sk_buff
*src
= txb
->fragments
[n
];
10439 struct sk_buff
*dst
;
10440 struct ieee80211_radiotap_header
*rt_hdr
;
10444 hdr
= (void *)src
->data
;
10445 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
10449 dst
= alloc_skb(len
+ sizeof(*rt_hdr
), GFP_ATOMIC
);
10453 rt_hdr
= (void *)skb_put(dst
, sizeof(*rt_hdr
));
10455 rt_hdr
->it_version
= PKTHDR_RADIOTAP_VERSION
;
10456 rt_hdr
->it_pad
= 0;
10457 rt_hdr
->it_present
= 0; /* after all, it's just an idea */
10458 rt_hdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL
);
10460 *(__le16
*)skb_put(dst
, sizeof(u16
)) = cpu_to_le16(
10461 ieee80211chan2mhz(priv
->channel
));
10462 if (priv
->channel
> 14) /* 802.11a */
10463 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10464 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10465 IEEE80211_CHAN_5GHZ
);
10466 else if (priv
->ieee
->mode
== IEEE_B
) /* 802.11b */
10467 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10468 cpu_to_le16(IEEE80211_CHAN_CCK
|
10469 IEEE80211_CHAN_2GHZ
);
10471 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10472 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10473 IEEE80211_CHAN_2GHZ
);
10475 rt_hdr
->it_len
= cpu_to_le16(dst
->len
);
10477 skb_copy_from_linear_data(src
, skb_put(dst
, len
), len
);
10479 if (!libipw_rx(priv
->prom_priv
->ieee
, dst
, &dummystats
))
10480 dev_kfree_skb_any(dst
);
10485 static netdev_tx_t
ipw_net_hard_start_xmit(struct libipw_txb
*txb
,
10486 struct net_device
*dev
, int pri
)
10488 struct ipw_priv
*priv
= libipw_priv(dev
);
10489 unsigned long flags
;
10492 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb
->payload_size
);
10493 spin_lock_irqsave(&priv
->lock
, flags
);
10495 #ifdef CONFIG_IPW2200_PROMISCUOUS
10496 if (rtap_iface
&& netif_running(priv
->prom_net_dev
))
10497 ipw_handle_promiscuous_tx(priv
, txb
);
10500 ret
= ipw_tx_skb(priv
, txb
, pri
);
10501 if (ret
== NETDEV_TX_OK
)
10502 __ipw_led_activity_on(priv
);
10503 spin_unlock_irqrestore(&priv
->lock
, flags
);
10508 static void ipw_net_set_multicast_list(struct net_device
*dev
)
10513 static int ipw_net_set_mac_address(struct net_device
*dev
, void *p
)
10515 struct ipw_priv
*priv
= libipw_priv(dev
);
10516 struct sockaddr
*addr
= p
;
10518 if (!is_valid_ether_addr(addr
->sa_data
))
10519 return -EADDRNOTAVAIL
;
10520 mutex_lock(&priv
->mutex
);
10521 priv
->config
|= CFG_CUSTOM_MAC
;
10522 memcpy(priv
->mac_addr
, addr
->sa_data
, ETH_ALEN
);
10523 printk(KERN_INFO
"%s: Setting MAC to %pM\n",
10524 priv
->net_dev
->name
, priv
->mac_addr
);
10525 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
10526 mutex_unlock(&priv
->mutex
);
10530 static void ipw_ethtool_get_drvinfo(struct net_device
*dev
,
10531 struct ethtool_drvinfo
*info
)
10533 struct ipw_priv
*p
= libipw_priv(dev
);
10538 strcpy(info
->driver
, DRV_NAME
);
10539 strcpy(info
->version
, DRV_VERSION
);
10541 len
= sizeof(vers
);
10542 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_VERSION
, vers
, &len
);
10543 len
= sizeof(date
);
10544 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_DATE
, date
, &len
);
10546 snprintf(info
->fw_version
, sizeof(info
->fw_version
), "%s (%s)",
10548 strcpy(info
->bus_info
, pci_name(p
->pci_dev
));
10549 info
->eedump_len
= IPW_EEPROM_IMAGE_SIZE
;
10552 static u32
ipw_ethtool_get_link(struct net_device
*dev
)
10554 struct ipw_priv
*priv
= libipw_priv(dev
);
10555 return (priv
->status
& STATUS_ASSOCIATED
) != 0;
10558 static int ipw_ethtool_get_eeprom_len(struct net_device
*dev
)
10560 return IPW_EEPROM_IMAGE_SIZE
;
10563 static int ipw_ethtool_get_eeprom(struct net_device
*dev
,
10564 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10566 struct ipw_priv
*p
= libipw_priv(dev
);
10568 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10570 mutex_lock(&p
->mutex
);
10571 memcpy(bytes
, &p
->eeprom
[eeprom
->offset
], eeprom
->len
);
10572 mutex_unlock(&p
->mutex
);
10576 static int ipw_ethtool_set_eeprom(struct net_device
*dev
,
10577 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10579 struct ipw_priv
*p
= libipw_priv(dev
);
10582 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10584 mutex_lock(&p
->mutex
);
10585 memcpy(&p
->eeprom
[eeprom
->offset
], bytes
, eeprom
->len
);
10586 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
10587 ipw_write8(p
, i
+ IPW_EEPROM_DATA
, p
->eeprom
[i
]);
10588 mutex_unlock(&p
->mutex
);
10592 static const struct ethtool_ops ipw_ethtool_ops
= {
10593 .get_link
= ipw_ethtool_get_link
,
10594 .get_drvinfo
= ipw_ethtool_get_drvinfo
,
10595 .get_eeprom_len
= ipw_ethtool_get_eeprom_len
,
10596 .get_eeprom
= ipw_ethtool_get_eeprom
,
10597 .set_eeprom
= ipw_ethtool_set_eeprom
,
10600 static irqreturn_t
ipw_isr(int irq
, void *data
)
10602 struct ipw_priv
*priv
= data
;
10603 u32 inta
, inta_mask
;
10608 spin_lock(&priv
->irq_lock
);
10610 if (!(priv
->status
& STATUS_INT_ENABLED
)) {
10611 /* IRQ is disabled */
10615 inta
= ipw_read32(priv
, IPW_INTA_RW
);
10616 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
10618 if (inta
== 0xFFFFFFFF) {
10619 /* Hardware disappeared */
10620 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10624 if (!(inta
& (IPW_INTA_MASK_ALL
& inta_mask
))) {
10625 /* Shared interrupt */
10629 /* tell the device to stop sending interrupts */
10630 __ipw_disable_interrupts(priv
);
10632 /* ack current interrupts */
10633 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
10634 ipw_write32(priv
, IPW_INTA_RW
, inta
);
10636 /* Cache INTA value for our tasklet */
10637 priv
->isr_inta
= inta
;
10639 tasklet_schedule(&priv
->irq_tasklet
);
10641 spin_unlock(&priv
->irq_lock
);
10643 return IRQ_HANDLED
;
10645 spin_unlock(&priv
->irq_lock
);
10649 static void ipw_rf_kill(void *adapter
)
10651 struct ipw_priv
*priv
= adapter
;
10652 unsigned long flags
;
10654 spin_lock_irqsave(&priv
->lock
, flags
);
10656 if (rf_kill_active(priv
)) {
10657 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10658 if (priv
->workqueue
)
10659 queue_delayed_work(priv
->workqueue
,
10660 &priv
->rf_kill
, 2 * HZ
);
10664 /* RF Kill is now disabled, so bring the device back up */
10666 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
10667 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10670 /* we can not do an adapter restart while inside an irq lock */
10671 queue_work(priv
->workqueue
, &priv
->adapter_restart
);
10673 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10677 spin_unlock_irqrestore(&priv
->lock
, flags
);
10680 static void ipw_bg_rf_kill(struct work_struct
*work
)
10682 struct ipw_priv
*priv
=
10683 container_of(work
, struct ipw_priv
, rf_kill
.work
);
10684 mutex_lock(&priv
->mutex
);
10686 mutex_unlock(&priv
->mutex
);
10689 static void ipw_link_up(struct ipw_priv
*priv
)
10691 priv
->last_seq_num
= -1;
10692 priv
->last_frag_num
= -1;
10693 priv
->last_packet_time
= 0;
10695 netif_carrier_on(priv
->net_dev
);
10697 cancel_delayed_work(&priv
->request_scan
);
10698 cancel_delayed_work(&priv
->request_direct_scan
);
10699 cancel_delayed_work(&priv
->request_passive_scan
);
10700 cancel_delayed_work(&priv
->scan_event
);
10701 ipw_reset_stats(priv
);
10702 /* Ensure the rate is updated immediately */
10703 priv
->last_rate
= ipw_get_current_rate(priv
);
10704 ipw_gather_stats(priv
);
10705 ipw_led_link_up(priv
);
10706 notify_wx_assoc_event(priv
);
10708 if (priv
->config
& CFG_BACKGROUND_SCAN
)
10709 queue_delayed_work(priv
->workqueue
, &priv
->request_scan
, HZ
);
10712 static void ipw_bg_link_up(struct work_struct
*work
)
10714 struct ipw_priv
*priv
=
10715 container_of(work
, struct ipw_priv
, link_up
);
10716 mutex_lock(&priv
->mutex
);
10718 mutex_unlock(&priv
->mutex
);
10721 static void ipw_link_down(struct ipw_priv
*priv
)
10723 ipw_led_link_down(priv
);
10724 netif_carrier_off(priv
->net_dev
);
10725 notify_wx_assoc_event(priv
);
10727 /* Cancel any queued work ... */
10728 cancel_delayed_work(&priv
->request_scan
);
10729 cancel_delayed_work(&priv
->request_direct_scan
);
10730 cancel_delayed_work(&priv
->request_passive_scan
);
10731 cancel_delayed_work(&priv
->adhoc_check
);
10732 cancel_delayed_work(&priv
->gather_stats
);
10734 ipw_reset_stats(priv
);
10736 if (!(priv
->status
& STATUS_EXIT_PENDING
)) {
10737 /* Queue up another scan... */
10738 queue_delayed_work(priv
->workqueue
, &priv
->request_scan
, 0);
10740 cancel_delayed_work(&priv
->scan_event
);
10743 static void ipw_bg_link_down(struct work_struct
*work
)
10745 struct ipw_priv
*priv
=
10746 container_of(work
, struct ipw_priv
, link_down
);
10747 mutex_lock(&priv
->mutex
);
10748 ipw_link_down(priv
);
10749 mutex_unlock(&priv
->mutex
);
10752 static int __devinit
ipw_setup_deferred_work(struct ipw_priv
*priv
)
10756 priv
->workqueue
= create_workqueue(DRV_NAME
);
10757 init_waitqueue_head(&priv
->wait_command_queue
);
10758 init_waitqueue_head(&priv
->wait_state
);
10760 INIT_DELAYED_WORK(&priv
->adhoc_check
, ipw_bg_adhoc_check
);
10761 INIT_WORK(&priv
->associate
, ipw_bg_associate
);
10762 INIT_WORK(&priv
->disassociate
, ipw_bg_disassociate
);
10763 INIT_WORK(&priv
->system_config
, ipw_system_config
);
10764 INIT_WORK(&priv
->rx_replenish
, ipw_bg_rx_queue_replenish
);
10765 INIT_WORK(&priv
->adapter_restart
, ipw_bg_adapter_restart
);
10766 INIT_DELAYED_WORK(&priv
->rf_kill
, ipw_bg_rf_kill
);
10767 INIT_WORK(&priv
->up
, ipw_bg_up
);
10768 INIT_WORK(&priv
->down
, ipw_bg_down
);
10769 INIT_DELAYED_WORK(&priv
->request_scan
, ipw_request_scan
);
10770 INIT_DELAYED_WORK(&priv
->request_direct_scan
, ipw_request_direct_scan
);
10771 INIT_DELAYED_WORK(&priv
->request_passive_scan
, ipw_request_passive_scan
);
10772 INIT_DELAYED_WORK(&priv
->scan_event
, ipw_scan_event
);
10773 INIT_DELAYED_WORK(&priv
->gather_stats
, ipw_bg_gather_stats
);
10774 INIT_WORK(&priv
->abort_scan
, ipw_bg_abort_scan
);
10775 INIT_WORK(&priv
->roam
, ipw_bg_roam
);
10776 INIT_DELAYED_WORK(&priv
->scan_check
, ipw_bg_scan_check
);
10777 INIT_WORK(&priv
->link_up
, ipw_bg_link_up
);
10778 INIT_WORK(&priv
->link_down
, ipw_bg_link_down
);
10779 INIT_DELAYED_WORK(&priv
->led_link_on
, ipw_bg_led_link_on
);
10780 INIT_DELAYED_WORK(&priv
->led_link_off
, ipw_bg_led_link_off
);
10781 INIT_DELAYED_WORK(&priv
->led_act_off
, ipw_bg_led_activity_off
);
10782 INIT_WORK(&priv
->merge_networks
, ipw_merge_adhoc_network
);
10784 #ifdef CONFIG_IPW2200_QOS
10785 INIT_WORK(&priv
->qos_activate
, ipw_bg_qos_activate
);
10786 #endif /* CONFIG_IPW2200_QOS */
10788 tasklet_init(&priv
->irq_tasklet
, (void (*)(unsigned long))
10789 ipw_irq_tasklet
, (unsigned long)priv
);
10794 static void shim__set_security(struct net_device
*dev
,
10795 struct libipw_security
*sec
)
10797 struct ipw_priv
*priv
= libipw_priv(dev
);
10799 for (i
= 0; i
< 4; i
++) {
10800 if (sec
->flags
& (1 << i
)) {
10801 priv
->ieee
->sec
.encode_alg
[i
] = sec
->encode_alg
[i
];
10802 priv
->ieee
->sec
.key_sizes
[i
] = sec
->key_sizes
[i
];
10803 if (sec
->key_sizes
[i
] == 0)
10804 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10806 memcpy(priv
->ieee
->sec
.keys
[i
], sec
->keys
[i
],
10807 sec
->key_sizes
[i
]);
10808 priv
->ieee
->sec
.flags
|= (1 << i
);
10810 priv
->status
|= STATUS_SECURITY_UPDATED
;
10811 } else if (sec
->level
!= SEC_LEVEL_1
)
10812 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10815 if (sec
->flags
& SEC_ACTIVE_KEY
) {
10816 if (sec
->active_key
<= 3) {
10817 priv
->ieee
->sec
.active_key
= sec
->active_key
;
10818 priv
->ieee
->sec
.flags
|= SEC_ACTIVE_KEY
;
10820 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10821 priv
->status
|= STATUS_SECURITY_UPDATED
;
10823 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10825 if ((sec
->flags
& SEC_AUTH_MODE
) &&
10826 (priv
->ieee
->sec
.auth_mode
!= sec
->auth_mode
)) {
10827 priv
->ieee
->sec
.auth_mode
= sec
->auth_mode
;
10828 priv
->ieee
->sec
.flags
|= SEC_AUTH_MODE
;
10829 if (sec
->auth_mode
== WLAN_AUTH_SHARED_KEY
)
10830 priv
->capability
|= CAP_SHARED_KEY
;
10832 priv
->capability
&= ~CAP_SHARED_KEY
;
10833 priv
->status
|= STATUS_SECURITY_UPDATED
;
10836 if (sec
->flags
& SEC_ENABLED
&& priv
->ieee
->sec
.enabled
!= sec
->enabled
) {
10837 priv
->ieee
->sec
.flags
|= SEC_ENABLED
;
10838 priv
->ieee
->sec
.enabled
= sec
->enabled
;
10839 priv
->status
|= STATUS_SECURITY_UPDATED
;
10841 priv
->capability
|= CAP_PRIVACY_ON
;
10843 priv
->capability
&= ~CAP_PRIVACY_ON
;
10846 if (sec
->flags
& SEC_ENCRYPT
)
10847 priv
->ieee
->sec
.encrypt
= sec
->encrypt
;
10849 if (sec
->flags
& SEC_LEVEL
&& priv
->ieee
->sec
.level
!= sec
->level
) {
10850 priv
->ieee
->sec
.level
= sec
->level
;
10851 priv
->ieee
->sec
.flags
|= SEC_LEVEL
;
10852 priv
->status
|= STATUS_SECURITY_UPDATED
;
10855 if (!priv
->ieee
->host_encrypt
&& (sec
->flags
& SEC_ENCRYPT
))
10856 ipw_set_hwcrypto_keys(priv
);
10858 /* To match current functionality of ipw2100 (which works well w/
10859 * various supplicants, we don't force a disassociate if the
10860 * privacy capability changes ... */
10862 if ((priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) &&
10863 (((priv
->assoc_request
.capability
&
10864 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && !sec
->enabled
) ||
10865 (!(priv
->assoc_request
.capability
&
10866 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && sec
->enabled
))) {
10867 IPW_DEBUG_ASSOC("Disassociating due to capability "
10869 ipw_disassociate(priv
);
10874 static int init_supported_rates(struct ipw_priv
*priv
,
10875 struct ipw_supported_rates
*rates
)
10877 /* TODO: Mask out rates based on priv->rates_mask */
10879 memset(rates
, 0, sizeof(*rates
));
10880 /* configure supported rates */
10881 switch (priv
->ieee
->freq_band
) {
10882 case LIBIPW_52GHZ_BAND
:
10883 rates
->ieee_mode
= IPW_A_MODE
;
10884 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10885 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10886 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10889 default: /* Mixed or 2.4Ghz */
10890 rates
->ieee_mode
= IPW_G_MODE
;
10891 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10892 ipw_add_cck_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10893 LIBIPW_CCK_DEFAULT_RATES_MASK
);
10894 if (priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
) {
10895 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10896 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10904 static int ipw_config(struct ipw_priv
*priv
)
10906 /* This is only called from ipw_up, which resets/reloads the firmware
10907 so, we don't need to first disable the card before we configure
10909 if (ipw_set_tx_power(priv
))
10912 /* initialize adapter address */
10913 if (ipw_send_adapter_address(priv
, priv
->net_dev
->dev_addr
))
10916 /* set basic system config settings */
10917 init_sys_config(&priv
->sys_config
);
10919 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10920 * Does not support BT priority yet (don't abort or defer our Tx) */
10922 unsigned char bt_caps
= priv
->eeprom
[EEPROM_SKU_CAPABILITY
];
10924 if (bt_caps
& EEPROM_SKU_CAP_BT_CHANNEL_SIG
)
10925 priv
->sys_config
.bt_coexistence
10926 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL
;
10927 if (bt_caps
& EEPROM_SKU_CAP_BT_OOB
)
10928 priv
->sys_config
.bt_coexistence
10929 |= CFG_BT_COEXISTENCE_OOB
;
10932 #ifdef CONFIG_IPW2200_PROMISCUOUS
10933 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
10934 priv
->sys_config
.accept_all_data_frames
= 1;
10935 priv
->sys_config
.accept_non_directed_frames
= 1;
10936 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
10937 priv
->sys_config
.accept_all_mgmt_frames
= 1;
10941 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
10942 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
10944 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
10946 if (ipw_send_system_config(priv
))
10949 init_supported_rates(priv
, &priv
->rates
);
10950 if (ipw_send_supported_rates(priv
, &priv
->rates
))
10953 /* Set request-to-send threshold */
10954 if (priv
->rts_threshold
) {
10955 if (ipw_send_rts_threshold(priv
, priv
->rts_threshold
))
10958 #ifdef CONFIG_IPW2200_QOS
10959 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10960 ipw_qos_activate(priv
, NULL
);
10961 #endif /* CONFIG_IPW2200_QOS */
10963 if (ipw_set_random_seed(priv
))
10966 /* final state transition to the RUN state */
10967 if (ipw_send_host_complete(priv
))
10970 priv
->status
|= STATUS_INIT
;
10972 ipw_led_init(priv
);
10973 ipw_led_radio_on(priv
);
10974 priv
->notif_missed_beacons
= 0;
10976 /* Set hardware WEP key if it is configured. */
10977 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
10978 (priv
->ieee
->sec
.level
== SEC_LEVEL_1
) &&
10979 !(priv
->ieee
->host_encrypt
|| priv
->ieee
->host_decrypt
))
10980 ipw_set_hwcrypto_keys(priv
);
10991 * These tables have been tested in conjunction with the
10992 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10994 * Altering this values, using it on other hardware, or in geographies
10995 * not intended for resale of the above mentioned Intel adapters has
10998 * Remember to update the table in README.ipw2200 when changing this
11002 static const struct libipw_geo ipw_geos
[] = {
11006 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11007 {2427, 4}, {2432, 5}, {2437, 6},
11008 {2442, 7}, {2447, 8}, {2452, 9},
11009 {2457, 10}, {2462, 11}},
11012 { /* Custom US/Canada */
11015 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}},
11024 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11025 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11026 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11027 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
}},
11030 { /* Rest of World */
11033 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11034 {2427, 4}, {2432, 5}, {2437, 6},
11035 {2442, 7}, {2447, 8}, {2452, 9},
11036 {2457, 10}, {2462, 11}, {2467, 12},
11040 { /* Custom USA & Europe & High */
11043 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11044 {2427, 4}, {2432, 5}, {2437, 6},
11045 {2442, 7}, {2447, 8}, {2452, 9},
11046 {2457, 10}, {2462, 11}},
11052 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11053 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11054 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11055 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11063 { /* Custom NA & Europe */
11066 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11067 {2427, 4}, {2432, 5}, {2437, 6},
11068 {2442, 7}, {2447, 8}, {2452, 9},
11069 {2457, 10}, {2462, 11}},
11075 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11076 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11077 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11078 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11079 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11080 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11081 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11082 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11083 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11086 { /* Custom Japan */
11089 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}},
11094 .a
= {{5170, 34}, {5190, 38},
11095 {5210, 42}, {5230, 46}},
11101 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11102 {2427, 4}, {2432, 5}, {2437, 6},
11103 {2442, 7}, {2447, 8}, {2452, 9},
11104 {2457, 10}, {2462, 11}},
11110 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11111 {2427, 4}, {2432, 5}, {2437, 6},
11112 {2442, 7}, {2447, 8}, {2452, 9},
11113 {2457, 10}, {2462, 11}, {2467, 12},
11120 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11121 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11122 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11123 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11124 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11125 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11126 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11127 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11128 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11129 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11130 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11131 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11132 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11133 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11134 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
}},
11137 { /* Custom Japan */
11140 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11141 {2427, 4}, {2432, 5}, {2437, 6},
11142 {2442, 7}, {2447, 8}, {2452, 9},
11143 {2457, 10}, {2462, 11}, {2467, 12},
11144 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
}},
11146 .a
= {{5170, 34}, {5190, 38},
11147 {5210, 42}, {5230, 46}},
11150 { /* Rest of World */
11153 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11154 {2427, 4}, {2432, 5}, {2437, 6},
11155 {2442, 7}, {2447, 8}, {2452, 9},
11156 {2457, 10}, {2462, 11}, {2467, 12},
11157 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
|
11158 LIBIPW_CH_PASSIVE_ONLY
}},
11164 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11165 {2427, 4}, {2432, 5}, {2437, 6},
11166 {2442, 7}, {2447, 8}, {2452, 9},
11167 {2457, 10}, {2462, 11},
11168 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11169 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11171 .a
= {{5745, 149}, {5765, 153},
11172 {5785, 157}, {5805, 161}},
11175 { /* Custom Europe */
11178 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11179 {2427, 4}, {2432, 5}, {2437, 6},
11180 {2442, 7}, {2447, 8}, {2452, 9},
11181 {2457, 10}, {2462, 11},
11182 {2467, 12}, {2472, 13}},
11184 .a
= {{5180, 36}, {5200, 40},
11185 {5220, 44}, {5240, 48}},
11191 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11192 {2427, 4}, {2432, 5}, {2437, 6},
11193 {2442, 7}, {2447, 8}, {2452, 9},
11194 {2457, 10}, {2462, 11},
11195 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11196 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11198 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11199 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11200 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11201 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11202 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11203 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11204 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11205 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11206 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11207 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11208 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11209 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11210 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11211 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11212 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11213 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11214 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11215 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11216 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
},
11217 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11218 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11219 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11220 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11221 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11227 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11228 {2427, 4}, {2432, 5}, {2437, 6},
11229 {2442, 7}, {2447, 8}, {2452, 9},
11230 {2457, 10}, {2462, 11}},
11232 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11233 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11234 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11235 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11236 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11237 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11238 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11239 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11240 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11241 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11242 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11243 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11244 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11248 #define MAX_HW_RESTARTS 5
11249 static int ipw_up(struct ipw_priv
*priv
)
11253 /* Age scan list entries found before suspend */
11254 if (priv
->suspend_time
) {
11255 libipw_networks_age(priv
->ieee
, priv
->suspend_time
);
11256 priv
->suspend_time
= 0;
11259 if (priv
->status
& STATUS_EXIT_PENDING
)
11262 if (cmdlog
&& !priv
->cmdlog
) {
11263 priv
->cmdlog
= kcalloc(cmdlog
, sizeof(*priv
->cmdlog
),
11265 if (priv
->cmdlog
== NULL
) {
11266 IPW_ERROR("Error allocating %d command log entries.\n",
11270 priv
->cmdlog_len
= cmdlog
;
11274 for (i
= 0; i
< MAX_HW_RESTARTS
; i
++) {
11275 /* Load the microcode, firmware, and eeprom.
11276 * Also start the clocks. */
11277 rc
= ipw_load(priv
);
11279 IPW_ERROR("Unable to load firmware: %d\n", rc
);
11283 ipw_init_ordinals(priv
);
11284 if (!(priv
->config
& CFG_CUSTOM_MAC
))
11285 eeprom_parse_mac(priv
, priv
->mac_addr
);
11286 memcpy(priv
->net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11287 memcpy(priv
->net_dev
->perm_addr
, priv
->mac_addr
, ETH_ALEN
);
11289 for (j
= 0; j
< ARRAY_SIZE(ipw_geos
); j
++) {
11290 if (!memcmp(&priv
->eeprom
[EEPROM_COUNTRY_CODE
],
11291 ipw_geos
[j
].name
, 3))
11294 if (j
== ARRAY_SIZE(ipw_geos
)) {
11295 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11296 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 0],
11297 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 1],
11298 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 2]);
11301 if (libipw_set_geo(priv
->ieee
, &ipw_geos
[j
])) {
11302 IPW_WARNING("Could not set geography.");
11306 if (priv
->status
& STATUS_RF_KILL_SW
) {
11307 IPW_WARNING("Radio disabled by module parameter.\n");
11309 } else if (rf_kill_active(priv
)) {
11310 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11311 "Kill switch must be turned off for "
11312 "wireless networking to work.\n");
11313 queue_delayed_work(priv
->workqueue
, &priv
->rf_kill
,
11318 rc
= ipw_config(priv
);
11320 IPW_DEBUG_INFO("Configured device on count %i\n", i
);
11322 /* If configure to try and auto-associate, kick
11324 queue_delayed_work(priv
->workqueue
,
11325 &priv
->request_scan
, 0);
11330 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc
);
11331 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11332 i
, MAX_HW_RESTARTS
);
11334 /* We had an error bringing up the hardware, so take it
11335 * all the way back down so we can try again */
11339 /* tried to restart and config the device for as long as our
11340 * patience could withstand */
11341 IPW_ERROR("Unable to initialize device after %d attempts.\n", i
);
11346 static void ipw_bg_up(struct work_struct
*work
)
11348 struct ipw_priv
*priv
=
11349 container_of(work
, struct ipw_priv
, up
);
11350 mutex_lock(&priv
->mutex
);
11352 mutex_unlock(&priv
->mutex
);
11355 static void ipw_deinit(struct ipw_priv
*priv
)
11359 if (priv
->status
& STATUS_SCANNING
) {
11360 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11361 ipw_abort_scan(priv
);
11364 if (priv
->status
& STATUS_ASSOCIATED
) {
11365 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11366 ipw_disassociate(priv
);
11369 ipw_led_shutdown(priv
);
11371 /* Wait up to 1s for status to change to not scanning and not
11372 * associated (disassociation can take a while for a ful 802.11
11374 for (i
= 1000; i
&& (priv
->status
&
11375 (STATUS_DISASSOCIATING
|
11376 STATUS_ASSOCIATED
| STATUS_SCANNING
)); i
--)
11379 if (priv
->status
& (STATUS_DISASSOCIATING
|
11380 STATUS_ASSOCIATED
| STATUS_SCANNING
))
11381 IPW_DEBUG_INFO("Still associated or scanning...\n");
11383 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i
);
11385 /* Attempt to disable the card */
11386 ipw_send_card_disable(priv
, 0);
11388 priv
->status
&= ~STATUS_INIT
;
11391 static void ipw_down(struct ipw_priv
*priv
)
11393 int exit_pending
= priv
->status
& STATUS_EXIT_PENDING
;
11395 priv
->status
|= STATUS_EXIT_PENDING
;
11397 if (ipw_is_init(priv
))
11400 /* Wipe out the EXIT_PENDING status bit if we are not actually
11401 * exiting the module */
11403 priv
->status
&= ~STATUS_EXIT_PENDING
;
11405 /* tell the device to stop sending interrupts */
11406 ipw_disable_interrupts(priv
);
11408 /* Clear all bits but the RF Kill */
11409 priv
->status
&= STATUS_RF_KILL_MASK
| STATUS_EXIT_PENDING
;
11410 netif_carrier_off(priv
->net_dev
);
11412 ipw_stop_nic(priv
);
11414 ipw_led_radio_off(priv
);
11417 static void ipw_bg_down(struct work_struct
*work
)
11419 struct ipw_priv
*priv
=
11420 container_of(work
, struct ipw_priv
, down
);
11421 mutex_lock(&priv
->mutex
);
11423 mutex_unlock(&priv
->mutex
);
11426 /* Called by register_netdev() */
11427 static int ipw_net_init(struct net_device
*dev
)
11430 struct ipw_priv
*priv
= libipw_priv(dev
);
11431 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
11432 struct wireless_dev
*wdev
= &priv
->ieee
->wdev
;
11433 mutex_lock(&priv
->mutex
);
11435 if (ipw_up(priv
)) {
11440 memcpy(wdev
->wiphy
->perm_addr
, priv
->mac_addr
, ETH_ALEN
);
11442 /* fill-out priv->ieee->bg_band */
11443 if (geo
->bg_channels
) {
11444 struct ieee80211_supported_band
*bg_band
= &priv
->ieee
->bg_band
;
11446 bg_band
->band
= IEEE80211_BAND_2GHZ
;
11447 bg_band
->n_channels
= geo
->bg_channels
;
11448 bg_band
->channels
=
11449 kzalloc(geo
->bg_channels
*
11450 sizeof(struct ieee80211_channel
), GFP_KERNEL
);
11451 /* translate geo->bg to bg_band.channels */
11452 for (i
= 0; i
< geo
->bg_channels
; i
++) {
11453 bg_band
->channels
[i
].band
= IEEE80211_BAND_2GHZ
;
11454 bg_band
->channels
[i
].center_freq
= geo
->bg
[i
].freq
;
11455 bg_band
->channels
[i
].hw_value
= geo
->bg
[i
].channel
;
11456 bg_band
->channels
[i
].max_power
= geo
->bg
[i
].max_power
;
11457 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11458 bg_band
->channels
[i
].flags
|=
11459 IEEE80211_CHAN_PASSIVE_SCAN
;
11460 if (geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11461 bg_band
->channels
[i
].flags
|=
11462 IEEE80211_CHAN_NO_IBSS
;
11463 if (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11464 bg_band
->channels
[i
].flags
|=
11465 IEEE80211_CHAN_RADAR
;
11466 /* No equivalent for LIBIPW_CH_80211H_RULES,
11467 LIBIPW_CH_UNIFORM_SPREADING, or
11468 LIBIPW_CH_B_ONLY... */
11470 /* point at bitrate info */
11471 bg_band
->bitrates
= ipw2200_bg_rates
;
11472 bg_band
->n_bitrates
= ipw2200_num_bg_rates
;
11474 wdev
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = bg_band
;
11477 /* fill-out priv->ieee->a_band */
11478 if (geo
->a_channels
) {
11479 struct ieee80211_supported_band
*a_band
= &priv
->ieee
->a_band
;
11481 a_band
->band
= IEEE80211_BAND_5GHZ
;
11482 a_band
->n_channels
= geo
->a_channels
;
11484 kzalloc(geo
->a_channels
*
11485 sizeof(struct ieee80211_channel
), GFP_KERNEL
);
11486 /* translate geo->bg to a_band.channels */
11487 for (i
= 0; i
< geo
->a_channels
; i
++) {
11488 a_band
->channels
[i
].band
= IEEE80211_BAND_2GHZ
;
11489 a_band
->channels
[i
].center_freq
= geo
->a
[i
].freq
;
11490 a_band
->channels
[i
].hw_value
= geo
->a
[i
].channel
;
11491 a_band
->channels
[i
].max_power
= geo
->a
[i
].max_power
;
11492 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11493 a_band
->channels
[i
].flags
|=
11494 IEEE80211_CHAN_PASSIVE_SCAN
;
11495 if (geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11496 a_band
->channels
[i
].flags
|=
11497 IEEE80211_CHAN_NO_IBSS
;
11498 if (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11499 a_band
->channels
[i
].flags
|=
11500 IEEE80211_CHAN_RADAR
;
11501 /* No equivalent for LIBIPW_CH_80211H_RULES,
11502 LIBIPW_CH_UNIFORM_SPREADING, or
11503 LIBIPW_CH_B_ONLY... */
11505 /* point at bitrate info */
11506 a_band
->bitrates
= ipw2200_a_rates
;
11507 a_band
->n_bitrates
= ipw2200_num_a_rates
;
11509 wdev
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = a_band
;
11512 set_wiphy_dev(wdev
->wiphy
, &priv
->pci_dev
->dev
);
11514 /* With that information in place, we can now register the wiphy... */
11515 if (wiphy_register(wdev
->wiphy
)) {
11521 mutex_unlock(&priv
->mutex
);
11525 /* PCI driver stuff */
11526 static DEFINE_PCI_DEVICE_TABLE(card_ids
) = {
11527 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11528 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11529 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11530 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11531 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11532 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11533 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11534 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11535 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11536 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11537 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11538 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11539 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11540 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11541 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11542 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11543 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11544 {PCI_VDEVICE(INTEL
, 0x104f), 0},
11545 {PCI_VDEVICE(INTEL
, 0x4220), 0}, /* BG */
11546 {PCI_VDEVICE(INTEL
, 0x4221), 0}, /* BG */
11547 {PCI_VDEVICE(INTEL
, 0x4223), 0}, /* ABG */
11548 {PCI_VDEVICE(INTEL
, 0x4224), 0}, /* ABG */
11550 /* required last entry */
11554 MODULE_DEVICE_TABLE(pci
, card_ids
);
11556 static struct attribute
*ipw_sysfs_entries
[] = {
11557 &dev_attr_rf_kill
.attr
,
11558 &dev_attr_direct_dword
.attr
,
11559 &dev_attr_indirect_byte
.attr
,
11560 &dev_attr_indirect_dword
.attr
,
11561 &dev_attr_mem_gpio_reg
.attr
,
11562 &dev_attr_command_event_reg
.attr
,
11563 &dev_attr_nic_type
.attr
,
11564 &dev_attr_status
.attr
,
11565 &dev_attr_cfg
.attr
,
11566 &dev_attr_error
.attr
,
11567 &dev_attr_event_log
.attr
,
11568 &dev_attr_cmd_log
.attr
,
11569 &dev_attr_eeprom_delay
.attr
,
11570 &dev_attr_ucode_version
.attr
,
11571 &dev_attr_rtc
.attr
,
11572 &dev_attr_scan_age
.attr
,
11573 &dev_attr_led
.attr
,
11574 &dev_attr_speed_scan
.attr
,
11575 &dev_attr_net_stats
.attr
,
11576 &dev_attr_channels
.attr
,
11577 #ifdef CONFIG_IPW2200_PROMISCUOUS
11578 &dev_attr_rtap_iface
.attr
,
11579 &dev_attr_rtap_filter
.attr
,
11584 static struct attribute_group ipw_attribute_group
= {
11585 .name
= NULL
, /* put in device directory */
11586 .attrs
= ipw_sysfs_entries
,
11589 #ifdef CONFIG_IPW2200_PROMISCUOUS
11590 static int ipw_prom_open(struct net_device
*dev
)
11592 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11593 struct ipw_priv
*priv
= prom_priv
->priv
;
11595 IPW_DEBUG_INFO("prom dev->open\n");
11596 netif_carrier_off(dev
);
11598 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11599 priv
->sys_config
.accept_all_data_frames
= 1;
11600 priv
->sys_config
.accept_non_directed_frames
= 1;
11601 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
11602 priv
->sys_config
.accept_all_mgmt_frames
= 1;
11604 ipw_send_system_config(priv
);
11610 static int ipw_prom_stop(struct net_device
*dev
)
11612 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11613 struct ipw_priv
*priv
= prom_priv
->priv
;
11615 IPW_DEBUG_INFO("prom dev->stop\n");
11617 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11618 priv
->sys_config
.accept_all_data_frames
= 0;
11619 priv
->sys_config
.accept_non_directed_frames
= 0;
11620 priv
->sys_config
.accept_all_mgmt_bcpr
= 0;
11621 priv
->sys_config
.accept_all_mgmt_frames
= 0;
11623 ipw_send_system_config(priv
);
11629 static netdev_tx_t
ipw_prom_hard_start_xmit(struct sk_buff
*skb
,
11630 struct net_device
*dev
)
11632 IPW_DEBUG_INFO("prom dev->xmit\n");
11633 dev_kfree_skb(skb
);
11634 return NETDEV_TX_OK
;
11637 static const struct net_device_ops ipw_prom_netdev_ops
= {
11638 .ndo_open
= ipw_prom_open
,
11639 .ndo_stop
= ipw_prom_stop
,
11640 .ndo_start_xmit
= ipw_prom_hard_start_xmit
,
11641 .ndo_change_mtu
= libipw_change_mtu
,
11642 .ndo_set_mac_address
= eth_mac_addr
,
11643 .ndo_validate_addr
= eth_validate_addr
,
11646 static int ipw_prom_alloc(struct ipw_priv
*priv
)
11650 if (priv
->prom_net_dev
)
11653 priv
->prom_net_dev
= alloc_libipw(sizeof(struct ipw_prom_priv
), 1);
11654 if (priv
->prom_net_dev
== NULL
)
11657 priv
->prom_priv
= libipw_priv(priv
->prom_net_dev
);
11658 priv
->prom_priv
->ieee
= netdev_priv(priv
->prom_net_dev
);
11659 priv
->prom_priv
->priv
= priv
;
11661 strcpy(priv
->prom_net_dev
->name
, "rtap%d");
11662 memcpy(priv
->prom_net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11664 priv
->prom_net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
11665 priv
->prom_net_dev
->netdev_ops
= &ipw_prom_netdev_ops
;
11667 priv
->prom_priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
11668 SET_NETDEV_DEV(priv
->prom_net_dev
, &priv
->pci_dev
->dev
);
11670 rc
= register_netdev(priv
->prom_net_dev
);
11672 free_libipw(priv
->prom_net_dev
, 1);
11673 priv
->prom_net_dev
= NULL
;
11680 static void ipw_prom_free(struct ipw_priv
*priv
)
11682 if (!priv
->prom_net_dev
)
11685 unregister_netdev(priv
->prom_net_dev
);
11686 free_libipw(priv
->prom_net_dev
, 1);
11688 priv
->prom_net_dev
= NULL
;
11693 static const struct net_device_ops ipw_netdev_ops
= {
11694 .ndo_init
= ipw_net_init
,
11695 .ndo_open
= ipw_net_open
,
11696 .ndo_stop
= ipw_net_stop
,
11697 .ndo_set_multicast_list
= ipw_net_set_multicast_list
,
11698 .ndo_set_mac_address
= ipw_net_set_mac_address
,
11699 .ndo_start_xmit
= libipw_xmit
,
11700 .ndo_change_mtu
= libipw_change_mtu
,
11701 .ndo_validate_addr
= eth_validate_addr
,
11704 static int __devinit
ipw_pci_probe(struct pci_dev
*pdev
,
11705 const struct pci_device_id
*ent
)
11708 struct net_device
*net_dev
;
11709 void __iomem
*base
;
11711 struct ipw_priv
*priv
;
11714 net_dev
= alloc_libipw(sizeof(struct ipw_priv
), 0);
11715 if (net_dev
== NULL
) {
11720 priv
= libipw_priv(net_dev
);
11721 priv
->ieee
= netdev_priv(net_dev
);
11723 priv
->net_dev
= net_dev
;
11724 priv
->pci_dev
= pdev
;
11725 ipw_debug_level
= debug
;
11726 spin_lock_init(&priv
->irq_lock
);
11727 spin_lock_init(&priv
->lock
);
11728 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++)
11729 INIT_LIST_HEAD(&priv
->ibss_mac_hash
[i
]);
11731 mutex_init(&priv
->mutex
);
11732 if (pci_enable_device(pdev
)) {
11734 goto out_free_libipw
;
11737 pci_set_master(pdev
);
11739 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
11741 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
11743 printk(KERN_WARNING DRV_NAME
": No suitable DMA available.\n");
11744 goto out_pci_disable_device
;
11747 pci_set_drvdata(pdev
, priv
);
11749 err
= pci_request_regions(pdev
, DRV_NAME
);
11751 goto out_pci_disable_device
;
11753 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11754 * PCI Tx retries from interfering with C3 CPU state */
11755 pci_read_config_dword(pdev
, 0x40, &val
);
11756 if ((val
& 0x0000ff00) != 0)
11757 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11759 length
= pci_resource_len(pdev
, 0);
11760 priv
->hw_len
= length
;
11762 base
= pci_ioremap_bar(pdev
, 0);
11765 goto out_pci_release_regions
;
11768 priv
->hw_base
= base
;
11769 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length
);
11770 IPW_DEBUG_INFO("pci_resource_base = %p\n", base
);
11772 err
= ipw_setup_deferred_work(priv
);
11774 IPW_ERROR("Unable to setup deferred work\n");
11778 ipw_sw_reset(priv
, 1);
11780 err
= request_irq(pdev
->irq
, ipw_isr
, IRQF_SHARED
, DRV_NAME
, priv
);
11782 IPW_ERROR("Error allocating IRQ %d\n", pdev
->irq
);
11783 goto out_destroy_workqueue
;
11786 SET_NETDEV_DEV(net_dev
, &pdev
->dev
);
11788 mutex_lock(&priv
->mutex
);
11790 priv
->ieee
->hard_start_xmit
= ipw_net_hard_start_xmit
;
11791 priv
->ieee
->set_security
= shim__set_security
;
11792 priv
->ieee
->is_queue_full
= ipw_net_is_queue_full
;
11794 #ifdef CONFIG_IPW2200_QOS
11795 priv
->ieee
->is_qos_active
= ipw_is_qos_active
;
11796 priv
->ieee
->handle_probe_response
= ipw_handle_beacon
;
11797 priv
->ieee
->handle_beacon
= ipw_handle_probe_response
;
11798 priv
->ieee
->handle_assoc_response
= ipw_handle_assoc_response
;
11799 #endif /* CONFIG_IPW2200_QOS */
11801 priv
->ieee
->perfect_rssi
= -20;
11802 priv
->ieee
->worst_rssi
= -85;
11804 net_dev
->netdev_ops
= &ipw_netdev_ops
;
11805 priv
->wireless_data
.spy_data
= &priv
->ieee
->spy_data
;
11806 net_dev
->wireless_data
= &priv
->wireless_data
;
11807 net_dev
->wireless_handlers
= &ipw_wx_handler_def
;
11808 net_dev
->ethtool_ops
= &ipw_ethtool_ops
;
11809 net_dev
->irq
= pdev
->irq
;
11810 net_dev
->base_addr
= (unsigned long)priv
->hw_base
;
11811 net_dev
->mem_start
= pci_resource_start(pdev
, 0);
11812 net_dev
->mem_end
= net_dev
->mem_start
+ pci_resource_len(pdev
, 0) - 1;
11814 err
= sysfs_create_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11816 IPW_ERROR("failed to create sysfs device attributes\n");
11817 mutex_unlock(&priv
->mutex
);
11818 goto out_release_irq
;
11821 mutex_unlock(&priv
->mutex
);
11822 err
= register_netdev(net_dev
);
11824 IPW_ERROR("failed to register network device\n");
11825 goto out_remove_sysfs
;
11828 #ifdef CONFIG_IPW2200_PROMISCUOUS
11830 err
= ipw_prom_alloc(priv
);
11832 IPW_ERROR("Failed to register promiscuous network "
11833 "device (error %d).\n", err
);
11834 unregister_netdev(priv
->net_dev
);
11835 goto out_remove_sysfs
;
11840 printk(KERN_INFO DRV_NAME
": Detected geography %s (%d 802.11bg "
11841 "channels, %d 802.11a channels)\n",
11842 priv
->ieee
->geo
.name
, priv
->ieee
->geo
.bg_channels
,
11843 priv
->ieee
->geo
.a_channels
);
11848 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11850 free_irq(pdev
->irq
, priv
);
11851 out_destroy_workqueue
:
11852 destroy_workqueue(priv
->workqueue
);
11853 priv
->workqueue
= NULL
;
11855 iounmap(priv
->hw_base
);
11856 out_pci_release_regions
:
11857 pci_release_regions(pdev
);
11858 out_pci_disable_device
:
11859 pci_disable_device(pdev
);
11860 pci_set_drvdata(pdev
, NULL
);
11862 free_libipw(priv
->net_dev
, 0);
11867 static void __devexit
ipw_pci_remove(struct pci_dev
*pdev
)
11869 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11870 struct list_head
*p
, *q
;
11876 mutex_lock(&priv
->mutex
);
11878 priv
->status
|= STATUS_EXIT_PENDING
;
11880 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11882 mutex_unlock(&priv
->mutex
);
11884 unregister_netdev(priv
->net_dev
);
11887 ipw_rx_queue_free(priv
, priv
->rxq
);
11890 ipw_tx_queue_free(priv
);
11892 if (priv
->cmdlog
) {
11893 kfree(priv
->cmdlog
);
11894 priv
->cmdlog
= NULL
;
11896 /* ipw_down will ensure that there is no more pending work
11897 * in the workqueue's, so we can safely remove them now. */
11898 cancel_delayed_work(&priv
->adhoc_check
);
11899 cancel_delayed_work(&priv
->gather_stats
);
11900 cancel_delayed_work(&priv
->request_scan
);
11901 cancel_delayed_work(&priv
->request_direct_scan
);
11902 cancel_delayed_work(&priv
->request_passive_scan
);
11903 cancel_delayed_work(&priv
->scan_event
);
11904 cancel_delayed_work(&priv
->rf_kill
);
11905 cancel_delayed_work(&priv
->scan_check
);
11906 destroy_workqueue(priv
->workqueue
);
11907 priv
->workqueue
= NULL
;
11909 /* Free MAC hash list for ADHOC */
11910 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++) {
11911 list_for_each_safe(p
, q
, &priv
->ibss_mac_hash
[i
]) {
11913 kfree(list_entry(p
, struct ipw_ibss_seq
, list
));
11917 kfree(priv
->error
);
11918 priv
->error
= NULL
;
11920 #ifdef CONFIG_IPW2200_PROMISCUOUS
11921 ipw_prom_free(priv
);
11924 free_irq(pdev
->irq
, priv
);
11925 iounmap(priv
->hw_base
);
11926 pci_release_regions(pdev
);
11927 pci_disable_device(pdev
);
11928 pci_set_drvdata(pdev
, NULL
);
11929 /* wiphy_unregister needs to be here, before free_libipw */
11930 wiphy_unregister(priv
->ieee
->wdev
.wiphy
);
11931 kfree(priv
->ieee
->a_band
.channels
);
11932 kfree(priv
->ieee
->bg_band
.channels
);
11933 free_libipw(priv
->net_dev
, 0);
11938 static int ipw_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
11940 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11941 struct net_device
*dev
= priv
->net_dev
;
11943 printk(KERN_INFO
"%s: Going into suspend...\n", dev
->name
);
11945 /* Take down the device; powers it off, etc. */
11948 /* Remove the PRESENT state of the device */
11949 netif_device_detach(dev
);
11951 pci_save_state(pdev
);
11952 pci_disable_device(pdev
);
11953 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
11955 priv
->suspend_at
= get_seconds();
11960 static int ipw_pci_resume(struct pci_dev
*pdev
)
11962 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11963 struct net_device
*dev
= priv
->net_dev
;
11967 printk(KERN_INFO
"%s: Coming out of suspend...\n", dev
->name
);
11969 pci_set_power_state(pdev
, PCI_D0
);
11970 err
= pci_enable_device(pdev
);
11972 printk(KERN_ERR
"%s: pci_enable_device failed on resume\n",
11976 pci_restore_state(pdev
);
11979 * Suspend/Resume resets the PCI configuration space, so we have to
11980 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11981 * from interfering with C3 CPU state. pci_restore_state won't help
11982 * here since it only restores the first 64 bytes pci config header.
11984 pci_read_config_dword(pdev
, 0x40, &val
);
11985 if ((val
& 0x0000ff00) != 0)
11986 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11988 /* Set the device back into the PRESENT state; this will also wake
11989 * the queue of needed */
11990 netif_device_attach(dev
);
11992 priv
->suspend_time
= get_seconds() - priv
->suspend_at
;
11994 /* Bring the device back up */
11995 queue_work(priv
->workqueue
, &priv
->up
);
12001 static void ipw_pci_shutdown(struct pci_dev
*pdev
)
12003 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
12005 /* Take down the device; powers it off, etc. */
12008 pci_disable_device(pdev
);
12011 /* driver initialization stuff */
12012 static struct pci_driver ipw_driver
= {
12014 .id_table
= card_ids
,
12015 .probe
= ipw_pci_probe
,
12016 .remove
= __devexit_p(ipw_pci_remove
),
12018 .suspend
= ipw_pci_suspend
,
12019 .resume
= ipw_pci_resume
,
12021 .shutdown
= ipw_pci_shutdown
,
12024 static int __init
ipw_init(void)
12028 printk(KERN_INFO DRV_NAME
": " DRV_DESCRIPTION
", " DRV_VERSION
"\n");
12029 printk(KERN_INFO DRV_NAME
": " DRV_COPYRIGHT
"\n");
12031 ret
= pci_register_driver(&ipw_driver
);
12033 IPW_ERROR("Unable to initialize PCI module\n");
12037 ret
= driver_create_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
12039 IPW_ERROR("Unable to create driver sysfs file\n");
12040 pci_unregister_driver(&ipw_driver
);
12047 static void __exit
ipw_exit(void)
12049 driver_remove_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
12050 pci_unregister_driver(&ipw_driver
);
12053 module_param(disable
, int, 0444);
12054 MODULE_PARM_DESC(disable
, "manually disable the radio (default 0 [radio on])");
12056 module_param(associate
, int, 0444);
12057 MODULE_PARM_DESC(associate
, "auto associate when scanning (default off)");
12059 module_param(auto_create
, int, 0444);
12060 MODULE_PARM_DESC(auto_create
, "auto create adhoc network (default on)");
12062 module_param_named(led
, led_support
, int, 0444);
12063 MODULE_PARM_DESC(led
, "enable led control on some systems (default 0 off)");
12065 module_param(debug
, int, 0444);
12066 MODULE_PARM_DESC(debug
, "debug output mask");
12068 module_param_named(channel
, default_channel
, int, 0444);
12069 MODULE_PARM_DESC(channel
, "channel to limit associate to (default 0 [ANY])");
12071 #ifdef CONFIG_IPW2200_PROMISCUOUS
12072 module_param(rtap_iface
, int, 0444);
12073 MODULE_PARM_DESC(rtap_iface
, "create the rtap interface (1 - create, default 0)");
12076 #ifdef CONFIG_IPW2200_QOS
12077 module_param(qos_enable
, int, 0444);
12078 MODULE_PARM_DESC(qos_enable
, "enable all QoS functionalitis");
12080 module_param(qos_burst_enable
, int, 0444);
12081 MODULE_PARM_DESC(qos_burst_enable
, "enable QoS burst mode");
12083 module_param(qos_no_ack_mask
, int, 0444);
12084 MODULE_PARM_DESC(qos_no_ack_mask
, "mask Tx_Queue to no ack");
12086 module_param(burst_duration_CCK
, int, 0444);
12087 MODULE_PARM_DESC(burst_duration_CCK
, "set CCK burst value");
12089 module_param(burst_duration_OFDM
, int, 0444);
12090 MODULE_PARM_DESC(burst_duration_OFDM
, "set OFDM burst value");
12091 #endif /* CONFIG_IPW2200_QOS */
12093 #ifdef CONFIG_IPW2200_MONITOR
12094 module_param_named(mode
, network_mode
, int, 0444);
12095 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS,2=Monitor)");
12097 module_param_named(mode
, network_mode
, int, 0444);
12098 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS)");
12101 module_param(bt_coexist
, int, 0444);
12102 MODULE_PARM_DESC(bt_coexist
, "enable bluetooth coexistence (default off)");
12104 module_param(hwcrypto
, int, 0444);
12105 MODULE_PARM_DESC(hwcrypto
, "enable hardware crypto (default off)");
12107 module_param(cmdlog
, int, 0444);
12108 MODULE_PARM_DESC(cmdlog
,
12109 "allocate a ring buffer for logging firmware commands");
12111 module_param(roaming
, int, 0444);
12112 MODULE_PARM_DESC(roaming
, "enable roaming support (default on)");
12114 module_param(antenna
, int, 0444);
12115 MODULE_PARM_DESC(antenna
, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12117 module_exit(ipw_exit
);
12118 module_init(ipw_init
);