]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ipw2x00/ipw2200.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200 {
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305 u8 val)
306 {
307 writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313 __LINE__, (u32)(ofs), (u32)(val)); \
314 _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319 u16 val)
320 {
321 writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327 __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333 u32 val)
334 {
335 writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341 __LINE__, (u32)(ofs), (u32)(val)); \
342 _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348 return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354 (u32)(ofs)); \
355 _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361 return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367 (u32)(ofs)); \
368 _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374 return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380 (u32)(ofs)); \
381 _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388 __LINE__, (u32)(b), (u32)(d)); \
389 _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
413 u32 dif_len = reg - aligned_addr;
414
415 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
424 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434 u32 word;
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444 u32 value;
445
446 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451 return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /* for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457 int num)
458 {
459 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = addr - aligned_addr;
461 u32 i;
462
463 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465 if (num <= 0) {
466 return;
467 }
468
469 /* Read the first dword (or portion) byte by byte */
470 if (unlikely(dif_len)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 /* Start reading at aligned_addr + dif_len */
473 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475 aligned_addr += 4;
476 }
477
478 /* Read all of the middle dwords as dwords, with auto-increment */
479 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483 /* Read the last dword (or portion) byte by byte */
484 if (unlikely(num)) {
485 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486 for (i = 0; num > 0; i++, num--)
487 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488 }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /* for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494 int num)
495 {
496 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
497 u32 dif_len = addr - aligned_addr;
498 u32 i;
499
500 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502 if (num <= 0) {
503 return;
504 }
505
506 /* Write the first dword (or portion) byte by byte */
507 if (unlikely(dif_len)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 /* Start writing at aligned_addr + dif_len */
510 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512 aligned_addr += 4;
513 }
514
515 /* Write all of the middle dwords as dwords, with auto-increment */
516 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520 /* Write the last dword (or portion) byte by byte */
521 if (unlikely(num)) {
522 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523 for (i = 0; num > 0; i++, num--, buf++)
524 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525 }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /* for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531 int num)
532 {
533 memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550 if (priv->status & STATUS_INT_ENABLED)
551 return;
552 priv->status |= STATUS_INT_ENABLED;
553 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558 if (!(priv->status & STATUS_INT_ENABLED))
559 return;
560 priv->status &= ~STATUS_INT_ENABLED;
561 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566 unsigned long flags;
567
568 spin_lock_irqsave(&priv->irq_lock, flags);
569 __ipw_enable_interrupts(priv);
570 spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_disable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584 switch (val) {
585 case IPW_FW_ERROR_OK:
586 return "ERROR_OK";
587 case IPW_FW_ERROR_FAIL:
588 return "ERROR_FAIL";
589 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590 return "MEMORY_UNDERFLOW";
591 case IPW_FW_ERROR_MEMORY_OVERFLOW:
592 return "MEMORY_OVERFLOW";
593 case IPW_FW_ERROR_BAD_PARAM:
594 return "BAD_PARAM";
595 case IPW_FW_ERROR_BAD_CHECKSUM:
596 return "BAD_CHECKSUM";
597 case IPW_FW_ERROR_NMI_INTERRUPT:
598 return "NMI_INTERRUPT";
599 case IPW_FW_ERROR_BAD_DATABASE:
600 return "BAD_DATABASE";
601 case IPW_FW_ERROR_ALLOC_FAIL:
602 return "ALLOC_FAIL";
603 case IPW_FW_ERROR_DMA_UNDERRUN:
604 return "DMA_UNDERRUN";
605 case IPW_FW_ERROR_DMA_STATUS:
606 return "DMA_STATUS";
607 case IPW_FW_ERROR_DINO_ERROR:
608 return "DINO_ERROR";
609 case IPW_FW_ERROR_EEPROM_ERROR:
610 return "EEPROM_ERROR";
611 case IPW_FW_ERROR_SYSASSERT:
612 return "SYSASSERT";
613 case IPW_FW_ERROR_FATAL_ERROR:
614 return "FATAL_ERROR";
615 default:
616 return "UNKNOWN_ERROR";
617 }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621 struct ipw_fw_error *error)
622 {
623 u32 i;
624
625 if (!error) {
626 IPW_ERROR("Error allocating and capturing error log. "
627 "Nothing to dump.\n");
628 return;
629 }
630
631 IPW_ERROR("Start IPW Error Log Dump:\n");
632 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633 error->status, error->config);
634
635 for (i = 0; i < error->elem_len; i++)
636 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
637 ipw_error_desc(error->elem[i].desc),
638 error->elem[i].time,
639 error->elem[i].blink1,
640 error->elem[i].blink2,
641 error->elem[i].link1,
642 error->elem[i].link2, error->elem[i].data);
643 for (i = 0; i < error->log_len; i++)
644 IPW_ERROR("%i\t0x%08x\t%i\n",
645 error->log[i].time,
646 error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651 return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656 u32 addr, field_info, field_len, field_count, total_len;
657
658 IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660 if (!priv || !val || !len) {
661 IPW_DEBUG_ORD("Invalid argument\n");
662 return -EINVAL;
663 }
664
665 /* verify device ordinal tables have been initialized */
666 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668 return -EINVAL;
669 }
670
671 switch (IPW_ORD_TABLE_ID_MASK & ord) {
672 case IPW_ORD_TABLE_0_MASK:
673 /*
674 * TABLE 0: Direct access to a table of 32 bit values
675 *
676 * This is a very simple table with the data directly
677 * read from the table
678 */
679
680 /* remove the table id from the ordinal */
681 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683 /* boundary check */
684 if (ord > priv->table0_len) {
685 IPW_DEBUG_ORD("ordinal value (%i) longer then "
686 "max (%i)\n", ord, priv->table0_len);
687 return -EINVAL;
688 }
689
690 /* verify we have enough room to store the value */
691 if (*len < sizeof(u32)) {
692 IPW_DEBUG_ORD("ordinal buffer length too small, "
693 "need %zd\n", sizeof(u32));
694 return -EINVAL;
695 }
696
697 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698 ord, priv->table0_addr + (ord << 2));
699
700 *len = sizeof(u32);
701 ord <<= 2;
702 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703 break;
704
705 case IPW_ORD_TABLE_1_MASK:
706 /*
707 * TABLE 1: Indirect access to a table of 32 bit values
708 *
709 * This is a fairly large table of u32 values each
710 * representing starting addr for the data (which is
711 * also a u32)
712 */
713
714 /* remove the table id from the ordinal */
715 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717 /* boundary check */
718 if (ord > priv->table1_len) {
719 IPW_DEBUG_ORD("ordinal value too long\n");
720 return -EINVAL;
721 }
722
723 /* verify we have enough room to store the value */
724 if (*len < sizeof(u32)) {
725 IPW_DEBUG_ORD("ordinal buffer length too small, "
726 "need %zd\n", sizeof(u32));
727 return -EINVAL;
728 }
729
730 *((u32 *) val) =
731 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732 *len = sizeof(u32);
733 break;
734
735 case IPW_ORD_TABLE_2_MASK:
736 /*
737 * TABLE 2: Indirect access to a table of variable sized values
738 *
739 * This table consist of six values, each containing
740 * - dword containing the starting offset of the data
741 * - dword containing the lengh in the first 16bits
742 * and the count in the second 16bits
743 */
744
745 /* remove the table id from the ordinal */
746 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748 /* boundary check */
749 if (ord > priv->table2_len) {
750 IPW_DEBUG_ORD("ordinal value too long\n");
751 return -EINVAL;
752 }
753
754 /* get the address of statistic */
755 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757 /* get the second DW of statistics ;
758 * two 16-bit words - first is length, second is count */
759 field_info =
760 ipw_read_reg32(priv,
761 priv->table2_addr + (ord << 3) +
762 sizeof(u32));
763
764 /* get each entry length */
765 field_len = *((u16 *) & field_info);
766
767 /* get number of entries */
768 field_count = *(((u16 *) & field_info) + 1);
769
770 /* abort if not enought memory */
771 total_len = field_len * field_count;
772 if (total_len > *len) {
773 *len = total_len;
774 return -EINVAL;
775 }
776
777 *len = total_len;
778 if (!total_len)
779 return 0;
780
781 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782 "field_info = 0x%08x\n",
783 addr, total_len, field_info);
784 ipw_read_indirect(priv, addr, val, total_len);
785 break;
786
787 default:
788 IPW_DEBUG_ORD("Invalid ordinal!\n");
789 return -EINVAL;
790
791 }
792
793 return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799 priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802 priv->table0_addr, priv->table0_len);
803
804 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808 priv->table1_addr, priv->table1_len);
809
810 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812 priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815 priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821 reg &= ~IPW_START_STANDBY;
822 if (reg & IPW_GATE_ODMA)
823 reg &= ~IPW_GATE_ODMA;
824 if (reg & IPW_GATE_IDMA)
825 reg &= ~IPW_GATE_IDMA;
826 if (reg & IPW_GATE_ADMA)
827 reg &= ~IPW_GATE_ADMA;
828 return reg;
829 }
830
831 /*
832 * LED behavior:
833 * - On radio ON, turn on any LEDs that require to be on during start
834 * - On initialization, start unassociated blink
835 * - On association, disable unassociated blink
836 * - On disassociation, start unassociated blink
837 * - On radio OFF, turn off any LEDs started during radio on
838 *
839 */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846 unsigned long flags;
847 u32 led;
848
849 /* If configured to not use LEDs, or nic_type is 1,
850 * then we don't toggle a LINK led */
851 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852 return;
853
854 spin_lock_irqsave(&priv->lock, flags);
855
856 if (!(priv->status & STATUS_RF_KILL_MASK) &&
857 !(priv->status & STATUS_LED_LINK_ON)) {
858 IPW_DEBUG_LED("Link LED On\n");
859 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860 led |= priv->led_association_on;
861
862 led = ipw_register_toggle(led);
863
864 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867 priv->status |= STATUS_LED_LINK_ON;
868
869 /* If we aren't associated, schedule turning the LED off */
870 if (!(priv->status & STATUS_ASSOCIATED))
871 queue_delayed_work(priv->workqueue,
872 &priv->led_link_off,
873 LD_TIME_LINK_ON);
874 }
875
876 spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881 struct ipw_priv *priv =
882 container_of(work, struct ipw_priv, led_link_on.work);
883 mutex_lock(&priv->mutex);
884 ipw_led_link_on(priv);
885 mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890 unsigned long flags;
891 u32 led;
892
893 /* If configured not to use LEDs, or nic type is 1,
894 * then we don't goggle the LINK led. */
895 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896 return;
897
898 spin_lock_irqsave(&priv->lock, flags);
899
900 if (priv->status & STATUS_LED_LINK_ON) {
901 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902 led &= priv->led_association_off;
903 led = ipw_register_toggle(led);
904
905 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908 IPW_DEBUG_LED("Link LED Off\n");
909
910 priv->status &= ~STATUS_LED_LINK_ON;
911
912 /* If we aren't associated and the radio is on, schedule
913 * turning the LED on (blink while unassociated) */
914 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915 !(priv->status & STATUS_ASSOCIATED))
916 queue_delayed_work(priv->workqueue, &priv->led_link_on,
917 LD_TIME_LINK_OFF);
918
919 }
920
921 spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926 struct ipw_priv *priv =
927 container_of(work, struct ipw_priv, led_link_off.work);
928 mutex_lock(&priv->mutex);
929 ipw_led_link_off(priv);
930 mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935 u32 led;
936
937 if (priv->config & CFG_NO_LED)
938 return;
939
940 if (priv->status & STATUS_RF_KILL_MASK)
941 return;
942
943 if (!(priv->status & STATUS_LED_ACT_ON)) {
944 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945 led |= priv->led_activity_on;
946
947 led = ipw_register_toggle(led);
948
949 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952 IPW_DEBUG_LED("Activity LED On\n");
953
954 priv->status |= STATUS_LED_ACT_ON;
955
956 cancel_delayed_work(&priv->led_act_off);
957 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958 LD_TIME_ACT_ON);
959 } else {
960 /* Reschedule LED off for full time period */
961 cancel_delayed_work(&priv->led_act_off);
962 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963 LD_TIME_ACT_ON);
964 }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&priv->lock, flags);
972 __ipw_led_activity_on(priv);
973 spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif /* 0 */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979 unsigned long flags;
980 u32 led;
981
982 if (priv->config & CFG_NO_LED)
983 return;
984
985 spin_lock_irqsave(&priv->lock, flags);
986
987 if (priv->status & STATUS_LED_ACT_ON) {
988 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989 led &= priv->led_activity_off;
990
991 led = ipw_register_toggle(led);
992
993 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996 IPW_DEBUG_LED("Activity LED Off\n");
997
998 priv->status &= ~STATUS_LED_ACT_ON;
999 }
1000
1001 spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006 struct ipw_priv *priv =
1007 container_of(work, struct ipw_priv, led_act_off.work);
1008 mutex_lock(&priv->mutex);
1009 ipw_led_activity_off(priv);
1010 mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015 unsigned long flags;
1016 u32 led;
1017
1018 /* Only nic type 1 supports mode LEDs */
1019 if (priv->config & CFG_NO_LED ||
1020 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021 return;
1022
1023 spin_lock_irqsave(&priv->lock, flags);
1024
1025 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026 if (priv->assoc_network->mode == IEEE_A) {
1027 led |= priv->led_ofdm_on;
1028 led &= priv->led_association_off;
1029 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030 } else if (priv->assoc_network->mode == IEEE_G) {
1031 led |= priv->led_ofdm_on;
1032 led |= priv->led_association_on;
1033 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034 } else {
1035 led &= priv->led_ofdm_off;
1036 led |= priv->led_association_on;
1037 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038 }
1039
1040 led = ipw_register_toggle(led);
1041
1042 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045 spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050 unsigned long flags;
1051 u32 led;
1052
1053 /* Only nic type 1 supports mode LEDs */
1054 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055 return;
1056
1057 spin_lock_irqsave(&priv->lock, flags);
1058
1059 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060 led &= priv->led_ofdm_off;
1061 led &= priv->led_association_off;
1062
1063 led = ipw_register_toggle(led);
1064
1065 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068 spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073 ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078 ipw_led_activity_off(priv);
1079 ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084 /* Set the Link Led on for all nic types */
1085 ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090 ipw_led_activity_off(priv);
1091 ipw_led_link_off(priv);
1092
1093 if (priv->status & STATUS_RF_KILL_MASK)
1094 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101 /* Set the default PINs for the link and activity leds */
1102 priv->led_activity_on = IPW_ACTIVITY_LED;
1103 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105 priv->led_association_on = IPW_ASSOCIATED_LED;
1106 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108 /* Set the default PINs for the OFDM leds */
1109 priv->led_ofdm_on = IPW_OFDM_LED;
1110 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112 switch (priv->nic_type) {
1113 case EEPROM_NIC_TYPE_1:
1114 /* In this NIC type, the LEDs are reversed.... */
1115 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117 priv->led_association_on = IPW_ACTIVITY_LED;
1118 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120 if (!(priv->config & CFG_NO_LED))
1121 ipw_led_band_on(priv);
1122
1123 /* And we don't blink link LEDs for this nic, so
1124 * just return here */
1125 return;
1126
1127 case EEPROM_NIC_TYPE_3:
1128 case EEPROM_NIC_TYPE_2:
1129 case EEPROM_NIC_TYPE_4:
1130 case EEPROM_NIC_TYPE_0:
1131 break;
1132
1133 default:
1134 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135 priv->nic_type);
1136 priv->nic_type = EEPROM_NIC_TYPE_0;
1137 break;
1138 }
1139
1140 if (!(priv->config & CFG_NO_LED)) {
1141 if (priv->status & STATUS_ASSOCIATED)
1142 ipw_led_link_on(priv);
1143 else
1144 ipw_led_link_off(priv);
1145 }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150 ipw_led_activity_off(priv);
1151 ipw_led_link_off(priv);
1152 ipw_led_band_off(priv);
1153 cancel_delayed_work(&priv->led_link_on);
1154 cancel_delayed_work(&priv->led_link_off);
1155 cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159 * The following adds a new attribute to the sysfs representation
1160 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161 * used for controling the debug level.
1162 *
1163 * See the level definitions in ipw for details.
1164 */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171 size_t count)
1172 {
1173 char *p = (char *)buf;
1174 u32 val;
1175
1176 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177 p++;
1178 if (p[0] == 'x' || p[0] == 'X')
1179 p++;
1180 val = simple_strtoul(p, &p, 16);
1181 } else
1182 val = simple_strtoul(p, &p, 10);
1183 if (p == buf)
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1186 else
1187 ipw_debug_level = val;
1188
1189 return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193 show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197 /* length = 1st dword in log */
1198 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202 u32 log_len, struct ipw_event *log)
1203 {
1204 u32 base;
1205
1206 if (log_len) {
1207 base = ipw_read32(priv, IPW_EVENT_LOG);
1208 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209 (u8 *) log, sizeof(*log) * log_len);
1210 }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215 struct ipw_fw_error *error;
1216 u32 log_len = ipw_get_event_log_len(priv);
1217 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218 u32 elem_len = ipw_read_reg32(priv, base);
1219
1220 error = kmalloc(sizeof(*error) +
1221 sizeof(*error->elem) * elem_len +
1222 sizeof(*error->log) * log_len, GFP_ATOMIC);
1223 if (!error) {
1224 IPW_ERROR("Memory allocation for firmware error log "
1225 "failed.\n");
1226 return NULL;
1227 }
1228 error->jiffies = jiffies;
1229 error->status = priv->status;
1230 error->config = priv->config;
1231 error->elem_len = elem_len;
1232 error->log_len = log_len;
1233 error->elem = (struct ipw_error_elem *)error->payload;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236 ipw_capture_event_log(priv, log_len, error->log);
1237
1238 if (elem_len)
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1241
1242 return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246 struct device_attribute *attr, char *buf)
1247 {
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 log_size;
1251 struct ipw_event *log;
1252 u32 len = 0, i;
1253
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1258 if (!log) {
1259 IPW_ERROR("Unable to allocate memory for log\n");
1260 return 0;
1261 }
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1264
1265 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1268 "\n%08X%08X%08X",
1269 log[i].time, log[i].event, log[i].data);
1270 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271 kfree(log);
1272 return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278 struct device_attribute *attr, char *buf)
1279 {
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1281 u32 len = 0, i;
1282 if (!priv->error)
1283 return 0;
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1299
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += snprintf(buf + len, PAGE_SIZE - len,
1304 "\n%08X%08X%08X",
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309 return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1315 {
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318 kfree(priv->error);
1319 priv->error = NULL;
1320 return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326 struct device_attribute *attr, char *buf)
1327 {
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1329 u32 len = 0, i;
1330 if (!priv->cmdlog)
1331 return 0;
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334 i = (i + 1) % priv->cmdlog_len) {
1335 len +=
1336 snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1340 len +=
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345 }
1346 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347 return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1358 {
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1360 int rc = 0;
1361
1362 if (count < 1)
1363 return -EINVAL;
1364
1365 switch (buf[0]) {
1366 case '0':
1367 if (!rtap_iface)
1368 return count;
1369
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1372 return count;
1373 }
1374
1375 ipw_prom_free(priv);
1376 rtap_iface = 0;
1377 break;
1378
1379 case '1':
1380 if (rtap_iface)
1381 return count;
1382
1383 rc = ipw_prom_alloc(priv);
1384 if (!rc)
1385 rtap_iface = 1;
1386 break;
1387
1388 default:
1389 return -EINVAL;
1390 }
1391
1392 if (rc) {
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1395 }
1396
1397 return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401 struct device_attribute *attr,
1402 char *buf)
1403 {
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1405 if (rtap_iface)
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407 else {
1408 buf[0] = '-';
1409 buf[1] = '1';
1410 buf[2] = '\0';
1411 return 3;
1412 }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416 store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419 struct device_attribute *attr,
1420 const char *buf, size_t count)
1421 {
1422 struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424 if (!priv->prom_priv) {
1425 IPW_ERROR("Attempting to set filter without "
1426 "rtap_iface enabled.\n");
1427 return -EPERM;
1428 }
1429
1430 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433 BIT_ARG16(priv->prom_priv->filter));
1434
1435 return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439 struct device_attribute *attr,
1440 char *buf)
1441 {
1442 struct ipw_priv *priv = dev_get_drvdata(d);
1443 return sprintf(buf, "0x%04X",
1444 priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448 store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452 char *buf)
1453 {
1454 struct ipw_priv *priv = dev_get_drvdata(d);
1455 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459 const char *buf, size_t count)
1460 {
1461 struct ipw_priv *priv = dev_get_drvdata(d);
1462 struct net_device *dev = priv->net_dev;
1463 char buffer[] = "00000000";
1464 unsigned long len =
1465 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466 unsigned long val;
1467 char *p = buffer;
1468
1469 IPW_DEBUG_INFO("enter\n");
1470
1471 strncpy(buffer, buf, len);
1472 buffer[len] = 0;
1473
1474 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475 p++;
1476 if (p[0] == 'x' || p[0] == 'X')
1477 p++;
1478 val = simple_strtoul(p, &p, 16);
1479 } else
1480 val = simple_strtoul(p, &p, 10);
1481 if (p == buffer) {
1482 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483 } else {
1484 priv->ieee->scan_age = val;
1485 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486 }
1487
1488 IPW_DEBUG_INFO("exit\n");
1489 return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495 char *buf)
1496 {
1497 struct ipw_priv *priv = dev_get_drvdata(d);
1498 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502 const char *buf, size_t count)
1503 {
1504 struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506 IPW_DEBUG_INFO("enter\n");
1507
1508 if (count == 0)
1509 return 0;
1510
1511 if (*buf == 0) {
1512 IPW_DEBUG_LED("Disabling LED control.\n");
1513 priv->config |= CFG_NO_LED;
1514 ipw_led_shutdown(priv);
1515 } else {
1516 IPW_DEBUG_LED("Enabling LED control.\n");
1517 priv->config &= ~CFG_NO_LED;
1518 ipw_led_init(priv);
1519 }
1520
1521 IPW_DEBUG_INFO("exit\n");
1522 return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528 struct device_attribute *attr, char *buf)
1529 {
1530 struct ipw_priv *p = d->driver_data;
1531 return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537 char *buf)
1538 {
1539 struct ipw_priv *p = d->driver_data;
1540 return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546 struct device_attribute *attr, char *buf)
1547 {
1548 struct ipw_priv *priv = d->driver_data;
1549 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555 struct device_attribute *attr, char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569 char *buf)
1570 {
1571 u32 len = sizeof(u32), tmp = 0;
1572 struct ipw_priv *p = d->driver_data;
1573
1574 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575 return 0;
1576
1577 return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583 * Add a device attribute to view/control the delay between eeprom
1584 * operations.
1585 */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590 return sprintf(buf, "%i\n", n);
1591 }
1592 static ssize_t store_eeprom_delay(struct device *d,
1593 struct device_attribute *attr,
1594 const char *buf, size_t count)
1595 {
1596 struct ipw_priv *p = d->driver_data;
1597 sscanf(buf, "%i", &p->eeprom_delay);
1598 return strnlen(buf, count);
1599 }
1600
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602 show_eeprom_delay, store_eeprom_delay);
1603
1604 static ssize_t show_command_event_reg(struct device *d,
1605 struct device_attribute *attr, char *buf)
1606 {
1607 u32 reg = 0;
1608 struct ipw_priv *p = d->driver_data;
1609
1610 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611 return sprintf(buf, "0x%08x\n", reg);
1612 }
1613 static ssize_t store_command_event_reg(struct device *d,
1614 struct device_attribute *attr,
1615 const char *buf, size_t count)
1616 {
1617 u32 reg;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 sscanf(buf, "%x", &reg);
1621 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622 return strnlen(buf, count);
1623 }
1624
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626 show_command_event_reg, store_command_event_reg);
1627
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629 struct device_attribute *attr, char *buf)
1630 {
1631 u32 reg = 0;
1632 struct ipw_priv *p = d->driver_data;
1633
1634 reg = ipw_read_reg32(p, 0x301100);
1635 return sprintf(buf, "0x%08x\n", reg);
1636 }
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638 struct device_attribute *attr,
1639 const char *buf, size_t count)
1640 {
1641 u32 reg;
1642 struct ipw_priv *p = d->driver_data;
1643
1644 sscanf(buf, "%x", &reg);
1645 ipw_write_reg32(p, 0x301100, reg);
1646 return strnlen(buf, count);
1647 }
1648
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650 show_mem_gpio_reg, store_mem_gpio_reg);
1651
1652 static ssize_t show_indirect_dword(struct device *d,
1653 struct device_attribute *attr, char *buf)
1654 {
1655 u32 reg = 0;
1656 struct ipw_priv *priv = d->driver_data;
1657
1658 if (priv->status & STATUS_INDIRECT_DWORD)
1659 reg = ipw_read_reg32(priv, priv->indirect_dword);
1660 else
1661 reg = 0;
1662
1663 return sprintf(buf, "0x%08x\n", reg);
1664 }
1665 static ssize_t store_indirect_dword(struct device *d,
1666 struct device_attribute *attr,
1667 const char *buf, size_t count)
1668 {
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 sscanf(buf, "%x", &priv->indirect_dword);
1672 priv->status |= STATUS_INDIRECT_DWORD;
1673 return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677 show_indirect_dword, store_indirect_dword);
1678
1679 static ssize_t show_indirect_byte(struct device *d,
1680 struct device_attribute *attr, char *buf)
1681 {
1682 u8 reg = 0;
1683 struct ipw_priv *priv = d->driver_data;
1684
1685 if (priv->status & STATUS_INDIRECT_BYTE)
1686 reg = ipw_read_reg8(priv, priv->indirect_byte);
1687 else
1688 reg = 0;
1689
1690 return sprintf(buf, "0x%02x\n", reg);
1691 }
1692 static ssize_t store_indirect_byte(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1695 {
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 sscanf(buf, "%x", &priv->indirect_byte);
1699 priv->status |= STATUS_INDIRECT_BYTE;
1700 return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704 show_indirect_byte, store_indirect_byte);
1705
1706 static ssize_t show_direct_dword(struct device *d,
1707 struct device_attribute *attr, char *buf)
1708 {
1709 u32 reg = 0;
1710 struct ipw_priv *priv = d->driver_data;
1711
1712 if (priv->status & STATUS_DIRECT_DWORD)
1713 reg = ipw_read32(priv, priv->direct_dword);
1714 else
1715 reg = 0;
1716
1717 return sprintf(buf, "0x%08x\n", reg);
1718 }
1719 static ssize_t store_direct_dword(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1722 {
1723 struct ipw_priv *priv = d->driver_data;
1724
1725 sscanf(buf, "%x", &priv->direct_dword);
1726 priv->status |= STATUS_DIRECT_DWORD;
1727 return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731 show_direct_dword, store_direct_dword);
1732
1733 static int rf_kill_active(struct ipw_priv *priv)
1734 {
1735 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736 priv->status |= STATUS_RF_KILL_HW;
1737 else
1738 priv->status &= ~STATUS_RF_KILL_HW;
1739
1740 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1741 }
1742
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1744 char *buf)
1745 {
1746 /* 0 - RF kill not enabled
1747 1 - SW based RF kill active (sysfs)
1748 2 - HW based RF kill active
1749 3 - Both HW and SW baed RF kill active */
1750 struct ipw_priv *priv = d->driver_data;
1751 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752 (rf_kill_active(priv) ? 0x2 : 0x0);
1753 return sprintf(buf, "%i\n", val);
1754 }
1755
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1757 {
1758 if ((disable_radio ? 1 : 0) ==
1759 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1760 return 0;
1761
1762 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1763 disable_radio ? "OFF" : "ON");
1764
1765 if (disable_radio) {
1766 priv->status |= STATUS_RF_KILL_SW;
1767
1768 if (priv->workqueue) {
1769 cancel_delayed_work(&priv->request_scan);
1770 cancel_delayed_work(&priv->request_direct_scan);
1771 cancel_delayed_work(&priv->request_passive_scan);
1772 cancel_delayed_work(&priv->scan_event);
1773 }
1774 queue_work(priv->workqueue, &priv->down);
1775 } else {
1776 priv->status &= ~STATUS_RF_KILL_SW;
1777 if (rf_kill_active(priv)) {
1778 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779 "disabled by HW switch\n");
1780 /* Make sure the RF_KILL check timer is running */
1781 cancel_delayed_work(&priv->rf_kill);
1782 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783 round_jiffies_relative(2 * HZ));
1784 } else
1785 queue_work(priv->workqueue, &priv->up);
1786 }
1787
1788 return 1;
1789 }
1790
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792 const char *buf, size_t count)
1793 {
1794 struct ipw_priv *priv = d->driver_data;
1795
1796 ipw_radio_kill_sw(priv, buf[0] == '1');
1797
1798 return count;
1799 }
1800
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1802
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1804 char *buf)
1805 {
1806 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807 int pos = 0, len = 0;
1808 if (priv->config & CFG_SPEED_SCAN) {
1809 while (priv->speed_scan[pos] != 0)
1810 len += sprintf(&buf[len], "%d ",
1811 priv->speed_scan[pos++]);
1812 return len + sprintf(&buf[len], "\n");
1813 }
1814
1815 return sprintf(buf, "0\n");
1816 }
1817
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819 const char *buf, size_t count)
1820 {
1821 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822 int channel, pos = 0;
1823 const char *p = buf;
1824
1825 /* list of space separated channels to scan, optionally ending with 0 */
1826 while ((channel = simple_strtol(p, NULL, 0))) {
1827 if (pos == MAX_SPEED_SCAN - 1) {
1828 priv->speed_scan[pos] = 0;
1829 break;
1830 }
1831
1832 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833 priv->speed_scan[pos++] = channel;
1834 else
1835 IPW_WARNING("Skipping invalid channel request: %d\n",
1836 channel);
1837 p = strchr(p, ' ');
1838 if (!p)
1839 break;
1840 while (*p == ' ' || *p == '\t')
1841 p++;
1842 }
1843
1844 if (pos == 0)
1845 priv->config &= ~CFG_SPEED_SCAN;
1846 else {
1847 priv->speed_scan_pos = 0;
1848 priv->config |= CFG_SPEED_SCAN;
1849 }
1850
1851 return count;
1852 }
1853
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1855 store_speed_scan);
1856
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1858 char *buf)
1859 {
1860 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1862 }
1863
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865 const char *buf, size_t count)
1866 {
1867 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1868 if (buf[0] == '1')
1869 priv->config |= CFG_NET_STATS;
1870 else
1871 priv->config &= ~CFG_NET_STATS;
1872
1873 return count;
1874 }
1875
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877 show_net_stats, store_net_stats);
1878
1879 static ssize_t show_channels(struct device *d,
1880 struct device_attribute *attr,
1881 char *buf)
1882 {
1883 struct ipw_priv *priv = dev_get_drvdata(d);
1884 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1885 int len = 0, i;
1886
1887 len = sprintf(&buf[len],
1888 "Displaying %d channels in 2.4Ghz band "
1889 "(802.11bg):\n", geo->bg_channels);
1890
1891 for (i = 0; i < geo->bg_channels; i++) {
1892 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1893 geo->bg[i].channel,
1894 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895 " (radar spectrum)" : "",
1896 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1898 ? "" : ", IBSS",
1899 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900 "passive only" : "active/passive",
1901 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1902 "B" : "B/G");
1903 }
1904
1905 len += sprintf(&buf[len],
1906 "Displaying %d channels in 5.2Ghz band "
1907 "(802.11a):\n", geo->a_channels);
1908 for (i = 0; i < geo->a_channels; i++) {
1909 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1910 geo->a[i].channel,
1911 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912 " (radar spectrum)" : "",
1913 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1915 ? "" : ", IBSS",
1916 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917 "passive only" : "active/passive");
1918 }
1919
1920 return len;
1921 }
1922
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1924
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1926 {
1927 union iwreq_data wrqu;
1928 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929 if (priv->status & STATUS_ASSOCIATED)
1930 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1931 else
1932 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1934 }
1935
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1937 {
1938 u32 inta, inta_mask, handled = 0;
1939 unsigned long flags;
1940 int rc = 0;
1941
1942 spin_lock_irqsave(&priv->irq_lock, flags);
1943
1944 inta = ipw_read32(priv, IPW_INTA_RW);
1945 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1947
1948 /* Add any cached INTA values that need to be handled */
1949 inta |= priv->isr_inta;
1950
1951 spin_unlock_irqrestore(&priv->irq_lock, flags);
1952
1953 spin_lock_irqsave(&priv->lock, flags);
1954
1955 /* handle all the justifications for the interrupt */
1956 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1957 ipw_rx(priv);
1958 handled |= IPW_INTA_BIT_RX_TRANSFER;
1959 }
1960
1961 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962 IPW_DEBUG_HC("Command completed.\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964 priv->status &= ~STATUS_HCMD_ACTIVE;
1965 wake_up_interruptible(&priv->wait_command_queue);
1966 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1967 }
1968
1969 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1973 }
1974
1975 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1979 }
1980
1981 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1985 }
1986
1987 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1991 }
1992
1993 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994 IPW_WARNING("STATUS_CHANGE\n");
1995 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1996 }
1997
1998 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2001 }
2002
2003 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004 IPW_WARNING("HOST_CMD_DONE\n");
2005 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2006 }
2007
2008 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2011 }
2012
2013 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014 IPW_WARNING("PHY_OFF_DONE\n");
2015 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2016 }
2017
2018 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020 priv->status |= STATUS_RF_KILL_HW;
2021 wake_up_interruptible(&priv->wait_command_queue);
2022 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023 cancel_delayed_work(&priv->request_scan);
2024 cancel_delayed_work(&priv->request_direct_scan);
2025 cancel_delayed_work(&priv->request_passive_scan);
2026 cancel_delayed_work(&priv->scan_event);
2027 schedule_work(&priv->link_down);
2028 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2030 }
2031
2032 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033 IPW_WARNING("Firmware error detected. Restarting.\n");
2034 if (priv->error) {
2035 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037 struct ipw_fw_error *error =
2038 ipw_alloc_error_log(priv);
2039 ipw_dump_error_log(priv, error);
2040 kfree(error);
2041 }
2042 } else {
2043 priv->error = ipw_alloc_error_log(priv);
2044 if (priv->error)
2045 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2046 else
2047 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2048 "log.\n");
2049 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050 ipw_dump_error_log(priv, priv->error);
2051 }
2052
2053 /* XXX: If hardware encryption is for WPA/WPA2,
2054 * we have to notify the supplicant. */
2055 if (priv->ieee->sec.encrypt) {
2056 priv->status &= ~STATUS_ASSOCIATED;
2057 notify_wx_assoc_event(priv);
2058 }
2059
2060 /* Keep the restart process from trying to send host
2061 * commands by clearing the INIT status bit */
2062 priv->status &= ~STATUS_INIT;
2063
2064 /* Cancel currently queued command. */
2065 priv->status &= ~STATUS_HCMD_ACTIVE;
2066 wake_up_interruptible(&priv->wait_command_queue);
2067
2068 queue_work(priv->workqueue, &priv->adapter_restart);
2069 handled |= IPW_INTA_BIT_FATAL_ERROR;
2070 }
2071
2072 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073 IPW_ERROR("Parity error\n");
2074 handled |= IPW_INTA_BIT_PARITY_ERROR;
2075 }
2076
2077 if (handled != inta) {
2078 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2079 }
2080
2081 spin_unlock_irqrestore(&priv->lock, flags);
2082
2083 /* enable all interrupts */
2084 ipw_enable_interrupts(priv);
2085 }
2086
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2089 {
2090 switch (cmd) {
2091 IPW_CMD(HOST_COMPLETE);
2092 IPW_CMD(POWER_DOWN);
2093 IPW_CMD(SYSTEM_CONFIG);
2094 IPW_CMD(MULTICAST_ADDRESS);
2095 IPW_CMD(SSID);
2096 IPW_CMD(ADAPTER_ADDRESS);
2097 IPW_CMD(PORT_TYPE);
2098 IPW_CMD(RTS_THRESHOLD);
2099 IPW_CMD(FRAG_THRESHOLD);
2100 IPW_CMD(POWER_MODE);
2101 IPW_CMD(WEP_KEY);
2102 IPW_CMD(TGI_TX_KEY);
2103 IPW_CMD(SCAN_REQUEST);
2104 IPW_CMD(SCAN_REQUEST_EXT);
2105 IPW_CMD(ASSOCIATE);
2106 IPW_CMD(SUPPORTED_RATES);
2107 IPW_CMD(SCAN_ABORT);
2108 IPW_CMD(TX_FLUSH);
2109 IPW_CMD(QOS_PARAMETERS);
2110 IPW_CMD(DINO_CONFIG);
2111 IPW_CMD(RSN_CAPABILITIES);
2112 IPW_CMD(RX_KEY);
2113 IPW_CMD(CARD_DISABLE);
2114 IPW_CMD(SEED_NUMBER);
2115 IPW_CMD(TX_POWER);
2116 IPW_CMD(COUNTRY_INFO);
2117 IPW_CMD(AIRONET_INFO);
2118 IPW_CMD(AP_TX_POWER);
2119 IPW_CMD(CCKM_INFO);
2120 IPW_CMD(CCX_VER_INFO);
2121 IPW_CMD(SET_CALIBRATION);
2122 IPW_CMD(SENSITIVITY_CALIB);
2123 IPW_CMD(RETRY_LIMIT);
2124 IPW_CMD(IPW_PRE_POWER_DOWN);
2125 IPW_CMD(VAP_BEACON_TEMPLATE);
2126 IPW_CMD(VAP_DTIM_PERIOD);
2127 IPW_CMD(EXT_SUPPORTED_RATES);
2128 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129 IPW_CMD(VAP_QUIET_INTERVALS);
2130 IPW_CMD(VAP_CHANNEL_SWITCH);
2131 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133 IPW_CMD(VAP_CF_PARAM_SET);
2134 IPW_CMD(VAP_SET_BEACONING_STATE);
2135 IPW_CMD(MEASUREMENT);
2136 IPW_CMD(POWER_CAPABILITY);
2137 IPW_CMD(SUPPORTED_CHANNELS);
2138 IPW_CMD(TPC_REPORT);
2139 IPW_CMD(WME_INFO);
2140 IPW_CMD(PRODUCTION_COMMAND);
2141 default:
2142 return "UNKNOWN";
2143 }
2144 }
2145
2146 #define HOST_COMPLETE_TIMEOUT HZ
2147
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2149 {
2150 int rc = 0;
2151 unsigned long flags;
2152
2153 spin_lock_irqsave(&priv->lock, flags);
2154 if (priv->status & STATUS_HCMD_ACTIVE) {
2155 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156 get_cmd_string(cmd->cmd));
2157 spin_unlock_irqrestore(&priv->lock, flags);
2158 return -EAGAIN;
2159 }
2160
2161 priv->status |= STATUS_HCMD_ACTIVE;
2162
2163 if (priv->cmdlog) {
2164 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2168 cmd->len);
2169 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2170 }
2171
2172 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2174 priv->status);
2175
2176 #ifndef DEBUG_CMD_WEP_KEY
2177 if (cmd->cmd == IPW_CMD_WEP_KEY)
2178 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2179 else
2180 #endif
2181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2182
2183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2184 if (rc) {
2185 priv->status &= ~STATUS_HCMD_ACTIVE;
2186 IPW_ERROR("Failed to send %s: Reason %d\n",
2187 get_cmd_string(cmd->cmd), rc);
2188 spin_unlock_irqrestore(&priv->lock, flags);
2189 goto exit;
2190 }
2191 spin_unlock_irqrestore(&priv->lock, flags);
2192
2193 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2194 !(priv->
2195 status & STATUS_HCMD_ACTIVE),
2196 HOST_COMPLETE_TIMEOUT);
2197 if (rc == 0) {
2198 spin_lock_irqsave(&priv->lock, flags);
2199 if (priv->status & STATUS_HCMD_ACTIVE) {
2200 IPW_ERROR("Failed to send %s: Command timed out.\n",
2201 get_cmd_string(cmd->cmd));
2202 priv->status &= ~STATUS_HCMD_ACTIVE;
2203 spin_unlock_irqrestore(&priv->lock, flags);
2204 rc = -EIO;
2205 goto exit;
2206 }
2207 spin_unlock_irqrestore(&priv->lock, flags);
2208 } else
2209 rc = 0;
2210
2211 if (priv->status & STATUS_RF_KILL_HW) {
2212 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213 get_cmd_string(cmd->cmd));
2214 rc = -EIO;
2215 goto exit;
2216 }
2217
2218 exit:
2219 if (priv->cmdlog) {
2220 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221 priv->cmdlog_pos %= priv->cmdlog_len;
2222 }
2223 return rc;
2224 }
2225
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2227 {
2228 struct host_cmd cmd = {
2229 .cmd = command,
2230 };
2231
2232 return __ipw_send_cmd(priv, &cmd);
2233 }
2234
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2236 void *data)
2237 {
2238 struct host_cmd cmd = {
2239 .cmd = command,
2240 .len = len,
2241 .param = data,
2242 };
2243
2244 return __ipw_send_cmd(priv, &cmd);
2245 }
2246
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2248 {
2249 if (!priv) {
2250 IPW_ERROR("Invalid args\n");
2251 return -1;
2252 }
2253
2254 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2255 }
2256
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2258 {
2259 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260 sizeof(priv->sys_config),
2261 &priv->sys_config);
2262 }
2263
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2265 {
2266 if (!priv || !ssid) {
2267 IPW_ERROR("Invalid args\n");
2268 return -1;
2269 }
2270
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2272 ssid);
2273 }
2274
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2276 {
2277 if (!priv || !mac) {
2278 IPW_ERROR("Invalid args\n");
2279 return -1;
2280 }
2281
2282 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283 priv->net_dev->name, mac);
2284
2285 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2286 }
2287
2288 /*
2289 * NOTE: This must be executed from our workqueue as it results in udelay
2290 * being called which may corrupt the keyboard if executed on default
2291 * workqueue
2292 */
2293 static void ipw_adapter_restart(void *adapter)
2294 {
2295 struct ipw_priv *priv = adapter;
2296
2297 if (priv->status & STATUS_RF_KILL_MASK)
2298 return;
2299
2300 ipw_down(priv);
2301
2302 if (priv->assoc_network &&
2303 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304 ipw_remove_current_network(priv);
2305
2306 if (ipw_up(priv)) {
2307 IPW_ERROR("Failed to up device\n");
2308 return;
2309 }
2310 }
2311
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2313 {
2314 struct ipw_priv *priv =
2315 container_of(work, struct ipw_priv, adapter_restart);
2316 mutex_lock(&priv->mutex);
2317 ipw_adapter_restart(priv);
2318 mutex_unlock(&priv->mutex);
2319 }
2320
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2322
2323 static void ipw_scan_check(void *data)
2324 {
2325 struct ipw_priv *priv = data;
2326 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328 "adapter after (%dms).\n",
2329 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330 queue_work(priv->workqueue, &priv->adapter_restart);
2331 }
2332 }
2333
2334 static void ipw_bg_scan_check(struct work_struct *work)
2335 {
2336 struct ipw_priv *priv =
2337 container_of(work, struct ipw_priv, scan_check.work);
2338 mutex_lock(&priv->mutex);
2339 ipw_scan_check(priv);
2340 mutex_unlock(&priv->mutex);
2341 }
2342
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344 struct ipw_scan_request_ext *request)
2345 {
2346 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347 sizeof(*request), request);
2348 }
2349
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2351 {
2352 if (!priv) {
2353 IPW_ERROR("Invalid args\n");
2354 return -1;
2355 }
2356
2357 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2358 }
2359
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2361 {
2362 struct ipw_sensitivity_calib calib = {
2363 .beacon_rssi_raw = cpu_to_le16(sens),
2364 };
2365
2366 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2367 &calib);
2368 }
2369
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371 struct ipw_associate *associate)
2372 {
2373 if (!priv || !associate) {
2374 IPW_ERROR("Invalid args\n");
2375 return -1;
2376 }
2377
2378 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2379 associate);
2380 }
2381
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383 struct ipw_supported_rates *rates)
2384 {
2385 if (!priv || !rates) {
2386 IPW_ERROR("Invalid args\n");
2387 return -1;
2388 }
2389
2390 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2391 rates);
2392 }
2393
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2395 {
2396 u32 val;
2397
2398 if (!priv) {
2399 IPW_ERROR("Invalid args\n");
2400 return -1;
2401 }
2402
2403 get_random_bytes(&val, sizeof(val));
2404
2405 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2406 }
2407
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2409 {
2410 __le32 v = cpu_to_le32(phy_off);
2411 if (!priv) {
2412 IPW_ERROR("Invalid args\n");
2413 return -1;
2414 }
2415
2416 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2417 }
2418
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2420 {
2421 if (!priv || !power) {
2422 IPW_ERROR("Invalid args\n");
2423 return -1;
2424 }
2425
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2427 }
2428
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2430 {
2431 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432 struct ipw_tx_power tx_power;
2433 s8 max_power;
2434 int i;
2435
2436 memset(&tx_power, 0, sizeof(tx_power));
2437
2438 /* configure device for 'G' band */
2439 tx_power.ieee_mode = IPW_G_MODE;
2440 tx_power.num_channels = geo->bg_channels;
2441 for (i = 0; i < geo->bg_channels; i++) {
2442 max_power = geo->bg[i].max_power;
2443 tx_power.channels_tx_power[i].channel_number =
2444 geo->bg[i].channel;
2445 tx_power.channels_tx_power[i].tx_power = max_power ?
2446 min(max_power, priv->tx_power) : priv->tx_power;
2447 }
2448 if (ipw_send_tx_power(priv, &tx_power))
2449 return -EIO;
2450
2451 /* configure device to also handle 'B' band */
2452 tx_power.ieee_mode = IPW_B_MODE;
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2455
2456 /* configure device to also handle 'A' band */
2457 if (priv->ieee->abg_true) {
2458 tx_power.ieee_mode = IPW_A_MODE;
2459 tx_power.num_channels = geo->a_channels;
2460 for (i = 0; i < tx_power.num_channels; i++) {
2461 max_power = geo->a[i].max_power;
2462 tx_power.channels_tx_power[i].channel_number =
2463 geo->a[i].channel;
2464 tx_power.channels_tx_power[i].tx_power = max_power ?
2465 min(max_power, priv->tx_power) : priv->tx_power;
2466 }
2467 if (ipw_send_tx_power(priv, &tx_power))
2468 return -EIO;
2469 }
2470 return 0;
2471 }
2472
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2474 {
2475 struct ipw_rts_threshold rts_threshold = {
2476 .rts_threshold = cpu_to_le16(rts),
2477 };
2478
2479 if (!priv) {
2480 IPW_ERROR("Invalid args\n");
2481 return -1;
2482 }
2483
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485 sizeof(rts_threshold), &rts_threshold);
2486 }
2487
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2489 {
2490 struct ipw_frag_threshold frag_threshold = {
2491 .frag_threshold = cpu_to_le16(frag),
2492 };
2493
2494 if (!priv) {
2495 IPW_ERROR("Invalid args\n");
2496 return -1;
2497 }
2498
2499 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500 sizeof(frag_threshold), &frag_threshold);
2501 }
2502
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2504 {
2505 __le32 param;
2506
2507 if (!priv) {
2508 IPW_ERROR("Invalid args\n");
2509 return -1;
2510 }
2511
2512 /* If on battery, set to 3, if AC set to CAM, else user
2513 * level */
2514 switch (mode) {
2515 case IPW_POWER_BATTERY:
2516 param = cpu_to_le32(IPW_POWER_INDEX_3);
2517 break;
2518 case IPW_POWER_AC:
2519 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2520 break;
2521 default:
2522 param = cpu_to_le32(mode);
2523 break;
2524 }
2525
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2527 &param);
2528 }
2529
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2531 {
2532 struct ipw_retry_limit retry_limit = {
2533 .short_retry_limit = slimit,
2534 .long_retry_limit = llimit
2535 };
2536
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2540 }
2541
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2543 &retry_limit);
2544 }
2545
2546 /*
2547 * The IPW device contains a Microwire compatible EEPROM that stores
2548 * various data like the MAC address. Usually the firmware has exclusive
2549 * access to the eeprom, but during device initialization (before the
2550 * device driver has sent the HostComplete command to the firmware) the
2551 * device driver has read access to the EEPROM by way of indirect addressing
2552 * through a couple of memory mapped registers.
2553 *
2554 * The following is a simplified implementation for pulling data out of the
2555 * the eeprom, along with some helper functions to find information in
2556 * the per device private data's copy of the eeprom.
2557 *
2558 * NOTE: To better understand how these functions work (i.e what is a chip
2559 * select and why do have to keep driving the eeprom clock?), read
2560 * just about any data sheet for a Microwire compatible EEPROM.
2561 */
2562
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2565 {
2566 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2567
2568 /* the eeprom requires some time to complete the operation */
2569 udelay(p->eeprom_delay);
2570
2571 return;
2572 }
2573
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2576 {
2577 eeprom_write_reg(priv, 0);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 }
2582
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2585 {
2586 eeprom_write_reg(priv, EEPROM_BIT_CS);
2587 eeprom_write_reg(priv, 0);
2588 eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 }
2590
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2593 {
2594 int d = (bit ? EEPROM_BIT_DI : 0);
2595 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 }
2598
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2601 {
2602 int i;
2603
2604 eeprom_cs(priv);
2605 eeprom_write_bit(priv, 1);
2606 eeprom_write_bit(priv, op & 2);
2607 eeprom_write_bit(priv, op & 1);
2608 for (i = 7; i >= 0; i--) {
2609 eeprom_write_bit(priv, addr & (1 << i));
2610 }
2611 }
2612
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2615 {
2616 int i;
2617 u16 r = 0;
2618
2619 /* Send READ Opcode */
2620 eeprom_op(priv, EEPROM_CMD_READ, addr);
2621
2622 /* Send dummy bit */
2623 eeprom_write_reg(priv, EEPROM_BIT_CS);
2624
2625 /* Read the byte off the eeprom one bit at a time */
2626 for (i = 0; i < 16; i++) {
2627 u32 data = 0;
2628 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632 }
2633
2634 /* Send another dummy bit */
2635 eeprom_write_reg(priv, 0);
2636 eeprom_disable_cs(priv);
2637
2638 return r;
2639 }
2640
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2644 {
2645 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2646 }
2647
2648 /*
2649 * Either the device driver (i.e. the host) or the firmware can
2650 * load eeprom data into the designated region in SRAM. If neither
2651 * happens then the FW will shutdown with a fatal error.
2652 *
2653 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654 * bit needs region of shared SRAM needs to be non-zero.
2655 */
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2657 {
2658 int i;
2659 __le16 *eeprom = (__le16 *) priv->eeprom;
2660
2661 IPW_DEBUG_TRACE(">>\n");
2662
2663 /* read entire contents of eeprom into private buffer */
2664 for (i = 0; i < 128; i++)
2665 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2666
2667 /*
2668 If the data looks correct, then copy it to our private
2669 copy. Otherwise let the firmware know to perform the operation
2670 on its own.
2671 */
2672 if (priv->eeprom[EEPROM_VERSION] != 0) {
2673 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2674
2675 /* write the eeprom data to sram */
2676 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2678
2679 /* Do not load eeprom data on fatal error or suspend */
2680 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2681 } else {
2682 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2683
2684 /* Load eeprom data on fatal error or suspend */
2685 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686 }
2687
2688 IPW_DEBUG_TRACE("<<\n");
2689 }
2690
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2692 {
2693 count >>= 2;
2694 if (!count)
2695 return;
2696 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2697 while (count--)
2698 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 }
2700
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2702 {
2703 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704 CB_NUMBER_OF_ELEMENTS_SMALL *
2705 sizeof(struct command_block));
2706 }
2707
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 { /* start dma engine but no transfers yet */
2710
2711 IPW_DEBUG_FW(">> : \n");
2712
2713 /* Start the dma */
2714 ipw_fw_dma_reset_command_blocks(priv);
2715
2716 /* Write CB base address */
2717 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2718
2719 IPW_DEBUG_FW("<< : \n");
2720 return 0;
2721 }
2722
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2724 {
2725 u32 control = 0;
2726
2727 IPW_DEBUG_FW(">> :\n");
2728
2729 /* set the Stop and Abort bit */
2730 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732 priv->sram_desc.last_cb_index = 0;
2733
2734 IPW_DEBUG_FW("<< \n");
2735 }
2736
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738 struct command_block *cb)
2739 {
2740 u32 address =
2741 IPW_SHARED_SRAM_DMA_CONTROL +
2742 (sizeof(struct command_block) * index);
2743 IPW_DEBUG_FW(">> :\n");
2744
2745 ipw_write_indirect(priv, address, (u8 *) cb,
2746 (int)sizeof(struct command_block));
2747
2748 IPW_DEBUG_FW("<< :\n");
2749 return 0;
2750
2751 }
2752
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2754 {
2755 u32 control = 0;
2756 u32 index = 0;
2757
2758 IPW_DEBUG_FW(">> :\n");
2759
2760 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761 ipw_fw_dma_write_command_block(priv, index,
2762 &priv->sram_desc.cb_list[index]);
2763
2764 /* Enable the DMA in the CSR register */
2765 ipw_clear_bit(priv, IPW_RESET_REG,
2766 IPW_RESET_REG_MASTER_DISABLED |
2767 IPW_RESET_REG_STOP_MASTER);
2768
2769 /* Set the Start bit. */
2770 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2772
2773 IPW_DEBUG_FW("<< :\n");
2774 return 0;
2775 }
2776
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2778 {
2779 u32 address;
2780 u32 register_value = 0;
2781 u32 cb_fields_address = 0;
2782
2783 IPW_DEBUG_FW(">> :\n");
2784 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2786
2787 /* Read the DMA Controlor register */
2788 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2790
2791 /* Print the CB values */
2792 cb_fields_address = address;
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2795
2796 cb_fields_address += sizeof(u32);
2797 register_value = ipw_read_reg32(priv, cb_fields_address);
2798 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2799
2800 cb_fields_address += sizeof(u32);
2801 register_value = ipw_read_reg32(priv, cb_fields_address);
2802 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2803 register_value);
2804
2805 cb_fields_address += sizeof(u32);
2806 register_value = ipw_read_reg32(priv, cb_fields_address);
2807 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2808
2809 IPW_DEBUG_FW(">> :\n");
2810 }
2811
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2813 {
2814 u32 current_cb_address = 0;
2815 u32 current_cb_index = 0;
2816
2817 IPW_DEBUG_FW("<< :\n");
2818 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2819
2820 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821 sizeof(struct command_block);
2822
2823 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824 current_cb_index, current_cb_address);
2825
2826 IPW_DEBUG_FW(">> :\n");
2827 return current_cb_index;
2828
2829 }
2830
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2832 u32 src_address,
2833 u32 dest_address,
2834 u32 length,
2835 int interrupt_enabled, int is_last)
2836 {
2837
2838 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2840 CB_DEST_SIZE_LONG;
2841 struct command_block *cb;
2842 u32 last_cb_element = 0;
2843
2844 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845 src_address, dest_address, length);
2846
2847 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2848 return -1;
2849
2850 last_cb_element = priv->sram_desc.last_cb_index;
2851 cb = &priv->sram_desc.cb_list[last_cb_element];
2852 priv->sram_desc.last_cb_index++;
2853
2854 /* Calculate the new CB control word */
2855 if (interrupt_enabled)
2856 control |= CB_INT_ENABLED;
2857
2858 if (is_last)
2859 control |= CB_LAST_VALID;
2860
2861 control |= length;
2862
2863 /* Calculate the CB Element's checksum value */
2864 cb->status = control ^ src_address ^ dest_address;
2865
2866 /* Copy the Source and Destination addresses */
2867 cb->dest_addr = dest_address;
2868 cb->source_addr = src_address;
2869
2870 /* Copy the Control Word last */
2871 cb->control = control;
2872
2873 return 0;
2874 }
2875
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877 u32 src_phys, u32 dest_address, u32 length)
2878 {
2879 u32 bytes_left = length;
2880 u32 src_offset = 0;
2881 u32 dest_offset = 0;
2882 int status = 0;
2883 IPW_DEBUG_FW(">> \n");
2884 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885 src_phys, dest_address, length);
2886 while (bytes_left > CB_MAX_LENGTH) {
2887 status = ipw_fw_dma_add_command_block(priv,
2888 src_phys + src_offset,
2889 dest_address +
2890 dest_offset,
2891 CB_MAX_LENGTH, 0, 0);
2892 if (status) {
2893 IPW_DEBUG_FW_INFO(": Failed\n");
2894 return -1;
2895 } else
2896 IPW_DEBUG_FW_INFO(": Added new cb\n");
2897
2898 src_offset += CB_MAX_LENGTH;
2899 dest_offset += CB_MAX_LENGTH;
2900 bytes_left -= CB_MAX_LENGTH;
2901 }
2902
2903 /* add the buffer tail */
2904 if (bytes_left > 0) {
2905 status =
2906 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907 dest_address + dest_offset,
2908 bytes_left, 0, 0);
2909 if (status) {
2910 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2911 return -1;
2912 } else
2913 IPW_DEBUG_FW_INFO
2914 (": Adding new cb - the buffer tail\n");
2915 }
2916
2917 IPW_DEBUG_FW("<< \n");
2918 return 0;
2919 }
2920
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2922 {
2923 u32 current_index = 0, previous_index;
2924 u32 watchdog = 0;
2925
2926 IPW_DEBUG_FW(">> : \n");
2927
2928 current_index = ipw_fw_dma_command_block_index(priv);
2929 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930 (int)priv->sram_desc.last_cb_index);
2931
2932 while (current_index < priv->sram_desc.last_cb_index) {
2933 udelay(50);
2934 previous_index = current_index;
2935 current_index = ipw_fw_dma_command_block_index(priv);
2936
2937 if (previous_index < current_index) {
2938 watchdog = 0;
2939 continue;
2940 }
2941 if (++watchdog > 400) {
2942 IPW_DEBUG_FW_INFO("Timeout\n");
2943 ipw_fw_dma_dump_command_block(priv);
2944 ipw_fw_dma_abort(priv);
2945 return -1;
2946 }
2947 }
2948
2949 ipw_fw_dma_abort(priv);
2950
2951 /*Disable the DMA in the CSR register */
2952 ipw_set_bit(priv, IPW_RESET_REG,
2953 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2954
2955 IPW_DEBUG_FW("<< dmaWaitSync \n");
2956 return 0;
2957 }
2958
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2960 {
2961 struct list_head *element, *safe;
2962 struct ieee80211_network *network = NULL;
2963 unsigned long flags;
2964
2965 spin_lock_irqsave(&priv->ieee->lock, flags);
2966 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967 network = list_entry(element, struct ieee80211_network, list);
2968 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2969 list_del(element);
2970 list_add_tail(&network->list,
2971 &priv->ieee->network_free_list);
2972 }
2973 }
2974 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2975 }
2976
2977 /**
2978 * Check that card is still alive.
2979 * Reads debug register from domain0.
2980 * If card is present, pre-defined value should
2981 * be found there.
2982 *
2983 * @param priv
2984 * @return 1 if card is present, 0 otherwise
2985 */
2986 static inline int ipw_alive(struct ipw_priv *priv)
2987 {
2988 return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 }
2990
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2993 int timeout)
2994 {
2995 int i = 0;
2996
2997 do {
2998 if ((ipw_read32(priv, addr) & mask) == mask)
2999 return i;
3000 mdelay(10);
3001 i += 10;
3002 } while (i < timeout);
3003
3004 return -ETIME;
3005 }
3006
3007 /* These functions load the firmware and micro code for the operation of
3008 * the ipw hardware. It assumes the buffer has all the bits for the
3009 * image and the caller is handling the memory allocation and clean up.
3010 */
3011
3012 static int ipw_stop_master(struct ipw_priv *priv)
3013 {
3014 int rc;
3015
3016 IPW_DEBUG_TRACE(">> \n");
3017 /* stop master. typical delay - 0 */
3018 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020 /* timeout is in msec, polled in 10-msec quanta */
3021 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022 IPW_RESET_REG_MASTER_DISABLED, 100);
3023 if (rc < 0) {
3024 IPW_ERROR("wait for stop master failed after 100ms\n");
3025 return -1;
3026 }
3027
3028 IPW_DEBUG_INFO("stop master %dms\n", rc);
3029
3030 return rc;
3031 }
3032
3033 static void ipw_arc_release(struct ipw_priv *priv)
3034 {
3035 IPW_DEBUG_TRACE(">> \n");
3036 mdelay(5);
3037
3038 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3039
3040 /* no one knows timing, for safety add some delay */
3041 mdelay(5);
3042 }
3043
3044 struct fw_chunk {
3045 __le32 address;
3046 __le32 length;
3047 };
3048
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3050 {
3051 int rc = 0, i, addr;
3052 u8 cr = 0;
3053 __le16 *image;
3054
3055 image = (__le16 *) data;
3056
3057 IPW_DEBUG_TRACE(">> \n");
3058
3059 rc = ipw_stop_master(priv);
3060
3061 if (rc < 0)
3062 return rc;
3063
3064 for (addr = IPW_SHARED_LOWER_BOUND;
3065 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066 ipw_write32(priv, addr, 0);
3067 }
3068
3069 /* no ucode (yet) */
3070 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071 /* destroy DMA queues */
3072 /* reset sequence */
3073
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075 ipw_arc_release(priv);
3076 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3077 mdelay(1);
3078
3079 /* reset PHY */
3080 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3081 mdelay(1);
3082
3083 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3084 mdelay(1);
3085
3086 /* enable ucode store */
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3089 mdelay(1);
3090
3091 /* write ucode */
3092 /**
3093 * @bug
3094 * Do NOT set indirect address register once and then
3095 * store data to indirect data register in the loop.
3096 * It seems very reasonable, but in this case DINO do not
3097 * accept ucode. It is essential to set address each time.
3098 */
3099 /* load new ipw uCode */
3100 for (i = 0; i < len / 2; i++)
3101 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102 le16_to_cpu(image[i]));
3103
3104 /* enable DINO */
3105 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3107
3108 /* this is where the igx / win driver deveates from the VAP driver. */
3109
3110 /* wait for alive response */
3111 for (i = 0; i < 100; i++) {
3112 /* poll for incoming data */
3113 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114 if (cr & DINO_RXFIFO_DATA)
3115 break;
3116 mdelay(1);
3117 }
3118
3119 if (cr & DINO_RXFIFO_DATA) {
3120 /* alive_command_responce size is NOT multiple of 4 */
3121 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3122
3123 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124 response_buffer[i] =
3125 cpu_to_le32(ipw_read_reg32(priv,
3126 IPW_BASEBAND_RX_FIFO_READ));
3127 memcpy(&priv->dino_alive, response_buffer,
3128 sizeof(priv->dino_alive));
3129 if (priv->dino_alive.alive_command == 1
3130 && priv->dino_alive.ucode_valid == 1) {
3131 rc = 0;
3132 IPW_DEBUG_INFO
3133 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134 "of %02d/%02d/%02d %02d:%02d\n",
3135 priv->dino_alive.software_revision,
3136 priv->dino_alive.software_revision,
3137 priv->dino_alive.device_identifier,
3138 priv->dino_alive.device_identifier,
3139 priv->dino_alive.time_stamp[0],
3140 priv->dino_alive.time_stamp[1],
3141 priv->dino_alive.time_stamp[2],
3142 priv->dino_alive.time_stamp[3],
3143 priv->dino_alive.time_stamp[4]);
3144 } else {
3145 IPW_DEBUG_INFO("Microcode is not alive\n");
3146 rc = -EINVAL;
3147 }
3148 } else {
3149 IPW_DEBUG_INFO("No alive response from DINO\n");
3150 rc = -ETIME;
3151 }
3152
3153 /* disable DINO, otherwise for some reason
3154 firmware have problem getting alive resp. */
3155 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3156
3157 return rc;
3158 }
3159
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3161 {
3162 int rc = -1;
3163 int offset = 0;
3164 struct fw_chunk *chunk;
3165 dma_addr_t shared_phys;
3166 u8 *shared_virt;
3167
3168 IPW_DEBUG_TRACE("<< : \n");
3169 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3170
3171 if (!shared_virt)
3172 return -ENOMEM;
3173
3174 memmove(shared_virt, data, len);
3175
3176 /* Start the Dma */
3177 rc = ipw_fw_dma_enable(priv);
3178
3179 /* the DMA is already ready this would be a bug. */
3180 BUG_ON(priv->sram_desc.last_cb_index > 0);
3181
3182 do {
3183 chunk = (struct fw_chunk *)(data + offset);
3184 offset += sizeof(struct fw_chunk);
3185 /* build DMA packet and queue up for sending */
3186 /* dma to chunk->address, the chunk->length bytes from data +
3187 * offeset*/
3188 /* Dma loading */
3189 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3190 le32_to_cpu(chunk->address),
3191 le32_to_cpu(chunk->length));
3192 if (rc) {
3193 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3194 goto out;
3195 }
3196
3197 offset += le32_to_cpu(chunk->length);
3198 } while (offset < len);
3199
3200 /* Run the DMA and wait for the answer */
3201 rc = ipw_fw_dma_kick(priv);
3202 if (rc) {
3203 IPW_ERROR("dmaKick Failed\n");
3204 goto out;
3205 }
3206
3207 rc = ipw_fw_dma_wait(priv);
3208 if (rc) {
3209 IPW_ERROR("dmaWaitSync Failed\n");
3210 goto out;
3211 }
3212 out:
3213 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3214 return rc;
3215 }
3216
3217 /* stop nic */
3218 static int ipw_stop_nic(struct ipw_priv *priv)
3219 {
3220 int rc = 0;
3221
3222 /* stop */
3223 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3224
3225 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3226 IPW_RESET_REG_MASTER_DISABLED, 500);
3227 if (rc < 0) {
3228 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3229 return rc;
3230 }
3231
3232 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3233
3234 return rc;
3235 }
3236
3237 static void ipw_start_nic(struct ipw_priv *priv)
3238 {
3239 IPW_DEBUG_TRACE(">>\n");
3240
3241 /* prvHwStartNic release ARC */
3242 ipw_clear_bit(priv, IPW_RESET_REG,
3243 IPW_RESET_REG_MASTER_DISABLED |
3244 IPW_RESET_REG_STOP_MASTER |
3245 CBD_RESET_REG_PRINCETON_RESET);
3246
3247 /* enable power management */
3248 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3249 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3250
3251 IPW_DEBUG_TRACE("<<\n");
3252 }
3253
3254 static int ipw_init_nic(struct ipw_priv *priv)
3255 {
3256 int rc;
3257
3258 IPW_DEBUG_TRACE(">>\n");
3259 /* reset */
3260 /*prvHwInitNic */
3261 /* set "initialization complete" bit to move adapter to D0 state */
3262 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3263
3264 /* low-level PLL activation */
3265 ipw_write32(priv, IPW_READ_INT_REGISTER,
3266 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3267
3268 /* wait for clock stabilization */
3269 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3270 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3271 if (rc < 0)
3272 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3273
3274 /* assert SW reset */
3275 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3276
3277 udelay(10);
3278
3279 /* set "initialization complete" bit to move adapter to D0 state */
3280 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3281
3282 IPW_DEBUG_TRACE(">>\n");
3283 return 0;
3284 }
3285
3286 /* Call this function from process context, it will sleep in request_firmware.
3287 * Probe is an ok place to call this from.
3288 */
3289 static int ipw_reset_nic(struct ipw_priv *priv)
3290 {
3291 int rc = 0;
3292 unsigned long flags;
3293
3294 IPW_DEBUG_TRACE(">>\n");
3295
3296 rc = ipw_init_nic(priv);
3297
3298 spin_lock_irqsave(&priv->lock, flags);
3299 /* Clear the 'host command active' bit... */
3300 priv->status &= ~STATUS_HCMD_ACTIVE;
3301 wake_up_interruptible(&priv->wait_command_queue);
3302 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3303 wake_up_interruptible(&priv->wait_state);
3304 spin_unlock_irqrestore(&priv->lock, flags);
3305
3306 IPW_DEBUG_TRACE("<<\n");
3307 return rc;
3308 }
3309
3310
3311 struct ipw_fw {
3312 __le32 ver;
3313 __le32 boot_size;
3314 __le32 ucode_size;
3315 __le32 fw_size;
3316 u8 data[0];
3317 };
3318
3319 static int ipw_get_fw(struct ipw_priv *priv,
3320 const struct firmware **raw, const char *name)
3321 {
3322 struct ipw_fw *fw;
3323 int rc;
3324
3325 /* ask firmware_class module to get the boot firmware off disk */
3326 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3327 if (rc < 0) {
3328 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3329 return rc;
3330 }
3331
3332 if ((*raw)->size < sizeof(*fw)) {
3333 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3334 return -EINVAL;
3335 }
3336
3337 fw = (void *)(*raw)->data;
3338
3339 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3340 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3341 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3342 name, (*raw)->size);
3343 return -EINVAL;
3344 }
3345
3346 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3347 name,
3348 le32_to_cpu(fw->ver) >> 16,
3349 le32_to_cpu(fw->ver) & 0xff,
3350 (*raw)->size - sizeof(*fw));
3351 return 0;
3352 }
3353
3354 #define IPW_RX_BUF_SIZE (3000)
3355
3356 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3357 struct ipw_rx_queue *rxq)
3358 {
3359 unsigned long flags;
3360 int i;
3361
3362 spin_lock_irqsave(&rxq->lock, flags);
3363
3364 INIT_LIST_HEAD(&rxq->rx_free);
3365 INIT_LIST_HEAD(&rxq->rx_used);
3366
3367 /* Fill the rx_used queue with _all_ of the Rx buffers */
3368 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3369 /* In the reset function, these buffers may have been allocated
3370 * to an SKB, so we need to unmap and free potential storage */
3371 if (rxq->pool[i].skb != NULL) {
3372 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3373 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3374 dev_kfree_skb(rxq->pool[i].skb);
3375 rxq->pool[i].skb = NULL;
3376 }
3377 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3378 }
3379
3380 /* Set us so that we have processed and used all buffers, but have
3381 * not restocked the Rx queue with fresh buffers */
3382 rxq->read = rxq->write = 0;
3383 rxq->free_count = 0;
3384 spin_unlock_irqrestore(&rxq->lock, flags);
3385 }
3386
3387 #ifdef CONFIG_PM
3388 static int fw_loaded = 0;
3389 static const struct firmware *raw = NULL;
3390
3391 static void free_firmware(void)
3392 {
3393 if (fw_loaded) {
3394 release_firmware(raw);
3395 raw = NULL;
3396 fw_loaded = 0;
3397 }
3398 }
3399 #else
3400 #define free_firmware() do {} while (0)
3401 #endif
3402
3403 static int ipw_load(struct ipw_priv *priv)
3404 {
3405 #ifndef CONFIG_PM
3406 const struct firmware *raw = NULL;
3407 #endif
3408 struct ipw_fw *fw;
3409 u8 *boot_img, *ucode_img, *fw_img;
3410 u8 *name = NULL;
3411 int rc = 0, retries = 3;
3412
3413 switch (priv->ieee->iw_mode) {
3414 case IW_MODE_ADHOC:
3415 name = "ipw2200-ibss.fw";
3416 break;
3417 #ifdef CONFIG_IPW2200_MONITOR
3418 case IW_MODE_MONITOR:
3419 name = "ipw2200-sniffer.fw";
3420 break;
3421 #endif
3422 case IW_MODE_INFRA:
3423 name = "ipw2200-bss.fw";
3424 break;
3425 }
3426
3427 if (!name) {
3428 rc = -EINVAL;
3429 goto error;
3430 }
3431
3432 #ifdef CONFIG_PM
3433 if (!fw_loaded) {
3434 #endif
3435 rc = ipw_get_fw(priv, &raw, name);
3436 if (rc < 0)
3437 goto error;
3438 #ifdef CONFIG_PM
3439 }
3440 #endif
3441
3442 fw = (void *)raw->data;
3443 boot_img = &fw->data[0];
3444 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3445 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3446 le32_to_cpu(fw->ucode_size)];
3447
3448 if (rc < 0)
3449 goto error;
3450
3451 if (!priv->rxq)
3452 priv->rxq = ipw_rx_queue_alloc(priv);
3453 else
3454 ipw_rx_queue_reset(priv, priv->rxq);
3455 if (!priv->rxq) {
3456 IPW_ERROR("Unable to initialize Rx queue\n");
3457 goto error;
3458 }
3459
3460 retry:
3461 /* Ensure interrupts are disabled */
3462 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3463 priv->status &= ~STATUS_INT_ENABLED;
3464
3465 /* ack pending interrupts */
3466 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3467
3468 ipw_stop_nic(priv);
3469
3470 rc = ipw_reset_nic(priv);
3471 if (rc < 0) {
3472 IPW_ERROR("Unable to reset NIC\n");
3473 goto error;
3474 }
3475
3476 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3477 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3478
3479 /* DMA the initial boot firmware into the device */
3480 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3481 if (rc < 0) {
3482 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3483 goto error;
3484 }
3485
3486 /* kick start the device */
3487 ipw_start_nic(priv);
3488
3489 /* wait for the device to finish its initial startup sequence */
3490 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3491 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3492 if (rc < 0) {
3493 IPW_ERROR("device failed to boot initial fw image\n");
3494 goto error;
3495 }
3496 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3497
3498 /* ack fw init done interrupt */
3499 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3500
3501 /* DMA the ucode into the device */
3502 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3503 if (rc < 0) {
3504 IPW_ERROR("Unable to load ucode: %d\n", rc);
3505 goto error;
3506 }
3507
3508 /* stop nic */
3509 ipw_stop_nic(priv);
3510
3511 /* DMA bss firmware into the device */
3512 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to load firmware: %d\n", rc);
3515 goto error;
3516 }
3517 #ifdef CONFIG_PM
3518 fw_loaded = 1;
3519 #endif
3520
3521 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3522
3523 rc = ipw_queue_reset(priv);
3524 if (rc < 0) {
3525 IPW_ERROR("Unable to initialize queues\n");
3526 goto error;
3527 }
3528
3529 /* Ensure interrupts are disabled */
3530 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3531 /* ack pending interrupts */
3532 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3533
3534 /* kick start the device */
3535 ipw_start_nic(priv);
3536
3537 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3538 if (retries > 0) {
3539 IPW_WARNING("Parity error. Retrying init.\n");
3540 retries--;
3541 goto retry;
3542 }
3543
3544 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3545 rc = -EIO;
3546 goto error;
3547 }
3548
3549 /* wait for the device */
3550 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3551 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3552 if (rc < 0) {
3553 IPW_ERROR("device failed to start within 500ms\n");
3554 goto error;
3555 }
3556 IPW_DEBUG_INFO("device response after %dms\n", rc);
3557
3558 /* ack fw init done interrupt */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3560
3561 /* read eeprom data and initialize the eeprom region of sram */
3562 priv->eeprom_delay = 1;
3563 ipw_eeprom_init_sram(priv);
3564
3565 /* enable interrupts */
3566 ipw_enable_interrupts(priv);
3567
3568 /* Ensure our queue has valid packets */
3569 ipw_rx_queue_replenish(priv);
3570
3571 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3572
3573 /* ack pending interrupts */
3574 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3575
3576 #ifndef CONFIG_PM
3577 release_firmware(raw);
3578 #endif
3579 return 0;
3580
3581 error:
3582 if (priv->rxq) {
3583 ipw_rx_queue_free(priv, priv->rxq);
3584 priv->rxq = NULL;
3585 }
3586 ipw_tx_queue_free(priv);
3587 if (raw)
3588 release_firmware(raw);
3589 #ifdef CONFIG_PM
3590 fw_loaded = 0;
3591 raw = NULL;
3592 #endif
3593
3594 return rc;
3595 }
3596
3597 /**
3598 * DMA services
3599 *
3600 * Theory of operation
3601 *
3602 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3603 * 2 empty entries always kept in the buffer to protect from overflow.
3604 *
3605 * For Tx queue, there are low mark and high mark limits. If, after queuing
3606 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3607 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3608 * Tx queue resumed.
3609 *
3610 * The IPW operates with six queues, one receive queue in the device's
3611 * sram, one transmit queue for sending commands to the device firmware,
3612 * and four transmit queues for data.
3613 *
3614 * The four transmit queues allow for performing quality of service (qos)
3615 * transmissions as per the 802.11 protocol. Currently Linux does not
3616 * provide a mechanism to the user for utilizing prioritized queues, so
3617 * we only utilize the first data transmit queue (queue1).
3618 */
3619
3620 /**
3621 * Driver allocates buffers of this size for Rx
3622 */
3623
3624 /**
3625 * ipw_rx_queue_space - Return number of free slots available in queue.
3626 */
3627 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3628 {
3629 int s = q->read - q->write;
3630 if (s <= 0)
3631 s += RX_QUEUE_SIZE;
3632 /* keep some buffer to not confuse full and empty queue */
3633 s -= 2;
3634 if (s < 0)
3635 s = 0;
3636 return s;
3637 }
3638
3639 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3640 {
3641 int s = q->last_used - q->first_empty;
3642 if (s <= 0)
3643 s += q->n_bd;
3644 s -= 2; /* keep some reserve to not confuse empty and full situations */
3645 if (s < 0)
3646 s = 0;
3647 return s;
3648 }
3649
3650 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3651 {
3652 return (++index == n_bd) ? 0 : index;
3653 }
3654
3655 /**
3656 * Initialize common DMA queue structure
3657 *
3658 * @param q queue to init
3659 * @param count Number of BD's to allocate. Should be power of 2
3660 * @param read_register Address for 'read' register
3661 * (not offset within BAR, full address)
3662 * @param write_register Address for 'write' register
3663 * (not offset within BAR, full address)
3664 * @param base_register Address for 'base' register
3665 * (not offset within BAR, full address)
3666 * @param size Address for 'size' register
3667 * (not offset within BAR, full address)
3668 */
3669 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3670 int count, u32 read, u32 write, u32 base, u32 size)
3671 {
3672 q->n_bd = count;
3673
3674 q->low_mark = q->n_bd / 4;
3675 if (q->low_mark < 4)
3676 q->low_mark = 4;
3677
3678 q->high_mark = q->n_bd / 8;
3679 if (q->high_mark < 2)
3680 q->high_mark = 2;
3681
3682 q->first_empty = q->last_used = 0;
3683 q->reg_r = read;
3684 q->reg_w = write;
3685
3686 ipw_write32(priv, base, q->dma_addr);
3687 ipw_write32(priv, size, count);
3688 ipw_write32(priv, read, 0);
3689 ipw_write32(priv, write, 0);
3690
3691 _ipw_read32(priv, 0x90);
3692 }
3693
3694 static int ipw_queue_tx_init(struct ipw_priv *priv,
3695 struct clx2_tx_queue *q,
3696 int count, u32 read, u32 write, u32 base, u32 size)
3697 {
3698 struct pci_dev *dev = priv->pci_dev;
3699
3700 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3701 if (!q->txb) {
3702 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3703 return -ENOMEM;
3704 }
3705
3706 q->bd =
3707 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3708 if (!q->bd) {
3709 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3710 sizeof(q->bd[0]) * count);
3711 kfree(q->txb);
3712 q->txb = NULL;
3713 return -ENOMEM;
3714 }
3715
3716 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3717 return 0;
3718 }
3719
3720 /**
3721 * Free one TFD, those at index [txq->q.last_used].
3722 * Do NOT advance any indexes
3723 *
3724 * @param dev
3725 * @param txq
3726 */
3727 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3728 struct clx2_tx_queue *txq)
3729 {
3730 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3731 struct pci_dev *dev = priv->pci_dev;
3732 int i;
3733
3734 /* classify bd */
3735 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3736 /* nothing to cleanup after for host commands */
3737 return;
3738
3739 /* sanity check */
3740 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3741 IPW_ERROR("Too many chunks: %i\n",
3742 le32_to_cpu(bd->u.data.num_chunks));
3743 /** @todo issue fatal error, it is quite serious situation */
3744 return;
3745 }
3746
3747 /* unmap chunks if any */
3748 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3749 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3750 le16_to_cpu(bd->u.data.chunk_len[i]),
3751 PCI_DMA_TODEVICE);
3752 if (txq->txb[txq->q.last_used]) {
3753 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3754 txq->txb[txq->q.last_used] = NULL;
3755 }
3756 }
3757 }
3758
3759 /**
3760 * Deallocate DMA queue.
3761 *
3762 * Empty queue by removing and destroying all BD's.
3763 * Free all buffers.
3764 *
3765 * @param dev
3766 * @param q
3767 */
3768 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3769 {
3770 struct clx2_queue *q = &txq->q;
3771 struct pci_dev *dev = priv->pci_dev;
3772
3773 if (q->n_bd == 0)
3774 return;
3775
3776 /* first, empty all BD's */
3777 for (; q->first_empty != q->last_used;
3778 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3779 ipw_queue_tx_free_tfd(priv, txq);
3780 }
3781
3782 /* free buffers belonging to queue itself */
3783 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3784 q->dma_addr);
3785 kfree(txq->txb);
3786
3787 /* 0 fill whole structure */
3788 memset(txq, 0, sizeof(*txq));
3789 }
3790
3791 /**
3792 * Destroy all DMA queues and structures
3793 *
3794 * @param priv
3795 */
3796 static void ipw_tx_queue_free(struct ipw_priv *priv)
3797 {
3798 /* Tx CMD queue */
3799 ipw_queue_tx_free(priv, &priv->txq_cmd);
3800
3801 /* Tx queues */
3802 ipw_queue_tx_free(priv, &priv->txq[0]);
3803 ipw_queue_tx_free(priv, &priv->txq[1]);
3804 ipw_queue_tx_free(priv, &priv->txq[2]);
3805 ipw_queue_tx_free(priv, &priv->txq[3]);
3806 }
3807
3808 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3809 {
3810 /* First 3 bytes are manufacturer */
3811 bssid[0] = priv->mac_addr[0];
3812 bssid[1] = priv->mac_addr[1];
3813 bssid[2] = priv->mac_addr[2];
3814
3815 /* Last bytes are random */
3816 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3817
3818 bssid[0] &= 0xfe; /* clear multicast bit */
3819 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3820 }
3821
3822 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3823 {
3824 struct ipw_station_entry entry;
3825 int i;
3826
3827 for (i = 0; i < priv->num_stations; i++) {
3828 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3829 /* Another node is active in network */
3830 priv->missed_adhoc_beacons = 0;
3831 if (!(priv->config & CFG_STATIC_CHANNEL))
3832 /* when other nodes drop out, we drop out */
3833 priv->config &= ~CFG_ADHOC_PERSIST;
3834
3835 return i;
3836 }
3837 }
3838
3839 if (i == MAX_STATIONS)
3840 return IPW_INVALID_STATION;
3841
3842 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3843
3844 entry.reserved = 0;
3845 entry.support_mode = 0;
3846 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3847 memcpy(priv->stations[i], bssid, ETH_ALEN);
3848 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3849 &entry, sizeof(entry));
3850 priv->num_stations++;
3851
3852 return i;
3853 }
3854
3855 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3856 {
3857 int i;
3858
3859 for (i = 0; i < priv->num_stations; i++)
3860 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3861 return i;
3862
3863 return IPW_INVALID_STATION;
3864 }
3865
3866 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3867 {
3868 int err;
3869
3870 if (priv->status & STATUS_ASSOCIATING) {
3871 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3872 queue_work(priv->workqueue, &priv->disassociate);
3873 return;
3874 }
3875
3876 if (!(priv->status & STATUS_ASSOCIATED)) {
3877 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3878 return;
3879 }
3880
3881 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3882 "on channel %d.\n",
3883 priv->assoc_request.bssid,
3884 priv->assoc_request.channel);
3885
3886 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3887 priv->status |= STATUS_DISASSOCIATING;
3888
3889 if (quiet)
3890 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3891 else
3892 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3893
3894 err = ipw_send_associate(priv, &priv->assoc_request);
3895 if (err) {
3896 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3897 "failed.\n");
3898 return;
3899 }
3900
3901 }
3902
3903 static int ipw_disassociate(void *data)
3904 {
3905 struct ipw_priv *priv = data;
3906 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3907 return 0;
3908 ipw_send_disassociate(data, 0);
3909 netif_carrier_off(priv->net_dev);
3910 return 1;
3911 }
3912
3913 static void ipw_bg_disassociate(struct work_struct *work)
3914 {
3915 struct ipw_priv *priv =
3916 container_of(work, struct ipw_priv, disassociate);
3917 mutex_lock(&priv->mutex);
3918 ipw_disassociate(priv);
3919 mutex_unlock(&priv->mutex);
3920 }
3921
3922 static void ipw_system_config(struct work_struct *work)
3923 {
3924 struct ipw_priv *priv =
3925 container_of(work, struct ipw_priv, system_config);
3926
3927 #ifdef CONFIG_IPW2200_PROMISCUOUS
3928 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3929 priv->sys_config.accept_all_data_frames = 1;
3930 priv->sys_config.accept_non_directed_frames = 1;
3931 priv->sys_config.accept_all_mgmt_bcpr = 1;
3932 priv->sys_config.accept_all_mgmt_frames = 1;
3933 }
3934 #endif
3935
3936 ipw_send_system_config(priv);
3937 }
3938
3939 struct ipw_status_code {
3940 u16 status;
3941 const char *reason;
3942 };
3943
3944 static const struct ipw_status_code ipw_status_codes[] = {
3945 {0x00, "Successful"},
3946 {0x01, "Unspecified failure"},
3947 {0x0A, "Cannot support all requested capabilities in the "
3948 "Capability information field"},
3949 {0x0B, "Reassociation denied due to inability to confirm that "
3950 "association exists"},
3951 {0x0C, "Association denied due to reason outside the scope of this "
3952 "standard"},
3953 {0x0D,
3954 "Responding station does not support the specified authentication "
3955 "algorithm"},
3956 {0x0E,
3957 "Received an Authentication frame with authentication sequence "
3958 "transaction sequence number out of expected sequence"},
3959 {0x0F, "Authentication rejected because of challenge failure"},
3960 {0x10, "Authentication rejected due to timeout waiting for next "
3961 "frame in sequence"},
3962 {0x11, "Association denied because AP is unable to handle additional "
3963 "associated stations"},
3964 {0x12,
3965 "Association denied due to requesting station not supporting all "
3966 "of the datarates in the BSSBasicServiceSet Parameter"},
3967 {0x13,
3968 "Association denied due to requesting station not supporting "
3969 "short preamble operation"},
3970 {0x14,
3971 "Association denied due to requesting station not supporting "
3972 "PBCC encoding"},
3973 {0x15,
3974 "Association denied due to requesting station not supporting "
3975 "channel agility"},
3976 {0x19,
3977 "Association denied due to requesting station not supporting "
3978 "short slot operation"},
3979 {0x1A,
3980 "Association denied due to requesting station not supporting "
3981 "DSSS-OFDM operation"},
3982 {0x28, "Invalid Information Element"},
3983 {0x29, "Group Cipher is not valid"},
3984 {0x2A, "Pairwise Cipher is not valid"},
3985 {0x2B, "AKMP is not valid"},
3986 {0x2C, "Unsupported RSN IE version"},
3987 {0x2D, "Invalid RSN IE Capabilities"},
3988 {0x2E, "Cipher suite is rejected per security policy"},
3989 };
3990
3991 static const char *ipw_get_status_code(u16 status)
3992 {
3993 int i;
3994 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3995 if (ipw_status_codes[i].status == (status & 0xff))
3996 return ipw_status_codes[i].reason;
3997 return "Unknown status value.";
3998 }
3999
4000 static void inline average_init(struct average *avg)
4001 {
4002 memset(avg, 0, sizeof(*avg));
4003 }
4004
4005 #define DEPTH_RSSI 8
4006 #define DEPTH_NOISE 16
4007 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4008 {
4009 return ((depth-1)*prev_avg + val)/depth;
4010 }
4011
4012 static void average_add(struct average *avg, s16 val)
4013 {
4014 avg->sum -= avg->entries[avg->pos];
4015 avg->sum += val;
4016 avg->entries[avg->pos++] = val;
4017 if (unlikely(avg->pos == AVG_ENTRIES)) {
4018 avg->init = 1;
4019 avg->pos = 0;
4020 }
4021 }
4022
4023 static s16 average_value(struct average *avg)
4024 {
4025 if (!unlikely(avg->init)) {
4026 if (avg->pos)
4027 return avg->sum / avg->pos;
4028 return 0;
4029 }
4030
4031 return avg->sum / AVG_ENTRIES;
4032 }
4033
4034 static void ipw_reset_stats(struct ipw_priv *priv)
4035 {
4036 u32 len = sizeof(u32);
4037
4038 priv->quality = 0;
4039
4040 average_init(&priv->average_missed_beacons);
4041 priv->exp_avg_rssi = -60;
4042 priv->exp_avg_noise = -85 + 0x100;
4043
4044 priv->last_rate = 0;
4045 priv->last_missed_beacons = 0;
4046 priv->last_rx_packets = 0;
4047 priv->last_tx_packets = 0;
4048 priv->last_tx_failures = 0;
4049
4050 /* Firmware managed, reset only when NIC is restarted, so we have to
4051 * normalize on the current value */
4052 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4053 &priv->last_rx_err, &len);
4054 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4055 &priv->last_tx_failures, &len);
4056
4057 /* Driver managed, reset with each association */
4058 priv->missed_adhoc_beacons = 0;
4059 priv->missed_beacons = 0;
4060 priv->tx_packets = 0;
4061 priv->rx_packets = 0;
4062
4063 }
4064
4065 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4066 {
4067 u32 i = 0x80000000;
4068 u32 mask = priv->rates_mask;
4069 /* If currently associated in B mode, restrict the maximum
4070 * rate match to B rates */
4071 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4072 mask &= IEEE80211_CCK_RATES_MASK;
4073
4074 /* TODO: Verify that the rate is supported by the current rates
4075 * list. */
4076
4077 while (i && !(mask & i))
4078 i >>= 1;
4079 switch (i) {
4080 case IEEE80211_CCK_RATE_1MB_MASK:
4081 return 1000000;
4082 case IEEE80211_CCK_RATE_2MB_MASK:
4083 return 2000000;
4084 case IEEE80211_CCK_RATE_5MB_MASK:
4085 return 5500000;
4086 case IEEE80211_OFDM_RATE_6MB_MASK:
4087 return 6000000;
4088 case IEEE80211_OFDM_RATE_9MB_MASK:
4089 return 9000000;
4090 case IEEE80211_CCK_RATE_11MB_MASK:
4091 return 11000000;
4092 case IEEE80211_OFDM_RATE_12MB_MASK:
4093 return 12000000;
4094 case IEEE80211_OFDM_RATE_18MB_MASK:
4095 return 18000000;
4096 case IEEE80211_OFDM_RATE_24MB_MASK:
4097 return 24000000;
4098 case IEEE80211_OFDM_RATE_36MB_MASK:
4099 return 36000000;
4100 case IEEE80211_OFDM_RATE_48MB_MASK:
4101 return 48000000;
4102 case IEEE80211_OFDM_RATE_54MB_MASK:
4103 return 54000000;
4104 }
4105
4106 if (priv->ieee->mode == IEEE_B)
4107 return 11000000;
4108 else
4109 return 54000000;
4110 }
4111
4112 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4113 {
4114 u32 rate, len = sizeof(rate);
4115 int err;
4116
4117 if (!(priv->status & STATUS_ASSOCIATED))
4118 return 0;
4119
4120 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4121 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4122 &len);
4123 if (err) {
4124 IPW_DEBUG_INFO("failed querying ordinals.\n");
4125 return 0;
4126 }
4127 } else
4128 return ipw_get_max_rate(priv);
4129
4130 switch (rate) {
4131 case IPW_TX_RATE_1MB:
4132 return 1000000;
4133 case IPW_TX_RATE_2MB:
4134 return 2000000;
4135 case IPW_TX_RATE_5MB:
4136 return 5500000;
4137 case IPW_TX_RATE_6MB:
4138 return 6000000;
4139 case IPW_TX_RATE_9MB:
4140 return 9000000;
4141 case IPW_TX_RATE_11MB:
4142 return 11000000;
4143 case IPW_TX_RATE_12MB:
4144 return 12000000;
4145 case IPW_TX_RATE_18MB:
4146 return 18000000;
4147 case IPW_TX_RATE_24MB:
4148 return 24000000;
4149 case IPW_TX_RATE_36MB:
4150 return 36000000;
4151 case IPW_TX_RATE_48MB:
4152 return 48000000;
4153 case IPW_TX_RATE_54MB:
4154 return 54000000;
4155 }
4156
4157 return 0;
4158 }
4159
4160 #define IPW_STATS_INTERVAL (2 * HZ)
4161 static void ipw_gather_stats(struct ipw_priv *priv)
4162 {
4163 u32 rx_err, rx_err_delta, rx_packets_delta;
4164 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4165 u32 missed_beacons_percent, missed_beacons_delta;
4166 u32 quality = 0;
4167 u32 len = sizeof(u32);
4168 s16 rssi;
4169 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4170 rate_quality;
4171 u32 max_rate;
4172
4173 if (!(priv->status & STATUS_ASSOCIATED)) {
4174 priv->quality = 0;
4175 return;
4176 }
4177
4178 /* Update the statistics */
4179 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4180 &priv->missed_beacons, &len);
4181 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4182 priv->last_missed_beacons = priv->missed_beacons;
4183 if (priv->assoc_request.beacon_interval) {
4184 missed_beacons_percent = missed_beacons_delta *
4185 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4186 (IPW_STATS_INTERVAL * 10);
4187 } else {
4188 missed_beacons_percent = 0;
4189 }
4190 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4191
4192 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4193 rx_err_delta = rx_err - priv->last_rx_err;
4194 priv->last_rx_err = rx_err;
4195
4196 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4197 tx_failures_delta = tx_failures - priv->last_tx_failures;
4198 priv->last_tx_failures = tx_failures;
4199
4200 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4201 priv->last_rx_packets = priv->rx_packets;
4202
4203 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4204 priv->last_tx_packets = priv->tx_packets;
4205
4206 /* Calculate quality based on the following:
4207 *
4208 * Missed beacon: 100% = 0, 0% = 70% missed
4209 * Rate: 60% = 1Mbs, 100% = Max
4210 * Rx and Tx errors represent a straight % of total Rx/Tx
4211 * RSSI: 100% = > -50, 0% = < -80
4212 * Rx errors: 100% = 0, 0% = 50% missed
4213 *
4214 * The lowest computed quality is used.
4215 *
4216 */
4217 #define BEACON_THRESHOLD 5
4218 beacon_quality = 100 - missed_beacons_percent;
4219 if (beacon_quality < BEACON_THRESHOLD)
4220 beacon_quality = 0;
4221 else
4222 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4223 (100 - BEACON_THRESHOLD);
4224 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4225 beacon_quality, missed_beacons_percent);
4226
4227 priv->last_rate = ipw_get_current_rate(priv);
4228 max_rate = ipw_get_max_rate(priv);
4229 rate_quality = priv->last_rate * 40 / max_rate + 60;
4230 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4231 rate_quality, priv->last_rate / 1000000);
4232
4233 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4234 rx_quality = 100 - (rx_err_delta * 100) /
4235 (rx_packets_delta + rx_err_delta);
4236 else
4237 rx_quality = 100;
4238 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4239 rx_quality, rx_err_delta, rx_packets_delta);
4240
4241 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4242 tx_quality = 100 - (tx_failures_delta * 100) /
4243 (tx_packets_delta + tx_failures_delta);
4244 else
4245 tx_quality = 100;
4246 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4247 tx_quality, tx_failures_delta, tx_packets_delta);
4248
4249 rssi = priv->exp_avg_rssi;
4250 signal_quality =
4251 (100 *
4252 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4253 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4254 (priv->ieee->perfect_rssi - rssi) *
4255 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4256 62 * (priv->ieee->perfect_rssi - rssi))) /
4257 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4258 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4259 if (signal_quality > 100)
4260 signal_quality = 100;
4261 else if (signal_quality < 1)
4262 signal_quality = 0;
4263
4264 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4265 signal_quality, rssi);
4266
4267 quality = min(beacon_quality,
4268 min(rate_quality,
4269 min(tx_quality, min(rx_quality, signal_quality))));
4270 if (quality == beacon_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4272 quality);
4273 if (quality == rate_quality)
4274 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4275 quality);
4276 if (quality == tx_quality)
4277 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4278 quality);
4279 if (quality == rx_quality)
4280 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4281 quality);
4282 if (quality == signal_quality)
4283 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4284 quality);
4285
4286 priv->quality = quality;
4287
4288 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4289 IPW_STATS_INTERVAL);
4290 }
4291
4292 static void ipw_bg_gather_stats(struct work_struct *work)
4293 {
4294 struct ipw_priv *priv =
4295 container_of(work, struct ipw_priv, gather_stats.work);
4296 mutex_lock(&priv->mutex);
4297 ipw_gather_stats(priv);
4298 mutex_unlock(&priv->mutex);
4299 }
4300
4301 /* Missed beacon behavior:
4302 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4303 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4304 * Above disassociate threshold, give up and stop scanning.
4305 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4306 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4307 int missed_count)
4308 {
4309 priv->notif_missed_beacons = missed_count;
4310
4311 if (missed_count > priv->disassociate_threshold &&
4312 priv->status & STATUS_ASSOCIATED) {
4313 /* If associated and we've hit the missed
4314 * beacon threshold, disassociate, turn
4315 * off roaming, and abort any active scans */
4316 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4317 IPW_DL_STATE | IPW_DL_ASSOC,
4318 "Missed beacon: %d - disassociate\n", missed_count);
4319 priv->status &= ~STATUS_ROAMING;
4320 if (priv->status & STATUS_SCANNING) {
4321 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4322 IPW_DL_STATE,
4323 "Aborting scan with missed beacon.\n");
4324 queue_work(priv->workqueue, &priv->abort_scan);
4325 }
4326
4327 queue_work(priv->workqueue, &priv->disassociate);
4328 return;
4329 }
4330
4331 if (priv->status & STATUS_ROAMING) {
4332 /* If we are currently roaming, then just
4333 * print a debug statement... */
4334 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4335 "Missed beacon: %d - roam in progress\n",
4336 missed_count);
4337 return;
4338 }
4339
4340 if (roaming &&
4341 (missed_count > priv->roaming_threshold &&
4342 missed_count <= priv->disassociate_threshold)) {
4343 /* If we are not already roaming, set the ROAM
4344 * bit in the status and kick off a scan.
4345 * This can happen several times before we reach
4346 * disassociate_threshold. */
4347 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4348 "Missed beacon: %d - initiate "
4349 "roaming\n", missed_count);
4350 if (!(priv->status & STATUS_ROAMING)) {
4351 priv->status |= STATUS_ROAMING;
4352 if (!(priv->status & STATUS_SCANNING))
4353 queue_delayed_work(priv->workqueue,
4354 &priv->request_scan, 0);
4355 }
4356 return;
4357 }
4358
4359 if (priv->status & STATUS_SCANNING &&
4360 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4361 /* Stop scan to keep fw from getting
4362 * stuck (only if we aren't roaming --
4363 * otherwise we'll never scan more than 2 or 3
4364 * channels..) */
4365 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4366 "Aborting scan with missed beacon.\n");
4367 queue_work(priv->workqueue, &priv->abort_scan);
4368 }
4369
4370 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4371 }
4372
4373 static void ipw_scan_event(struct work_struct *work)
4374 {
4375 union iwreq_data wrqu;
4376
4377 struct ipw_priv *priv =
4378 container_of(work, struct ipw_priv, scan_event.work);
4379
4380 wrqu.data.length = 0;
4381 wrqu.data.flags = 0;
4382 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4383 }
4384
4385 static void handle_scan_event(struct ipw_priv *priv)
4386 {
4387 /* Only userspace-requested scan completion events go out immediately */
4388 if (!priv->user_requested_scan) {
4389 if (!delayed_work_pending(&priv->scan_event))
4390 queue_delayed_work(priv->workqueue, &priv->scan_event,
4391 round_jiffies_relative(msecs_to_jiffies(4000)));
4392 } else {
4393 union iwreq_data wrqu;
4394
4395 priv->user_requested_scan = 0;
4396 cancel_delayed_work(&priv->scan_event);
4397
4398 wrqu.data.length = 0;
4399 wrqu.data.flags = 0;
4400 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4401 }
4402 }
4403
4404 /**
4405 * Handle host notification packet.
4406 * Called from interrupt routine
4407 */
4408 static void ipw_rx_notification(struct ipw_priv *priv,
4409 struct ipw_rx_notification *notif)
4410 {
4411 DECLARE_SSID_BUF(ssid);
4412 u16 size = le16_to_cpu(notif->size);
4413 notif->size = le16_to_cpu(notif->size);
4414
4415 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4416
4417 switch (notif->subtype) {
4418 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4419 struct notif_association *assoc = &notif->u.assoc;
4420
4421 switch (assoc->state) {
4422 case CMAS_ASSOCIATED:{
4423 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4424 IPW_DL_ASSOC,
4425 "associated: '%s' %pM \n",
4426 print_ssid(ssid, priv->essid,
4427 priv->essid_len),
4428 priv->bssid);
4429
4430 switch (priv->ieee->iw_mode) {
4431 case IW_MODE_INFRA:
4432 memcpy(priv->ieee->bssid,
4433 priv->bssid, ETH_ALEN);
4434 break;
4435
4436 case IW_MODE_ADHOC:
4437 memcpy(priv->ieee->bssid,
4438 priv->bssid, ETH_ALEN);
4439
4440 /* clear out the station table */
4441 priv->num_stations = 0;
4442
4443 IPW_DEBUG_ASSOC
4444 ("queueing adhoc check\n");
4445 queue_delayed_work(priv->
4446 workqueue,
4447 &priv->
4448 adhoc_check,
4449 le16_to_cpu(priv->
4450 assoc_request.
4451 beacon_interval));
4452 break;
4453 }
4454
4455 priv->status &= ~STATUS_ASSOCIATING;
4456 priv->status |= STATUS_ASSOCIATED;
4457 queue_work(priv->workqueue,
4458 &priv->system_config);
4459
4460 #ifdef CONFIG_IPW2200_QOS
4461 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4462 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4463 if ((priv->status & STATUS_AUTH) &&
4464 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4465 == IEEE80211_STYPE_ASSOC_RESP)) {
4466 if ((sizeof
4467 (struct
4468 ieee80211_assoc_response)
4469 <= size)
4470 && (size <= 2314)) {
4471 struct
4472 ieee80211_rx_stats
4473 stats = {
4474 .len = size - 1,
4475 };
4476
4477 IPW_DEBUG_QOS
4478 ("QoS Associate "
4479 "size %d\n", size);
4480 ieee80211_rx_mgt(priv->
4481 ieee,
4482 (struct
4483 ieee80211_hdr_4addr
4484 *)
4485 &notif->u.raw, &stats);
4486 }
4487 }
4488 #endif
4489
4490 schedule_work(&priv->link_up);
4491
4492 break;
4493 }
4494
4495 case CMAS_AUTHENTICATED:{
4496 if (priv->
4497 status & (STATUS_ASSOCIATED |
4498 STATUS_AUTH)) {
4499 struct notif_authenticate *auth
4500 = &notif->u.auth;
4501 IPW_DEBUG(IPW_DL_NOTIF |
4502 IPW_DL_STATE |
4503 IPW_DL_ASSOC,
4504 "deauthenticated: '%s' "
4505 "%pM"
4506 ": (0x%04X) - %s \n",
4507 print_ssid(ssid,
4508 priv->
4509 essid,
4510 priv->
4511 essid_len),
4512 priv->bssid,
4513 le16_to_cpu(auth->status),
4514 ipw_get_status_code
4515 (le16_to_cpu
4516 (auth->status)));
4517
4518 priv->status &=
4519 ~(STATUS_ASSOCIATING |
4520 STATUS_AUTH |
4521 STATUS_ASSOCIATED);
4522
4523 schedule_work(&priv->link_down);
4524 break;
4525 }
4526
4527 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4528 IPW_DL_ASSOC,
4529 "authenticated: '%s' %pM\n",
4530 print_ssid(ssid, priv->essid,
4531 priv->essid_len),
4532 priv->bssid);
4533 break;
4534 }
4535
4536 case CMAS_INIT:{
4537 if (priv->status & STATUS_AUTH) {
4538 struct
4539 ieee80211_assoc_response
4540 *resp;
4541 resp =
4542 (struct
4543 ieee80211_assoc_response
4544 *)&notif->u.raw;
4545 IPW_DEBUG(IPW_DL_NOTIF |
4546 IPW_DL_STATE |
4547 IPW_DL_ASSOC,
4548 "association failed (0x%04X): %s\n",
4549 le16_to_cpu(resp->status),
4550 ipw_get_status_code
4551 (le16_to_cpu
4552 (resp->status)));
4553 }
4554
4555 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4556 IPW_DL_ASSOC,
4557 "disassociated: '%s' %pM \n",
4558 print_ssid(ssid, priv->essid,
4559 priv->essid_len),
4560 priv->bssid);
4561
4562 priv->status &=
4563 ~(STATUS_DISASSOCIATING |
4564 STATUS_ASSOCIATING |
4565 STATUS_ASSOCIATED | STATUS_AUTH);
4566 if (priv->assoc_network
4567 && (priv->assoc_network->
4568 capability &
4569 WLAN_CAPABILITY_IBSS))
4570 ipw_remove_current_network
4571 (priv);
4572
4573 schedule_work(&priv->link_down);
4574
4575 break;
4576 }
4577
4578 case CMAS_RX_ASSOC_RESP:
4579 break;
4580
4581 default:
4582 IPW_ERROR("assoc: unknown (%d)\n",
4583 assoc->state);
4584 break;
4585 }
4586
4587 break;
4588 }
4589
4590 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4591 struct notif_authenticate *auth = &notif->u.auth;
4592 switch (auth->state) {
4593 case CMAS_AUTHENTICATED:
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4595 "authenticated: '%s' %pM \n",
4596 print_ssid(ssid, priv->essid,
4597 priv->essid_len),
4598 priv->bssid);
4599 priv->status |= STATUS_AUTH;
4600 break;
4601
4602 case CMAS_INIT:
4603 if (priv->status & STATUS_AUTH) {
4604 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605 IPW_DL_ASSOC,
4606 "authentication failed (0x%04X): %s\n",
4607 le16_to_cpu(auth->status),
4608 ipw_get_status_code(le16_to_cpu
4609 (auth->
4610 status)));
4611 }
4612 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4613 IPW_DL_ASSOC,
4614 "deauthenticated: '%s' %pM\n",
4615 print_ssid(ssid, priv->essid,
4616 priv->essid_len),
4617 priv->bssid);
4618
4619 priv->status &= ~(STATUS_ASSOCIATING |
4620 STATUS_AUTH |
4621 STATUS_ASSOCIATED);
4622
4623 schedule_work(&priv->link_down);
4624 break;
4625
4626 case CMAS_TX_AUTH_SEQ_1:
4627 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4629 break;
4630 case CMAS_RX_AUTH_SEQ_2:
4631 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4633 break;
4634 case CMAS_AUTH_SEQ_1_PASS:
4635 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4637 break;
4638 case CMAS_AUTH_SEQ_1_FAIL:
4639 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4641 break;
4642 case CMAS_TX_AUTH_SEQ_3:
4643 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4645 break;
4646 case CMAS_RX_AUTH_SEQ_4:
4647 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4648 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4649 break;
4650 case CMAS_AUTH_SEQ_2_PASS:
4651 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4653 break;
4654 case CMAS_AUTH_SEQ_2_FAIL:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4657 break;
4658 case CMAS_TX_ASSOC:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "TX_ASSOC\n");
4661 break;
4662 case CMAS_RX_ASSOC_RESP:
4663 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4665
4666 break;
4667 case CMAS_ASSOCIATED:
4668 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4669 IPW_DL_ASSOC, "ASSOCIATED\n");
4670 break;
4671 default:
4672 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4673 auth->state);
4674 break;
4675 }
4676 break;
4677 }
4678
4679 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4680 struct notif_channel_result *x =
4681 &notif->u.channel_result;
4682
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4685 x->channel_num);
4686 } else {
4687 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4688 "(should be %zd)\n",
4689 size, sizeof(*x));
4690 }
4691 break;
4692 }
4693
4694 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4695 struct notif_scan_complete *x = &notif->u.scan_complete;
4696 if (size == sizeof(*x)) {
4697 IPW_DEBUG_SCAN
4698 ("Scan completed: type %d, %d channels, "
4699 "%d status\n", x->scan_type,
4700 x->num_channels, x->status);
4701 } else {
4702 IPW_ERROR("Scan completed of wrong size %d "
4703 "(should be %zd)\n",
4704 size, sizeof(*x));
4705 }
4706
4707 priv->status &=
4708 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4709
4710 wake_up_interruptible(&priv->wait_state);
4711 cancel_delayed_work(&priv->scan_check);
4712
4713 if (priv->status & STATUS_EXIT_PENDING)
4714 break;
4715
4716 priv->ieee->scans++;
4717
4718 #ifdef CONFIG_IPW2200_MONITOR
4719 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4720 priv->status |= STATUS_SCAN_FORCED;
4721 queue_delayed_work(priv->workqueue,
4722 &priv->request_scan, 0);
4723 break;
4724 }
4725 priv->status &= ~STATUS_SCAN_FORCED;
4726 #endif /* CONFIG_IPW2200_MONITOR */
4727
4728 /* Do queued direct scans first */
4729 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4730 queue_delayed_work(priv->workqueue,
4731 &priv->request_direct_scan, 0);
4732 }
4733
4734 if (!(priv->status & (STATUS_ASSOCIATED |
4735 STATUS_ASSOCIATING |
4736 STATUS_ROAMING |
4737 STATUS_DISASSOCIATING)))
4738 queue_work(priv->workqueue, &priv->associate);
4739 else if (priv->status & STATUS_ROAMING) {
4740 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741 /* If a scan completed and we are in roam mode, then
4742 * the scan that completed was the one requested as a
4743 * result of entering roam... so, schedule the
4744 * roam work */
4745 queue_work(priv->workqueue,
4746 &priv->roam);
4747 else
4748 /* Don't schedule if we aborted the scan */
4749 priv->status &= ~STATUS_ROAMING;
4750 } else if (priv->status & STATUS_SCAN_PENDING)
4751 queue_delayed_work(priv->workqueue,
4752 &priv->request_scan, 0);
4753 else if (priv->config & CFG_BACKGROUND_SCAN
4754 && priv->status & STATUS_ASSOCIATED)
4755 queue_delayed_work(priv->workqueue,
4756 &priv->request_scan,
4757 round_jiffies_relative(HZ));
4758
4759 /* Send an empty event to user space.
4760 * We don't send the received data on the event because
4761 * it would require us to do complex transcoding, and
4762 * we want to minimise the work done in the irq handler
4763 * Use a request to extract the data.
4764 * Also, we generate this even for any scan, regardless
4765 * on how the scan was initiated. User space can just
4766 * sync on periodic scan to get fresh data...
4767 * Jean II */
4768 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4769 handle_scan_event(priv);
4770 break;
4771 }
4772
4773 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4774 struct notif_frag_length *x = &notif->u.frag_len;
4775
4776 if (size == sizeof(*x))
4777 IPW_ERROR("Frag length: %d\n",
4778 le16_to_cpu(x->frag_length));
4779 else
4780 IPW_ERROR("Frag length of wrong size %d "
4781 "(should be %zd)\n",
4782 size, sizeof(*x));
4783 break;
4784 }
4785
4786 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4787 struct notif_link_deterioration *x =
4788 &notif->u.link_deterioration;
4789
4790 if (size == sizeof(*x)) {
4791 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4792 "link deterioration: type %d, cnt %d\n",
4793 x->silence_notification_type,
4794 x->silence_count);
4795 memcpy(&priv->last_link_deterioration, x,
4796 sizeof(*x));
4797 } else {
4798 IPW_ERROR("Link Deterioration of wrong size %d "
4799 "(should be %zd)\n",
4800 size, sizeof(*x));
4801 }
4802 break;
4803 }
4804
4805 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4806 IPW_ERROR("Dino config\n");
4807 if (priv->hcmd
4808 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4809 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4810
4811 break;
4812 }
4813
4814 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4815 struct notif_beacon_state *x = &notif->u.beacon_state;
4816 if (size != sizeof(*x)) {
4817 IPW_ERROR
4818 ("Beacon state of wrong size %d (should "
4819 "be %zd)\n", size, sizeof(*x));
4820 break;
4821 }
4822
4823 if (le32_to_cpu(x->state) ==
4824 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4825 ipw_handle_missed_beacon(priv,
4826 le32_to_cpu(x->
4827 number));
4828
4829 break;
4830 }
4831
4832 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4833 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4834 if (size == sizeof(*x)) {
4835 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4836 "0x%02x station %d\n",
4837 x->key_state, x->security_type,
4838 x->station_index);
4839 break;
4840 }
4841
4842 IPW_ERROR
4843 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4844 size, sizeof(*x));
4845 break;
4846 }
4847
4848 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4849 struct notif_calibration *x = &notif->u.calibration;
4850
4851 if (size == sizeof(*x)) {
4852 memcpy(&priv->calib, x, sizeof(*x));
4853 IPW_DEBUG_INFO("TODO: Calibration\n");
4854 break;
4855 }
4856
4857 IPW_ERROR
4858 ("Calibration of wrong size %d (should be %zd)\n",
4859 size, sizeof(*x));
4860 break;
4861 }
4862
4863 case HOST_NOTIFICATION_NOISE_STATS:{
4864 if (size == sizeof(u32)) {
4865 priv->exp_avg_noise =
4866 exponential_average(priv->exp_avg_noise,
4867 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4868 DEPTH_NOISE);
4869 break;
4870 }
4871
4872 IPW_ERROR
4873 ("Noise stat is wrong size %d (should be %zd)\n",
4874 size, sizeof(u32));
4875 break;
4876 }
4877
4878 default:
4879 IPW_DEBUG_NOTIF("Unknown notification: "
4880 "subtype=%d,flags=0x%2x,size=%d\n",
4881 notif->subtype, notif->flags, size);
4882 }
4883 }
4884
4885 /**
4886 * Destroys all DMA structures and initialise them again
4887 *
4888 * @param priv
4889 * @return error code
4890 */
4891 static int ipw_queue_reset(struct ipw_priv *priv)
4892 {
4893 int rc = 0;
4894 /** @todo customize queue sizes */
4895 int nTx = 64, nTxCmd = 8;
4896 ipw_tx_queue_free(priv);
4897 /* Tx CMD queue */
4898 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4899 IPW_TX_CMD_QUEUE_READ_INDEX,
4900 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4901 IPW_TX_CMD_QUEUE_BD_BASE,
4902 IPW_TX_CMD_QUEUE_BD_SIZE);
4903 if (rc) {
4904 IPW_ERROR("Tx Cmd queue init failed\n");
4905 goto error;
4906 }
4907 /* Tx queue(s) */
4908 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4909 IPW_TX_QUEUE_0_READ_INDEX,
4910 IPW_TX_QUEUE_0_WRITE_INDEX,
4911 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4912 if (rc) {
4913 IPW_ERROR("Tx 0 queue init failed\n");
4914 goto error;
4915 }
4916 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4917 IPW_TX_QUEUE_1_READ_INDEX,
4918 IPW_TX_QUEUE_1_WRITE_INDEX,
4919 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4920 if (rc) {
4921 IPW_ERROR("Tx 1 queue init failed\n");
4922 goto error;
4923 }
4924 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4925 IPW_TX_QUEUE_2_READ_INDEX,
4926 IPW_TX_QUEUE_2_WRITE_INDEX,
4927 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4928 if (rc) {
4929 IPW_ERROR("Tx 2 queue init failed\n");
4930 goto error;
4931 }
4932 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4933 IPW_TX_QUEUE_3_READ_INDEX,
4934 IPW_TX_QUEUE_3_WRITE_INDEX,
4935 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4936 if (rc) {
4937 IPW_ERROR("Tx 3 queue init failed\n");
4938 goto error;
4939 }
4940 /* statistics */
4941 priv->rx_bufs_min = 0;
4942 priv->rx_pend_max = 0;
4943 return rc;
4944
4945 error:
4946 ipw_tx_queue_free(priv);
4947 return rc;
4948 }
4949
4950 /**
4951 * Reclaim Tx queue entries no more used by NIC.
4952 *
4953 * When FW advances 'R' index, all entries between old and
4954 * new 'R' index need to be reclaimed. As result, some free space
4955 * forms. If there is enough free space (> low mark), wake Tx queue.
4956 *
4957 * @note Need to protect against garbage in 'R' index
4958 * @param priv
4959 * @param txq
4960 * @param qindex
4961 * @return Number of used entries remains in the queue
4962 */
4963 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4964 struct clx2_tx_queue *txq, int qindex)
4965 {
4966 u32 hw_tail;
4967 int used;
4968 struct clx2_queue *q = &txq->q;
4969
4970 hw_tail = ipw_read32(priv, q->reg_r);
4971 if (hw_tail >= q->n_bd) {
4972 IPW_ERROR
4973 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4974 hw_tail, q->n_bd);
4975 goto done;
4976 }
4977 for (; q->last_used != hw_tail;
4978 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4979 ipw_queue_tx_free_tfd(priv, txq);
4980 priv->tx_packets++;
4981 }
4982 done:
4983 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4984 (qindex >= 0))
4985 netif_wake_queue(priv->net_dev);
4986 used = q->first_empty - q->last_used;
4987 if (used < 0)
4988 used += q->n_bd;
4989
4990 return used;
4991 }
4992
4993 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4994 int len, int sync)
4995 {
4996 struct clx2_tx_queue *txq = &priv->txq_cmd;
4997 struct clx2_queue *q = &txq->q;
4998 struct tfd_frame *tfd;
4999
5000 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5001 IPW_ERROR("No space for Tx\n");
5002 return -EBUSY;
5003 }
5004
5005 tfd = &txq->bd[q->first_empty];
5006 txq->txb[q->first_empty] = NULL;
5007
5008 memset(tfd, 0, sizeof(*tfd));
5009 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5010 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5011 priv->hcmd_seq++;
5012 tfd->u.cmd.index = hcmd;
5013 tfd->u.cmd.length = len;
5014 memcpy(tfd->u.cmd.payload, buf, len);
5015 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5016 ipw_write32(priv, q->reg_w, q->first_empty);
5017 _ipw_read32(priv, 0x90);
5018
5019 return 0;
5020 }
5021
5022 /*
5023 * Rx theory of operation
5024 *
5025 * The host allocates 32 DMA target addresses and passes the host address
5026 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5027 * 0 to 31
5028 *
5029 * Rx Queue Indexes
5030 * The host/firmware share two index registers for managing the Rx buffers.
5031 *
5032 * The READ index maps to the first position that the firmware may be writing
5033 * to -- the driver can read up to (but not including) this position and get
5034 * good data.
5035 * The READ index is managed by the firmware once the card is enabled.
5036 *
5037 * The WRITE index maps to the last position the driver has read from -- the
5038 * position preceding WRITE is the last slot the firmware can place a packet.
5039 *
5040 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5041 * WRITE = READ.
5042 *
5043 * During initialization the host sets up the READ queue position to the first
5044 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5045 *
5046 * When the firmware places a packet in a buffer it will advance the READ index
5047 * and fire the RX interrupt. The driver can then query the READ index and
5048 * process as many packets as possible, moving the WRITE index forward as it
5049 * resets the Rx queue buffers with new memory.
5050 *
5051 * The management in the driver is as follows:
5052 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5053 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5054 * to replensish the ipw->rxq->rx_free.
5055 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5056 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5057 * 'processed' and 'read' driver indexes as well)
5058 * + A received packet is processed and handed to the kernel network stack,
5059 * detached from the ipw->rxq. The driver 'processed' index is updated.
5060 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5061 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5062 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5063 * were enough free buffers and RX_STALLED is set it is cleared.
5064 *
5065 *
5066 * Driver sequence:
5067 *
5068 * ipw_rx_queue_alloc() Allocates rx_free
5069 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5070 * ipw_rx_queue_restock
5071 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5072 * queue, updates firmware pointers, and updates
5073 * the WRITE index. If insufficient rx_free buffers
5074 * are available, schedules ipw_rx_queue_replenish
5075 *
5076 * -- enable interrupts --
5077 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5078 * READ INDEX, detaching the SKB from the pool.
5079 * Moves the packet buffer from queue to rx_used.
5080 * Calls ipw_rx_queue_restock to refill any empty
5081 * slots.
5082 * ...
5083 *
5084 */
5085
5086 /*
5087 * If there are slots in the RX queue that need to be restocked,
5088 * and we have free pre-allocated buffers, fill the ranks as much
5089 * as we can pulling from rx_free.
5090 *
5091 * This moves the 'write' index forward to catch up with 'processed', and
5092 * also updates the memory address in the firmware to reference the new
5093 * target buffer.
5094 */
5095 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5096 {
5097 struct ipw_rx_queue *rxq = priv->rxq;
5098 struct list_head *element;
5099 struct ipw_rx_mem_buffer *rxb;
5100 unsigned long flags;
5101 int write;
5102
5103 spin_lock_irqsave(&rxq->lock, flags);
5104 write = rxq->write;
5105 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5106 element = rxq->rx_free.next;
5107 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5108 list_del(element);
5109
5110 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5111 rxb->dma_addr);
5112 rxq->queue[rxq->write] = rxb;
5113 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5114 rxq->free_count--;
5115 }
5116 spin_unlock_irqrestore(&rxq->lock, flags);
5117
5118 /* If the pre-allocated buffer pool is dropping low, schedule to
5119 * refill it */
5120 if (rxq->free_count <= RX_LOW_WATERMARK)
5121 queue_work(priv->workqueue, &priv->rx_replenish);
5122
5123 /* If we've added more space for the firmware to place data, tell it */
5124 if (write != rxq->write)
5125 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5126 }
5127
5128 /*
5129 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5130 * Also restock the Rx queue via ipw_rx_queue_restock.
5131 *
5132 * This is called as a scheduled work item (except for during intialization)
5133 */
5134 static void ipw_rx_queue_replenish(void *data)
5135 {
5136 struct ipw_priv *priv = data;
5137 struct ipw_rx_queue *rxq = priv->rxq;
5138 struct list_head *element;
5139 struct ipw_rx_mem_buffer *rxb;
5140 unsigned long flags;
5141
5142 spin_lock_irqsave(&rxq->lock, flags);
5143 while (!list_empty(&rxq->rx_used)) {
5144 element = rxq->rx_used.next;
5145 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5146 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5147 if (!rxb->skb) {
5148 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5149 priv->net_dev->name);
5150 /* We don't reschedule replenish work here -- we will
5151 * call the restock method and if it still needs
5152 * more buffers it will schedule replenish */
5153 break;
5154 }
5155 list_del(element);
5156
5157 rxb->dma_addr =
5158 pci_map_single(priv->pci_dev, rxb->skb->data,
5159 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5160
5161 list_add_tail(&rxb->list, &rxq->rx_free);
5162 rxq->free_count++;
5163 }
5164 spin_unlock_irqrestore(&rxq->lock, flags);
5165
5166 ipw_rx_queue_restock(priv);
5167 }
5168
5169 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5170 {
5171 struct ipw_priv *priv =
5172 container_of(work, struct ipw_priv, rx_replenish);
5173 mutex_lock(&priv->mutex);
5174 ipw_rx_queue_replenish(priv);
5175 mutex_unlock(&priv->mutex);
5176 }
5177
5178 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5179 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5180 * This free routine walks the list of POOL entries and if SKB is set to
5181 * non NULL it is unmapped and freed
5182 */
5183 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5184 {
5185 int i;
5186
5187 if (!rxq)
5188 return;
5189
5190 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5191 if (rxq->pool[i].skb != NULL) {
5192 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5193 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5194 dev_kfree_skb(rxq->pool[i].skb);
5195 }
5196 }
5197
5198 kfree(rxq);
5199 }
5200
5201 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5202 {
5203 struct ipw_rx_queue *rxq;
5204 int i;
5205
5206 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5207 if (unlikely(!rxq)) {
5208 IPW_ERROR("memory allocation failed\n");
5209 return NULL;
5210 }
5211 spin_lock_init(&rxq->lock);
5212 INIT_LIST_HEAD(&rxq->rx_free);
5213 INIT_LIST_HEAD(&rxq->rx_used);
5214
5215 /* Fill the rx_used queue with _all_ of the Rx buffers */
5216 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5217 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5218
5219 /* Set us so that we have processed and used all buffers, but have
5220 * not restocked the Rx queue with fresh buffers */
5221 rxq->read = rxq->write = 0;
5222 rxq->free_count = 0;
5223
5224 return rxq;
5225 }
5226
5227 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5228 {
5229 rate &= ~IEEE80211_BASIC_RATE_MASK;
5230 if (ieee_mode == IEEE_A) {
5231 switch (rate) {
5232 case IEEE80211_OFDM_RATE_6MB:
5233 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5234 1 : 0;
5235 case IEEE80211_OFDM_RATE_9MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5237 1 : 0;
5238 case IEEE80211_OFDM_RATE_12MB:
5239 return priv->
5240 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5241 case IEEE80211_OFDM_RATE_18MB:
5242 return priv->
5243 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_24MB:
5245 return priv->
5246 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5247 case IEEE80211_OFDM_RATE_36MB:
5248 return priv->
5249 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5250 case IEEE80211_OFDM_RATE_48MB:
5251 return priv->
5252 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5253 case IEEE80211_OFDM_RATE_54MB:
5254 return priv->
5255 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5256 default:
5257 return 0;
5258 }
5259 }
5260
5261 /* B and G mixed */
5262 switch (rate) {
5263 case IEEE80211_CCK_RATE_1MB:
5264 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5265 case IEEE80211_CCK_RATE_2MB:
5266 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5267 case IEEE80211_CCK_RATE_5MB:
5268 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5269 case IEEE80211_CCK_RATE_11MB:
5270 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5271 }
5272
5273 /* If we are limited to B modulations, bail at this point */
5274 if (ieee_mode == IEEE_B)
5275 return 0;
5276
5277 /* G */
5278 switch (rate) {
5279 case IEEE80211_OFDM_RATE_6MB:
5280 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5281 case IEEE80211_OFDM_RATE_9MB:
5282 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5283 case IEEE80211_OFDM_RATE_12MB:
5284 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5285 case IEEE80211_OFDM_RATE_18MB:
5286 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5287 case IEEE80211_OFDM_RATE_24MB:
5288 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5289 case IEEE80211_OFDM_RATE_36MB:
5290 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5291 case IEEE80211_OFDM_RATE_48MB:
5292 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5293 case IEEE80211_OFDM_RATE_54MB:
5294 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5295 }
5296
5297 return 0;
5298 }
5299
5300 static int ipw_compatible_rates(struct ipw_priv *priv,
5301 const struct ieee80211_network *network,
5302 struct ipw_supported_rates *rates)
5303 {
5304 int num_rates, i;
5305
5306 memset(rates, 0, sizeof(*rates));
5307 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5308 rates->num_rates = 0;
5309 for (i = 0; i < num_rates; i++) {
5310 if (!ipw_is_rate_in_mask(priv, network->mode,
5311 network->rates[i])) {
5312
5313 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5314 IPW_DEBUG_SCAN("Adding masked mandatory "
5315 "rate %02X\n",
5316 network->rates[i]);
5317 rates->supported_rates[rates->num_rates++] =
5318 network->rates[i];
5319 continue;
5320 }
5321
5322 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5323 network->rates[i], priv->rates_mask);
5324 continue;
5325 }
5326
5327 rates->supported_rates[rates->num_rates++] = network->rates[i];
5328 }
5329
5330 num_rates = min(network->rates_ex_len,
5331 (u8) (IPW_MAX_RATES - num_rates));
5332 for (i = 0; i < num_rates; i++) {
5333 if (!ipw_is_rate_in_mask(priv, network->mode,
5334 network->rates_ex[i])) {
5335 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5336 IPW_DEBUG_SCAN("Adding masked mandatory "
5337 "rate %02X\n",
5338 network->rates_ex[i]);
5339 rates->supported_rates[rates->num_rates++] =
5340 network->rates[i];
5341 continue;
5342 }
5343
5344 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5345 network->rates_ex[i], priv->rates_mask);
5346 continue;
5347 }
5348
5349 rates->supported_rates[rates->num_rates++] =
5350 network->rates_ex[i];
5351 }
5352
5353 return 1;
5354 }
5355
5356 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5357 const struct ipw_supported_rates *src)
5358 {
5359 u8 i;
5360 for (i = 0; i < src->num_rates; i++)
5361 dest->supported_rates[i] = src->supported_rates[i];
5362 dest->num_rates = src->num_rates;
5363 }
5364
5365 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5366 * mask should ever be used -- right now all callers to add the scan rates are
5367 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5368 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5369 u8 modulation, u32 rate_mask)
5370 {
5371 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5372 IEEE80211_BASIC_RATE_MASK : 0;
5373
5374 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5375 rates->supported_rates[rates->num_rates++] =
5376 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5377
5378 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5379 rates->supported_rates[rates->num_rates++] =
5380 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5381
5382 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5383 rates->supported_rates[rates->num_rates++] = basic_mask |
5384 IEEE80211_CCK_RATE_5MB;
5385
5386 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5387 rates->supported_rates[rates->num_rates++] = basic_mask |
5388 IEEE80211_CCK_RATE_11MB;
5389 }
5390
5391 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5392 u8 modulation, u32 rate_mask)
5393 {
5394 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5395 IEEE80211_BASIC_RATE_MASK : 0;
5396
5397 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5398 rates->supported_rates[rates->num_rates++] = basic_mask |
5399 IEEE80211_OFDM_RATE_6MB;
5400
5401 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5402 rates->supported_rates[rates->num_rates++] =
5403 IEEE80211_OFDM_RATE_9MB;
5404
5405 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5406 rates->supported_rates[rates->num_rates++] = basic_mask |
5407 IEEE80211_OFDM_RATE_12MB;
5408
5409 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5410 rates->supported_rates[rates->num_rates++] =
5411 IEEE80211_OFDM_RATE_18MB;
5412
5413 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5414 rates->supported_rates[rates->num_rates++] = basic_mask |
5415 IEEE80211_OFDM_RATE_24MB;
5416
5417 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5418 rates->supported_rates[rates->num_rates++] =
5419 IEEE80211_OFDM_RATE_36MB;
5420
5421 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5422 rates->supported_rates[rates->num_rates++] =
5423 IEEE80211_OFDM_RATE_48MB;
5424
5425 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5426 rates->supported_rates[rates->num_rates++] =
5427 IEEE80211_OFDM_RATE_54MB;
5428 }
5429
5430 struct ipw_network_match {
5431 struct ieee80211_network *network;
5432 struct ipw_supported_rates rates;
5433 };
5434
5435 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5436 struct ipw_network_match *match,
5437 struct ieee80211_network *network,
5438 int roaming)
5439 {
5440 struct ipw_supported_rates rates;
5441 DECLARE_SSID_BUF(ssid);
5442
5443 /* Verify that this network's capability is compatible with the
5444 * current mode (AdHoc or Infrastructure) */
5445 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5446 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5447 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5448 "capability mismatch.\n",
5449 print_ssid(ssid, network->ssid,
5450 network->ssid_len),
5451 network->bssid);
5452 return 0;
5453 }
5454
5455 if (unlikely(roaming)) {
5456 /* If we are roaming, then ensure check if this is a valid
5457 * network to try and roam to */
5458 if ((network->ssid_len != match->network->ssid_len) ||
5459 memcmp(network->ssid, match->network->ssid,
5460 network->ssid_len)) {
5461 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5462 "because of non-network ESSID.\n",
5463 print_ssid(ssid, network->ssid,
5464 network->ssid_len),
5465 network->bssid);
5466 return 0;
5467 }
5468 } else {
5469 /* If an ESSID has been configured then compare the broadcast
5470 * ESSID to ours */
5471 if ((priv->config & CFG_STATIC_ESSID) &&
5472 ((network->ssid_len != priv->essid_len) ||
5473 memcmp(network->ssid, priv->essid,
5474 min(network->ssid_len, priv->essid_len)))) {
5475 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5476
5477 strncpy(escaped,
5478 print_ssid(ssid, network->ssid,
5479 network->ssid_len),
5480 sizeof(escaped));
5481 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5482 "because of ESSID mismatch: '%s'.\n",
5483 escaped, network->bssid,
5484 print_ssid(ssid, priv->essid,
5485 priv->essid_len));
5486 return 0;
5487 }
5488 }
5489
5490 /* If the old network rate is better than this one, don't bother
5491 * testing everything else. */
5492
5493 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5494 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5495 "current network.\n",
5496 print_ssid(ssid, match->network->ssid,
5497 match->network->ssid_len));
5498 return 0;
5499 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5500 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5501 "current network.\n",
5502 print_ssid(ssid, match->network->ssid,
5503 match->network->ssid_len));
5504 return 0;
5505 }
5506
5507 /* Now go through and see if the requested network is valid... */
5508 if (priv->ieee->scan_age != 0 &&
5509 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5510 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5511 "because of age: %ums.\n",
5512 print_ssid(ssid, network->ssid,
5513 network->ssid_len),
5514 network->bssid,
5515 jiffies_to_msecs(jiffies -
5516 network->last_scanned));
5517 return 0;
5518 }
5519
5520 if ((priv->config & CFG_STATIC_CHANNEL) &&
5521 (network->channel != priv->channel)) {
5522 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5523 "because of channel mismatch: %d != %d.\n",
5524 print_ssid(ssid, network->ssid,
5525 network->ssid_len),
5526 network->bssid,
5527 network->channel, priv->channel);
5528 return 0;
5529 }
5530
5531 /* Verify privacy compatability */
5532 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5533 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5534 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5535 "because of privacy mismatch: %s != %s.\n",
5536 print_ssid(ssid, network->ssid,
5537 network->ssid_len),
5538 network->bssid,
5539 priv->
5540 capability & CAP_PRIVACY_ON ? "on" : "off",
5541 network->
5542 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5543 "off");
5544 return 0;
5545 }
5546
5547 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5548 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549 "because of the same BSSID match: %pM"
5550 ".\n", print_ssid(ssid, network->ssid,
5551 network->ssid_len),
5552 network->bssid,
5553 priv->bssid);
5554 return 0;
5555 }
5556
5557 /* Filter out any incompatible freq / mode combinations */
5558 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5559 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5560 "because of invalid frequency/mode "
5561 "combination.\n",
5562 print_ssid(ssid, network->ssid,
5563 network->ssid_len),
5564 network->bssid);
5565 return 0;
5566 }
5567
5568 /* Ensure that the rates supported by the driver are compatible with
5569 * this AP, including verification of basic rates (mandatory) */
5570 if (!ipw_compatible_rates(priv, network, &rates)) {
5571 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5572 "because configured rate mask excludes "
5573 "AP mandatory rate.\n",
5574 print_ssid(ssid, network->ssid,
5575 network->ssid_len),
5576 network->bssid);
5577 return 0;
5578 }
5579
5580 if (rates.num_rates == 0) {
5581 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5582 "because of no compatible rates.\n",
5583 print_ssid(ssid, network->ssid,
5584 network->ssid_len),
5585 network->bssid);
5586 return 0;
5587 }
5588
5589 /* TODO: Perform any further minimal comparititive tests. We do not
5590 * want to put too much policy logic here; intelligent scan selection
5591 * should occur within a generic IEEE 802.11 user space tool. */
5592
5593 /* Set up 'new' AP to this network */
5594 ipw_copy_rates(&match->rates, &rates);
5595 match->network = network;
5596 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5597 print_ssid(ssid, network->ssid, network->ssid_len),
5598 network->bssid);
5599
5600 return 1;
5601 }
5602
5603 static void ipw_merge_adhoc_network(struct work_struct *work)
5604 {
5605 DECLARE_SSID_BUF(ssid);
5606 struct ipw_priv *priv =
5607 container_of(work, struct ipw_priv, merge_networks);
5608 struct ieee80211_network *network = NULL;
5609 struct ipw_network_match match = {
5610 .network = priv->assoc_network
5611 };
5612
5613 if ((priv->status & STATUS_ASSOCIATED) &&
5614 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5615 /* First pass through ROAM process -- look for a better
5616 * network */
5617 unsigned long flags;
5618
5619 spin_lock_irqsave(&priv->ieee->lock, flags);
5620 list_for_each_entry(network, &priv->ieee->network_list, list) {
5621 if (network != priv->assoc_network)
5622 ipw_find_adhoc_network(priv, &match, network,
5623 1);
5624 }
5625 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5626
5627 if (match.network == priv->assoc_network) {
5628 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5629 "merge to.\n");
5630 return;
5631 }
5632
5633 mutex_lock(&priv->mutex);
5634 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5635 IPW_DEBUG_MERGE("remove network %s\n",
5636 print_ssid(ssid, priv->essid,
5637 priv->essid_len));
5638 ipw_remove_current_network(priv);
5639 }
5640
5641 ipw_disassociate(priv);
5642 priv->assoc_network = match.network;
5643 mutex_unlock(&priv->mutex);
5644 return;
5645 }
5646 }
5647
5648 static int ipw_best_network(struct ipw_priv *priv,
5649 struct ipw_network_match *match,
5650 struct ieee80211_network *network, int roaming)
5651 {
5652 struct ipw_supported_rates rates;
5653 DECLARE_SSID_BUF(ssid);
5654
5655 /* Verify that this network's capability is compatible with the
5656 * current mode (AdHoc or Infrastructure) */
5657 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5658 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5659 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5660 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5661 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5662 "capability mismatch.\n",
5663 print_ssid(ssid, network->ssid,
5664 network->ssid_len),
5665 network->bssid);
5666 return 0;
5667 }
5668
5669 if (unlikely(roaming)) {
5670 /* If we are roaming, then ensure check if this is a valid
5671 * network to try and roam to */
5672 if ((network->ssid_len != match->network->ssid_len) ||
5673 memcmp(network->ssid, match->network->ssid,
5674 network->ssid_len)) {
5675 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5676 "because of non-network ESSID.\n",
5677 print_ssid(ssid, network->ssid,
5678 network->ssid_len),
5679 network->bssid);
5680 return 0;
5681 }
5682 } else {
5683 /* If an ESSID has been configured then compare the broadcast
5684 * ESSID to ours */
5685 if ((priv->config & CFG_STATIC_ESSID) &&
5686 ((network->ssid_len != priv->essid_len) ||
5687 memcmp(network->ssid, priv->essid,
5688 min(network->ssid_len, priv->essid_len)))) {
5689 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5690 strncpy(escaped,
5691 print_ssid(ssid, network->ssid,
5692 network->ssid_len),
5693 sizeof(escaped));
5694 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5695 "because of ESSID mismatch: '%s'.\n",
5696 escaped, network->bssid,
5697 print_ssid(ssid, priv->essid,
5698 priv->essid_len));
5699 return 0;
5700 }
5701 }
5702
5703 /* If the old network rate is better than this one, don't bother
5704 * testing everything else. */
5705 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5706 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5707 strncpy(escaped,
5708 print_ssid(ssid, network->ssid, network->ssid_len),
5709 sizeof(escaped));
5710 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5711 "'%s (%pM)' has a stronger signal.\n",
5712 escaped, network->bssid,
5713 print_ssid(ssid, match->network->ssid,
5714 match->network->ssid_len),
5715 match->network->bssid);
5716 return 0;
5717 }
5718
5719 /* If this network has already had an association attempt within the
5720 * last 3 seconds, do not try and associate again... */
5721 if (network->last_associate &&
5722 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5723 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5724 "because of storming (%ums since last "
5725 "assoc attempt).\n",
5726 print_ssid(ssid, network->ssid,
5727 network->ssid_len),
5728 network->bssid,
5729 jiffies_to_msecs(jiffies -
5730 network->last_associate));
5731 return 0;
5732 }
5733
5734 /* Now go through and see if the requested network is valid... */
5735 if (priv->ieee->scan_age != 0 &&
5736 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5738 "because of age: %ums.\n",
5739 print_ssid(ssid, network->ssid,
5740 network->ssid_len),
5741 network->bssid,
5742 jiffies_to_msecs(jiffies -
5743 network->last_scanned));
5744 return 0;
5745 }
5746
5747 if ((priv->config & CFG_STATIC_CHANNEL) &&
5748 (network->channel != priv->channel)) {
5749 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5750 "because of channel mismatch: %d != %d.\n",
5751 print_ssid(ssid, network->ssid,
5752 network->ssid_len),
5753 network->bssid,
5754 network->channel, priv->channel);
5755 return 0;
5756 }
5757
5758 /* Verify privacy compatability */
5759 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5760 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5761 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5762 "because of privacy mismatch: %s != %s.\n",
5763 print_ssid(ssid, network->ssid,
5764 network->ssid_len),
5765 network->bssid,
5766 priv->capability & CAP_PRIVACY_ON ? "on" :
5767 "off",
5768 network->capability &
5769 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5770 return 0;
5771 }
5772
5773 if ((priv->config & CFG_STATIC_BSSID) &&
5774 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5775 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5776 "because of BSSID mismatch: %pM.\n",
5777 print_ssid(ssid, network->ssid,
5778 network->ssid_len),
5779 network->bssid, priv->bssid);
5780 return 0;
5781 }
5782
5783 /* Filter out any incompatible freq / mode combinations */
5784 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5785 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5786 "because of invalid frequency/mode "
5787 "combination.\n",
5788 print_ssid(ssid, network->ssid,
5789 network->ssid_len),
5790 network->bssid);
5791 return 0;
5792 }
5793
5794 /* Filter out invalid channel in current GEO */
5795 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5796 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797 "because of invalid channel in current GEO\n",
5798 print_ssid(ssid, network->ssid,
5799 network->ssid_len),
5800 network->bssid);
5801 return 0;
5802 }
5803
5804 /* Ensure that the rates supported by the driver are compatible with
5805 * this AP, including verification of basic rates (mandatory) */
5806 if (!ipw_compatible_rates(priv, network, &rates)) {
5807 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808 "because configured rate mask excludes "
5809 "AP mandatory rate.\n",
5810 print_ssid(ssid, network->ssid,
5811 network->ssid_len),
5812 network->bssid);
5813 return 0;
5814 }
5815
5816 if (rates.num_rates == 0) {
5817 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5818 "because of no compatible rates.\n",
5819 print_ssid(ssid, network->ssid,
5820 network->ssid_len),
5821 network->bssid);
5822 return 0;
5823 }
5824
5825 /* TODO: Perform any further minimal comparititive tests. We do not
5826 * want to put too much policy logic here; intelligent scan selection
5827 * should occur within a generic IEEE 802.11 user space tool. */
5828
5829 /* Set up 'new' AP to this network */
5830 ipw_copy_rates(&match->rates, &rates);
5831 match->network = network;
5832
5833 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5834 print_ssid(ssid, network->ssid, network->ssid_len),
5835 network->bssid);
5836
5837 return 1;
5838 }
5839
5840 static void ipw_adhoc_create(struct ipw_priv *priv,
5841 struct ieee80211_network *network)
5842 {
5843 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5844 int i;
5845
5846 /*
5847 * For the purposes of scanning, we can set our wireless mode
5848 * to trigger scans across combinations of bands, but when it
5849 * comes to creating a new ad-hoc network, we have tell the FW
5850 * exactly which band to use.
5851 *
5852 * We also have the possibility of an invalid channel for the
5853 * chossen band. Attempting to create a new ad-hoc network
5854 * with an invalid channel for wireless mode will trigger a
5855 * FW fatal error.
5856 *
5857 */
5858 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5859 case IEEE80211_52GHZ_BAND:
5860 network->mode = IEEE_A;
5861 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5862 BUG_ON(i == -1);
5863 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5864 IPW_WARNING("Overriding invalid channel\n");
5865 priv->channel = geo->a[0].channel;
5866 }
5867 break;
5868
5869 case IEEE80211_24GHZ_BAND:
5870 if (priv->ieee->mode & IEEE_G)
5871 network->mode = IEEE_G;
5872 else
5873 network->mode = IEEE_B;
5874 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5875 BUG_ON(i == -1);
5876 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5877 IPW_WARNING("Overriding invalid channel\n");
5878 priv->channel = geo->bg[0].channel;
5879 }
5880 break;
5881
5882 default:
5883 IPW_WARNING("Overriding invalid channel\n");
5884 if (priv->ieee->mode & IEEE_A) {
5885 network->mode = IEEE_A;
5886 priv->channel = geo->a[0].channel;
5887 } else if (priv->ieee->mode & IEEE_G) {
5888 network->mode = IEEE_G;
5889 priv->channel = geo->bg[0].channel;
5890 } else {
5891 network->mode = IEEE_B;
5892 priv->channel = geo->bg[0].channel;
5893 }
5894 break;
5895 }
5896
5897 network->channel = priv->channel;
5898 priv->config |= CFG_ADHOC_PERSIST;
5899 ipw_create_bssid(priv, network->bssid);
5900 network->ssid_len = priv->essid_len;
5901 memcpy(network->ssid, priv->essid, priv->essid_len);
5902 memset(&network->stats, 0, sizeof(network->stats));
5903 network->capability = WLAN_CAPABILITY_IBSS;
5904 if (!(priv->config & CFG_PREAMBLE_LONG))
5905 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5906 if (priv->capability & CAP_PRIVACY_ON)
5907 network->capability |= WLAN_CAPABILITY_PRIVACY;
5908 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5909 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5910 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5911 memcpy(network->rates_ex,
5912 &priv->rates.supported_rates[network->rates_len],
5913 network->rates_ex_len);
5914 network->last_scanned = 0;
5915 network->flags = 0;
5916 network->last_associate = 0;
5917 network->time_stamp[0] = 0;
5918 network->time_stamp[1] = 0;
5919 network->beacon_interval = 100; /* Default */
5920 network->listen_interval = 10; /* Default */
5921 network->atim_window = 0; /* Default */
5922 network->wpa_ie_len = 0;
5923 network->rsn_ie_len = 0;
5924 }
5925
5926 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5927 {
5928 struct ipw_tgi_tx_key key;
5929
5930 if (!(priv->ieee->sec.flags & (1 << index)))
5931 return;
5932
5933 key.key_id = index;
5934 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5935 key.security_type = type;
5936 key.station_index = 0; /* always 0 for BSS */
5937 key.flags = 0;
5938 /* 0 for new key; previous value of counter (after fatal error) */
5939 key.tx_counter[0] = cpu_to_le32(0);
5940 key.tx_counter[1] = cpu_to_le32(0);
5941
5942 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5943 }
5944
5945 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5946 {
5947 struct ipw_wep_key key;
5948 int i;
5949
5950 key.cmd_id = DINO_CMD_WEP_KEY;
5951 key.seq_num = 0;
5952
5953 /* Note: AES keys cannot be set for multiple times.
5954 * Only set it at the first time. */
5955 for (i = 0; i < 4; i++) {
5956 key.key_index = i | type;
5957 if (!(priv->ieee->sec.flags & (1 << i))) {
5958 key.key_size = 0;
5959 continue;
5960 }
5961
5962 key.key_size = priv->ieee->sec.key_sizes[i];
5963 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5964
5965 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5966 }
5967 }
5968
5969 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5970 {
5971 if (priv->ieee->host_encrypt)
5972 return;
5973
5974 switch (level) {
5975 case SEC_LEVEL_3:
5976 priv->sys_config.disable_unicast_decryption = 0;
5977 priv->ieee->host_decrypt = 0;
5978 break;
5979 case SEC_LEVEL_2:
5980 priv->sys_config.disable_unicast_decryption = 1;
5981 priv->ieee->host_decrypt = 1;
5982 break;
5983 case SEC_LEVEL_1:
5984 priv->sys_config.disable_unicast_decryption = 0;
5985 priv->ieee->host_decrypt = 0;
5986 break;
5987 case SEC_LEVEL_0:
5988 priv->sys_config.disable_unicast_decryption = 1;
5989 break;
5990 default:
5991 break;
5992 }
5993 }
5994
5995 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5996 {
5997 if (priv->ieee->host_encrypt)
5998 return;
5999
6000 switch (level) {
6001 case SEC_LEVEL_3:
6002 priv->sys_config.disable_multicast_decryption = 0;
6003 break;
6004 case SEC_LEVEL_2:
6005 priv->sys_config.disable_multicast_decryption = 1;
6006 break;
6007 case SEC_LEVEL_1:
6008 priv->sys_config.disable_multicast_decryption = 0;
6009 break;
6010 case SEC_LEVEL_0:
6011 priv->sys_config.disable_multicast_decryption = 1;
6012 break;
6013 default:
6014 break;
6015 }
6016 }
6017
6018 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6019 {
6020 switch (priv->ieee->sec.level) {
6021 case SEC_LEVEL_3:
6022 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6023 ipw_send_tgi_tx_key(priv,
6024 DCT_FLAG_EXT_SECURITY_CCM,
6025 priv->ieee->sec.active_key);
6026
6027 if (!priv->ieee->host_mc_decrypt)
6028 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6029 break;
6030 case SEC_LEVEL_2:
6031 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6032 ipw_send_tgi_tx_key(priv,
6033 DCT_FLAG_EXT_SECURITY_TKIP,
6034 priv->ieee->sec.active_key);
6035 break;
6036 case SEC_LEVEL_1:
6037 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6038 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6039 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6040 break;
6041 case SEC_LEVEL_0:
6042 default:
6043 break;
6044 }
6045 }
6046
6047 static void ipw_adhoc_check(void *data)
6048 {
6049 struct ipw_priv *priv = data;
6050
6051 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6052 !(priv->config & CFG_ADHOC_PERSIST)) {
6053 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6054 IPW_DL_STATE | IPW_DL_ASSOC,
6055 "Missed beacon: %d - disassociate\n",
6056 priv->missed_adhoc_beacons);
6057 ipw_remove_current_network(priv);
6058 ipw_disassociate(priv);
6059 return;
6060 }
6061
6062 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6063 le16_to_cpu(priv->assoc_request.beacon_interval));
6064 }
6065
6066 static void ipw_bg_adhoc_check(struct work_struct *work)
6067 {
6068 struct ipw_priv *priv =
6069 container_of(work, struct ipw_priv, adhoc_check.work);
6070 mutex_lock(&priv->mutex);
6071 ipw_adhoc_check(priv);
6072 mutex_unlock(&priv->mutex);
6073 }
6074
6075 static void ipw_debug_config(struct ipw_priv *priv)
6076 {
6077 DECLARE_SSID_BUF(ssid);
6078 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6079 "[CFG 0x%08X]\n", priv->config);
6080 if (priv->config & CFG_STATIC_CHANNEL)
6081 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6082 else
6083 IPW_DEBUG_INFO("Channel unlocked.\n");
6084 if (priv->config & CFG_STATIC_ESSID)
6085 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6086 print_ssid(ssid, priv->essid, priv->essid_len));
6087 else
6088 IPW_DEBUG_INFO("ESSID unlocked.\n");
6089 if (priv->config & CFG_STATIC_BSSID)
6090 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6091 else
6092 IPW_DEBUG_INFO("BSSID unlocked.\n");
6093 if (priv->capability & CAP_PRIVACY_ON)
6094 IPW_DEBUG_INFO("PRIVACY on\n");
6095 else
6096 IPW_DEBUG_INFO("PRIVACY off\n");
6097 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6098 }
6099
6100 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6101 {
6102 /* TODO: Verify that this works... */
6103 struct ipw_fixed_rate fr = {
6104 .tx_rates = priv->rates_mask
6105 };
6106 u32 reg;
6107 u16 mask = 0;
6108
6109 /* Identify 'current FW band' and match it with the fixed
6110 * Tx rates */
6111
6112 switch (priv->ieee->freq_band) {
6113 case IEEE80211_52GHZ_BAND: /* A only */
6114 /* IEEE_A */
6115 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6116 /* Invalid fixed rate mask */
6117 IPW_DEBUG_WX
6118 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6119 fr.tx_rates = 0;
6120 break;
6121 }
6122
6123 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6124 break;
6125
6126 default: /* 2.4Ghz or Mixed */
6127 /* IEEE_B */
6128 if (mode == IEEE_B) {
6129 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6130 /* Invalid fixed rate mask */
6131 IPW_DEBUG_WX
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133 fr.tx_rates = 0;
6134 }
6135 break;
6136 }
6137
6138 /* IEEE_G */
6139 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6140 IEEE80211_OFDM_RATES_MASK)) {
6141 /* Invalid fixed rate mask */
6142 IPW_DEBUG_WX
6143 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6144 fr.tx_rates = 0;
6145 break;
6146 }
6147
6148 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6149 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6150 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6151 }
6152
6153 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6154 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6155 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6156 }
6157
6158 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6159 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6160 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6161 }
6162
6163 fr.tx_rates |= mask;
6164 break;
6165 }
6166
6167 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6168 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6169 }
6170
6171 static void ipw_abort_scan(struct ipw_priv *priv)
6172 {
6173 int err;
6174
6175 if (priv->status & STATUS_SCAN_ABORTING) {
6176 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6177 return;
6178 }
6179 priv->status |= STATUS_SCAN_ABORTING;
6180
6181 err = ipw_send_scan_abort(priv);
6182 if (err)
6183 IPW_DEBUG_HC("Request to abort scan failed.\n");
6184 }
6185
6186 static void ipw_add_scan_channels(struct ipw_priv *priv,
6187 struct ipw_scan_request_ext *scan,
6188 int scan_type)
6189 {
6190 int channel_index = 0;
6191 const struct ieee80211_geo *geo;
6192 int i;
6193
6194 geo = ieee80211_get_geo(priv->ieee);
6195
6196 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6197 int start = channel_index;
6198 for (i = 0; i < geo->a_channels; i++) {
6199 if ((priv->status & STATUS_ASSOCIATED) &&
6200 geo->a[i].channel == priv->channel)
6201 continue;
6202 channel_index++;
6203 scan->channels_list[channel_index] = geo->a[i].channel;
6204 ipw_set_scan_type(scan, channel_index,
6205 geo->a[i].
6206 flags & IEEE80211_CH_PASSIVE_ONLY ?
6207 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6208 scan_type);
6209 }
6210
6211 if (start != channel_index) {
6212 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6213 (channel_index - start);
6214 channel_index++;
6215 }
6216 }
6217
6218 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6219 int start = channel_index;
6220 if (priv->config & CFG_SPEED_SCAN) {
6221 int index;
6222 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6223 /* nop out the list */
6224 [0] = 0
6225 };
6226
6227 u8 channel;
6228 while (channel_index < IPW_SCAN_CHANNELS) {
6229 channel =
6230 priv->speed_scan[priv->speed_scan_pos];
6231 if (channel == 0) {
6232 priv->speed_scan_pos = 0;
6233 channel = priv->speed_scan[0];
6234 }
6235 if ((priv->status & STATUS_ASSOCIATED) &&
6236 channel == priv->channel) {
6237 priv->speed_scan_pos++;
6238 continue;
6239 }
6240
6241 /* If this channel has already been
6242 * added in scan, break from loop
6243 * and this will be the first channel
6244 * in the next scan.
6245 */
6246 if (channels[channel - 1] != 0)
6247 break;
6248
6249 channels[channel - 1] = 1;
6250 priv->speed_scan_pos++;
6251 channel_index++;
6252 scan->channels_list[channel_index] = channel;
6253 index =
6254 ieee80211_channel_to_index(priv->ieee, channel);
6255 ipw_set_scan_type(scan, channel_index,
6256 geo->bg[index].
6257 flags &
6258 IEEE80211_CH_PASSIVE_ONLY ?
6259 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6260 : scan_type);
6261 }
6262 } else {
6263 for (i = 0; i < geo->bg_channels; i++) {
6264 if ((priv->status & STATUS_ASSOCIATED) &&
6265 geo->bg[i].channel == priv->channel)
6266 continue;
6267 channel_index++;
6268 scan->channels_list[channel_index] =
6269 geo->bg[i].channel;
6270 ipw_set_scan_type(scan, channel_index,
6271 geo->bg[i].
6272 flags &
6273 IEEE80211_CH_PASSIVE_ONLY ?
6274 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6275 : scan_type);
6276 }
6277 }
6278
6279 if (start != channel_index) {
6280 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6281 (channel_index - start);
6282 }
6283 }
6284 }
6285
6286 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6287 {
6288 /* staying on passive channels longer than the DTIM interval during a
6289 * scan, while associated, causes the firmware to cancel the scan
6290 * without notification. Hence, don't stay on passive channels longer
6291 * than the beacon interval.
6292 */
6293 if (priv->status & STATUS_ASSOCIATED
6294 && priv->assoc_network->beacon_interval > 10)
6295 return priv->assoc_network->beacon_interval - 10;
6296 else
6297 return 120;
6298 }
6299
6300 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6301 {
6302 struct ipw_scan_request_ext scan;
6303 int err = 0, scan_type;
6304
6305 if (!(priv->status & STATUS_INIT) ||
6306 (priv->status & STATUS_EXIT_PENDING))
6307 return 0;
6308
6309 mutex_lock(&priv->mutex);
6310
6311 if (direct && (priv->direct_scan_ssid_len == 0)) {
6312 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6313 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6314 goto done;
6315 }
6316
6317 if (priv->status & STATUS_SCANNING) {
6318 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6319 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6320 STATUS_SCAN_PENDING;
6321 goto done;
6322 }
6323
6324 if (!(priv->status & STATUS_SCAN_FORCED) &&
6325 priv->status & STATUS_SCAN_ABORTING) {
6326 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6327 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6328 STATUS_SCAN_PENDING;
6329 goto done;
6330 }
6331
6332 if (priv->status & STATUS_RF_KILL_MASK) {
6333 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6334 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6335 STATUS_SCAN_PENDING;
6336 goto done;
6337 }
6338
6339 memset(&scan, 0, sizeof(scan));
6340 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6341
6342 if (type == IW_SCAN_TYPE_PASSIVE) {
6343 IPW_DEBUG_WX("use passive scanning\n");
6344 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6345 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6346 cpu_to_le16(ipw_passive_dwell_time(priv));
6347 ipw_add_scan_channels(priv, &scan, scan_type);
6348 goto send_request;
6349 }
6350
6351 /* Use active scan by default. */
6352 if (priv->config & CFG_SPEED_SCAN)
6353 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6354 cpu_to_le16(30);
6355 else
6356 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6357 cpu_to_le16(20);
6358
6359 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6360 cpu_to_le16(20);
6361
6362 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6363 cpu_to_le16(ipw_passive_dwell_time(priv));
6364 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6365
6366 #ifdef CONFIG_IPW2200_MONITOR
6367 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6368 u8 channel;
6369 u8 band = 0;
6370
6371 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6372 case IEEE80211_52GHZ_BAND:
6373 band = (u8) (IPW_A_MODE << 6) | 1;
6374 channel = priv->channel;
6375 break;
6376
6377 case IEEE80211_24GHZ_BAND:
6378 band = (u8) (IPW_B_MODE << 6) | 1;
6379 channel = priv->channel;
6380 break;
6381
6382 default:
6383 band = (u8) (IPW_B_MODE << 6) | 1;
6384 channel = 9;
6385 break;
6386 }
6387
6388 scan.channels_list[0] = band;
6389 scan.channels_list[1] = channel;
6390 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6391
6392 /* NOTE: The card will sit on this channel for this time
6393 * period. Scan aborts are timing sensitive and frequently
6394 * result in firmware restarts. As such, it is best to
6395 * set a small dwell_time here and just keep re-issuing
6396 * scans. Otherwise fast channel hopping will not actually
6397 * hop channels.
6398 *
6399 * TODO: Move SPEED SCAN support to all modes and bands */
6400 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6401 cpu_to_le16(2000);
6402 } else {
6403 #endif /* CONFIG_IPW2200_MONITOR */
6404 /* Honor direct scans first, otherwise if we are roaming make
6405 * this a direct scan for the current network. Finally,
6406 * ensure that every other scan is a fast channel hop scan */
6407 if (direct) {
6408 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6409 priv->direct_scan_ssid_len);
6410 if (err) {
6411 IPW_DEBUG_HC("Attempt to send SSID command "
6412 "failed\n");
6413 goto done;
6414 }
6415
6416 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6417 } else if ((priv->status & STATUS_ROAMING)
6418 || (!(priv->status & STATUS_ASSOCIATED)
6419 && (priv->config & CFG_STATIC_ESSID)
6420 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6421 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6422 if (err) {
6423 IPW_DEBUG_HC("Attempt to send SSID command "
6424 "failed.\n");
6425 goto done;
6426 }
6427
6428 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6429 } else
6430 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6431
6432 ipw_add_scan_channels(priv, &scan, scan_type);
6433 #ifdef CONFIG_IPW2200_MONITOR
6434 }
6435 #endif
6436
6437 send_request:
6438 err = ipw_send_scan_request_ext(priv, &scan);
6439 if (err) {
6440 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6441 goto done;
6442 }
6443
6444 priv->status |= STATUS_SCANNING;
6445 if (direct) {
6446 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6447 priv->direct_scan_ssid_len = 0;
6448 } else
6449 priv->status &= ~STATUS_SCAN_PENDING;
6450
6451 queue_delayed_work(priv->workqueue, &priv->scan_check,
6452 IPW_SCAN_CHECK_WATCHDOG);
6453 done:
6454 mutex_unlock(&priv->mutex);
6455 return err;
6456 }
6457
6458 static void ipw_request_passive_scan(struct work_struct *work)
6459 {
6460 struct ipw_priv *priv =
6461 container_of(work, struct ipw_priv, request_passive_scan.work);
6462 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6463 }
6464
6465 static void ipw_request_scan(struct work_struct *work)
6466 {
6467 struct ipw_priv *priv =
6468 container_of(work, struct ipw_priv, request_scan.work);
6469 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6470 }
6471
6472 static void ipw_request_direct_scan(struct work_struct *work)
6473 {
6474 struct ipw_priv *priv =
6475 container_of(work, struct ipw_priv, request_direct_scan.work);
6476 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6477 }
6478
6479 static void ipw_bg_abort_scan(struct work_struct *work)
6480 {
6481 struct ipw_priv *priv =
6482 container_of(work, struct ipw_priv, abort_scan);
6483 mutex_lock(&priv->mutex);
6484 ipw_abort_scan(priv);
6485 mutex_unlock(&priv->mutex);
6486 }
6487
6488 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6489 {
6490 /* This is called when wpa_supplicant loads and closes the driver
6491 * interface. */
6492 priv->ieee->wpa_enabled = value;
6493 return 0;
6494 }
6495
6496 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6497 {
6498 struct ieee80211_device *ieee = priv->ieee;
6499 struct ieee80211_security sec = {
6500 .flags = SEC_AUTH_MODE,
6501 };
6502 int ret = 0;
6503
6504 if (value & IW_AUTH_ALG_SHARED_KEY) {
6505 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6506 ieee->open_wep = 0;
6507 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6508 sec.auth_mode = WLAN_AUTH_OPEN;
6509 ieee->open_wep = 1;
6510 } else if (value & IW_AUTH_ALG_LEAP) {
6511 sec.auth_mode = WLAN_AUTH_LEAP;
6512 ieee->open_wep = 1;
6513 } else
6514 return -EINVAL;
6515
6516 if (ieee->set_security)
6517 ieee->set_security(ieee->dev, &sec);
6518 else
6519 ret = -EOPNOTSUPP;
6520
6521 return ret;
6522 }
6523
6524 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6525 int wpa_ie_len)
6526 {
6527 /* make sure WPA is enabled */
6528 ipw_wpa_enable(priv, 1);
6529 }
6530
6531 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6532 char *capabilities, int length)
6533 {
6534 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6535
6536 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6537 capabilities);
6538 }
6539
6540 /*
6541 * WE-18 support
6542 */
6543
6544 /* SIOCSIWGENIE */
6545 static int ipw_wx_set_genie(struct net_device *dev,
6546 struct iw_request_info *info,
6547 union iwreq_data *wrqu, char *extra)
6548 {
6549 struct ipw_priv *priv = ieee80211_priv(dev);
6550 struct ieee80211_device *ieee = priv->ieee;
6551 u8 *buf;
6552 int err = 0;
6553
6554 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6555 (wrqu->data.length && extra == NULL))
6556 return -EINVAL;
6557
6558 if (wrqu->data.length) {
6559 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6560 if (buf == NULL) {
6561 err = -ENOMEM;
6562 goto out;
6563 }
6564
6565 memcpy(buf, extra, wrqu->data.length);
6566 kfree(ieee->wpa_ie);
6567 ieee->wpa_ie = buf;
6568 ieee->wpa_ie_len = wrqu->data.length;
6569 } else {
6570 kfree(ieee->wpa_ie);
6571 ieee->wpa_ie = NULL;
6572 ieee->wpa_ie_len = 0;
6573 }
6574
6575 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6576 out:
6577 return err;
6578 }
6579
6580 /* SIOCGIWGENIE */
6581 static int ipw_wx_get_genie(struct net_device *dev,
6582 struct iw_request_info *info,
6583 union iwreq_data *wrqu, char *extra)
6584 {
6585 struct ipw_priv *priv = ieee80211_priv(dev);
6586 struct ieee80211_device *ieee = priv->ieee;
6587 int err = 0;
6588
6589 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6590 wrqu->data.length = 0;
6591 goto out;
6592 }
6593
6594 if (wrqu->data.length < ieee->wpa_ie_len) {
6595 err = -E2BIG;
6596 goto out;
6597 }
6598
6599 wrqu->data.length = ieee->wpa_ie_len;
6600 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6601
6602 out:
6603 return err;
6604 }
6605
6606 static int wext_cipher2level(int cipher)
6607 {
6608 switch (cipher) {
6609 case IW_AUTH_CIPHER_NONE:
6610 return SEC_LEVEL_0;
6611 case IW_AUTH_CIPHER_WEP40:
6612 case IW_AUTH_CIPHER_WEP104:
6613 return SEC_LEVEL_1;
6614 case IW_AUTH_CIPHER_TKIP:
6615 return SEC_LEVEL_2;
6616 case IW_AUTH_CIPHER_CCMP:
6617 return SEC_LEVEL_3;
6618 default:
6619 return -1;
6620 }
6621 }
6622
6623 /* SIOCSIWAUTH */
6624 static int ipw_wx_set_auth(struct net_device *dev,
6625 struct iw_request_info *info,
6626 union iwreq_data *wrqu, char *extra)
6627 {
6628 struct ipw_priv *priv = ieee80211_priv(dev);
6629 struct ieee80211_device *ieee = priv->ieee;
6630 struct iw_param *param = &wrqu->param;
6631 struct lib80211_crypt_data *crypt;
6632 unsigned long flags;
6633 int ret = 0;
6634
6635 switch (param->flags & IW_AUTH_INDEX) {
6636 case IW_AUTH_WPA_VERSION:
6637 break;
6638 case IW_AUTH_CIPHER_PAIRWISE:
6639 ipw_set_hw_decrypt_unicast(priv,
6640 wext_cipher2level(param->value));
6641 break;
6642 case IW_AUTH_CIPHER_GROUP:
6643 ipw_set_hw_decrypt_multicast(priv,
6644 wext_cipher2level(param->value));
6645 break;
6646 case IW_AUTH_KEY_MGMT:
6647 /*
6648 * ipw2200 does not use these parameters
6649 */
6650 break;
6651
6652 case IW_AUTH_TKIP_COUNTERMEASURES:
6653 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6654 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6655 break;
6656
6657 flags = crypt->ops->get_flags(crypt->priv);
6658
6659 if (param->value)
6660 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6661 else
6662 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6663
6664 crypt->ops->set_flags(flags, crypt->priv);
6665
6666 break;
6667
6668 case IW_AUTH_DROP_UNENCRYPTED:{
6669 /* HACK:
6670 *
6671 * wpa_supplicant calls set_wpa_enabled when the driver
6672 * is loaded and unloaded, regardless of if WPA is being
6673 * used. No other calls are made which can be used to
6674 * determine if encryption will be used or not prior to
6675 * association being expected. If encryption is not being
6676 * used, drop_unencrypted is set to false, else true -- we
6677 * can use this to determine if the CAP_PRIVACY_ON bit should
6678 * be set.
6679 */
6680 struct ieee80211_security sec = {
6681 .flags = SEC_ENABLED,
6682 .enabled = param->value,
6683 };
6684 priv->ieee->drop_unencrypted = param->value;
6685 /* We only change SEC_LEVEL for open mode. Others
6686 * are set by ipw_wpa_set_encryption.
6687 */
6688 if (!param->value) {
6689 sec.flags |= SEC_LEVEL;
6690 sec.level = SEC_LEVEL_0;
6691 } else {
6692 sec.flags |= SEC_LEVEL;
6693 sec.level = SEC_LEVEL_1;
6694 }
6695 if (priv->ieee->set_security)
6696 priv->ieee->set_security(priv->ieee->dev, &sec);
6697 break;
6698 }
6699
6700 case IW_AUTH_80211_AUTH_ALG:
6701 ret = ipw_wpa_set_auth_algs(priv, param->value);
6702 break;
6703
6704 case IW_AUTH_WPA_ENABLED:
6705 ret = ipw_wpa_enable(priv, param->value);
6706 ipw_disassociate(priv);
6707 break;
6708
6709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710 ieee->ieee802_1x = param->value;
6711 break;
6712
6713 case IW_AUTH_PRIVACY_INVOKED:
6714 ieee->privacy_invoked = param->value;
6715 break;
6716
6717 default:
6718 return -EOPNOTSUPP;
6719 }
6720 return ret;
6721 }
6722
6723 /* SIOCGIWAUTH */
6724 static int ipw_wx_get_auth(struct net_device *dev,
6725 struct iw_request_info *info,
6726 union iwreq_data *wrqu, char *extra)
6727 {
6728 struct ipw_priv *priv = ieee80211_priv(dev);
6729 struct ieee80211_device *ieee = priv->ieee;
6730 struct lib80211_crypt_data *crypt;
6731 struct iw_param *param = &wrqu->param;
6732 int ret = 0;
6733
6734 switch (param->flags & IW_AUTH_INDEX) {
6735 case IW_AUTH_WPA_VERSION:
6736 case IW_AUTH_CIPHER_PAIRWISE:
6737 case IW_AUTH_CIPHER_GROUP:
6738 case IW_AUTH_KEY_MGMT:
6739 /*
6740 * wpa_supplicant will control these internally
6741 */
6742 ret = -EOPNOTSUPP;
6743 break;
6744
6745 case IW_AUTH_TKIP_COUNTERMEASURES:
6746 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6747 if (!crypt || !crypt->ops->get_flags)
6748 break;
6749
6750 param->value = (crypt->ops->get_flags(crypt->priv) &
6751 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6752
6753 break;
6754
6755 case IW_AUTH_DROP_UNENCRYPTED:
6756 param->value = ieee->drop_unencrypted;
6757 break;
6758
6759 case IW_AUTH_80211_AUTH_ALG:
6760 param->value = ieee->sec.auth_mode;
6761 break;
6762
6763 case IW_AUTH_WPA_ENABLED:
6764 param->value = ieee->wpa_enabled;
6765 break;
6766
6767 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6768 param->value = ieee->ieee802_1x;
6769 break;
6770
6771 case IW_AUTH_ROAMING_CONTROL:
6772 case IW_AUTH_PRIVACY_INVOKED:
6773 param->value = ieee->privacy_invoked;
6774 break;
6775
6776 default:
6777 return -EOPNOTSUPP;
6778 }
6779 return 0;
6780 }
6781
6782 /* SIOCSIWENCODEEXT */
6783 static int ipw_wx_set_encodeext(struct net_device *dev,
6784 struct iw_request_info *info,
6785 union iwreq_data *wrqu, char *extra)
6786 {
6787 struct ipw_priv *priv = ieee80211_priv(dev);
6788 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6789
6790 if (hwcrypto) {
6791 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6792 /* IPW HW can't build TKIP MIC,
6793 host decryption still needed */
6794 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6795 priv->ieee->host_mc_decrypt = 1;
6796 else {
6797 priv->ieee->host_encrypt = 0;
6798 priv->ieee->host_encrypt_msdu = 1;
6799 priv->ieee->host_decrypt = 1;
6800 }
6801 } else {
6802 priv->ieee->host_encrypt = 0;
6803 priv->ieee->host_encrypt_msdu = 0;
6804 priv->ieee->host_decrypt = 0;
6805 priv->ieee->host_mc_decrypt = 0;
6806 }
6807 }
6808
6809 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6810 }
6811
6812 /* SIOCGIWENCODEEXT */
6813 static int ipw_wx_get_encodeext(struct net_device *dev,
6814 struct iw_request_info *info,
6815 union iwreq_data *wrqu, char *extra)
6816 {
6817 struct ipw_priv *priv = ieee80211_priv(dev);
6818 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6819 }
6820
6821 /* SIOCSIWMLME */
6822 static int ipw_wx_set_mlme(struct net_device *dev,
6823 struct iw_request_info *info,
6824 union iwreq_data *wrqu, char *extra)
6825 {
6826 struct ipw_priv *priv = ieee80211_priv(dev);
6827 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6828 __le16 reason;
6829
6830 reason = cpu_to_le16(mlme->reason_code);
6831
6832 switch (mlme->cmd) {
6833 case IW_MLME_DEAUTH:
6834 /* silently ignore */
6835 break;
6836
6837 case IW_MLME_DISASSOC:
6838 ipw_disassociate(priv);
6839 break;
6840
6841 default:
6842 return -EOPNOTSUPP;
6843 }
6844 return 0;
6845 }
6846
6847 #ifdef CONFIG_IPW2200_QOS
6848
6849 /* QoS */
6850 /*
6851 * get the modulation type of the current network or
6852 * the card current mode
6853 */
6854 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6855 {
6856 u8 mode = 0;
6857
6858 if (priv->status & STATUS_ASSOCIATED) {
6859 unsigned long flags;
6860
6861 spin_lock_irqsave(&priv->ieee->lock, flags);
6862 mode = priv->assoc_network->mode;
6863 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6864 } else {
6865 mode = priv->ieee->mode;
6866 }
6867 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6868 return mode;
6869 }
6870
6871 /*
6872 * Handle management frame beacon and probe response
6873 */
6874 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6875 int active_network,
6876 struct ieee80211_network *network)
6877 {
6878 u32 size = sizeof(struct ieee80211_qos_parameters);
6879
6880 if (network->capability & WLAN_CAPABILITY_IBSS)
6881 network->qos_data.active = network->qos_data.supported;
6882
6883 if (network->flags & NETWORK_HAS_QOS_MASK) {
6884 if (active_network &&
6885 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6886 network->qos_data.active = network->qos_data.supported;
6887
6888 if ((network->qos_data.active == 1) && (active_network == 1) &&
6889 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6890 (network->qos_data.old_param_count !=
6891 network->qos_data.param_count)) {
6892 network->qos_data.old_param_count =
6893 network->qos_data.param_count;
6894 schedule_work(&priv->qos_activate);
6895 IPW_DEBUG_QOS("QoS parameters change call "
6896 "qos_activate\n");
6897 }
6898 } else {
6899 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6900 memcpy(&network->qos_data.parameters,
6901 &def_parameters_CCK, size);
6902 else
6903 memcpy(&network->qos_data.parameters,
6904 &def_parameters_OFDM, size);
6905
6906 if ((network->qos_data.active == 1) && (active_network == 1)) {
6907 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6908 schedule_work(&priv->qos_activate);
6909 }
6910
6911 network->qos_data.active = 0;
6912 network->qos_data.supported = 0;
6913 }
6914 if ((priv->status & STATUS_ASSOCIATED) &&
6915 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6916 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6917 if (network->capability & WLAN_CAPABILITY_IBSS)
6918 if ((network->ssid_len ==
6919 priv->assoc_network->ssid_len) &&
6920 !memcmp(network->ssid,
6921 priv->assoc_network->ssid,
6922 network->ssid_len)) {
6923 queue_work(priv->workqueue,
6924 &priv->merge_networks);
6925 }
6926 }
6927
6928 return 0;
6929 }
6930
6931 /*
6932 * This function set up the firmware to support QoS. It sends
6933 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6934 */
6935 static int ipw_qos_activate(struct ipw_priv *priv,
6936 struct ieee80211_qos_data *qos_network_data)
6937 {
6938 int err;
6939 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6940 struct ieee80211_qos_parameters *active_one = NULL;
6941 u32 size = sizeof(struct ieee80211_qos_parameters);
6942 u32 burst_duration;
6943 int i;
6944 u8 type;
6945
6946 type = ipw_qos_current_mode(priv);
6947
6948 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6949 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6950 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6951 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6952
6953 if (qos_network_data == NULL) {
6954 if (type == IEEE_B) {
6955 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6956 active_one = &def_parameters_CCK;
6957 } else
6958 active_one = &def_parameters_OFDM;
6959
6960 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6961 burst_duration = ipw_qos_get_burst_duration(priv);
6962 for (i = 0; i < QOS_QUEUE_NUM; i++)
6963 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6964 cpu_to_le16(burst_duration);
6965 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6966 if (type == IEEE_B) {
6967 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6968 type);
6969 if (priv->qos_data.qos_enable == 0)
6970 active_one = &def_parameters_CCK;
6971 else
6972 active_one = priv->qos_data.def_qos_parm_CCK;
6973 } else {
6974 if (priv->qos_data.qos_enable == 0)
6975 active_one = &def_parameters_OFDM;
6976 else
6977 active_one = priv->qos_data.def_qos_parm_OFDM;
6978 }
6979 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6980 } else {
6981 unsigned long flags;
6982 int active;
6983
6984 spin_lock_irqsave(&priv->ieee->lock, flags);
6985 active_one = &(qos_network_data->parameters);
6986 qos_network_data->old_param_count =
6987 qos_network_data->param_count;
6988 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6989 active = qos_network_data->supported;
6990 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6991
6992 if (active == 0) {
6993 burst_duration = ipw_qos_get_burst_duration(priv);
6994 for (i = 0; i < QOS_QUEUE_NUM; i++)
6995 qos_parameters[QOS_PARAM_SET_ACTIVE].
6996 tx_op_limit[i] = cpu_to_le16(burst_duration);
6997 }
6998 }
6999
7000 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7001 err = ipw_send_qos_params_command(priv,
7002 (struct ieee80211_qos_parameters *)
7003 &(qos_parameters[0]));
7004 if (err)
7005 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7006
7007 return err;
7008 }
7009
7010 /*
7011 * send IPW_CMD_WME_INFO to the firmware
7012 */
7013 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7014 {
7015 int ret = 0;
7016 struct ieee80211_qos_information_element qos_info;
7017
7018 if (priv == NULL)
7019 return -1;
7020
7021 qos_info.elementID = QOS_ELEMENT_ID;
7022 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7023
7024 qos_info.version = QOS_VERSION_1;
7025 qos_info.ac_info = 0;
7026
7027 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7028 qos_info.qui_type = QOS_OUI_TYPE;
7029 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7030
7031 ret = ipw_send_qos_info_command(priv, &qos_info);
7032 if (ret != 0) {
7033 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7034 }
7035 return ret;
7036 }
7037
7038 /*
7039 * Set the QoS parameter with the association request structure
7040 */
7041 static int ipw_qos_association(struct ipw_priv *priv,
7042 struct ieee80211_network *network)
7043 {
7044 int err = 0;
7045 struct ieee80211_qos_data *qos_data = NULL;
7046 struct ieee80211_qos_data ibss_data = {
7047 .supported = 1,
7048 .active = 1,
7049 };
7050
7051 switch (priv->ieee->iw_mode) {
7052 case IW_MODE_ADHOC:
7053 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7054
7055 qos_data = &ibss_data;
7056 break;
7057
7058 case IW_MODE_INFRA:
7059 qos_data = &network->qos_data;
7060 break;
7061
7062 default:
7063 BUG();
7064 break;
7065 }
7066
7067 err = ipw_qos_activate(priv, qos_data);
7068 if (err) {
7069 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7070 return err;
7071 }
7072
7073 if (priv->qos_data.qos_enable && qos_data->supported) {
7074 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7075 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7076 return ipw_qos_set_info_element(priv);
7077 }
7078
7079 return 0;
7080 }
7081
7082 /*
7083 * handling the beaconing responses. if we get different QoS setting
7084 * off the network from the associated setting, adjust the QoS
7085 * setting
7086 */
7087 static int ipw_qos_association_resp(struct ipw_priv *priv,
7088 struct ieee80211_network *network)
7089 {
7090 int ret = 0;
7091 unsigned long flags;
7092 u32 size = sizeof(struct ieee80211_qos_parameters);
7093 int set_qos_param = 0;
7094
7095 if ((priv == NULL) || (network == NULL) ||
7096 (priv->assoc_network == NULL))
7097 return ret;
7098
7099 if (!(priv->status & STATUS_ASSOCIATED))
7100 return ret;
7101
7102 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7103 return ret;
7104
7105 spin_lock_irqsave(&priv->ieee->lock, flags);
7106 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7107 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7108 sizeof(struct ieee80211_qos_data));
7109 priv->assoc_network->qos_data.active = 1;
7110 if ((network->qos_data.old_param_count !=
7111 network->qos_data.param_count)) {
7112 set_qos_param = 1;
7113 network->qos_data.old_param_count =
7114 network->qos_data.param_count;
7115 }
7116
7117 } else {
7118 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7119 memcpy(&priv->assoc_network->qos_data.parameters,
7120 &def_parameters_CCK, size);
7121 else
7122 memcpy(&priv->assoc_network->qos_data.parameters,
7123 &def_parameters_OFDM, size);
7124 priv->assoc_network->qos_data.active = 0;
7125 priv->assoc_network->qos_data.supported = 0;
7126 set_qos_param = 1;
7127 }
7128
7129 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7130
7131 if (set_qos_param == 1)
7132 schedule_work(&priv->qos_activate);
7133
7134 return ret;
7135 }
7136
7137 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7138 {
7139 u32 ret = 0;
7140
7141 if ((priv == NULL))
7142 return 0;
7143
7144 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7145 ret = priv->qos_data.burst_duration_CCK;
7146 else
7147 ret = priv->qos_data.burst_duration_OFDM;
7148
7149 return ret;
7150 }
7151
7152 /*
7153 * Initialize the setting of QoS global
7154 */
7155 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7156 int burst_enable, u32 burst_duration_CCK,
7157 u32 burst_duration_OFDM)
7158 {
7159 priv->qos_data.qos_enable = enable;
7160
7161 if (priv->qos_data.qos_enable) {
7162 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7163 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7164 IPW_DEBUG_QOS("QoS is enabled\n");
7165 } else {
7166 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7167 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7168 IPW_DEBUG_QOS("QoS is not enabled\n");
7169 }
7170
7171 priv->qos_data.burst_enable = burst_enable;
7172
7173 if (burst_enable) {
7174 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7175 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7176 } else {
7177 priv->qos_data.burst_duration_CCK = 0;
7178 priv->qos_data.burst_duration_OFDM = 0;
7179 }
7180 }
7181
7182 /*
7183 * map the packet priority to the right TX Queue
7184 */
7185 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7186 {
7187 if (priority > 7 || !priv->qos_data.qos_enable)
7188 priority = 0;
7189
7190 return from_priority_to_tx_queue[priority] - 1;
7191 }
7192
7193 static int ipw_is_qos_active(struct net_device *dev,
7194 struct sk_buff *skb)
7195 {
7196 struct ipw_priv *priv = ieee80211_priv(dev);
7197 struct ieee80211_qos_data *qos_data = NULL;
7198 int active, supported;
7199 u8 *daddr = skb->data + ETH_ALEN;
7200 int unicast = !is_multicast_ether_addr(daddr);
7201
7202 if (!(priv->status & STATUS_ASSOCIATED))
7203 return 0;
7204
7205 qos_data = &priv->assoc_network->qos_data;
7206
7207 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7208 if (unicast == 0)
7209 qos_data->active = 0;
7210 else
7211 qos_data->active = qos_data->supported;
7212 }
7213 active = qos_data->active;
7214 supported = qos_data->supported;
7215 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7216 "unicast %d\n",
7217 priv->qos_data.qos_enable, active, supported, unicast);
7218 if (active && priv->qos_data.qos_enable)
7219 return 1;
7220
7221 return 0;
7222
7223 }
7224 /*
7225 * add QoS parameter to the TX command
7226 */
7227 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7228 u16 priority,
7229 struct tfd_data *tfd)
7230 {
7231 int tx_queue_id = 0;
7232
7233
7234 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7235 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7236
7237 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7238 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7239 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7240 }
7241 return 0;
7242 }
7243
7244 /*
7245 * background support to run QoS activate functionality
7246 */
7247 static void ipw_bg_qos_activate(struct work_struct *work)
7248 {
7249 struct ipw_priv *priv =
7250 container_of(work, struct ipw_priv, qos_activate);
7251
7252 if (priv == NULL)
7253 return;
7254
7255 mutex_lock(&priv->mutex);
7256
7257 if (priv->status & STATUS_ASSOCIATED)
7258 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7259
7260 mutex_unlock(&priv->mutex);
7261 }
7262
7263 static int ipw_handle_probe_response(struct net_device *dev,
7264 struct ieee80211_probe_response *resp,
7265 struct ieee80211_network *network)
7266 {
7267 struct ipw_priv *priv = ieee80211_priv(dev);
7268 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7269 (network == priv->assoc_network));
7270
7271 ipw_qos_handle_probe_response(priv, active_network, network);
7272
7273 return 0;
7274 }
7275
7276 static int ipw_handle_beacon(struct net_device *dev,
7277 struct ieee80211_beacon *resp,
7278 struct ieee80211_network *network)
7279 {
7280 struct ipw_priv *priv = ieee80211_priv(dev);
7281 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7282 (network == priv->assoc_network));
7283
7284 ipw_qos_handle_probe_response(priv, active_network, network);
7285
7286 return 0;
7287 }
7288
7289 static int ipw_handle_assoc_response(struct net_device *dev,
7290 struct ieee80211_assoc_response *resp,
7291 struct ieee80211_network *network)
7292 {
7293 struct ipw_priv *priv = ieee80211_priv(dev);
7294 ipw_qos_association_resp(priv, network);
7295 return 0;
7296 }
7297
7298 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7299 *qos_param)
7300 {
7301 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7302 sizeof(*qos_param) * 3, qos_param);
7303 }
7304
7305 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7306 *qos_param)
7307 {
7308 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7309 qos_param);
7310 }
7311
7312 #endif /* CONFIG_IPW2200_QOS */
7313
7314 static int ipw_associate_network(struct ipw_priv *priv,
7315 struct ieee80211_network *network,
7316 struct ipw_supported_rates *rates, int roaming)
7317 {
7318 int err;
7319 DECLARE_SSID_BUF(ssid);
7320
7321 if (priv->config & CFG_FIXED_RATE)
7322 ipw_set_fixed_rate(priv, network->mode);
7323
7324 if (!(priv->config & CFG_STATIC_ESSID)) {
7325 priv->essid_len = min(network->ssid_len,
7326 (u8) IW_ESSID_MAX_SIZE);
7327 memcpy(priv->essid, network->ssid, priv->essid_len);
7328 }
7329
7330 network->last_associate = jiffies;
7331
7332 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7333 priv->assoc_request.channel = network->channel;
7334 priv->assoc_request.auth_key = 0;
7335
7336 if ((priv->capability & CAP_PRIVACY_ON) &&
7337 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7338 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7339 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7340
7341 if (priv->ieee->sec.level == SEC_LEVEL_1)
7342 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7343
7344 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7345 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7346 priv->assoc_request.auth_type = AUTH_LEAP;
7347 else
7348 priv->assoc_request.auth_type = AUTH_OPEN;
7349
7350 if (priv->ieee->wpa_ie_len) {
7351 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7352 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7353 priv->ieee->wpa_ie_len);
7354 }
7355
7356 /*
7357 * It is valid for our ieee device to support multiple modes, but
7358 * when it comes to associating to a given network we have to choose
7359 * just one mode.
7360 */
7361 if (network->mode & priv->ieee->mode & IEEE_A)
7362 priv->assoc_request.ieee_mode = IPW_A_MODE;
7363 else if (network->mode & priv->ieee->mode & IEEE_G)
7364 priv->assoc_request.ieee_mode = IPW_G_MODE;
7365 else if (network->mode & priv->ieee->mode & IEEE_B)
7366 priv->assoc_request.ieee_mode = IPW_B_MODE;
7367
7368 priv->assoc_request.capability = cpu_to_le16(network->capability);
7369 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7370 && !(priv->config & CFG_PREAMBLE_LONG)) {
7371 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7372 } else {
7373 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7374
7375 /* Clear the short preamble if we won't be supporting it */
7376 priv->assoc_request.capability &=
7377 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7378 }
7379
7380 /* Clear capability bits that aren't used in Ad Hoc */
7381 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7382 priv->assoc_request.capability &=
7383 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7384
7385 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7386 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7387 roaming ? "Rea" : "A",
7388 print_ssid(ssid, priv->essid, priv->essid_len),
7389 network->channel,
7390 ipw_modes[priv->assoc_request.ieee_mode],
7391 rates->num_rates,
7392 (priv->assoc_request.preamble_length ==
7393 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7394 network->capability &
7395 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7396 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7397 priv->capability & CAP_PRIVACY_ON ?
7398 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7399 "(open)") : "",
7400 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7401 priv->capability & CAP_PRIVACY_ON ?
7402 '1' + priv->ieee->sec.active_key : '.',
7403 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7404
7405 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7406 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7407 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7408 priv->assoc_request.assoc_type = HC_IBSS_START;
7409 priv->assoc_request.assoc_tsf_msw = 0;
7410 priv->assoc_request.assoc_tsf_lsw = 0;
7411 } else {
7412 if (unlikely(roaming))
7413 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7414 else
7415 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7416 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7417 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7418 }
7419
7420 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7421
7422 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7423 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7424 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7425 } else {
7426 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7427 priv->assoc_request.atim_window = 0;
7428 }
7429
7430 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7431
7432 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7433 if (err) {
7434 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7435 return err;
7436 }
7437
7438 rates->ieee_mode = priv->assoc_request.ieee_mode;
7439 rates->purpose = IPW_RATE_CONNECT;
7440 ipw_send_supported_rates(priv, rates);
7441
7442 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7443 priv->sys_config.dot11g_auto_detection = 1;
7444 else
7445 priv->sys_config.dot11g_auto_detection = 0;
7446
7447 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7448 priv->sys_config.answer_broadcast_ssid_probe = 1;
7449 else
7450 priv->sys_config.answer_broadcast_ssid_probe = 0;
7451
7452 err = ipw_send_system_config(priv);
7453 if (err) {
7454 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7455 return err;
7456 }
7457
7458 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7459 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7460 if (err) {
7461 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7462 return err;
7463 }
7464
7465 /*
7466 * If preemption is enabled, it is possible for the association
7467 * to complete before we return from ipw_send_associate. Therefore
7468 * we have to be sure and update our priviate data first.
7469 */
7470 priv->channel = network->channel;
7471 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7472 priv->status |= STATUS_ASSOCIATING;
7473 priv->status &= ~STATUS_SECURITY_UPDATED;
7474
7475 priv->assoc_network = network;
7476
7477 #ifdef CONFIG_IPW2200_QOS
7478 ipw_qos_association(priv, network);
7479 #endif
7480
7481 err = ipw_send_associate(priv, &priv->assoc_request);
7482 if (err) {
7483 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7484 return err;
7485 }
7486
7487 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7488 print_ssid(ssid, priv->essid, priv->essid_len),
7489 priv->bssid);
7490
7491 return 0;
7492 }
7493
7494 static void ipw_roam(void *data)
7495 {
7496 struct ipw_priv *priv = data;
7497 struct ieee80211_network *network = NULL;
7498 struct ipw_network_match match = {
7499 .network = priv->assoc_network
7500 };
7501
7502 /* The roaming process is as follows:
7503 *
7504 * 1. Missed beacon threshold triggers the roaming process by
7505 * setting the status ROAM bit and requesting a scan.
7506 * 2. When the scan completes, it schedules the ROAM work
7507 * 3. The ROAM work looks at all of the known networks for one that
7508 * is a better network than the currently associated. If none
7509 * found, the ROAM process is over (ROAM bit cleared)
7510 * 4. If a better network is found, a disassociation request is
7511 * sent.
7512 * 5. When the disassociation completes, the roam work is again
7513 * scheduled. The second time through, the driver is no longer
7514 * associated, and the newly selected network is sent an
7515 * association request.
7516 * 6. At this point ,the roaming process is complete and the ROAM
7517 * status bit is cleared.
7518 */
7519
7520 /* If we are no longer associated, and the roaming bit is no longer
7521 * set, then we are not actively roaming, so just return */
7522 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7523 return;
7524
7525 if (priv->status & STATUS_ASSOCIATED) {
7526 /* First pass through ROAM process -- look for a better
7527 * network */
7528 unsigned long flags;
7529 u8 rssi = priv->assoc_network->stats.rssi;
7530 priv->assoc_network->stats.rssi = -128;
7531 spin_lock_irqsave(&priv->ieee->lock, flags);
7532 list_for_each_entry(network, &priv->ieee->network_list, list) {
7533 if (network != priv->assoc_network)
7534 ipw_best_network(priv, &match, network, 1);
7535 }
7536 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7537 priv->assoc_network->stats.rssi = rssi;
7538
7539 if (match.network == priv->assoc_network) {
7540 IPW_DEBUG_ASSOC("No better APs in this network to "
7541 "roam to.\n");
7542 priv->status &= ~STATUS_ROAMING;
7543 ipw_debug_config(priv);
7544 return;
7545 }
7546
7547 ipw_send_disassociate(priv, 1);
7548 priv->assoc_network = match.network;
7549
7550 return;
7551 }
7552
7553 /* Second pass through ROAM process -- request association */
7554 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7555 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7556 priv->status &= ~STATUS_ROAMING;
7557 }
7558
7559 static void ipw_bg_roam(struct work_struct *work)
7560 {
7561 struct ipw_priv *priv =
7562 container_of(work, struct ipw_priv, roam);
7563 mutex_lock(&priv->mutex);
7564 ipw_roam(priv);
7565 mutex_unlock(&priv->mutex);
7566 }
7567
7568 static int ipw_associate(void *data)
7569 {
7570 struct ipw_priv *priv = data;
7571
7572 struct ieee80211_network *network = NULL;
7573 struct ipw_network_match match = {
7574 .network = NULL
7575 };
7576 struct ipw_supported_rates *rates;
7577 struct list_head *element;
7578 unsigned long flags;
7579 DECLARE_SSID_BUF(ssid);
7580
7581 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7582 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7583 return 0;
7584 }
7585
7586 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7587 IPW_DEBUG_ASSOC("Not attempting association (already in "
7588 "progress)\n");
7589 return 0;
7590 }
7591
7592 if (priv->status & STATUS_DISASSOCIATING) {
7593 IPW_DEBUG_ASSOC("Not attempting association (in "
7594 "disassociating)\n ");
7595 queue_work(priv->workqueue, &priv->associate);
7596 return 0;
7597 }
7598
7599 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7600 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7601 "initialized)\n");
7602 return 0;
7603 }
7604
7605 if (!(priv->config & CFG_ASSOCIATE) &&
7606 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7607 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7608 return 0;
7609 }
7610
7611 /* Protect our use of the network_list */
7612 spin_lock_irqsave(&priv->ieee->lock, flags);
7613 list_for_each_entry(network, &priv->ieee->network_list, list)
7614 ipw_best_network(priv, &match, network, 0);
7615
7616 network = match.network;
7617 rates = &match.rates;
7618
7619 if (network == NULL &&
7620 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7621 priv->config & CFG_ADHOC_CREATE &&
7622 priv->config & CFG_STATIC_ESSID &&
7623 priv->config & CFG_STATIC_CHANNEL) {
7624 /* Use oldest network if the free list is empty */
7625 if (list_empty(&priv->ieee->network_free_list)) {
7626 struct ieee80211_network *oldest = NULL;
7627 struct ieee80211_network *target;
7628
7629 list_for_each_entry(target, &priv->ieee->network_list, list) {
7630 if ((oldest == NULL) ||
7631 (target->last_scanned < oldest->last_scanned))
7632 oldest = target;
7633 }
7634
7635 /* If there are no more slots, expire the oldest */
7636 list_del(&oldest->list);
7637 target = oldest;
7638 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7639 "network list.\n",
7640 print_ssid(ssid, target->ssid,
7641 target->ssid_len),
7642 target->bssid);
7643 list_add_tail(&target->list,
7644 &priv->ieee->network_free_list);
7645 }
7646
7647 element = priv->ieee->network_free_list.next;
7648 network = list_entry(element, struct ieee80211_network, list);
7649 ipw_adhoc_create(priv, network);
7650 rates = &priv->rates;
7651 list_del(element);
7652 list_add_tail(&network->list, &priv->ieee->network_list);
7653 }
7654 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7655
7656 /* If we reached the end of the list, then we don't have any valid
7657 * matching APs */
7658 if (!network) {
7659 ipw_debug_config(priv);
7660
7661 if (!(priv->status & STATUS_SCANNING)) {
7662 if (!(priv->config & CFG_SPEED_SCAN))
7663 queue_delayed_work(priv->workqueue,
7664 &priv->request_scan,
7665 SCAN_INTERVAL);
7666 else
7667 queue_delayed_work(priv->workqueue,
7668 &priv->request_scan, 0);
7669 }
7670
7671 return 0;
7672 }
7673
7674 ipw_associate_network(priv, network, rates, 0);
7675
7676 return 1;
7677 }
7678
7679 static void ipw_bg_associate(struct work_struct *work)
7680 {
7681 struct ipw_priv *priv =
7682 container_of(work, struct ipw_priv, associate);
7683 mutex_lock(&priv->mutex);
7684 ipw_associate(priv);
7685 mutex_unlock(&priv->mutex);
7686 }
7687
7688 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7689 struct sk_buff *skb)
7690 {
7691 struct ieee80211_hdr *hdr;
7692 u16 fc;
7693
7694 hdr = (struct ieee80211_hdr *)skb->data;
7695 fc = le16_to_cpu(hdr->frame_control);
7696 if (!(fc & IEEE80211_FCTL_PROTECTED))
7697 return;
7698
7699 fc &= ~IEEE80211_FCTL_PROTECTED;
7700 hdr->frame_control = cpu_to_le16(fc);
7701 switch (priv->ieee->sec.level) {
7702 case SEC_LEVEL_3:
7703 /* Remove CCMP HDR */
7704 memmove(skb->data + IEEE80211_3ADDR_LEN,
7705 skb->data + IEEE80211_3ADDR_LEN + 8,
7706 skb->len - IEEE80211_3ADDR_LEN - 8);
7707 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7708 break;
7709 case SEC_LEVEL_2:
7710 break;
7711 case SEC_LEVEL_1:
7712 /* Remove IV */
7713 memmove(skb->data + IEEE80211_3ADDR_LEN,
7714 skb->data + IEEE80211_3ADDR_LEN + 4,
7715 skb->len - IEEE80211_3ADDR_LEN - 4);
7716 skb_trim(skb, skb->len - 8); /* IV + ICV */
7717 break;
7718 case SEC_LEVEL_0:
7719 break;
7720 default:
7721 printk(KERN_ERR "Unknow security level %d\n",
7722 priv->ieee->sec.level);
7723 break;
7724 }
7725 }
7726
7727 static void ipw_handle_data_packet(struct ipw_priv *priv,
7728 struct ipw_rx_mem_buffer *rxb,
7729 struct ieee80211_rx_stats *stats)
7730 {
7731 struct net_device *dev = priv->net_dev;
7732 struct ieee80211_hdr_4addr *hdr;
7733 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7734
7735 /* We received data from the HW, so stop the watchdog */
7736 dev->trans_start = jiffies;
7737
7738 /* We only process data packets if the
7739 * interface is open */
7740 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7741 skb_tailroom(rxb->skb))) {
7742 dev->stats.rx_errors++;
7743 priv->wstats.discard.misc++;
7744 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7745 return;
7746 } else if (unlikely(!netif_running(priv->net_dev))) {
7747 dev->stats.rx_dropped++;
7748 priv->wstats.discard.misc++;
7749 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7750 return;
7751 }
7752
7753 /* Advance skb->data to the start of the actual payload */
7754 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7755
7756 /* Set the size of the skb to the size of the frame */
7757 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7758
7759 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7760
7761 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7762 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7763 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7764 (is_multicast_ether_addr(hdr->addr1) ?
7765 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7766 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7767
7768 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7769 dev->stats.rx_errors++;
7770 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7771 rxb->skb = NULL;
7772 __ipw_led_activity_on(priv);
7773 }
7774 }
7775
7776 #ifdef CONFIG_IPW2200_RADIOTAP
7777 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7778 struct ipw_rx_mem_buffer *rxb,
7779 struct ieee80211_rx_stats *stats)
7780 {
7781 struct net_device *dev = priv->net_dev;
7782 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7783 struct ipw_rx_frame *frame = &pkt->u.frame;
7784
7785 /* initial pull of some data */
7786 u16 received_channel = frame->received_channel;
7787 u8 antennaAndPhy = frame->antennaAndPhy;
7788 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7789 u16 pktrate = frame->rate;
7790
7791 /* Magic struct that slots into the radiotap header -- no reason
7792 * to build this manually element by element, we can write it much
7793 * more efficiently than we can parse it. ORDER MATTERS HERE */
7794 struct ipw_rt_hdr *ipw_rt;
7795
7796 short len = le16_to_cpu(pkt->u.frame.length);
7797
7798 /* We received data from the HW, so stop the watchdog */
7799 dev->trans_start = jiffies;
7800
7801 /* We only process data packets if the
7802 * interface is open */
7803 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7804 skb_tailroom(rxb->skb))) {
7805 dev->stats.rx_errors++;
7806 priv->wstats.discard.misc++;
7807 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7808 return;
7809 } else if (unlikely(!netif_running(priv->net_dev))) {
7810 dev->stats.rx_dropped++;
7811 priv->wstats.discard.misc++;
7812 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7813 return;
7814 }
7815
7816 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7817 * that now */
7818 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7819 /* FIXME: Should alloc bigger skb instead */
7820 dev->stats.rx_dropped++;
7821 priv->wstats.discard.misc++;
7822 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7823 return;
7824 }
7825
7826 /* copy the frame itself */
7827 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7828 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7829
7830 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7831
7832 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7833 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7834 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7835
7836 /* Big bitfield of all the fields we provide in radiotap */
7837 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7838 (1 << IEEE80211_RADIOTAP_TSFT) |
7839 (1 << IEEE80211_RADIOTAP_FLAGS) |
7840 (1 << IEEE80211_RADIOTAP_RATE) |
7841 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7842 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7843 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7844 (1 << IEEE80211_RADIOTAP_ANTENNA));
7845
7846 /* Zero the flags, we'll add to them as we go */
7847 ipw_rt->rt_flags = 0;
7848 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7849 frame->parent_tsf[2] << 16 |
7850 frame->parent_tsf[1] << 8 |
7851 frame->parent_tsf[0]);
7852
7853 /* Convert signal to DBM */
7854 ipw_rt->rt_dbmsignal = antsignal;
7855 ipw_rt->rt_dbmnoise = frame->noise;
7856
7857 /* Convert the channel data and set the flags */
7858 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7859 if (received_channel > 14) { /* 802.11a */
7860 ipw_rt->rt_chbitmask =
7861 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7862 } else if (antennaAndPhy & 32) { /* 802.11b */
7863 ipw_rt->rt_chbitmask =
7864 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7865 } else { /* 802.11g */
7866 ipw_rt->rt_chbitmask =
7867 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7868 }
7869
7870 /* set the rate in multiples of 500k/s */
7871 switch (pktrate) {
7872 case IPW_TX_RATE_1MB:
7873 ipw_rt->rt_rate = 2;
7874 break;
7875 case IPW_TX_RATE_2MB:
7876 ipw_rt->rt_rate = 4;
7877 break;
7878 case IPW_TX_RATE_5MB:
7879 ipw_rt->rt_rate = 10;
7880 break;
7881 case IPW_TX_RATE_6MB:
7882 ipw_rt->rt_rate = 12;
7883 break;
7884 case IPW_TX_RATE_9MB:
7885 ipw_rt->rt_rate = 18;
7886 break;
7887 case IPW_TX_RATE_11MB:
7888 ipw_rt->rt_rate = 22;
7889 break;
7890 case IPW_TX_RATE_12MB:
7891 ipw_rt->rt_rate = 24;
7892 break;
7893 case IPW_TX_RATE_18MB:
7894 ipw_rt->rt_rate = 36;
7895 break;
7896 case IPW_TX_RATE_24MB:
7897 ipw_rt->rt_rate = 48;
7898 break;
7899 case IPW_TX_RATE_36MB:
7900 ipw_rt->rt_rate = 72;
7901 break;
7902 case IPW_TX_RATE_48MB:
7903 ipw_rt->rt_rate = 96;
7904 break;
7905 case IPW_TX_RATE_54MB:
7906 ipw_rt->rt_rate = 108;
7907 break;
7908 default:
7909 ipw_rt->rt_rate = 0;
7910 break;
7911 }
7912
7913 /* antenna number */
7914 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7915
7916 /* set the preamble flag if we have it */
7917 if ((antennaAndPhy & 64))
7918 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7919
7920 /* Set the size of the skb to the size of the frame */
7921 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7922
7923 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7924
7925 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7926 dev->stats.rx_errors++;
7927 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7928 rxb->skb = NULL;
7929 /* no LED during capture */
7930 }
7931 }
7932 #endif
7933
7934 #ifdef CONFIG_IPW2200_PROMISCUOUS
7935 #define ieee80211_is_probe_response(fc) \
7936 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7937 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7938
7939 #define ieee80211_is_management(fc) \
7940 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7941
7942 #define ieee80211_is_control(fc) \
7943 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7944
7945 #define ieee80211_is_data(fc) \
7946 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7947
7948 #define ieee80211_is_assoc_request(fc) \
7949 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7950
7951 #define ieee80211_is_reassoc_request(fc) \
7952 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7953
7954 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7955 struct ipw_rx_mem_buffer *rxb,
7956 struct ieee80211_rx_stats *stats)
7957 {
7958 struct net_device *dev = priv->prom_net_dev;
7959 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7960 struct ipw_rx_frame *frame = &pkt->u.frame;
7961 struct ipw_rt_hdr *ipw_rt;
7962
7963 /* First cache any information we need before we overwrite
7964 * the information provided in the skb from the hardware */
7965 struct ieee80211_hdr *hdr;
7966 u16 channel = frame->received_channel;
7967 u8 phy_flags = frame->antennaAndPhy;
7968 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7969 s8 noise = frame->noise;
7970 u8 rate = frame->rate;
7971 short len = le16_to_cpu(pkt->u.frame.length);
7972 struct sk_buff *skb;
7973 int hdr_only = 0;
7974 u16 filter = priv->prom_priv->filter;
7975
7976 /* If the filter is set to not include Rx frames then return */
7977 if (filter & IPW_PROM_NO_RX)
7978 return;
7979
7980 /* We received data from the HW, so stop the watchdog */
7981 dev->trans_start = jiffies;
7982
7983 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7984 dev->stats.rx_errors++;
7985 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7986 return;
7987 }
7988
7989 /* We only process data packets if the interface is open */
7990 if (unlikely(!netif_running(dev))) {
7991 dev->stats.rx_dropped++;
7992 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7993 return;
7994 }
7995
7996 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7997 * that now */
7998 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7999 /* FIXME: Should alloc bigger skb instead */
8000 dev->stats.rx_dropped++;
8001 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8002 return;
8003 }
8004
8005 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8006 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8007 if (filter & IPW_PROM_NO_MGMT)
8008 return;
8009 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8010 hdr_only = 1;
8011 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8012 if (filter & IPW_PROM_NO_CTL)
8013 return;
8014 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8015 hdr_only = 1;
8016 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8017 if (filter & IPW_PROM_NO_DATA)
8018 return;
8019 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8020 hdr_only = 1;
8021 }
8022
8023 /* Copy the SKB since this is for the promiscuous side */
8024 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8025 if (skb == NULL) {
8026 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8027 return;
8028 }
8029
8030 /* copy the frame data to write after where the radiotap header goes */
8031 ipw_rt = (void *)skb->data;
8032
8033 if (hdr_only)
8034 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8035
8036 memcpy(ipw_rt->payload, hdr, len);
8037
8038 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8039 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8040 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8041
8042 /* Set the size of the skb to the size of the frame */
8043 skb_put(skb, sizeof(*ipw_rt) + len);
8044
8045 /* Big bitfield of all the fields we provide in radiotap */
8046 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8047 (1 << IEEE80211_RADIOTAP_TSFT) |
8048 (1 << IEEE80211_RADIOTAP_FLAGS) |
8049 (1 << IEEE80211_RADIOTAP_RATE) |
8050 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8051 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8052 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8053 (1 << IEEE80211_RADIOTAP_ANTENNA));
8054
8055 /* Zero the flags, we'll add to them as we go */
8056 ipw_rt->rt_flags = 0;
8057 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8058 frame->parent_tsf[2] << 16 |
8059 frame->parent_tsf[1] << 8 |
8060 frame->parent_tsf[0]);
8061
8062 /* Convert to DBM */
8063 ipw_rt->rt_dbmsignal = signal;
8064 ipw_rt->rt_dbmnoise = noise;
8065
8066 /* Convert the channel data and set the flags */
8067 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8068 if (channel > 14) { /* 802.11a */
8069 ipw_rt->rt_chbitmask =
8070 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8071 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8072 ipw_rt->rt_chbitmask =
8073 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8074 } else { /* 802.11g */
8075 ipw_rt->rt_chbitmask =
8076 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8077 }
8078
8079 /* set the rate in multiples of 500k/s */
8080 switch (rate) {
8081 case IPW_TX_RATE_1MB:
8082 ipw_rt->rt_rate = 2;
8083 break;
8084 case IPW_TX_RATE_2MB:
8085 ipw_rt->rt_rate = 4;
8086 break;
8087 case IPW_TX_RATE_5MB:
8088 ipw_rt->rt_rate = 10;
8089 break;
8090 case IPW_TX_RATE_6MB:
8091 ipw_rt->rt_rate = 12;
8092 break;
8093 case IPW_TX_RATE_9MB:
8094 ipw_rt->rt_rate = 18;
8095 break;
8096 case IPW_TX_RATE_11MB:
8097 ipw_rt->rt_rate = 22;
8098 break;
8099 case IPW_TX_RATE_12MB:
8100 ipw_rt->rt_rate = 24;
8101 break;
8102 case IPW_TX_RATE_18MB:
8103 ipw_rt->rt_rate = 36;
8104 break;
8105 case IPW_TX_RATE_24MB:
8106 ipw_rt->rt_rate = 48;
8107 break;
8108 case IPW_TX_RATE_36MB:
8109 ipw_rt->rt_rate = 72;
8110 break;
8111 case IPW_TX_RATE_48MB:
8112 ipw_rt->rt_rate = 96;
8113 break;
8114 case IPW_TX_RATE_54MB:
8115 ipw_rt->rt_rate = 108;
8116 break;
8117 default:
8118 ipw_rt->rt_rate = 0;
8119 break;
8120 }
8121
8122 /* antenna number */
8123 ipw_rt->rt_antenna = (phy_flags & 3);
8124
8125 /* set the preamble flag if we have it */
8126 if (phy_flags & (1 << 6))
8127 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8128
8129 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8130
8131 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8132 dev->stats.rx_errors++;
8133 dev_kfree_skb_any(skb);
8134 }
8135 }
8136 #endif
8137
8138 static int is_network_packet(struct ipw_priv *priv,
8139 struct ieee80211_hdr_4addr *header)
8140 {
8141 /* Filter incoming packets to determine if they are targetted toward
8142 * this network, discarding packets coming from ourselves */
8143 switch (priv->ieee->iw_mode) {
8144 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8145 /* packets from our adapter are dropped (echo) */
8146 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8147 return 0;
8148
8149 /* {broad,multi}cast packets to our BSSID go through */
8150 if (is_multicast_ether_addr(header->addr1))
8151 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8152
8153 /* packets to our adapter go through */
8154 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8155 ETH_ALEN);
8156
8157 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8158 /* packets from our adapter are dropped (echo) */
8159 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8160 return 0;
8161
8162 /* {broad,multi}cast packets to our BSS go through */
8163 if (is_multicast_ether_addr(header->addr1))
8164 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8165
8166 /* packets to our adapter go through */
8167 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8168 ETH_ALEN);
8169 }
8170
8171 return 1;
8172 }
8173
8174 #define IPW_PACKET_RETRY_TIME HZ
8175
8176 static int is_duplicate_packet(struct ipw_priv *priv,
8177 struct ieee80211_hdr_4addr *header)
8178 {
8179 u16 sc = le16_to_cpu(header->seq_ctl);
8180 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8181 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8182 u16 *last_seq, *last_frag;
8183 unsigned long *last_time;
8184
8185 switch (priv->ieee->iw_mode) {
8186 case IW_MODE_ADHOC:
8187 {
8188 struct list_head *p;
8189 struct ipw_ibss_seq *entry = NULL;
8190 u8 *mac = header->addr2;
8191 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8192
8193 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8194 entry =
8195 list_entry(p, struct ipw_ibss_seq, list);
8196 if (!memcmp(entry->mac, mac, ETH_ALEN))
8197 break;
8198 }
8199 if (p == &priv->ibss_mac_hash[index]) {
8200 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8201 if (!entry) {
8202 IPW_ERROR
8203 ("Cannot malloc new mac entry\n");
8204 return 0;
8205 }
8206 memcpy(entry->mac, mac, ETH_ALEN);
8207 entry->seq_num = seq;
8208 entry->frag_num = frag;
8209 entry->packet_time = jiffies;
8210 list_add(&entry->list,
8211 &priv->ibss_mac_hash[index]);
8212 return 0;
8213 }
8214 last_seq = &entry->seq_num;
8215 last_frag = &entry->frag_num;
8216 last_time = &entry->packet_time;
8217 break;
8218 }
8219 case IW_MODE_INFRA:
8220 last_seq = &priv->last_seq_num;
8221 last_frag = &priv->last_frag_num;
8222 last_time = &priv->last_packet_time;
8223 break;
8224 default:
8225 return 0;
8226 }
8227 if ((*last_seq == seq) &&
8228 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8229 if (*last_frag == frag)
8230 goto drop;
8231 if (*last_frag + 1 != frag)
8232 /* out-of-order fragment */
8233 goto drop;
8234 } else
8235 *last_seq = seq;
8236
8237 *last_frag = frag;
8238 *last_time = jiffies;
8239 return 0;
8240
8241 drop:
8242 /* Comment this line now since we observed the card receives
8243 * duplicate packets but the FCTL_RETRY bit is not set in the
8244 * IBSS mode with fragmentation enabled.
8245 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8246 return 1;
8247 }
8248
8249 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8250 struct ipw_rx_mem_buffer *rxb,
8251 struct ieee80211_rx_stats *stats)
8252 {
8253 struct sk_buff *skb = rxb->skb;
8254 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8255 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8256 (skb->data + IPW_RX_FRAME_SIZE);
8257
8258 ieee80211_rx_mgt(priv->ieee, header, stats);
8259
8260 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8261 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8262 IEEE80211_STYPE_PROBE_RESP) ||
8263 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8264 IEEE80211_STYPE_BEACON))) {
8265 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8266 ipw_add_station(priv, header->addr2);
8267 }
8268
8269 if (priv->config & CFG_NET_STATS) {
8270 IPW_DEBUG_HC("sending stat packet\n");
8271
8272 /* Set the size of the skb to the size of the full
8273 * ipw header and 802.11 frame */
8274 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8275 IPW_RX_FRAME_SIZE);
8276
8277 /* Advance past the ipw packet header to the 802.11 frame */
8278 skb_pull(skb, IPW_RX_FRAME_SIZE);
8279
8280 /* Push the ieee80211_rx_stats before the 802.11 frame */
8281 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8282
8283 skb->dev = priv->ieee->dev;
8284
8285 /* Point raw at the ieee80211_stats */
8286 skb_reset_mac_header(skb);
8287
8288 skb->pkt_type = PACKET_OTHERHOST;
8289 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8290 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8291 netif_rx(skb);
8292 rxb->skb = NULL;
8293 }
8294 }
8295
8296 /*
8297 * Main entry function for recieving a packet with 80211 headers. This
8298 * should be called when ever the FW has notified us that there is a new
8299 * skb in the recieve queue.
8300 */
8301 static void ipw_rx(struct ipw_priv *priv)
8302 {
8303 struct ipw_rx_mem_buffer *rxb;
8304 struct ipw_rx_packet *pkt;
8305 struct ieee80211_hdr_4addr *header;
8306 u32 r, w, i;
8307 u8 network_packet;
8308 u8 fill_rx = 0;
8309
8310 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8311 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8312 i = priv->rxq->read;
8313
8314 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8315 fill_rx = 1;
8316
8317 while (i != r) {
8318 rxb = priv->rxq->queue[i];
8319 if (unlikely(rxb == NULL)) {
8320 printk(KERN_CRIT "Queue not allocated!\n");
8321 break;
8322 }
8323 priv->rxq->queue[i] = NULL;
8324
8325 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8326 IPW_RX_BUF_SIZE,
8327 PCI_DMA_FROMDEVICE);
8328
8329 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8330 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8331 pkt->header.message_type,
8332 pkt->header.rx_seq_num, pkt->header.control_bits);
8333
8334 switch (pkt->header.message_type) {
8335 case RX_FRAME_TYPE: /* 802.11 frame */ {
8336 struct ieee80211_rx_stats stats = {
8337 .rssi = pkt->u.frame.rssi_dbm -
8338 IPW_RSSI_TO_DBM,
8339 .signal =
8340 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8341 IPW_RSSI_TO_DBM + 0x100,
8342 .noise =
8343 le16_to_cpu(pkt->u.frame.noise),
8344 .rate = pkt->u.frame.rate,
8345 .mac_time = jiffies,
8346 .received_channel =
8347 pkt->u.frame.received_channel,
8348 .freq =
8349 (pkt->u.frame.
8350 control & (1 << 0)) ?
8351 IEEE80211_24GHZ_BAND :
8352 IEEE80211_52GHZ_BAND,
8353 .len = le16_to_cpu(pkt->u.frame.length),
8354 };
8355
8356 if (stats.rssi != 0)
8357 stats.mask |= IEEE80211_STATMASK_RSSI;
8358 if (stats.signal != 0)
8359 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8360 if (stats.noise != 0)
8361 stats.mask |= IEEE80211_STATMASK_NOISE;
8362 if (stats.rate != 0)
8363 stats.mask |= IEEE80211_STATMASK_RATE;
8364
8365 priv->rx_packets++;
8366
8367 #ifdef CONFIG_IPW2200_PROMISCUOUS
8368 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8369 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8370 #endif
8371
8372 #ifdef CONFIG_IPW2200_MONITOR
8373 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8374 #ifdef CONFIG_IPW2200_RADIOTAP
8375
8376 ipw_handle_data_packet_monitor(priv,
8377 rxb,
8378 &stats);
8379 #else
8380 ipw_handle_data_packet(priv, rxb,
8381 &stats);
8382 #endif
8383 break;
8384 }
8385 #endif
8386
8387 header =
8388 (struct ieee80211_hdr_4addr *)(rxb->skb->
8389 data +
8390 IPW_RX_FRAME_SIZE);
8391 /* TODO: Check Ad-Hoc dest/source and make sure
8392 * that we are actually parsing these packets
8393 * correctly -- we should probably use the
8394 * frame control of the packet and disregard
8395 * the current iw_mode */
8396
8397 network_packet =
8398 is_network_packet(priv, header);
8399 if (network_packet && priv->assoc_network) {
8400 priv->assoc_network->stats.rssi =
8401 stats.rssi;
8402 priv->exp_avg_rssi =
8403 exponential_average(priv->exp_avg_rssi,
8404 stats.rssi, DEPTH_RSSI);
8405 }
8406
8407 IPW_DEBUG_RX("Frame: len=%u\n",
8408 le16_to_cpu(pkt->u.frame.length));
8409
8410 if (le16_to_cpu(pkt->u.frame.length) <
8411 ieee80211_get_hdrlen(le16_to_cpu(
8412 header->frame_ctl))) {
8413 IPW_DEBUG_DROP
8414 ("Received packet is too small. "
8415 "Dropping.\n");
8416 priv->net_dev->stats.rx_errors++;
8417 priv->wstats.discard.misc++;
8418 break;
8419 }
8420
8421 switch (WLAN_FC_GET_TYPE
8422 (le16_to_cpu(header->frame_ctl))) {
8423
8424 case IEEE80211_FTYPE_MGMT:
8425 ipw_handle_mgmt_packet(priv, rxb,
8426 &stats);
8427 break;
8428
8429 case IEEE80211_FTYPE_CTL:
8430 break;
8431
8432 case IEEE80211_FTYPE_DATA:
8433 if (unlikely(!network_packet ||
8434 is_duplicate_packet(priv,
8435 header)))
8436 {
8437 IPW_DEBUG_DROP("Dropping: "
8438 "%pM, "
8439 "%pM, "
8440 "%pM\n",
8441 header->addr1,
8442 header->addr2,
8443 header->addr3);
8444 break;
8445 }
8446
8447 ipw_handle_data_packet(priv, rxb,
8448 &stats);
8449
8450 break;
8451 }
8452 break;
8453 }
8454
8455 case RX_HOST_NOTIFICATION_TYPE:{
8456 IPW_DEBUG_RX
8457 ("Notification: subtype=%02X flags=%02X size=%d\n",
8458 pkt->u.notification.subtype,
8459 pkt->u.notification.flags,
8460 le16_to_cpu(pkt->u.notification.size));
8461 ipw_rx_notification(priv, &pkt->u.notification);
8462 break;
8463 }
8464
8465 default:
8466 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8467 pkt->header.message_type);
8468 break;
8469 }
8470
8471 /* For now we just don't re-use anything. We can tweak this
8472 * later to try and re-use notification packets and SKBs that
8473 * fail to Rx correctly */
8474 if (rxb->skb != NULL) {
8475 dev_kfree_skb_any(rxb->skb);
8476 rxb->skb = NULL;
8477 }
8478
8479 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8480 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8481 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8482
8483 i = (i + 1) % RX_QUEUE_SIZE;
8484
8485 /* If there are a lot of unsued frames, restock the Rx queue
8486 * so the ucode won't assert */
8487 if (fill_rx) {
8488 priv->rxq->read = i;
8489 ipw_rx_queue_replenish(priv);
8490 }
8491 }
8492
8493 /* Backtrack one entry */
8494 priv->rxq->read = i;
8495 ipw_rx_queue_restock(priv);
8496 }
8497
8498 #define DEFAULT_RTS_THRESHOLD 2304U
8499 #define MIN_RTS_THRESHOLD 1U
8500 #define MAX_RTS_THRESHOLD 2304U
8501 #define DEFAULT_BEACON_INTERVAL 100U
8502 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8503 #define DEFAULT_LONG_RETRY_LIMIT 4U
8504
8505 /**
8506 * ipw_sw_reset
8507 * @option: options to control different reset behaviour
8508 * 0 = reset everything except the 'disable' module_param
8509 * 1 = reset everything and print out driver info (for probe only)
8510 * 2 = reset everything
8511 */
8512 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8513 {
8514 int band, modulation;
8515 int old_mode = priv->ieee->iw_mode;
8516
8517 /* Initialize module parameter values here */
8518 priv->config = 0;
8519
8520 /* We default to disabling the LED code as right now it causes
8521 * too many systems to lock up... */
8522 if (!led)
8523 priv->config |= CFG_NO_LED;
8524
8525 if (associate)
8526 priv->config |= CFG_ASSOCIATE;
8527 else
8528 IPW_DEBUG_INFO("Auto associate disabled.\n");
8529
8530 if (auto_create)
8531 priv->config |= CFG_ADHOC_CREATE;
8532 else
8533 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8534
8535 priv->config &= ~CFG_STATIC_ESSID;
8536 priv->essid_len = 0;
8537 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8538
8539 if (disable && option) {
8540 priv->status |= STATUS_RF_KILL_SW;
8541 IPW_DEBUG_INFO("Radio disabled.\n");
8542 }
8543
8544 if (channel != 0) {
8545 priv->config |= CFG_STATIC_CHANNEL;
8546 priv->channel = channel;
8547 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8548 /* TODO: Validate that provided channel is in range */
8549 }
8550 #ifdef CONFIG_IPW2200_QOS
8551 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8552 burst_duration_CCK, burst_duration_OFDM);
8553 #endif /* CONFIG_IPW2200_QOS */
8554
8555 switch (mode) {
8556 case 1:
8557 priv->ieee->iw_mode = IW_MODE_ADHOC;
8558 priv->net_dev->type = ARPHRD_ETHER;
8559
8560 break;
8561 #ifdef CONFIG_IPW2200_MONITOR
8562 case 2:
8563 priv->ieee->iw_mode = IW_MODE_MONITOR;
8564 #ifdef CONFIG_IPW2200_RADIOTAP
8565 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8566 #else
8567 priv->net_dev->type = ARPHRD_IEEE80211;
8568 #endif
8569 break;
8570 #endif
8571 default:
8572 case 0:
8573 priv->net_dev->type = ARPHRD_ETHER;
8574 priv->ieee->iw_mode = IW_MODE_INFRA;
8575 break;
8576 }
8577
8578 if (hwcrypto) {
8579 priv->ieee->host_encrypt = 0;
8580 priv->ieee->host_encrypt_msdu = 0;
8581 priv->ieee->host_decrypt = 0;
8582 priv->ieee->host_mc_decrypt = 0;
8583 }
8584 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8585
8586 /* IPW2200/2915 is abled to do hardware fragmentation. */
8587 priv->ieee->host_open_frag = 0;
8588
8589 if ((priv->pci_dev->device == 0x4223) ||
8590 (priv->pci_dev->device == 0x4224)) {
8591 if (option == 1)
8592 printk(KERN_INFO DRV_NAME
8593 ": Detected Intel PRO/Wireless 2915ABG Network "
8594 "Connection\n");
8595 priv->ieee->abg_true = 1;
8596 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8597 modulation = IEEE80211_OFDM_MODULATION |
8598 IEEE80211_CCK_MODULATION;
8599 priv->adapter = IPW_2915ABG;
8600 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8601 } else {
8602 if (option == 1)
8603 printk(KERN_INFO DRV_NAME
8604 ": Detected Intel PRO/Wireless 2200BG Network "
8605 "Connection\n");
8606
8607 priv->ieee->abg_true = 0;
8608 band = IEEE80211_24GHZ_BAND;
8609 modulation = IEEE80211_OFDM_MODULATION |
8610 IEEE80211_CCK_MODULATION;
8611 priv->adapter = IPW_2200BG;
8612 priv->ieee->mode = IEEE_G | IEEE_B;
8613 }
8614
8615 priv->ieee->freq_band = band;
8616 priv->ieee->modulation = modulation;
8617
8618 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8619
8620 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8621 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8622
8623 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8624 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8625 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8626
8627 /* If power management is turned on, default to AC mode */
8628 priv->power_mode = IPW_POWER_AC;
8629 priv->tx_power = IPW_TX_POWER_DEFAULT;
8630
8631 return old_mode == priv->ieee->iw_mode;
8632 }
8633
8634 /*
8635 * This file defines the Wireless Extension handlers. It does not
8636 * define any methods of hardware manipulation and relies on the
8637 * functions defined in ipw_main to provide the HW interaction.
8638 *
8639 * The exception to this is the use of the ipw_get_ordinal()
8640 * function used to poll the hardware vs. making unecessary calls.
8641 *
8642 */
8643
8644 static int ipw_wx_get_name(struct net_device *dev,
8645 struct iw_request_info *info,
8646 union iwreq_data *wrqu, char *extra)
8647 {
8648 struct ipw_priv *priv = ieee80211_priv(dev);
8649 mutex_lock(&priv->mutex);
8650 if (priv->status & STATUS_RF_KILL_MASK)
8651 strcpy(wrqu->name, "radio off");
8652 else if (!(priv->status & STATUS_ASSOCIATED))
8653 strcpy(wrqu->name, "unassociated");
8654 else
8655 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8656 ipw_modes[priv->assoc_request.ieee_mode]);
8657 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8658 mutex_unlock(&priv->mutex);
8659 return 0;
8660 }
8661
8662 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8663 {
8664 if (channel == 0) {
8665 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8666 priv->config &= ~CFG_STATIC_CHANNEL;
8667 IPW_DEBUG_ASSOC("Attempting to associate with new "
8668 "parameters.\n");
8669 ipw_associate(priv);
8670 return 0;
8671 }
8672
8673 priv->config |= CFG_STATIC_CHANNEL;
8674
8675 if (priv->channel == channel) {
8676 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8677 channel);
8678 return 0;
8679 }
8680
8681 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8682 priv->channel = channel;
8683
8684 #ifdef CONFIG_IPW2200_MONITOR
8685 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8686 int i;
8687 if (priv->status & STATUS_SCANNING) {
8688 IPW_DEBUG_SCAN("Scan abort triggered due to "
8689 "channel change.\n");
8690 ipw_abort_scan(priv);
8691 }
8692
8693 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8694 udelay(10);
8695
8696 if (priv->status & STATUS_SCANNING)
8697 IPW_DEBUG_SCAN("Still scanning...\n");
8698 else
8699 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8700 1000 - i);
8701
8702 return 0;
8703 }
8704 #endif /* CONFIG_IPW2200_MONITOR */
8705
8706 /* Network configuration changed -- force [re]association */
8707 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8708 if (!ipw_disassociate(priv))
8709 ipw_associate(priv);
8710
8711 return 0;
8712 }
8713
8714 static int ipw_wx_set_freq(struct net_device *dev,
8715 struct iw_request_info *info,
8716 union iwreq_data *wrqu, char *extra)
8717 {
8718 struct ipw_priv *priv = ieee80211_priv(dev);
8719 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8720 struct iw_freq *fwrq = &wrqu->freq;
8721 int ret = 0, i;
8722 u8 channel, flags;
8723 int band;
8724
8725 if (fwrq->m == 0) {
8726 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8727 mutex_lock(&priv->mutex);
8728 ret = ipw_set_channel(priv, 0);
8729 mutex_unlock(&priv->mutex);
8730 return ret;
8731 }
8732 /* if setting by freq convert to channel */
8733 if (fwrq->e == 1) {
8734 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8735 if (channel == 0)
8736 return -EINVAL;
8737 } else
8738 channel = fwrq->m;
8739
8740 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8741 return -EINVAL;
8742
8743 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8744 i = ieee80211_channel_to_index(priv->ieee, channel);
8745 if (i == -1)
8746 return -EINVAL;
8747
8748 flags = (band == IEEE80211_24GHZ_BAND) ?
8749 geo->bg[i].flags : geo->a[i].flags;
8750 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8751 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8752 return -EINVAL;
8753 }
8754 }
8755
8756 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8757 mutex_lock(&priv->mutex);
8758 ret = ipw_set_channel(priv, channel);
8759 mutex_unlock(&priv->mutex);
8760 return ret;
8761 }
8762
8763 static int ipw_wx_get_freq(struct net_device *dev,
8764 struct iw_request_info *info,
8765 union iwreq_data *wrqu, char *extra)
8766 {
8767 struct ipw_priv *priv = ieee80211_priv(dev);
8768
8769 wrqu->freq.e = 0;
8770
8771 /* If we are associated, trying to associate, or have a statically
8772 * configured CHANNEL then return that; otherwise return ANY */
8773 mutex_lock(&priv->mutex);
8774 if (priv->config & CFG_STATIC_CHANNEL ||
8775 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8776 int i;
8777
8778 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8779 BUG_ON(i == -1);
8780 wrqu->freq.e = 1;
8781
8782 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8783 case IEEE80211_52GHZ_BAND:
8784 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8785 break;
8786
8787 case IEEE80211_24GHZ_BAND:
8788 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8789 break;
8790
8791 default:
8792 BUG();
8793 }
8794 } else
8795 wrqu->freq.m = 0;
8796
8797 mutex_unlock(&priv->mutex);
8798 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8799 return 0;
8800 }
8801
8802 static int ipw_wx_set_mode(struct net_device *dev,
8803 struct iw_request_info *info,
8804 union iwreq_data *wrqu, char *extra)
8805 {
8806 struct ipw_priv *priv = ieee80211_priv(dev);
8807 int err = 0;
8808
8809 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8810
8811 switch (wrqu->mode) {
8812 #ifdef CONFIG_IPW2200_MONITOR
8813 case IW_MODE_MONITOR:
8814 #endif
8815 case IW_MODE_ADHOC:
8816 case IW_MODE_INFRA:
8817 break;
8818 case IW_MODE_AUTO:
8819 wrqu->mode = IW_MODE_INFRA;
8820 break;
8821 default:
8822 return -EINVAL;
8823 }
8824 if (wrqu->mode == priv->ieee->iw_mode)
8825 return 0;
8826
8827 mutex_lock(&priv->mutex);
8828
8829 ipw_sw_reset(priv, 0);
8830
8831 #ifdef CONFIG_IPW2200_MONITOR
8832 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8833 priv->net_dev->type = ARPHRD_ETHER;
8834
8835 if (wrqu->mode == IW_MODE_MONITOR)
8836 #ifdef CONFIG_IPW2200_RADIOTAP
8837 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8838 #else
8839 priv->net_dev->type = ARPHRD_IEEE80211;
8840 #endif
8841 #endif /* CONFIG_IPW2200_MONITOR */
8842
8843 /* Free the existing firmware and reset the fw_loaded
8844 * flag so ipw_load() will bring in the new firmware */
8845 free_firmware();
8846
8847 priv->ieee->iw_mode = wrqu->mode;
8848
8849 queue_work(priv->workqueue, &priv->adapter_restart);
8850 mutex_unlock(&priv->mutex);
8851 return err;
8852 }
8853
8854 static int ipw_wx_get_mode(struct net_device *dev,
8855 struct iw_request_info *info,
8856 union iwreq_data *wrqu, char *extra)
8857 {
8858 struct ipw_priv *priv = ieee80211_priv(dev);
8859 mutex_lock(&priv->mutex);
8860 wrqu->mode = priv->ieee->iw_mode;
8861 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8862 mutex_unlock(&priv->mutex);
8863 return 0;
8864 }
8865
8866 /* Values are in microsecond */
8867 static const s32 timeout_duration[] = {
8868 350000,
8869 250000,
8870 75000,
8871 37000,
8872 25000,
8873 };
8874
8875 static const s32 period_duration[] = {
8876 400000,
8877 700000,
8878 1000000,
8879 1000000,
8880 1000000
8881 };
8882
8883 static int ipw_wx_get_range(struct net_device *dev,
8884 struct iw_request_info *info,
8885 union iwreq_data *wrqu, char *extra)
8886 {
8887 struct ipw_priv *priv = ieee80211_priv(dev);
8888 struct iw_range *range = (struct iw_range *)extra;
8889 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8890 int i = 0, j;
8891
8892 wrqu->data.length = sizeof(*range);
8893 memset(range, 0, sizeof(*range));
8894
8895 /* 54Mbs == ~27 Mb/s real (802.11g) */
8896 range->throughput = 27 * 1000 * 1000;
8897
8898 range->max_qual.qual = 100;
8899 /* TODO: Find real max RSSI and stick here */
8900 range->max_qual.level = 0;
8901 range->max_qual.noise = 0;
8902 range->max_qual.updated = 7; /* Updated all three */
8903
8904 range->avg_qual.qual = 70;
8905 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8906 range->avg_qual.level = 0; /* FIXME to real average level */
8907 range->avg_qual.noise = 0;
8908 range->avg_qual.updated = 7; /* Updated all three */
8909 mutex_lock(&priv->mutex);
8910 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8911
8912 for (i = 0; i < range->num_bitrates; i++)
8913 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8914 500000;
8915
8916 range->max_rts = DEFAULT_RTS_THRESHOLD;
8917 range->min_frag = MIN_FRAG_THRESHOLD;
8918 range->max_frag = MAX_FRAG_THRESHOLD;
8919
8920 range->encoding_size[0] = 5;
8921 range->encoding_size[1] = 13;
8922 range->num_encoding_sizes = 2;
8923 range->max_encoding_tokens = WEP_KEYS;
8924
8925 /* Set the Wireless Extension versions */
8926 range->we_version_compiled = WIRELESS_EXT;
8927 range->we_version_source = 18;
8928
8929 i = 0;
8930 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8931 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8932 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8933 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8934 continue;
8935
8936 range->freq[i].i = geo->bg[j].channel;
8937 range->freq[i].m = geo->bg[j].freq * 100000;
8938 range->freq[i].e = 1;
8939 i++;
8940 }
8941 }
8942
8943 if (priv->ieee->mode & IEEE_A) {
8944 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8945 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8946 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8947 continue;
8948
8949 range->freq[i].i = geo->a[j].channel;
8950 range->freq[i].m = geo->a[j].freq * 100000;
8951 range->freq[i].e = 1;
8952 i++;
8953 }
8954 }
8955
8956 range->num_channels = i;
8957 range->num_frequency = i;
8958
8959 mutex_unlock(&priv->mutex);
8960
8961 /* Event capability (kernel + driver) */
8962 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8963 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8964 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8965 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8966 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8967
8968 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8969 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8970
8971 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8972
8973 IPW_DEBUG_WX("GET Range\n");
8974 return 0;
8975 }
8976
8977 static int ipw_wx_set_wap(struct net_device *dev,
8978 struct iw_request_info *info,
8979 union iwreq_data *wrqu, char *extra)
8980 {
8981 struct ipw_priv *priv = ieee80211_priv(dev);
8982
8983 static const unsigned char any[] = {
8984 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8985 };
8986 static const unsigned char off[] = {
8987 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8988 };
8989
8990 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8991 return -EINVAL;
8992 mutex_lock(&priv->mutex);
8993 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8994 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8995 /* we disable mandatory BSSID association */
8996 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8997 priv->config &= ~CFG_STATIC_BSSID;
8998 IPW_DEBUG_ASSOC("Attempting to associate with new "
8999 "parameters.\n");
9000 ipw_associate(priv);
9001 mutex_unlock(&priv->mutex);
9002 return 0;
9003 }
9004
9005 priv->config |= CFG_STATIC_BSSID;
9006 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9007 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9008 mutex_unlock(&priv->mutex);
9009 return 0;
9010 }
9011
9012 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9013 wrqu->ap_addr.sa_data);
9014
9015 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9016
9017 /* Network configuration changed -- force [re]association */
9018 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9019 if (!ipw_disassociate(priv))
9020 ipw_associate(priv);
9021
9022 mutex_unlock(&priv->mutex);
9023 return 0;
9024 }
9025
9026 static int ipw_wx_get_wap(struct net_device *dev,
9027 struct iw_request_info *info,
9028 union iwreq_data *wrqu, char *extra)
9029 {
9030 struct ipw_priv *priv = ieee80211_priv(dev);
9031
9032 /* If we are associated, trying to associate, or have a statically
9033 * configured BSSID then return that; otherwise return ANY */
9034 mutex_lock(&priv->mutex);
9035 if (priv->config & CFG_STATIC_BSSID ||
9036 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9037 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9038 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9039 } else
9040 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9041
9042 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9043 wrqu->ap_addr.sa_data);
9044 mutex_unlock(&priv->mutex);
9045 return 0;
9046 }
9047
9048 static int ipw_wx_set_essid(struct net_device *dev,
9049 struct iw_request_info *info,
9050 union iwreq_data *wrqu, char *extra)
9051 {
9052 struct ipw_priv *priv = ieee80211_priv(dev);
9053 int length;
9054 DECLARE_SSID_BUF(ssid);
9055
9056 mutex_lock(&priv->mutex);
9057
9058 if (!wrqu->essid.flags)
9059 {
9060 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9061 ipw_disassociate(priv);
9062 priv->config &= ~CFG_STATIC_ESSID;
9063 ipw_associate(priv);
9064 mutex_unlock(&priv->mutex);
9065 return 0;
9066 }
9067
9068 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9069
9070 priv->config |= CFG_STATIC_ESSID;
9071
9072 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9073 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9074 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9075 mutex_unlock(&priv->mutex);
9076 return 0;
9077 }
9078
9079 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9080 print_ssid(ssid, extra, length), length);
9081
9082 priv->essid_len = length;
9083 memcpy(priv->essid, extra, priv->essid_len);
9084
9085 /* Network configuration changed -- force [re]association */
9086 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9087 if (!ipw_disassociate(priv))
9088 ipw_associate(priv);
9089
9090 mutex_unlock(&priv->mutex);
9091 return 0;
9092 }
9093
9094 static int ipw_wx_get_essid(struct net_device *dev,
9095 struct iw_request_info *info,
9096 union iwreq_data *wrqu, char *extra)
9097 {
9098 struct ipw_priv *priv = ieee80211_priv(dev);
9099 DECLARE_SSID_BUF(ssid);
9100
9101 /* If we are associated, trying to associate, or have a statically
9102 * configured ESSID then return that; otherwise return ANY */
9103 mutex_lock(&priv->mutex);
9104 if (priv->config & CFG_STATIC_ESSID ||
9105 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9106 IPW_DEBUG_WX("Getting essid: '%s'\n",
9107 print_ssid(ssid, priv->essid, priv->essid_len));
9108 memcpy(extra, priv->essid, priv->essid_len);
9109 wrqu->essid.length = priv->essid_len;
9110 wrqu->essid.flags = 1; /* active */
9111 } else {
9112 IPW_DEBUG_WX("Getting essid: ANY\n");
9113 wrqu->essid.length = 0;
9114 wrqu->essid.flags = 0; /* active */
9115 }
9116 mutex_unlock(&priv->mutex);
9117 return 0;
9118 }
9119
9120 static int ipw_wx_set_nick(struct net_device *dev,
9121 struct iw_request_info *info,
9122 union iwreq_data *wrqu, char *extra)
9123 {
9124 struct ipw_priv *priv = ieee80211_priv(dev);
9125
9126 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9127 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9128 return -E2BIG;
9129 mutex_lock(&priv->mutex);
9130 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9131 memset(priv->nick, 0, sizeof(priv->nick));
9132 memcpy(priv->nick, extra, wrqu->data.length);
9133 IPW_DEBUG_TRACE("<<\n");
9134 mutex_unlock(&priv->mutex);
9135 return 0;
9136
9137 }
9138
9139 static int ipw_wx_get_nick(struct net_device *dev,
9140 struct iw_request_info *info,
9141 union iwreq_data *wrqu, char *extra)
9142 {
9143 struct ipw_priv *priv = ieee80211_priv(dev);
9144 IPW_DEBUG_WX("Getting nick\n");
9145 mutex_lock(&priv->mutex);
9146 wrqu->data.length = strlen(priv->nick);
9147 memcpy(extra, priv->nick, wrqu->data.length);
9148 wrqu->data.flags = 1; /* active */
9149 mutex_unlock(&priv->mutex);
9150 return 0;
9151 }
9152
9153 static int ipw_wx_set_sens(struct net_device *dev,
9154 struct iw_request_info *info,
9155 union iwreq_data *wrqu, char *extra)
9156 {
9157 struct ipw_priv *priv = ieee80211_priv(dev);
9158 int err = 0;
9159
9160 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9161 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9162 mutex_lock(&priv->mutex);
9163
9164 if (wrqu->sens.fixed == 0)
9165 {
9166 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9167 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9168 goto out;
9169 }
9170 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9171 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9172 err = -EINVAL;
9173 goto out;
9174 }
9175
9176 priv->roaming_threshold = wrqu->sens.value;
9177 priv->disassociate_threshold = 3*wrqu->sens.value;
9178 out:
9179 mutex_unlock(&priv->mutex);
9180 return err;
9181 }
9182
9183 static int ipw_wx_get_sens(struct net_device *dev,
9184 struct iw_request_info *info,
9185 union iwreq_data *wrqu, char *extra)
9186 {
9187 struct ipw_priv *priv = ieee80211_priv(dev);
9188 mutex_lock(&priv->mutex);
9189 wrqu->sens.fixed = 1;
9190 wrqu->sens.value = priv->roaming_threshold;
9191 mutex_unlock(&priv->mutex);
9192
9193 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9194 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9195
9196 return 0;
9197 }
9198
9199 static int ipw_wx_set_rate(struct net_device *dev,
9200 struct iw_request_info *info,
9201 union iwreq_data *wrqu, char *extra)
9202 {
9203 /* TODO: We should use semaphores or locks for access to priv */
9204 struct ipw_priv *priv = ieee80211_priv(dev);
9205 u32 target_rate = wrqu->bitrate.value;
9206 u32 fixed, mask;
9207
9208 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9209 /* value = X, fixed = 1 means only rate X */
9210 /* value = X, fixed = 0 means all rates lower equal X */
9211
9212 if (target_rate == -1) {
9213 fixed = 0;
9214 mask = IEEE80211_DEFAULT_RATES_MASK;
9215 /* Now we should reassociate */
9216 goto apply;
9217 }
9218
9219 mask = 0;
9220 fixed = wrqu->bitrate.fixed;
9221
9222 if (target_rate == 1000000 || !fixed)
9223 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9224 if (target_rate == 1000000)
9225 goto apply;
9226
9227 if (target_rate == 2000000 || !fixed)
9228 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9229 if (target_rate == 2000000)
9230 goto apply;
9231
9232 if (target_rate == 5500000 || !fixed)
9233 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9234 if (target_rate == 5500000)
9235 goto apply;
9236
9237 if (target_rate == 6000000 || !fixed)
9238 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9239 if (target_rate == 6000000)
9240 goto apply;
9241
9242 if (target_rate == 9000000 || !fixed)
9243 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9244 if (target_rate == 9000000)
9245 goto apply;
9246
9247 if (target_rate == 11000000 || !fixed)
9248 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9249 if (target_rate == 11000000)
9250 goto apply;
9251
9252 if (target_rate == 12000000 || !fixed)
9253 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9254 if (target_rate == 12000000)
9255 goto apply;
9256
9257 if (target_rate == 18000000 || !fixed)
9258 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9259 if (target_rate == 18000000)
9260 goto apply;
9261
9262 if (target_rate == 24000000 || !fixed)
9263 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9264 if (target_rate == 24000000)
9265 goto apply;
9266
9267 if (target_rate == 36000000 || !fixed)
9268 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9269 if (target_rate == 36000000)
9270 goto apply;
9271
9272 if (target_rate == 48000000 || !fixed)
9273 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9274 if (target_rate == 48000000)
9275 goto apply;
9276
9277 if (target_rate == 54000000 || !fixed)
9278 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9279 if (target_rate == 54000000)
9280 goto apply;
9281
9282 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9283 return -EINVAL;
9284
9285 apply:
9286 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9287 mask, fixed ? "fixed" : "sub-rates");
9288 mutex_lock(&priv->mutex);
9289 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9290 priv->config &= ~CFG_FIXED_RATE;
9291 ipw_set_fixed_rate(priv, priv->ieee->mode);
9292 } else
9293 priv->config |= CFG_FIXED_RATE;
9294
9295 if (priv->rates_mask == mask) {
9296 IPW_DEBUG_WX("Mask set to current mask.\n");
9297 mutex_unlock(&priv->mutex);
9298 return 0;
9299 }
9300
9301 priv->rates_mask = mask;
9302
9303 /* Network configuration changed -- force [re]association */
9304 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9305 if (!ipw_disassociate(priv))
9306 ipw_associate(priv);
9307
9308 mutex_unlock(&priv->mutex);
9309 return 0;
9310 }
9311
9312 static int ipw_wx_get_rate(struct net_device *dev,
9313 struct iw_request_info *info,
9314 union iwreq_data *wrqu, char *extra)
9315 {
9316 struct ipw_priv *priv = ieee80211_priv(dev);
9317 mutex_lock(&priv->mutex);
9318 wrqu->bitrate.value = priv->last_rate;
9319 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9320 mutex_unlock(&priv->mutex);
9321 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9322 return 0;
9323 }
9324
9325 static int ipw_wx_set_rts(struct net_device *dev,
9326 struct iw_request_info *info,
9327 union iwreq_data *wrqu, char *extra)
9328 {
9329 struct ipw_priv *priv = ieee80211_priv(dev);
9330 mutex_lock(&priv->mutex);
9331 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9332 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9333 else {
9334 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9335 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9336 mutex_unlock(&priv->mutex);
9337 return -EINVAL;
9338 }
9339 priv->rts_threshold = wrqu->rts.value;
9340 }
9341
9342 ipw_send_rts_threshold(priv, priv->rts_threshold);
9343 mutex_unlock(&priv->mutex);
9344 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9345 return 0;
9346 }
9347
9348 static int ipw_wx_get_rts(struct net_device *dev,
9349 struct iw_request_info *info,
9350 union iwreq_data *wrqu, char *extra)
9351 {
9352 struct ipw_priv *priv = ieee80211_priv(dev);
9353 mutex_lock(&priv->mutex);
9354 wrqu->rts.value = priv->rts_threshold;
9355 wrqu->rts.fixed = 0; /* no auto select */
9356 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9357 mutex_unlock(&priv->mutex);
9358 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9359 return 0;
9360 }
9361
9362 static int ipw_wx_set_txpow(struct net_device *dev,
9363 struct iw_request_info *info,
9364 union iwreq_data *wrqu, char *extra)
9365 {
9366 struct ipw_priv *priv = ieee80211_priv(dev);
9367 int err = 0;
9368
9369 mutex_lock(&priv->mutex);
9370 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9371 err = -EINPROGRESS;
9372 goto out;
9373 }
9374
9375 if (!wrqu->power.fixed)
9376 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9377
9378 if (wrqu->power.flags != IW_TXPOW_DBM) {
9379 err = -EINVAL;
9380 goto out;
9381 }
9382
9383 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9384 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9385 err = -EINVAL;
9386 goto out;
9387 }
9388
9389 priv->tx_power = wrqu->power.value;
9390 err = ipw_set_tx_power(priv);
9391 out:
9392 mutex_unlock(&priv->mutex);
9393 return err;
9394 }
9395
9396 static int ipw_wx_get_txpow(struct net_device *dev,
9397 struct iw_request_info *info,
9398 union iwreq_data *wrqu, char *extra)
9399 {
9400 struct ipw_priv *priv = ieee80211_priv(dev);
9401 mutex_lock(&priv->mutex);
9402 wrqu->power.value = priv->tx_power;
9403 wrqu->power.fixed = 1;
9404 wrqu->power.flags = IW_TXPOW_DBM;
9405 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9406 mutex_unlock(&priv->mutex);
9407
9408 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9409 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9410
9411 return 0;
9412 }
9413
9414 static int ipw_wx_set_frag(struct net_device *dev,
9415 struct iw_request_info *info,
9416 union iwreq_data *wrqu, char *extra)
9417 {
9418 struct ipw_priv *priv = ieee80211_priv(dev);
9419 mutex_lock(&priv->mutex);
9420 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9421 priv->ieee->fts = DEFAULT_FTS;
9422 else {
9423 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9424 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9425 mutex_unlock(&priv->mutex);
9426 return -EINVAL;
9427 }
9428
9429 priv->ieee->fts = wrqu->frag.value & ~0x1;
9430 }
9431
9432 ipw_send_frag_threshold(priv, wrqu->frag.value);
9433 mutex_unlock(&priv->mutex);
9434 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9435 return 0;
9436 }
9437
9438 static int ipw_wx_get_frag(struct net_device *dev,
9439 struct iw_request_info *info,
9440 union iwreq_data *wrqu, char *extra)
9441 {
9442 struct ipw_priv *priv = ieee80211_priv(dev);
9443 mutex_lock(&priv->mutex);
9444 wrqu->frag.value = priv->ieee->fts;
9445 wrqu->frag.fixed = 0; /* no auto select */
9446 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9447 mutex_unlock(&priv->mutex);
9448 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9449
9450 return 0;
9451 }
9452
9453 static int ipw_wx_set_retry(struct net_device *dev,
9454 struct iw_request_info *info,
9455 union iwreq_data *wrqu, char *extra)
9456 {
9457 struct ipw_priv *priv = ieee80211_priv(dev);
9458
9459 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9460 return -EINVAL;
9461
9462 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9463 return 0;
9464
9465 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9466 return -EINVAL;
9467
9468 mutex_lock(&priv->mutex);
9469 if (wrqu->retry.flags & IW_RETRY_SHORT)
9470 priv->short_retry_limit = (u8) wrqu->retry.value;
9471 else if (wrqu->retry.flags & IW_RETRY_LONG)
9472 priv->long_retry_limit = (u8) wrqu->retry.value;
9473 else {
9474 priv->short_retry_limit = (u8) wrqu->retry.value;
9475 priv->long_retry_limit = (u8) wrqu->retry.value;
9476 }
9477
9478 ipw_send_retry_limit(priv, priv->short_retry_limit,
9479 priv->long_retry_limit);
9480 mutex_unlock(&priv->mutex);
9481 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9482 priv->short_retry_limit, priv->long_retry_limit);
9483 return 0;
9484 }
9485
9486 static int ipw_wx_get_retry(struct net_device *dev,
9487 struct iw_request_info *info,
9488 union iwreq_data *wrqu, char *extra)
9489 {
9490 struct ipw_priv *priv = ieee80211_priv(dev);
9491
9492 mutex_lock(&priv->mutex);
9493 wrqu->retry.disabled = 0;
9494
9495 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9496 mutex_unlock(&priv->mutex);
9497 return -EINVAL;
9498 }
9499
9500 if (wrqu->retry.flags & IW_RETRY_LONG) {
9501 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9502 wrqu->retry.value = priv->long_retry_limit;
9503 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9504 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9505 wrqu->retry.value = priv->short_retry_limit;
9506 } else {
9507 wrqu->retry.flags = IW_RETRY_LIMIT;
9508 wrqu->retry.value = priv->short_retry_limit;
9509 }
9510 mutex_unlock(&priv->mutex);
9511
9512 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9513
9514 return 0;
9515 }
9516
9517 static int ipw_wx_set_scan(struct net_device *dev,
9518 struct iw_request_info *info,
9519 union iwreq_data *wrqu, char *extra)
9520 {
9521 struct ipw_priv *priv = ieee80211_priv(dev);
9522 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9523 struct delayed_work *work = NULL;
9524
9525 mutex_lock(&priv->mutex);
9526
9527 priv->user_requested_scan = 1;
9528
9529 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9530 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9531 int len = min((int)req->essid_len,
9532 (int)sizeof(priv->direct_scan_ssid));
9533 memcpy(priv->direct_scan_ssid, req->essid, len);
9534 priv->direct_scan_ssid_len = len;
9535 work = &priv->request_direct_scan;
9536 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9537 work = &priv->request_passive_scan;
9538 }
9539 } else {
9540 /* Normal active broadcast scan */
9541 work = &priv->request_scan;
9542 }
9543
9544 mutex_unlock(&priv->mutex);
9545
9546 IPW_DEBUG_WX("Start scan\n");
9547
9548 queue_delayed_work(priv->workqueue, work, 0);
9549
9550 return 0;
9551 }
9552
9553 static int ipw_wx_get_scan(struct net_device *dev,
9554 struct iw_request_info *info,
9555 union iwreq_data *wrqu, char *extra)
9556 {
9557 struct ipw_priv *priv = ieee80211_priv(dev);
9558 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9559 }
9560
9561 static int ipw_wx_set_encode(struct net_device *dev,
9562 struct iw_request_info *info,
9563 union iwreq_data *wrqu, char *key)
9564 {
9565 struct ipw_priv *priv = ieee80211_priv(dev);
9566 int ret;
9567 u32 cap = priv->capability;
9568
9569 mutex_lock(&priv->mutex);
9570 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9571
9572 /* In IBSS mode, we need to notify the firmware to update
9573 * the beacon info after we changed the capability. */
9574 if (cap != priv->capability &&
9575 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9576 priv->status & STATUS_ASSOCIATED)
9577 ipw_disassociate(priv);
9578
9579 mutex_unlock(&priv->mutex);
9580 return ret;
9581 }
9582
9583 static int ipw_wx_get_encode(struct net_device *dev,
9584 struct iw_request_info *info,
9585 union iwreq_data *wrqu, char *key)
9586 {
9587 struct ipw_priv *priv = ieee80211_priv(dev);
9588 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9589 }
9590
9591 static int ipw_wx_set_power(struct net_device *dev,
9592 struct iw_request_info *info,
9593 union iwreq_data *wrqu, char *extra)
9594 {
9595 struct ipw_priv *priv = ieee80211_priv(dev);
9596 int err;
9597 mutex_lock(&priv->mutex);
9598 if (wrqu->power.disabled) {
9599 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9600 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9601 if (err) {
9602 IPW_DEBUG_WX("failed setting power mode.\n");
9603 mutex_unlock(&priv->mutex);
9604 return err;
9605 }
9606 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9607 mutex_unlock(&priv->mutex);
9608 return 0;
9609 }
9610
9611 switch (wrqu->power.flags & IW_POWER_MODE) {
9612 case IW_POWER_ON: /* If not specified */
9613 case IW_POWER_MODE: /* If set all mask */
9614 case IW_POWER_ALL_R: /* If explicitly state all */
9615 break;
9616 default: /* Otherwise we don't support it */
9617 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9618 wrqu->power.flags);
9619 mutex_unlock(&priv->mutex);
9620 return -EOPNOTSUPP;
9621 }
9622
9623 /* If the user hasn't specified a power management mode yet, default
9624 * to BATTERY */
9625 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9626 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9627 else
9628 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9629
9630 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9631 if (err) {
9632 IPW_DEBUG_WX("failed setting power mode.\n");
9633 mutex_unlock(&priv->mutex);
9634 return err;
9635 }
9636
9637 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9638 mutex_unlock(&priv->mutex);
9639 return 0;
9640 }
9641
9642 static int ipw_wx_get_power(struct net_device *dev,
9643 struct iw_request_info *info,
9644 union iwreq_data *wrqu, char *extra)
9645 {
9646 struct ipw_priv *priv = ieee80211_priv(dev);
9647 mutex_lock(&priv->mutex);
9648 if (!(priv->power_mode & IPW_POWER_ENABLED))
9649 wrqu->power.disabled = 1;
9650 else
9651 wrqu->power.disabled = 0;
9652
9653 mutex_unlock(&priv->mutex);
9654 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9655
9656 return 0;
9657 }
9658
9659 static int ipw_wx_set_powermode(struct net_device *dev,
9660 struct iw_request_info *info,
9661 union iwreq_data *wrqu, char *extra)
9662 {
9663 struct ipw_priv *priv = ieee80211_priv(dev);
9664 int mode = *(int *)extra;
9665 int err;
9666
9667 mutex_lock(&priv->mutex);
9668 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9669 mode = IPW_POWER_AC;
9670
9671 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9672 err = ipw_send_power_mode(priv, mode);
9673 if (err) {
9674 IPW_DEBUG_WX("failed setting power mode.\n");
9675 mutex_unlock(&priv->mutex);
9676 return err;
9677 }
9678 priv->power_mode = IPW_POWER_ENABLED | mode;
9679 }
9680 mutex_unlock(&priv->mutex);
9681 return 0;
9682 }
9683
9684 #define MAX_WX_STRING 80
9685 static int ipw_wx_get_powermode(struct net_device *dev,
9686 struct iw_request_info *info,
9687 union iwreq_data *wrqu, char *extra)
9688 {
9689 struct ipw_priv *priv = ieee80211_priv(dev);
9690 int level = IPW_POWER_LEVEL(priv->power_mode);
9691 char *p = extra;
9692
9693 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9694
9695 switch (level) {
9696 case IPW_POWER_AC:
9697 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9698 break;
9699 case IPW_POWER_BATTERY:
9700 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9701 break;
9702 default:
9703 p += snprintf(p, MAX_WX_STRING - (p - extra),
9704 "(Timeout %dms, Period %dms)",
9705 timeout_duration[level - 1] / 1000,
9706 period_duration[level - 1] / 1000);
9707 }
9708
9709 if (!(priv->power_mode & IPW_POWER_ENABLED))
9710 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9711
9712 wrqu->data.length = p - extra + 1;
9713
9714 return 0;
9715 }
9716
9717 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9718 struct iw_request_info *info,
9719 union iwreq_data *wrqu, char *extra)
9720 {
9721 struct ipw_priv *priv = ieee80211_priv(dev);
9722 int mode = *(int *)extra;
9723 u8 band = 0, modulation = 0;
9724
9725 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9726 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9727 return -EINVAL;
9728 }
9729 mutex_lock(&priv->mutex);
9730 if (priv->adapter == IPW_2915ABG) {
9731 priv->ieee->abg_true = 1;
9732 if (mode & IEEE_A) {
9733 band |= IEEE80211_52GHZ_BAND;
9734 modulation |= IEEE80211_OFDM_MODULATION;
9735 } else
9736 priv->ieee->abg_true = 0;
9737 } else {
9738 if (mode & IEEE_A) {
9739 IPW_WARNING("Attempt to set 2200BG into "
9740 "802.11a mode\n");
9741 mutex_unlock(&priv->mutex);
9742 return -EINVAL;
9743 }
9744
9745 priv->ieee->abg_true = 0;
9746 }
9747
9748 if (mode & IEEE_B) {
9749 band |= IEEE80211_24GHZ_BAND;
9750 modulation |= IEEE80211_CCK_MODULATION;
9751 } else
9752 priv->ieee->abg_true = 0;
9753
9754 if (mode & IEEE_G) {
9755 band |= IEEE80211_24GHZ_BAND;
9756 modulation |= IEEE80211_OFDM_MODULATION;
9757 } else
9758 priv->ieee->abg_true = 0;
9759
9760 priv->ieee->mode = mode;
9761 priv->ieee->freq_band = band;
9762 priv->ieee->modulation = modulation;
9763 init_supported_rates(priv, &priv->rates);
9764
9765 /* Network configuration changed -- force [re]association */
9766 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9767 if (!ipw_disassociate(priv)) {
9768 ipw_send_supported_rates(priv, &priv->rates);
9769 ipw_associate(priv);
9770 }
9771
9772 /* Update the band LEDs */
9773 ipw_led_band_on(priv);
9774
9775 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9776 mode & IEEE_A ? 'a' : '.',
9777 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9778 mutex_unlock(&priv->mutex);
9779 return 0;
9780 }
9781
9782 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9783 struct iw_request_info *info,
9784 union iwreq_data *wrqu, char *extra)
9785 {
9786 struct ipw_priv *priv = ieee80211_priv(dev);
9787 mutex_lock(&priv->mutex);
9788 switch (priv->ieee->mode) {
9789 case IEEE_A:
9790 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9791 break;
9792 case IEEE_B:
9793 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9794 break;
9795 case IEEE_A | IEEE_B:
9796 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9797 break;
9798 case IEEE_G:
9799 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9800 break;
9801 case IEEE_A | IEEE_G:
9802 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9803 break;
9804 case IEEE_B | IEEE_G:
9805 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9806 break;
9807 case IEEE_A | IEEE_B | IEEE_G:
9808 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9809 break;
9810 default:
9811 strncpy(extra, "unknown", MAX_WX_STRING);
9812 break;
9813 }
9814
9815 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9816
9817 wrqu->data.length = strlen(extra) + 1;
9818 mutex_unlock(&priv->mutex);
9819
9820 return 0;
9821 }
9822
9823 static int ipw_wx_set_preamble(struct net_device *dev,
9824 struct iw_request_info *info,
9825 union iwreq_data *wrqu, char *extra)
9826 {
9827 struct ipw_priv *priv = ieee80211_priv(dev);
9828 int mode = *(int *)extra;
9829 mutex_lock(&priv->mutex);
9830 /* Switching from SHORT -> LONG requires a disassociation */
9831 if (mode == 1) {
9832 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9833 priv->config |= CFG_PREAMBLE_LONG;
9834
9835 /* Network configuration changed -- force [re]association */
9836 IPW_DEBUG_ASSOC
9837 ("[re]association triggered due to preamble change.\n");
9838 if (!ipw_disassociate(priv))
9839 ipw_associate(priv);
9840 }
9841 goto done;
9842 }
9843
9844 if (mode == 0) {
9845 priv->config &= ~CFG_PREAMBLE_LONG;
9846 goto done;
9847 }
9848 mutex_unlock(&priv->mutex);
9849 return -EINVAL;
9850
9851 done:
9852 mutex_unlock(&priv->mutex);
9853 return 0;
9854 }
9855
9856 static int ipw_wx_get_preamble(struct net_device *dev,
9857 struct iw_request_info *info,
9858 union iwreq_data *wrqu, char *extra)
9859 {
9860 struct ipw_priv *priv = ieee80211_priv(dev);
9861 mutex_lock(&priv->mutex);
9862 if (priv->config & CFG_PREAMBLE_LONG)
9863 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9864 else
9865 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9866 mutex_unlock(&priv->mutex);
9867 return 0;
9868 }
9869
9870 #ifdef CONFIG_IPW2200_MONITOR
9871 static int ipw_wx_set_monitor(struct net_device *dev,
9872 struct iw_request_info *info,
9873 union iwreq_data *wrqu, char *extra)
9874 {
9875 struct ipw_priv *priv = ieee80211_priv(dev);
9876 int *parms = (int *)extra;
9877 int enable = (parms[0] > 0);
9878 mutex_lock(&priv->mutex);
9879 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9880 if (enable) {
9881 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9882 #ifdef CONFIG_IPW2200_RADIOTAP
9883 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9884 #else
9885 priv->net_dev->type = ARPHRD_IEEE80211;
9886 #endif
9887 queue_work(priv->workqueue, &priv->adapter_restart);
9888 }
9889
9890 ipw_set_channel(priv, parms[1]);
9891 } else {
9892 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9893 mutex_unlock(&priv->mutex);
9894 return 0;
9895 }
9896 priv->net_dev->type = ARPHRD_ETHER;
9897 queue_work(priv->workqueue, &priv->adapter_restart);
9898 }
9899 mutex_unlock(&priv->mutex);
9900 return 0;
9901 }
9902
9903 #endif /* CONFIG_IPW2200_MONITOR */
9904
9905 static int ipw_wx_reset(struct net_device *dev,
9906 struct iw_request_info *info,
9907 union iwreq_data *wrqu, char *extra)
9908 {
9909 struct ipw_priv *priv = ieee80211_priv(dev);
9910 IPW_DEBUG_WX("RESET\n");
9911 queue_work(priv->workqueue, &priv->adapter_restart);
9912 return 0;
9913 }
9914
9915 static int ipw_wx_sw_reset(struct net_device *dev,
9916 struct iw_request_info *info,
9917 union iwreq_data *wrqu, char *extra)
9918 {
9919 struct ipw_priv *priv = ieee80211_priv(dev);
9920 union iwreq_data wrqu_sec = {
9921 .encoding = {
9922 .flags = IW_ENCODE_DISABLED,
9923 },
9924 };
9925 int ret;
9926
9927 IPW_DEBUG_WX("SW_RESET\n");
9928
9929 mutex_lock(&priv->mutex);
9930
9931 ret = ipw_sw_reset(priv, 2);
9932 if (!ret) {
9933 free_firmware();
9934 ipw_adapter_restart(priv);
9935 }
9936
9937 /* The SW reset bit might have been toggled on by the 'disable'
9938 * module parameter, so take appropriate action */
9939 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9940
9941 mutex_unlock(&priv->mutex);
9942 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9943 mutex_lock(&priv->mutex);
9944
9945 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9946 /* Configuration likely changed -- force [re]association */
9947 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9948 "reset.\n");
9949 if (!ipw_disassociate(priv))
9950 ipw_associate(priv);
9951 }
9952
9953 mutex_unlock(&priv->mutex);
9954
9955 return 0;
9956 }
9957
9958 /* Rebase the WE IOCTLs to zero for the handler array */
9959 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9960 static iw_handler ipw_wx_handlers[] = {
9961 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9962 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9963 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9964 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9965 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9966 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9967 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9968 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9969 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9970 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9971 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9972 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9973 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9974 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9975 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9976 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9977 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9978 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9979 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9980 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9981 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9982 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9983 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9984 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9985 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9986 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9987 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9988 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9989 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9990 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9991 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9992 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9993 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9994 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9995 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9996 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9997 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9998 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9999 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10000 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10001 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10002 };
10003
10004 enum {
10005 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10006 IPW_PRIV_GET_POWER,
10007 IPW_PRIV_SET_MODE,
10008 IPW_PRIV_GET_MODE,
10009 IPW_PRIV_SET_PREAMBLE,
10010 IPW_PRIV_GET_PREAMBLE,
10011 IPW_PRIV_RESET,
10012 IPW_PRIV_SW_RESET,
10013 #ifdef CONFIG_IPW2200_MONITOR
10014 IPW_PRIV_SET_MONITOR,
10015 #endif
10016 };
10017
10018 static struct iw_priv_args ipw_priv_args[] = {
10019 {
10020 .cmd = IPW_PRIV_SET_POWER,
10021 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10022 .name = "set_power"},
10023 {
10024 .cmd = IPW_PRIV_GET_POWER,
10025 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10026 .name = "get_power"},
10027 {
10028 .cmd = IPW_PRIV_SET_MODE,
10029 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10030 .name = "set_mode"},
10031 {
10032 .cmd = IPW_PRIV_GET_MODE,
10033 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10034 .name = "get_mode"},
10035 {
10036 .cmd = IPW_PRIV_SET_PREAMBLE,
10037 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10038 .name = "set_preamble"},
10039 {
10040 .cmd = IPW_PRIV_GET_PREAMBLE,
10041 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10042 .name = "get_preamble"},
10043 {
10044 IPW_PRIV_RESET,
10045 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10046 {
10047 IPW_PRIV_SW_RESET,
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10049 #ifdef CONFIG_IPW2200_MONITOR
10050 {
10051 IPW_PRIV_SET_MONITOR,
10052 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10053 #endif /* CONFIG_IPW2200_MONITOR */
10054 };
10055
10056 static iw_handler ipw_priv_handler[] = {
10057 ipw_wx_set_powermode,
10058 ipw_wx_get_powermode,
10059 ipw_wx_set_wireless_mode,
10060 ipw_wx_get_wireless_mode,
10061 ipw_wx_set_preamble,
10062 ipw_wx_get_preamble,
10063 ipw_wx_reset,
10064 ipw_wx_sw_reset,
10065 #ifdef CONFIG_IPW2200_MONITOR
10066 ipw_wx_set_monitor,
10067 #endif
10068 };
10069
10070 static struct iw_handler_def ipw_wx_handler_def = {
10071 .standard = ipw_wx_handlers,
10072 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10073 .num_private = ARRAY_SIZE(ipw_priv_handler),
10074 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10075 .private = ipw_priv_handler,
10076 .private_args = ipw_priv_args,
10077 .get_wireless_stats = ipw_get_wireless_stats,
10078 };
10079
10080 /*
10081 * Get wireless statistics.
10082 * Called by /proc/net/wireless
10083 * Also called by SIOCGIWSTATS
10084 */
10085 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10086 {
10087 struct ipw_priv *priv = ieee80211_priv(dev);
10088 struct iw_statistics *wstats;
10089
10090 wstats = &priv->wstats;
10091
10092 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10093 * netdev->get_wireless_stats seems to be called before fw is
10094 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10095 * and associated; if not associcated, the values are all meaningless
10096 * anyway, so set them all to NULL and INVALID */
10097 if (!(priv->status & STATUS_ASSOCIATED)) {
10098 wstats->miss.beacon = 0;
10099 wstats->discard.retries = 0;
10100 wstats->qual.qual = 0;
10101 wstats->qual.level = 0;
10102 wstats->qual.noise = 0;
10103 wstats->qual.updated = 7;
10104 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10105 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10106 return wstats;
10107 }
10108
10109 wstats->qual.qual = priv->quality;
10110 wstats->qual.level = priv->exp_avg_rssi;
10111 wstats->qual.noise = priv->exp_avg_noise;
10112 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10113 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10114
10115 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10116 wstats->discard.retries = priv->last_tx_failures;
10117 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10118
10119 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10120 goto fail_get_ordinal;
10121 wstats->discard.retries += tx_retry; */
10122
10123 return wstats;
10124 }
10125
10126 /* net device stuff */
10127
10128 static void init_sys_config(struct ipw_sys_config *sys_config)
10129 {
10130 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10131 sys_config->bt_coexistence = 0;
10132 sys_config->answer_broadcast_ssid_probe = 0;
10133 sys_config->accept_all_data_frames = 0;
10134 sys_config->accept_non_directed_frames = 1;
10135 sys_config->exclude_unicast_unencrypted = 0;
10136 sys_config->disable_unicast_decryption = 1;
10137 sys_config->exclude_multicast_unencrypted = 0;
10138 sys_config->disable_multicast_decryption = 1;
10139 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10140 antenna = CFG_SYS_ANTENNA_BOTH;
10141 sys_config->antenna_diversity = antenna;
10142 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10143 sys_config->dot11g_auto_detection = 0;
10144 sys_config->enable_cts_to_self = 0;
10145 sys_config->bt_coexist_collision_thr = 0;
10146 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10147 sys_config->silence_threshold = 0x1e;
10148 }
10149
10150 static int ipw_net_open(struct net_device *dev)
10151 {
10152 IPW_DEBUG_INFO("dev->open\n");
10153 netif_start_queue(dev);
10154 return 0;
10155 }
10156
10157 static int ipw_net_stop(struct net_device *dev)
10158 {
10159 IPW_DEBUG_INFO("dev->close\n");
10160 netif_stop_queue(dev);
10161 return 0;
10162 }
10163
10164 /*
10165 todo:
10166
10167 modify to send one tfd per fragment instead of using chunking. otherwise
10168 we need to heavily modify the ieee80211_skb_to_txb.
10169 */
10170
10171 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10172 int pri)
10173 {
10174 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10175 txb->fragments[0]->data;
10176 int i = 0;
10177 struct tfd_frame *tfd;
10178 #ifdef CONFIG_IPW2200_QOS
10179 int tx_id = ipw_get_tx_queue_number(priv, pri);
10180 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10181 #else
10182 struct clx2_tx_queue *txq = &priv->txq[0];
10183 #endif
10184 struct clx2_queue *q = &txq->q;
10185 u8 id, hdr_len, unicast;
10186 u16 remaining_bytes;
10187 int fc;
10188
10189 if (!(priv->status & STATUS_ASSOCIATED))
10190 goto drop;
10191
10192 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10193 switch (priv->ieee->iw_mode) {
10194 case IW_MODE_ADHOC:
10195 unicast = !is_multicast_ether_addr(hdr->addr1);
10196 id = ipw_find_station(priv, hdr->addr1);
10197 if (id == IPW_INVALID_STATION) {
10198 id = ipw_add_station(priv, hdr->addr1);
10199 if (id == IPW_INVALID_STATION) {
10200 IPW_WARNING("Attempt to send data to "
10201 "invalid cell: %pM\n",
10202 hdr->addr1);
10203 goto drop;
10204 }
10205 }
10206 break;
10207
10208 case IW_MODE_INFRA:
10209 default:
10210 unicast = !is_multicast_ether_addr(hdr->addr3);
10211 id = 0;
10212 break;
10213 }
10214
10215 tfd = &txq->bd[q->first_empty];
10216 txq->txb[q->first_empty] = txb;
10217 memset(tfd, 0, sizeof(*tfd));
10218 tfd->u.data.station_number = id;
10219
10220 tfd->control_flags.message_type = TX_FRAME_TYPE;
10221 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10222
10223 tfd->u.data.cmd_id = DINO_CMD_TX;
10224 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10225 remaining_bytes = txb->payload_size;
10226
10227 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10228 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10229 else
10230 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10231
10232 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10233 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10234
10235 fc = le16_to_cpu(hdr->frame_ctl);
10236 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10237
10238 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10239
10240 if (likely(unicast))
10241 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10242
10243 if (txb->encrypted && !priv->ieee->host_encrypt) {
10244 switch (priv->ieee->sec.level) {
10245 case SEC_LEVEL_3:
10246 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10247 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10248 /* XXX: ACK flag must be set for CCMP even if it
10249 * is a multicast/broadcast packet, because CCMP
10250 * group communication encrypted by GTK is
10251 * actually done by the AP. */
10252 if (!unicast)
10253 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10254
10255 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10256 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10257 tfd->u.data.key_index = 0;
10258 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10259 break;
10260 case SEC_LEVEL_2:
10261 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10262 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10263 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10264 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10265 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10266 break;
10267 case SEC_LEVEL_1:
10268 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10269 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10270 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10271 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10272 40)
10273 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10274 else
10275 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10276 break;
10277 case SEC_LEVEL_0:
10278 break;
10279 default:
10280 printk(KERN_ERR "Unknow security level %d\n",
10281 priv->ieee->sec.level);
10282 break;
10283 }
10284 } else
10285 /* No hardware encryption */
10286 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10287
10288 #ifdef CONFIG_IPW2200_QOS
10289 if (fc & IEEE80211_STYPE_QOS_DATA)
10290 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10291 #endif /* CONFIG_IPW2200_QOS */
10292
10293 /* payload */
10294 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10295 txb->nr_frags));
10296 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10297 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10298 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10299 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10300 i, le32_to_cpu(tfd->u.data.num_chunks),
10301 txb->fragments[i]->len - hdr_len);
10302 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10303 i, tfd->u.data.num_chunks,
10304 txb->fragments[i]->len - hdr_len);
10305 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10306 txb->fragments[i]->len - hdr_len);
10307
10308 tfd->u.data.chunk_ptr[i] =
10309 cpu_to_le32(pci_map_single
10310 (priv->pci_dev,
10311 txb->fragments[i]->data + hdr_len,
10312 txb->fragments[i]->len - hdr_len,
10313 PCI_DMA_TODEVICE));
10314 tfd->u.data.chunk_len[i] =
10315 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10316 }
10317
10318 if (i != txb->nr_frags) {
10319 struct sk_buff *skb;
10320 u16 remaining_bytes = 0;
10321 int j;
10322
10323 for (j = i; j < txb->nr_frags; j++)
10324 remaining_bytes += txb->fragments[j]->len - hdr_len;
10325
10326 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10327 remaining_bytes);
10328 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10329 if (skb != NULL) {
10330 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10331 for (j = i; j < txb->nr_frags; j++) {
10332 int size = txb->fragments[j]->len - hdr_len;
10333
10334 printk(KERN_INFO "Adding frag %d %d...\n",
10335 j, size);
10336 memcpy(skb_put(skb, size),
10337 txb->fragments[j]->data + hdr_len, size);
10338 }
10339 dev_kfree_skb_any(txb->fragments[i]);
10340 txb->fragments[i] = skb;
10341 tfd->u.data.chunk_ptr[i] =
10342 cpu_to_le32(pci_map_single
10343 (priv->pci_dev, skb->data,
10344 remaining_bytes,
10345 PCI_DMA_TODEVICE));
10346
10347 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10348 }
10349 }
10350
10351 /* kick DMA */
10352 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10353 ipw_write32(priv, q->reg_w, q->first_empty);
10354
10355 if (ipw_tx_queue_space(q) < q->high_mark)
10356 netif_stop_queue(priv->net_dev);
10357
10358 return NETDEV_TX_OK;
10359
10360 drop:
10361 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10362 ieee80211_txb_free(txb);
10363 return NETDEV_TX_OK;
10364 }
10365
10366 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10367 {
10368 struct ipw_priv *priv = ieee80211_priv(dev);
10369 #ifdef CONFIG_IPW2200_QOS
10370 int tx_id = ipw_get_tx_queue_number(priv, pri);
10371 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10372 #else
10373 struct clx2_tx_queue *txq = &priv->txq[0];
10374 #endif /* CONFIG_IPW2200_QOS */
10375
10376 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10377 return 1;
10378
10379 return 0;
10380 }
10381
10382 #ifdef CONFIG_IPW2200_PROMISCUOUS
10383 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10384 struct ieee80211_txb *txb)
10385 {
10386 struct ieee80211_rx_stats dummystats;
10387 struct ieee80211_hdr *hdr;
10388 u8 n;
10389 u16 filter = priv->prom_priv->filter;
10390 int hdr_only = 0;
10391
10392 if (filter & IPW_PROM_NO_TX)
10393 return;
10394
10395 memset(&dummystats, 0, sizeof(dummystats));
10396
10397 /* Filtering of fragment chains is done agains the first fragment */
10398 hdr = (void *)txb->fragments[0]->data;
10399 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10400 if (filter & IPW_PROM_NO_MGMT)
10401 return;
10402 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10403 hdr_only = 1;
10404 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10405 if (filter & IPW_PROM_NO_CTL)
10406 return;
10407 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10408 hdr_only = 1;
10409 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10410 if (filter & IPW_PROM_NO_DATA)
10411 return;
10412 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10413 hdr_only = 1;
10414 }
10415
10416 for(n=0; n<txb->nr_frags; ++n) {
10417 struct sk_buff *src = txb->fragments[n];
10418 struct sk_buff *dst;
10419 struct ieee80211_radiotap_header *rt_hdr;
10420 int len;
10421
10422 if (hdr_only) {
10423 hdr = (void *)src->data;
10424 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10425 } else
10426 len = src->len;
10427
10428 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10429 if (!dst)
10430 continue;
10431
10432 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10433
10434 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10435 rt_hdr->it_pad = 0;
10436 rt_hdr->it_present = 0; /* after all, it's just an idea */
10437 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10438
10439 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10440 ieee80211chan2mhz(priv->channel));
10441 if (priv->channel > 14) /* 802.11a */
10442 *(__le16*)skb_put(dst, sizeof(u16)) =
10443 cpu_to_le16(IEEE80211_CHAN_OFDM |
10444 IEEE80211_CHAN_5GHZ);
10445 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10446 *(__le16*)skb_put(dst, sizeof(u16)) =
10447 cpu_to_le16(IEEE80211_CHAN_CCK |
10448 IEEE80211_CHAN_2GHZ);
10449 else /* 802.11g */
10450 *(__le16*)skb_put(dst, sizeof(u16)) =
10451 cpu_to_le16(IEEE80211_CHAN_OFDM |
10452 IEEE80211_CHAN_2GHZ);
10453
10454 rt_hdr->it_len = cpu_to_le16(dst->len);
10455
10456 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10457
10458 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10459 dev_kfree_skb_any(dst);
10460 }
10461 }
10462 #endif
10463
10464 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10465 struct net_device *dev, int pri)
10466 {
10467 struct ipw_priv *priv = ieee80211_priv(dev);
10468 unsigned long flags;
10469 int ret;
10470
10471 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10472 spin_lock_irqsave(&priv->lock, flags);
10473
10474 #ifdef CONFIG_IPW2200_PROMISCUOUS
10475 if (rtap_iface && netif_running(priv->prom_net_dev))
10476 ipw_handle_promiscuous_tx(priv, txb);
10477 #endif
10478
10479 ret = ipw_tx_skb(priv, txb, pri);
10480 if (ret == NETDEV_TX_OK)
10481 __ipw_led_activity_on(priv);
10482 spin_unlock_irqrestore(&priv->lock, flags);
10483
10484 return ret;
10485 }
10486
10487 static void ipw_net_set_multicast_list(struct net_device *dev)
10488 {
10489
10490 }
10491
10492 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10493 {
10494 struct ipw_priv *priv = ieee80211_priv(dev);
10495 struct sockaddr *addr = p;
10496
10497 if (!is_valid_ether_addr(addr->sa_data))
10498 return -EADDRNOTAVAIL;
10499 mutex_lock(&priv->mutex);
10500 priv->config |= CFG_CUSTOM_MAC;
10501 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10502 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10503 priv->net_dev->name, priv->mac_addr);
10504 queue_work(priv->workqueue, &priv->adapter_restart);
10505 mutex_unlock(&priv->mutex);
10506 return 0;
10507 }
10508
10509 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10510 struct ethtool_drvinfo *info)
10511 {
10512 struct ipw_priv *p = ieee80211_priv(dev);
10513 char vers[64];
10514 char date[32];
10515 u32 len;
10516
10517 strcpy(info->driver, DRV_NAME);
10518 strcpy(info->version, DRV_VERSION);
10519
10520 len = sizeof(vers);
10521 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10522 len = sizeof(date);
10523 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10524
10525 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10526 vers, date);
10527 strcpy(info->bus_info, pci_name(p->pci_dev));
10528 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10529 }
10530
10531 static u32 ipw_ethtool_get_link(struct net_device *dev)
10532 {
10533 struct ipw_priv *priv = ieee80211_priv(dev);
10534 return (priv->status & STATUS_ASSOCIATED) != 0;
10535 }
10536
10537 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10538 {
10539 return IPW_EEPROM_IMAGE_SIZE;
10540 }
10541
10542 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10543 struct ethtool_eeprom *eeprom, u8 * bytes)
10544 {
10545 struct ipw_priv *p = ieee80211_priv(dev);
10546
10547 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10548 return -EINVAL;
10549 mutex_lock(&p->mutex);
10550 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10551 mutex_unlock(&p->mutex);
10552 return 0;
10553 }
10554
10555 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10556 struct ethtool_eeprom *eeprom, u8 * bytes)
10557 {
10558 struct ipw_priv *p = ieee80211_priv(dev);
10559 int i;
10560
10561 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10562 return -EINVAL;
10563 mutex_lock(&p->mutex);
10564 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10565 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10566 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10567 mutex_unlock(&p->mutex);
10568 return 0;
10569 }
10570
10571 static const struct ethtool_ops ipw_ethtool_ops = {
10572 .get_link = ipw_ethtool_get_link,
10573 .get_drvinfo = ipw_ethtool_get_drvinfo,
10574 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10575 .get_eeprom = ipw_ethtool_get_eeprom,
10576 .set_eeprom = ipw_ethtool_set_eeprom,
10577 };
10578
10579 static irqreturn_t ipw_isr(int irq, void *data)
10580 {
10581 struct ipw_priv *priv = data;
10582 u32 inta, inta_mask;
10583
10584 if (!priv)
10585 return IRQ_NONE;
10586
10587 spin_lock(&priv->irq_lock);
10588
10589 if (!(priv->status & STATUS_INT_ENABLED)) {
10590 /* IRQ is disabled */
10591 goto none;
10592 }
10593
10594 inta = ipw_read32(priv, IPW_INTA_RW);
10595 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10596
10597 if (inta == 0xFFFFFFFF) {
10598 /* Hardware disappeared */
10599 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10600 goto none;
10601 }
10602
10603 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10604 /* Shared interrupt */
10605 goto none;
10606 }
10607
10608 /* tell the device to stop sending interrupts */
10609 __ipw_disable_interrupts(priv);
10610
10611 /* ack current interrupts */
10612 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10613 ipw_write32(priv, IPW_INTA_RW, inta);
10614
10615 /* Cache INTA value for our tasklet */
10616 priv->isr_inta = inta;
10617
10618 tasklet_schedule(&priv->irq_tasklet);
10619
10620 spin_unlock(&priv->irq_lock);
10621
10622 return IRQ_HANDLED;
10623 none:
10624 spin_unlock(&priv->irq_lock);
10625 return IRQ_NONE;
10626 }
10627
10628 static void ipw_rf_kill(void *adapter)
10629 {
10630 struct ipw_priv *priv = adapter;
10631 unsigned long flags;
10632
10633 spin_lock_irqsave(&priv->lock, flags);
10634
10635 if (rf_kill_active(priv)) {
10636 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10637 if (priv->workqueue)
10638 queue_delayed_work(priv->workqueue,
10639 &priv->rf_kill, 2 * HZ);
10640 goto exit_unlock;
10641 }
10642
10643 /* RF Kill is now disabled, so bring the device back up */
10644
10645 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10646 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10647 "device\n");
10648
10649 /* we can not do an adapter restart while inside an irq lock */
10650 queue_work(priv->workqueue, &priv->adapter_restart);
10651 } else
10652 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10653 "enabled\n");
10654
10655 exit_unlock:
10656 spin_unlock_irqrestore(&priv->lock, flags);
10657 }
10658
10659 static void ipw_bg_rf_kill(struct work_struct *work)
10660 {
10661 struct ipw_priv *priv =
10662 container_of(work, struct ipw_priv, rf_kill.work);
10663 mutex_lock(&priv->mutex);
10664 ipw_rf_kill(priv);
10665 mutex_unlock(&priv->mutex);
10666 }
10667
10668 static void ipw_link_up(struct ipw_priv *priv)
10669 {
10670 priv->last_seq_num = -1;
10671 priv->last_frag_num = -1;
10672 priv->last_packet_time = 0;
10673
10674 netif_carrier_on(priv->net_dev);
10675
10676 cancel_delayed_work(&priv->request_scan);
10677 cancel_delayed_work(&priv->request_direct_scan);
10678 cancel_delayed_work(&priv->request_passive_scan);
10679 cancel_delayed_work(&priv->scan_event);
10680 ipw_reset_stats(priv);
10681 /* Ensure the rate is updated immediately */
10682 priv->last_rate = ipw_get_current_rate(priv);
10683 ipw_gather_stats(priv);
10684 ipw_led_link_up(priv);
10685 notify_wx_assoc_event(priv);
10686
10687 if (priv->config & CFG_BACKGROUND_SCAN)
10688 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10689 }
10690
10691 static void ipw_bg_link_up(struct work_struct *work)
10692 {
10693 struct ipw_priv *priv =
10694 container_of(work, struct ipw_priv, link_up);
10695 mutex_lock(&priv->mutex);
10696 ipw_link_up(priv);
10697 mutex_unlock(&priv->mutex);
10698 }
10699
10700 static void ipw_link_down(struct ipw_priv *priv)
10701 {
10702 ipw_led_link_down(priv);
10703 netif_carrier_off(priv->net_dev);
10704 notify_wx_assoc_event(priv);
10705
10706 /* Cancel any queued work ... */
10707 cancel_delayed_work(&priv->request_scan);
10708 cancel_delayed_work(&priv->request_direct_scan);
10709 cancel_delayed_work(&priv->request_passive_scan);
10710 cancel_delayed_work(&priv->adhoc_check);
10711 cancel_delayed_work(&priv->gather_stats);
10712
10713 ipw_reset_stats(priv);
10714
10715 if (!(priv->status & STATUS_EXIT_PENDING)) {
10716 /* Queue up another scan... */
10717 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10718 } else
10719 cancel_delayed_work(&priv->scan_event);
10720 }
10721
10722 static void ipw_bg_link_down(struct work_struct *work)
10723 {
10724 struct ipw_priv *priv =
10725 container_of(work, struct ipw_priv, link_down);
10726 mutex_lock(&priv->mutex);
10727 ipw_link_down(priv);
10728 mutex_unlock(&priv->mutex);
10729 }
10730
10731 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10732 {
10733 int ret = 0;
10734
10735 priv->workqueue = create_workqueue(DRV_NAME);
10736 init_waitqueue_head(&priv->wait_command_queue);
10737 init_waitqueue_head(&priv->wait_state);
10738
10739 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10740 INIT_WORK(&priv->associate, ipw_bg_associate);
10741 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10742 INIT_WORK(&priv->system_config, ipw_system_config);
10743 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10744 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10745 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10746 INIT_WORK(&priv->up, ipw_bg_up);
10747 INIT_WORK(&priv->down, ipw_bg_down);
10748 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10749 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10750 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10751 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10752 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10753 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10754 INIT_WORK(&priv->roam, ipw_bg_roam);
10755 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10756 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10757 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10758 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10759 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10760 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10761 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10762
10763 #ifdef CONFIG_IPW2200_QOS
10764 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10765 #endif /* CONFIG_IPW2200_QOS */
10766
10767 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10768 ipw_irq_tasklet, (unsigned long)priv);
10769
10770 return ret;
10771 }
10772
10773 static void shim__set_security(struct net_device *dev,
10774 struct ieee80211_security *sec)
10775 {
10776 struct ipw_priv *priv = ieee80211_priv(dev);
10777 int i;
10778 for (i = 0; i < 4; i++) {
10779 if (sec->flags & (1 << i)) {
10780 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10781 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10782 if (sec->key_sizes[i] == 0)
10783 priv->ieee->sec.flags &= ~(1 << i);
10784 else {
10785 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10786 sec->key_sizes[i]);
10787 priv->ieee->sec.flags |= (1 << i);
10788 }
10789 priv->status |= STATUS_SECURITY_UPDATED;
10790 } else if (sec->level != SEC_LEVEL_1)
10791 priv->ieee->sec.flags &= ~(1 << i);
10792 }
10793
10794 if (sec->flags & SEC_ACTIVE_KEY) {
10795 if (sec->active_key <= 3) {
10796 priv->ieee->sec.active_key = sec->active_key;
10797 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10798 } else
10799 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10800 priv->status |= STATUS_SECURITY_UPDATED;
10801 } else
10802 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10803
10804 if ((sec->flags & SEC_AUTH_MODE) &&
10805 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10806 priv->ieee->sec.auth_mode = sec->auth_mode;
10807 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10808 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10809 priv->capability |= CAP_SHARED_KEY;
10810 else
10811 priv->capability &= ~CAP_SHARED_KEY;
10812 priv->status |= STATUS_SECURITY_UPDATED;
10813 }
10814
10815 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10816 priv->ieee->sec.flags |= SEC_ENABLED;
10817 priv->ieee->sec.enabled = sec->enabled;
10818 priv->status |= STATUS_SECURITY_UPDATED;
10819 if (sec->enabled)
10820 priv->capability |= CAP_PRIVACY_ON;
10821 else
10822 priv->capability &= ~CAP_PRIVACY_ON;
10823 }
10824
10825 if (sec->flags & SEC_ENCRYPT)
10826 priv->ieee->sec.encrypt = sec->encrypt;
10827
10828 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10829 priv->ieee->sec.level = sec->level;
10830 priv->ieee->sec.flags |= SEC_LEVEL;
10831 priv->status |= STATUS_SECURITY_UPDATED;
10832 }
10833
10834 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10835 ipw_set_hwcrypto_keys(priv);
10836
10837 /* To match current functionality of ipw2100 (which works well w/
10838 * various supplicants, we don't force a disassociate if the
10839 * privacy capability changes ... */
10840 #if 0
10841 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10842 (((priv->assoc_request.capability &
10843 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10844 (!(priv->assoc_request.capability &
10845 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10846 IPW_DEBUG_ASSOC("Disassociating due to capability "
10847 "change.\n");
10848 ipw_disassociate(priv);
10849 }
10850 #endif
10851 }
10852
10853 static int init_supported_rates(struct ipw_priv *priv,
10854 struct ipw_supported_rates *rates)
10855 {
10856 /* TODO: Mask out rates based on priv->rates_mask */
10857
10858 memset(rates, 0, sizeof(*rates));
10859 /* configure supported rates */
10860 switch (priv->ieee->freq_band) {
10861 case IEEE80211_52GHZ_BAND:
10862 rates->ieee_mode = IPW_A_MODE;
10863 rates->purpose = IPW_RATE_CAPABILITIES;
10864 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10865 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10866 break;
10867
10868 default: /* Mixed or 2.4Ghz */
10869 rates->ieee_mode = IPW_G_MODE;
10870 rates->purpose = IPW_RATE_CAPABILITIES;
10871 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10872 IEEE80211_CCK_DEFAULT_RATES_MASK);
10873 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10874 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10876 }
10877 break;
10878 }
10879
10880 return 0;
10881 }
10882
10883 static int ipw_config(struct ipw_priv *priv)
10884 {
10885 /* This is only called from ipw_up, which resets/reloads the firmware
10886 so, we don't need to first disable the card before we configure
10887 it */
10888 if (ipw_set_tx_power(priv))
10889 goto error;
10890
10891 /* initialize adapter address */
10892 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10893 goto error;
10894
10895 /* set basic system config settings */
10896 init_sys_config(&priv->sys_config);
10897
10898 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10899 * Does not support BT priority yet (don't abort or defer our Tx) */
10900 if (bt_coexist) {
10901 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10902
10903 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10904 priv->sys_config.bt_coexistence
10905 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10906 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10907 priv->sys_config.bt_coexistence
10908 |= CFG_BT_COEXISTENCE_OOB;
10909 }
10910
10911 #ifdef CONFIG_IPW2200_PROMISCUOUS
10912 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10913 priv->sys_config.accept_all_data_frames = 1;
10914 priv->sys_config.accept_non_directed_frames = 1;
10915 priv->sys_config.accept_all_mgmt_bcpr = 1;
10916 priv->sys_config.accept_all_mgmt_frames = 1;
10917 }
10918 #endif
10919
10920 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10921 priv->sys_config.answer_broadcast_ssid_probe = 1;
10922 else
10923 priv->sys_config.answer_broadcast_ssid_probe = 0;
10924
10925 if (ipw_send_system_config(priv))
10926 goto error;
10927
10928 init_supported_rates(priv, &priv->rates);
10929 if (ipw_send_supported_rates(priv, &priv->rates))
10930 goto error;
10931
10932 /* Set request-to-send threshold */
10933 if (priv->rts_threshold) {
10934 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10935 goto error;
10936 }
10937 #ifdef CONFIG_IPW2200_QOS
10938 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10939 ipw_qos_activate(priv, NULL);
10940 #endif /* CONFIG_IPW2200_QOS */
10941
10942 if (ipw_set_random_seed(priv))
10943 goto error;
10944
10945 /* final state transition to the RUN state */
10946 if (ipw_send_host_complete(priv))
10947 goto error;
10948
10949 priv->status |= STATUS_INIT;
10950
10951 ipw_led_init(priv);
10952 ipw_led_radio_on(priv);
10953 priv->notif_missed_beacons = 0;
10954
10955 /* Set hardware WEP key if it is configured. */
10956 if ((priv->capability & CAP_PRIVACY_ON) &&
10957 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10958 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10959 ipw_set_hwcrypto_keys(priv);
10960
10961 return 0;
10962
10963 error:
10964 return -EIO;
10965 }
10966
10967 /*
10968 * NOTE:
10969 *
10970 * These tables have been tested in conjunction with the
10971 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10972 *
10973 * Altering this values, using it on other hardware, or in geographies
10974 * not intended for resale of the above mentioned Intel adapters has
10975 * not been tested.
10976 *
10977 * Remember to update the table in README.ipw2200 when changing this
10978 * table.
10979 *
10980 */
10981 static const struct ieee80211_geo ipw_geos[] = {
10982 { /* Restricted */
10983 "---",
10984 .bg_channels = 11,
10985 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10986 {2427, 4}, {2432, 5}, {2437, 6},
10987 {2442, 7}, {2447, 8}, {2452, 9},
10988 {2457, 10}, {2462, 11}},
10989 },
10990
10991 { /* Custom US/Canada */
10992 "ZZF",
10993 .bg_channels = 11,
10994 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995 {2427, 4}, {2432, 5}, {2437, 6},
10996 {2442, 7}, {2447, 8}, {2452, 9},
10997 {2457, 10}, {2462, 11}},
10998 .a_channels = 8,
10999 .a = {{5180, 36},
11000 {5200, 40},
11001 {5220, 44},
11002 {5240, 48},
11003 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11004 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11005 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11006 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11007 },
11008
11009 { /* Rest of World */
11010 "ZZD",
11011 .bg_channels = 13,
11012 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013 {2427, 4}, {2432, 5}, {2437, 6},
11014 {2442, 7}, {2447, 8}, {2452, 9},
11015 {2457, 10}, {2462, 11}, {2467, 12},
11016 {2472, 13}},
11017 },
11018
11019 { /* Custom USA & Europe & High */
11020 "ZZA",
11021 .bg_channels = 11,
11022 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023 {2427, 4}, {2432, 5}, {2437, 6},
11024 {2442, 7}, {2447, 8}, {2452, 9},
11025 {2457, 10}, {2462, 11}},
11026 .a_channels = 13,
11027 .a = {{5180, 36},
11028 {5200, 40},
11029 {5220, 44},
11030 {5240, 48},
11031 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11032 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11033 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11034 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11035 {5745, 149},
11036 {5765, 153},
11037 {5785, 157},
11038 {5805, 161},
11039 {5825, 165}},
11040 },
11041
11042 { /* Custom NA & Europe */
11043 "ZZB",
11044 .bg_channels = 11,
11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 {2427, 4}, {2432, 5}, {2437, 6},
11047 {2442, 7}, {2447, 8}, {2452, 9},
11048 {2457, 10}, {2462, 11}},
11049 .a_channels = 13,
11050 .a = {{5180, 36},
11051 {5200, 40},
11052 {5220, 44},
11053 {5240, 48},
11054 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11055 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11056 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11057 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11058 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11059 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11060 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11061 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11062 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11063 },
11064
11065 { /* Custom Japan */
11066 "ZZC",
11067 .bg_channels = 11,
11068 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11069 {2427, 4}, {2432, 5}, {2437, 6},
11070 {2442, 7}, {2447, 8}, {2452, 9},
11071 {2457, 10}, {2462, 11}},
11072 .a_channels = 4,
11073 .a = {{5170, 34}, {5190, 38},
11074 {5210, 42}, {5230, 46}},
11075 },
11076
11077 { /* Custom */
11078 "ZZM",
11079 .bg_channels = 11,
11080 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081 {2427, 4}, {2432, 5}, {2437, 6},
11082 {2442, 7}, {2447, 8}, {2452, 9},
11083 {2457, 10}, {2462, 11}},
11084 },
11085
11086 { /* Europe */
11087 "ZZE",
11088 .bg_channels = 13,
11089 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 {2427, 4}, {2432, 5}, {2437, 6},
11091 {2442, 7}, {2447, 8}, {2452, 9},
11092 {2457, 10}, {2462, 11}, {2467, 12},
11093 {2472, 13}},
11094 .a_channels = 19,
11095 .a = {{5180, 36},
11096 {5200, 40},
11097 {5220, 44},
11098 {5240, 48},
11099 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11100 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11101 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11102 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11103 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11104 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11105 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11106 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11107 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11108 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11109 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11110 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11111 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11112 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11113 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11114 },
11115
11116 { /* Custom Japan */
11117 "ZZJ",
11118 .bg_channels = 14,
11119 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11120 {2427, 4}, {2432, 5}, {2437, 6},
11121 {2442, 7}, {2447, 8}, {2452, 9},
11122 {2457, 10}, {2462, 11}, {2467, 12},
11123 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11124 .a_channels = 4,
11125 .a = {{5170, 34}, {5190, 38},
11126 {5210, 42}, {5230, 46}},
11127 },
11128
11129 { /* Rest of World */
11130 "ZZR",
11131 .bg_channels = 14,
11132 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133 {2427, 4}, {2432, 5}, {2437, 6},
11134 {2442, 7}, {2447, 8}, {2452, 9},
11135 {2457, 10}, {2462, 11}, {2467, 12},
11136 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11137 IEEE80211_CH_PASSIVE_ONLY}},
11138 },
11139
11140 { /* High Band */
11141 "ZZH",
11142 .bg_channels = 13,
11143 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11144 {2427, 4}, {2432, 5}, {2437, 6},
11145 {2442, 7}, {2447, 8}, {2452, 9},
11146 {2457, 10}, {2462, 11},
11147 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11148 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11149 .a_channels = 4,
11150 .a = {{5745, 149}, {5765, 153},
11151 {5785, 157}, {5805, 161}},
11152 },
11153
11154 { /* Custom Europe */
11155 "ZZG",
11156 .bg_channels = 13,
11157 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158 {2427, 4}, {2432, 5}, {2437, 6},
11159 {2442, 7}, {2447, 8}, {2452, 9},
11160 {2457, 10}, {2462, 11},
11161 {2467, 12}, {2472, 13}},
11162 .a_channels = 4,
11163 .a = {{5180, 36}, {5200, 40},
11164 {5220, 44}, {5240, 48}},
11165 },
11166
11167 { /* Europe */
11168 "ZZK",
11169 .bg_channels = 13,
11170 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171 {2427, 4}, {2432, 5}, {2437, 6},
11172 {2442, 7}, {2447, 8}, {2452, 9},
11173 {2457, 10}, {2462, 11},
11174 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11175 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11176 .a_channels = 24,
11177 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11178 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11179 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11180 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11181 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11182 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11183 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11184 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11185 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11186 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11187 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11188 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11189 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11190 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11191 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11192 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11193 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11194 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11195 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11196 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11197 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11198 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11199 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11200 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11201 },
11202
11203 { /* Europe */
11204 "ZZL",
11205 .bg_channels = 11,
11206 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11207 {2427, 4}, {2432, 5}, {2437, 6},
11208 {2442, 7}, {2447, 8}, {2452, 9},
11209 {2457, 10}, {2462, 11}},
11210 .a_channels = 13,
11211 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11212 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11213 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11214 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11215 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11216 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11217 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11218 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11219 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11220 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11221 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11222 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11223 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11224 }
11225 };
11226
11227 #define MAX_HW_RESTARTS 5
11228 static int ipw_up(struct ipw_priv *priv)
11229 {
11230 int rc, i, j;
11231
11232 /* Age scan list entries found before suspend */
11233 if (priv->suspend_time) {
11234 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11235 priv->suspend_time = 0;
11236 }
11237
11238 if (priv->status & STATUS_EXIT_PENDING)
11239 return -EIO;
11240
11241 if (cmdlog && !priv->cmdlog) {
11242 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11243 GFP_KERNEL);
11244 if (priv->cmdlog == NULL) {
11245 IPW_ERROR("Error allocating %d command log entries.\n",
11246 cmdlog);
11247 return -ENOMEM;
11248 } else {
11249 priv->cmdlog_len = cmdlog;
11250 }
11251 }
11252
11253 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11254 /* Load the microcode, firmware, and eeprom.
11255 * Also start the clocks. */
11256 rc = ipw_load(priv);
11257 if (rc) {
11258 IPW_ERROR("Unable to load firmware: %d\n", rc);
11259 return rc;
11260 }
11261
11262 ipw_init_ordinals(priv);
11263 if (!(priv->config & CFG_CUSTOM_MAC))
11264 eeprom_parse_mac(priv, priv->mac_addr);
11265 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11266
11267 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11268 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11269 ipw_geos[j].name, 3))
11270 break;
11271 }
11272 if (j == ARRAY_SIZE(ipw_geos)) {
11273 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11274 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11275 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11276 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11277 j = 0;
11278 }
11279 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11280 IPW_WARNING("Could not set geography.");
11281 return 0;
11282 }
11283
11284 if (priv->status & STATUS_RF_KILL_SW) {
11285 IPW_WARNING("Radio disabled by module parameter.\n");
11286 return 0;
11287 } else if (rf_kill_active(priv)) {
11288 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11289 "Kill switch must be turned off for "
11290 "wireless networking to work.\n");
11291 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11292 2 * HZ);
11293 return 0;
11294 }
11295
11296 rc = ipw_config(priv);
11297 if (!rc) {
11298 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11299
11300 /* If configure to try and auto-associate, kick
11301 * off a scan. */
11302 queue_delayed_work(priv->workqueue,
11303 &priv->request_scan, 0);
11304
11305 return 0;
11306 }
11307
11308 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11309 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11310 i, MAX_HW_RESTARTS);
11311
11312 /* We had an error bringing up the hardware, so take it
11313 * all the way back down so we can try again */
11314 ipw_down(priv);
11315 }
11316
11317 /* tried to restart and config the device for as long as our
11318 * patience could withstand */
11319 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11320
11321 return -EIO;
11322 }
11323
11324 static void ipw_bg_up(struct work_struct *work)
11325 {
11326 struct ipw_priv *priv =
11327 container_of(work, struct ipw_priv, up);
11328 mutex_lock(&priv->mutex);
11329 ipw_up(priv);
11330 mutex_unlock(&priv->mutex);
11331 }
11332
11333 static void ipw_deinit(struct ipw_priv *priv)
11334 {
11335 int i;
11336
11337 if (priv->status & STATUS_SCANNING) {
11338 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11339 ipw_abort_scan(priv);
11340 }
11341
11342 if (priv->status & STATUS_ASSOCIATED) {
11343 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11344 ipw_disassociate(priv);
11345 }
11346
11347 ipw_led_shutdown(priv);
11348
11349 /* Wait up to 1s for status to change to not scanning and not
11350 * associated (disassociation can take a while for a ful 802.11
11351 * exchange */
11352 for (i = 1000; i && (priv->status &
11353 (STATUS_DISASSOCIATING |
11354 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11355 udelay(10);
11356
11357 if (priv->status & (STATUS_DISASSOCIATING |
11358 STATUS_ASSOCIATED | STATUS_SCANNING))
11359 IPW_DEBUG_INFO("Still associated or scanning...\n");
11360 else
11361 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11362
11363 /* Attempt to disable the card */
11364 ipw_send_card_disable(priv, 0);
11365
11366 priv->status &= ~STATUS_INIT;
11367 }
11368
11369 static void ipw_down(struct ipw_priv *priv)
11370 {
11371 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11372
11373 priv->status |= STATUS_EXIT_PENDING;
11374
11375 if (ipw_is_init(priv))
11376 ipw_deinit(priv);
11377
11378 /* Wipe out the EXIT_PENDING status bit if we are not actually
11379 * exiting the module */
11380 if (!exit_pending)
11381 priv->status &= ~STATUS_EXIT_PENDING;
11382
11383 /* tell the device to stop sending interrupts */
11384 ipw_disable_interrupts(priv);
11385
11386 /* Clear all bits but the RF Kill */
11387 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11388 netif_carrier_off(priv->net_dev);
11389
11390 ipw_stop_nic(priv);
11391
11392 ipw_led_radio_off(priv);
11393 }
11394
11395 static void ipw_bg_down(struct work_struct *work)
11396 {
11397 struct ipw_priv *priv =
11398 container_of(work, struct ipw_priv, down);
11399 mutex_lock(&priv->mutex);
11400 ipw_down(priv);
11401 mutex_unlock(&priv->mutex);
11402 }
11403
11404 /* Called by register_netdev() */
11405 static int ipw_net_init(struct net_device *dev)
11406 {
11407 struct ipw_priv *priv = ieee80211_priv(dev);
11408 mutex_lock(&priv->mutex);
11409
11410 if (ipw_up(priv)) {
11411 mutex_unlock(&priv->mutex);
11412 return -EIO;
11413 }
11414
11415 mutex_unlock(&priv->mutex);
11416 return 0;
11417 }
11418
11419 /* PCI driver stuff */
11420 static struct pci_device_id card_ids[] = {
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11440 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11441 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11442 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11443
11444 /* required last entry */
11445 {0,}
11446 };
11447
11448 MODULE_DEVICE_TABLE(pci, card_ids);
11449
11450 static struct attribute *ipw_sysfs_entries[] = {
11451 &dev_attr_rf_kill.attr,
11452 &dev_attr_direct_dword.attr,
11453 &dev_attr_indirect_byte.attr,
11454 &dev_attr_indirect_dword.attr,
11455 &dev_attr_mem_gpio_reg.attr,
11456 &dev_attr_command_event_reg.attr,
11457 &dev_attr_nic_type.attr,
11458 &dev_attr_status.attr,
11459 &dev_attr_cfg.attr,
11460 &dev_attr_error.attr,
11461 &dev_attr_event_log.attr,
11462 &dev_attr_cmd_log.attr,
11463 &dev_attr_eeprom_delay.attr,
11464 &dev_attr_ucode_version.attr,
11465 &dev_attr_rtc.attr,
11466 &dev_attr_scan_age.attr,
11467 &dev_attr_led.attr,
11468 &dev_attr_speed_scan.attr,
11469 &dev_attr_net_stats.attr,
11470 &dev_attr_channels.attr,
11471 #ifdef CONFIG_IPW2200_PROMISCUOUS
11472 &dev_attr_rtap_iface.attr,
11473 &dev_attr_rtap_filter.attr,
11474 #endif
11475 NULL
11476 };
11477
11478 static struct attribute_group ipw_attribute_group = {
11479 .name = NULL, /* put in device directory */
11480 .attrs = ipw_sysfs_entries,
11481 };
11482
11483 #ifdef CONFIG_IPW2200_PROMISCUOUS
11484 static int ipw_prom_open(struct net_device *dev)
11485 {
11486 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11487 struct ipw_priv *priv = prom_priv->priv;
11488
11489 IPW_DEBUG_INFO("prom dev->open\n");
11490 netif_carrier_off(dev);
11491
11492 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11493 priv->sys_config.accept_all_data_frames = 1;
11494 priv->sys_config.accept_non_directed_frames = 1;
11495 priv->sys_config.accept_all_mgmt_bcpr = 1;
11496 priv->sys_config.accept_all_mgmt_frames = 1;
11497
11498 ipw_send_system_config(priv);
11499 }
11500
11501 return 0;
11502 }
11503
11504 static int ipw_prom_stop(struct net_device *dev)
11505 {
11506 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11507 struct ipw_priv *priv = prom_priv->priv;
11508
11509 IPW_DEBUG_INFO("prom dev->stop\n");
11510
11511 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512 priv->sys_config.accept_all_data_frames = 0;
11513 priv->sys_config.accept_non_directed_frames = 0;
11514 priv->sys_config.accept_all_mgmt_bcpr = 0;
11515 priv->sys_config.accept_all_mgmt_frames = 0;
11516
11517 ipw_send_system_config(priv);
11518 }
11519
11520 return 0;
11521 }
11522
11523 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11524 {
11525 IPW_DEBUG_INFO("prom dev->xmit\n");
11526 return -EOPNOTSUPP;
11527 }
11528
11529 static const struct net_device_ops ipw_prom_netdev_ops = {
11530 .ndo_open = ipw_prom_open,
11531 .ndo_stop = ipw_prom_stop,
11532 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11533 .ndo_change_mtu = ieee80211_change_mtu,
11534 .ndo_set_mac_address = eth_mac_addr,
11535 .ndo_validate_addr = eth_validate_addr,
11536 };
11537
11538 static int ipw_prom_alloc(struct ipw_priv *priv)
11539 {
11540 int rc = 0;
11541
11542 if (priv->prom_net_dev)
11543 return -EPERM;
11544
11545 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11546 if (priv->prom_net_dev == NULL)
11547 return -ENOMEM;
11548
11549 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11550 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11551 priv->prom_priv->priv = priv;
11552
11553 strcpy(priv->prom_net_dev->name, "rtap%d");
11554 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11555
11556 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11557 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11558
11559 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11560 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11561
11562 rc = register_netdev(priv->prom_net_dev);
11563 if (rc) {
11564 free_ieee80211(priv->prom_net_dev);
11565 priv->prom_net_dev = NULL;
11566 return rc;
11567 }
11568
11569 return 0;
11570 }
11571
11572 static void ipw_prom_free(struct ipw_priv *priv)
11573 {
11574 if (!priv->prom_net_dev)
11575 return;
11576
11577 unregister_netdev(priv->prom_net_dev);
11578 free_ieee80211(priv->prom_net_dev);
11579
11580 priv->prom_net_dev = NULL;
11581 }
11582
11583 #endif
11584
11585 static const struct net_device_ops ipw_netdev_ops = {
11586 .ndo_init = ipw_net_init,
11587 .ndo_open = ipw_net_open,
11588 .ndo_stop = ipw_net_stop,
11589 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11590 .ndo_set_mac_address = ipw_net_set_mac_address,
11591 .ndo_start_xmit = ieee80211_xmit,
11592 .ndo_change_mtu = ieee80211_change_mtu,
11593 .ndo_validate_addr = eth_validate_addr,
11594 };
11595
11596 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11597 const struct pci_device_id *ent)
11598 {
11599 int err = 0;
11600 struct net_device *net_dev;
11601 void __iomem *base;
11602 u32 length, val;
11603 struct ipw_priv *priv;
11604 int i;
11605
11606 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11607 if (net_dev == NULL) {
11608 err = -ENOMEM;
11609 goto out;
11610 }
11611
11612 priv = ieee80211_priv(net_dev);
11613 priv->ieee = netdev_priv(net_dev);
11614
11615 priv->net_dev = net_dev;
11616 priv->pci_dev = pdev;
11617 ipw_debug_level = debug;
11618 spin_lock_init(&priv->irq_lock);
11619 spin_lock_init(&priv->lock);
11620 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11621 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11622
11623 mutex_init(&priv->mutex);
11624 if (pci_enable_device(pdev)) {
11625 err = -ENODEV;
11626 goto out_free_ieee80211;
11627 }
11628
11629 pci_set_master(pdev);
11630
11631 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11632 if (!err)
11633 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11634 if (err) {
11635 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11636 goto out_pci_disable_device;
11637 }
11638
11639 pci_set_drvdata(pdev, priv);
11640
11641 err = pci_request_regions(pdev, DRV_NAME);
11642 if (err)
11643 goto out_pci_disable_device;
11644
11645 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11646 * PCI Tx retries from interfering with C3 CPU state */
11647 pci_read_config_dword(pdev, 0x40, &val);
11648 if ((val & 0x0000ff00) != 0)
11649 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11650
11651 length = pci_resource_len(pdev, 0);
11652 priv->hw_len = length;
11653
11654 base = pci_ioremap_bar(pdev, 0);
11655 if (!base) {
11656 err = -ENODEV;
11657 goto out_pci_release_regions;
11658 }
11659
11660 priv->hw_base = base;
11661 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11662 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11663
11664 err = ipw_setup_deferred_work(priv);
11665 if (err) {
11666 IPW_ERROR("Unable to setup deferred work\n");
11667 goto out_iounmap;
11668 }
11669
11670 ipw_sw_reset(priv, 1);
11671
11672 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11673 if (err) {
11674 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11675 goto out_destroy_workqueue;
11676 }
11677
11678 SET_NETDEV_DEV(net_dev, &pdev->dev);
11679
11680 mutex_lock(&priv->mutex);
11681
11682 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11683 priv->ieee->set_security = shim__set_security;
11684 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11685
11686 #ifdef CONFIG_IPW2200_QOS
11687 priv->ieee->is_qos_active = ipw_is_qos_active;
11688 priv->ieee->handle_probe_response = ipw_handle_beacon;
11689 priv->ieee->handle_beacon = ipw_handle_probe_response;
11690 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11691 #endif /* CONFIG_IPW2200_QOS */
11692
11693 priv->ieee->perfect_rssi = -20;
11694 priv->ieee->worst_rssi = -85;
11695
11696 net_dev->netdev_ops = &ipw_netdev_ops;
11697 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11698 net_dev->wireless_data = &priv->wireless_data;
11699 net_dev->wireless_handlers = &ipw_wx_handler_def;
11700 net_dev->ethtool_ops = &ipw_ethtool_ops;
11701 net_dev->irq = pdev->irq;
11702 net_dev->base_addr = (unsigned long)priv->hw_base;
11703 net_dev->mem_start = pci_resource_start(pdev, 0);
11704 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11705
11706 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11707 if (err) {
11708 IPW_ERROR("failed to create sysfs device attributes\n");
11709 mutex_unlock(&priv->mutex);
11710 goto out_release_irq;
11711 }
11712
11713 mutex_unlock(&priv->mutex);
11714 err = register_netdev(net_dev);
11715 if (err) {
11716 IPW_ERROR("failed to register network device\n");
11717 goto out_remove_sysfs;
11718 }
11719
11720 #ifdef CONFIG_IPW2200_PROMISCUOUS
11721 if (rtap_iface) {
11722 err = ipw_prom_alloc(priv);
11723 if (err) {
11724 IPW_ERROR("Failed to register promiscuous network "
11725 "device (error %d).\n", err);
11726 unregister_netdev(priv->net_dev);
11727 goto out_remove_sysfs;
11728 }
11729 }
11730 #endif
11731
11732 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11733 "channels, %d 802.11a channels)\n",
11734 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11735 priv->ieee->geo.a_channels);
11736
11737 return 0;
11738
11739 out_remove_sysfs:
11740 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11741 out_release_irq:
11742 free_irq(pdev->irq, priv);
11743 out_destroy_workqueue:
11744 destroy_workqueue(priv->workqueue);
11745 priv->workqueue = NULL;
11746 out_iounmap:
11747 iounmap(priv->hw_base);
11748 out_pci_release_regions:
11749 pci_release_regions(pdev);
11750 out_pci_disable_device:
11751 pci_disable_device(pdev);
11752 pci_set_drvdata(pdev, NULL);
11753 out_free_ieee80211:
11754 free_ieee80211(priv->net_dev);
11755 out:
11756 return err;
11757 }
11758
11759 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11760 {
11761 struct ipw_priv *priv = pci_get_drvdata(pdev);
11762 struct list_head *p, *q;
11763 int i;
11764
11765 if (!priv)
11766 return;
11767
11768 mutex_lock(&priv->mutex);
11769
11770 priv->status |= STATUS_EXIT_PENDING;
11771 ipw_down(priv);
11772 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11773
11774 mutex_unlock(&priv->mutex);
11775
11776 unregister_netdev(priv->net_dev);
11777
11778 if (priv->rxq) {
11779 ipw_rx_queue_free(priv, priv->rxq);
11780 priv->rxq = NULL;
11781 }
11782 ipw_tx_queue_free(priv);
11783
11784 if (priv->cmdlog) {
11785 kfree(priv->cmdlog);
11786 priv->cmdlog = NULL;
11787 }
11788 /* ipw_down will ensure that there is no more pending work
11789 * in the workqueue's, so we can safely remove them now. */
11790 cancel_delayed_work(&priv->adhoc_check);
11791 cancel_delayed_work(&priv->gather_stats);
11792 cancel_delayed_work(&priv->request_scan);
11793 cancel_delayed_work(&priv->request_direct_scan);
11794 cancel_delayed_work(&priv->request_passive_scan);
11795 cancel_delayed_work(&priv->scan_event);
11796 cancel_delayed_work(&priv->rf_kill);
11797 cancel_delayed_work(&priv->scan_check);
11798 destroy_workqueue(priv->workqueue);
11799 priv->workqueue = NULL;
11800
11801 /* Free MAC hash list for ADHOC */
11802 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11803 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11804 list_del(p);
11805 kfree(list_entry(p, struct ipw_ibss_seq, list));
11806 }
11807 }
11808
11809 kfree(priv->error);
11810 priv->error = NULL;
11811
11812 #ifdef CONFIG_IPW2200_PROMISCUOUS
11813 ipw_prom_free(priv);
11814 #endif
11815
11816 free_irq(pdev->irq, priv);
11817 iounmap(priv->hw_base);
11818 pci_release_regions(pdev);
11819 pci_disable_device(pdev);
11820 pci_set_drvdata(pdev, NULL);
11821 free_ieee80211(priv->net_dev);
11822 free_firmware();
11823 }
11824
11825 #ifdef CONFIG_PM
11826 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11827 {
11828 struct ipw_priv *priv = pci_get_drvdata(pdev);
11829 struct net_device *dev = priv->net_dev;
11830
11831 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11832
11833 /* Take down the device; powers it off, etc. */
11834 ipw_down(priv);
11835
11836 /* Remove the PRESENT state of the device */
11837 netif_device_detach(dev);
11838
11839 pci_save_state(pdev);
11840 pci_disable_device(pdev);
11841 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11842
11843 priv->suspend_at = get_seconds();
11844
11845 return 0;
11846 }
11847
11848 static int ipw_pci_resume(struct pci_dev *pdev)
11849 {
11850 struct ipw_priv *priv = pci_get_drvdata(pdev);
11851 struct net_device *dev = priv->net_dev;
11852 int err;
11853 u32 val;
11854
11855 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11856
11857 pci_set_power_state(pdev, PCI_D0);
11858 err = pci_enable_device(pdev);
11859 if (err) {
11860 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11861 dev->name);
11862 return err;
11863 }
11864 pci_restore_state(pdev);
11865
11866 /*
11867 * Suspend/Resume resets the PCI configuration space, so we have to
11868 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11869 * from interfering with C3 CPU state. pci_restore_state won't help
11870 * here since it only restores the first 64 bytes pci config header.
11871 */
11872 pci_read_config_dword(pdev, 0x40, &val);
11873 if ((val & 0x0000ff00) != 0)
11874 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11875
11876 /* Set the device back into the PRESENT state; this will also wake
11877 * the queue of needed */
11878 netif_device_attach(dev);
11879
11880 priv->suspend_time = get_seconds() - priv->suspend_at;
11881
11882 /* Bring the device back up */
11883 queue_work(priv->workqueue, &priv->up);
11884
11885 return 0;
11886 }
11887 #endif
11888
11889 static void ipw_pci_shutdown(struct pci_dev *pdev)
11890 {
11891 struct ipw_priv *priv = pci_get_drvdata(pdev);
11892
11893 /* Take down the device; powers it off, etc. */
11894 ipw_down(priv);
11895
11896 pci_disable_device(pdev);
11897 }
11898
11899 /* driver initialization stuff */
11900 static struct pci_driver ipw_driver = {
11901 .name = DRV_NAME,
11902 .id_table = card_ids,
11903 .probe = ipw_pci_probe,
11904 .remove = __devexit_p(ipw_pci_remove),
11905 #ifdef CONFIG_PM
11906 .suspend = ipw_pci_suspend,
11907 .resume = ipw_pci_resume,
11908 #endif
11909 .shutdown = ipw_pci_shutdown,
11910 };
11911
11912 static int __init ipw_init(void)
11913 {
11914 int ret;
11915
11916 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11917 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11918
11919 ret = pci_register_driver(&ipw_driver);
11920 if (ret) {
11921 IPW_ERROR("Unable to initialize PCI module\n");
11922 return ret;
11923 }
11924
11925 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11926 if (ret) {
11927 IPW_ERROR("Unable to create driver sysfs file\n");
11928 pci_unregister_driver(&ipw_driver);
11929 return ret;
11930 }
11931
11932 return ret;
11933 }
11934
11935 static void __exit ipw_exit(void)
11936 {
11937 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11938 pci_unregister_driver(&ipw_driver);
11939 }
11940
11941 module_param(disable, int, 0444);
11942 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11943
11944 module_param(associate, int, 0444);
11945 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11946
11947 module_param(auto_create, int, 0444);
11948 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11949
11950 module_param(led, int, 0444);
11951 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11952
11953 module_param(debug, int, 0444);
11954 MODULE_PARM_DESC(debug, "debug output mask");
11955
11956 module_param(channel, int, 0444);
11957 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11958
11959 #ifdef CONFIG_IPW2200_PROMISCUOUS
11960 module_param(rtap_iface, int, 0444);
11961 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11962 #endif
11963
11964 #ifdef CONFIG_IPW2200_QOS
11965 module_param(qos_enable, int, 0444);
11966 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11967
11968 module_param(qos_burst_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11970
11971 module_param(qos_no_ack_mask, int, 0444);
11972 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11973
11974 module_param(burst_duration_CCK, int, 0444);
11975 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11976
11977 module_param(burst_duration_OFDM, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11979 #endif /* CONFIG_IPW2200_QOS */
11980
11981 #ifdef CONFIG_IPW2200_MONITOR
11982 module_param(mode, int, 0444);
11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11984 #else
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11987 #endif
11988
11989 module_param(bt_coexist, int, 0444);
11990 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11991
11992 module_param(hwcrypto, int, 0444);
11993 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11994
11995 module_param(cmdlog, int, 0444);
11996 MODULE_PARM_DESC(cmdlog,
11997 "allocate a ring buffer for logging firmware commands");
11998
11999 module_param(roaming, int, 0444);
12000 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12001
12002 module_param(antenna, int, 0444);
12003 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12004
12005 module_exit(ipw_exit);
12006 module_init(ipw_init);