]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/iwlegacy/common.c
iwlegacy: use correct structure type name in sizeof
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / iwlegacy / common.c
1 /******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/etherdevice.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/lockdep.h>
36 #include <linux/pci.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/skbuff.h>
40 #include <net/mac80211.h>
41
42 #include "common.h"
43
44 int
45 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
46 {
47 const int interval = 10; /* microseconds */
48 int t = 0;
49
50 do {
51 if ((_il_rd(il, addr) & mask) == (bits & mask))
52 return t;
53 udelay(interval);
54 t += interval;
55 } while (t < timeout);
56
57 return -ETIMEDOUT;
58 }
59 EXPORT_SYMBOL(_il_poll_bit);
60
61 void
62 il_set_bit(struct il_priv *p, u32 r, u32 m)
63 {
64 unsigned long reg_flags;
65
66 spin_lock_irqsave(&p->reg_lock, reg_flags);
67 _il_set_bit(p, r, m);
68 spin_unlock_irqrestore(&p->reg_lock, reg_flags);
69 }
70 EXPORT_SYMBOL(il_set_bit);
71
72 void
73 il_clear_bit(struct il_priv *p, u32 r, u32 m)
74 {
75 unsigned long reg_flags;
76
77 spin_lock_irqsave(&p->reg_lock, reg_flags);
78 _il_clear_bit(p, r, m);
79 spin_unlock_irqrestore(&p->reg_lock, reg_flags);
80 }
81 EXPORT_SYMBOL(il_clear_bit);
82
83 bool
84 _il_grab_nic_access(struct il_priv *il)
85 {
86 int ret;
87 u32 val;
88
89 /* this bit wakes up the NIC */
90 _il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
91
92 /*
93 * These bits say the device is running, and should keep running for
94 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
95 * but they do not indicate that embedded SRAM is restored yet;
96 * 3945 and 4965 have volatile SRAM, and must save/restore contents
97 * to/from host DRAM when sleeping/waking for power-saving.
98 * Each direction takes approximately 1/4 millisecond; with this
99 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
100 * series of register accesses are expected (e.g. reading Event Log),
101 * to keep device from sleeping.
102 *
103 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
104 * SRAM is okay/restored. We don't check that here because this call
105 * is just for hardware register access; but GP1 MAC_SLEEP check is a
106 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
107 *
108 */
109 ret =
110 _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
111 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
112 CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
113 if (unlikely(ret < 0)) {
114 val = _il_rd(il, CSR_GP_CNTRL);
115 WARN_ONCE(1, "Timeout waiting for ucode processor access "
116 "(CSR_GP_CNTRL 0x%08x)\n", val);
117 _il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
118 return false;
119 }
120
121 return true;
122 }
123 EXPORT_SYMBOL_GPL(_il_grab_nic_access);
124
125 int
126 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
127 {
128 const int interval = 10; /* microseconds */
129 int t = 0;
130
131 do {
132 if ((il_rd(il, addr) & mask) == mask)
133 return t;
134 udelay(interval);
135 t += interval;
136 } while (t < timeout);
137
138 return -ETIMEDOUT;
139 }
140 EXPORT_SYMBOL(il_poll_bit);
141
142 u32
143 il_rd_prph(struct il_priv *il, u32 reg)
144 {
145 unsigned long reg_flags;
146 u32 val;
147
148 spin_lock_irqsave(&il->reg_lock, reg_flags);
149 _il_grab_nic_access(il);
150 val = _il_rd_prph(il, reg);
151 _il_release_nic_access(il);
152 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
153 return val;
154 }
155 EXPORT_SYMBOL(il_rd_prph);
156
157 void
158 il_wr_prph(struct il_priv *il, u32 addr, u32 val)
159 {
160 unsigned long reg_flags;
161
162 spin_lock_irqsave(&il->reg_lock, reg_flags);
163 if (likely(_il_grab_nic_access(il))) {
164 _il_wr_prph(il, addr, val);
165 _il_release_nic_access(il);
166 }
167 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
168 }
169 EXPORT_SYMBOL(il_wr_prph);
170
171 u32
172 il_read_targ_mem(struct il_priv *il, u32 addr)
173 {
174 unsigned long reg_flags;
175 u32 value;
176
177 spin_lock_irqsave(&il->reg_lock, reg_flags);
178 _il_grab_nic_access(il);
179
180 _il_wr(il, HBUS_TARG_MEM_RADDR, addr);
181 value = _il_rd(il, HBUS_TARG_MEM_RDAT);
182
183 _il_release_nic_access(il);
184 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
185 return value;
186 }
187 EXPORT_SYMBOL(il_read_targ_mem);
188
189 void
190 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
191 {
192 unsigned long reg_flags;
193
194 spin_lock_irqsave(&il->reg_lock, reg_flags);
195 if (likely(_il_grab_nic_access(il))) {
196 _il_wr(il, HBUS_TARG_MEM_WADDR, addr);
197 _il_wr(il, HBUS_TARG_MEM_WDAT, val);
198 _il_release_nic_access(il);
199 }
200 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
201 }
202 EXPORT_SYMBOL(il_write_targ_mem);
203
204 const char *
205 il_get_cmd_string(u8 cmd)
206 {
207 switch (cmd) {
208 IL_CMD(N_ALIVE);
209 IL_CMD(N_ERROR);
210 IL_CMD(C_RXON);
211 IL_CMD(C_RXON_ASSOC);
212 IL_CMD(C_QOS_PARAM);
213 IL_CMD(C_RXON_TIMING);
214 IL_CMD(C_ADD_STA);
215 IL_CMD(C_REM_STA);
216 IL_CMD(C_WEPKEY);
217 IL_CMD(N_3945_RX);
218 IL_CMD(C_TX);
219 IL_CMD(C_RATE_SCALE);
220 IL_CMD(C_LEDS);
221 IL_CMD(C_TX_LINK_QUALITY_CMD);
222 IL_CMD(C_CHANNEL_SWITCH);
223 IL_CMD(N_CHANNEL_SWITCH);
224 IL_CMD(C_SPECTRUM_MEASUREMENT);
225 IL_CMD(N_SPECTRUM_MEASUREMENT);
226 IL_CMD(C_POWER_TBL);
227 IL_CMD(N_PM_SLEEP);
228 IL_CMD(N_PM_DEBUG_STATS);
229 IL_CMD(C_SCAN);
230 IL_CMD(C_SCAN_ABORT);
231 IL_CMD(N_SCAN_START);
232 IL_CMD(N_SCAN_RESULTS);
233 IL_CMD(N_SCAN_COMPLETE);
234 IL_CMD(N_BEACON);
235 IL_CMD(C_TX_BEACON);
236 IL_CMD(C_TX_PWR_TBL);
237 IL_CMD(C_BT_CONFIG);
238 IL_CMD(C_STATS);
239 IL_CMD(N_STATS);
240 IL_CMD(N_CARD_STATE);
241 IL_CMD(N_MISSED_BEACONS);
242 IL_CMD(C_CT_KILL_CONFIG);
243 IL_CMD(C_SENSITIVITY);
244 IL_CMD(C_PHY_CALIBRATION);
245 IL_CMD(N_RX_PHY);
246 IL_CMD(N_RX_MPDU);
247 IL_CMD(N_RX);
248 IL_CMD(N_COMPRESSED_BA);
249 default:
250 return "UNKNOWN";
251
252 }
253 }
254 EXPORT_SYMBOL(il_get_cmd_string);
255
256 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
257
258 static void
259 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
260 struct il_rx_pkt *pkt)
261 {
262 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
263 IL_ERR("Bad return from %s (0x%08X)\n",
264 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
265 return;
266 }
267 #ifdef CONFIG_IWLEGACY_DEBUG
268 switch (cmd->hdr.cmd) {
269 case C_TX_LINK_QUALITY_CMD:
270 case C_SENSITIVITY:
271 D_HC_DUMP("back from %s (0x%08X)\n",
272 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
273 break;
274 default:
275 D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
276 pkt->hdr.flags);
277 }
278 #endif
279 }
280
281 static int
282 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
283 {
284 int ret;
285
286 BUG_ON(!(cmd->flags & CMD_ASYNC));
287
288 /* An asynchronous command can not expect an SKB to be set. */
289 BUG_ON(cmd->flags & CMD_WANT_SKB);
290
291 /* Assign a generic callback if one is not provided */
292 if (!cmd->callback)
293 cmd->callback = il_generic_cmd_callback;
294
295 if (test_bit(S_EXIT_PENDING, &il->status))
296 return -EBUSY;
297
298 ret = il_enqueue_hcmd(il, cmd);
299 if (ret < 0) {
300 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
301 il_get_cmd_string(cmd->id), ret);
302 return ret;
303 }
304 return 0;
305 }
306
307 int
308 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
309 {
310 int cmd_idx;
311 int ret;
312
313 lockdep_assert_held(&il->mutex);
314
315 BUG_ON(cmd->flags & CMD_ASYNC);
316
317 /* A synchronous command can not have a callback set. */
318 BUG_ON(cmd->callback);
319
320 D_INFO("Attempting to send sync command %s\n",
321 il_get_cmd_string(cmd->id));
322
323 set_bit(S_HCMD_ACTIVE, &il->status);
324 D_INFO("Setting HCMD_ACTIVE for command %s\n",
325 il_get_cmd_string(cmd->id));
326
327 cmd_idx = il_enqueue_hcmd(il, cmd);
328 if (cmd_idx < 0) {
329 ret = cmd_idx;
330 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
331 il_get_cmd_string(cmd->id), ret);
332 goto out;
333 }
334
335 ret = wait_event_timeout(il->wait_command_queue,
336 !test_bit(S_HCMD_ACTIVE, &il->status),
337 HOST_COMPLETE_TIMEOUT);
338 if (!ret) {
339 if (test_bit(S_HCMD_ACTIVE, &il->status)) {
340 IL_ERR("Error sending %s: time out after %dms.\n",
341 il_get_cmd_string(cmd->id),
342 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
343
344 clear_bit(S_HCMD_ACTIVE, &il->status);
345 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
346 il_get_cmd_string(cmd->id));
347 ret = -ETIMEDOUT;
348 goto cancel;
349 }
350 }
351
352 if (test_bit(S_RFKILL, &il->status)) {
353 IL_ERR("Command %s aborted: RF KILL Switch\n",
354 il_get_cmd_string(cmd->id));
355 ret = -ECANCELED;
356 goto fail;
357 }
358 if (test_bit(S_FW_ERROR, &il->status)) {
359 IL_ERR("Command %s failed: FW Error\n",
360 il_get_cmd_string(cmd->id));
361 ret = -EIO;
362 goto fail;
363 }
364 if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
365 IL_ERR("Error: Response NULL in '%s'\n",
366 il_get_cmd_string(cmd->id));
367 ret = -EIO;
368 goto cancel;
369 }
370
371 ret = 0;
372 goto out;
373
374 cancel:
375 if (cmd->flags & CMD_WANT_SKB) {
376 /*
377 * Cancel the CMD_WANT_SKB flag for the cmd in the
378 * TX cmd queue. Otherwise in case the cmd comes
379 * in later, it will possibly set an invalid
380 * address (cmd->meta.source).
381 */
382 il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
383 }
384 fail:
385 if (cmd->reply_page) {
386 il_free_pages(il, cmd->reply_page);
387 cmd->reply_page = 0;
388 }
389 out:
390 return ret;
391 }
392 EXPORT_SYMBOL(il_send_cmd_sync);
393
394 int
395 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
396 {
397 if (cmd->flags & CMD_ASYNC)
398 return il_send_cmd_async(il, cmd);
399
400 return il_send_cmd_sync(il, cmd);
401 }
402 EXPORT_SYMBOL(il_send_cmd);
403
404 int
405 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
406 {
407 struct il_host_cmd cmd = {
408 .id = id,
409 .len = len,
410 .data = data,
411 };
412
413 return il_send_cmd_sync(il, &cmd);
414 }
415 EXPORT_SYMBOL(il_send_cmd_pdu);
416
417 int
418 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
419 void (*callback) (struct il_priv *il,
420 struct il_device_cmd *cmd,
421 struct il_rx_pkt *pkt))
422 {
423 struct il_host_cmd cmd = {
424 .id = id,
425 .len = len,
426 .data = data,
427 };
428
429 cmd.flags |= CMD_ASYNC;
430 cmd.callback = callback;
431
432 return il_send_cmd_async(il, &cmd);
433 }
434 EXPORT_SYMBOL(il_send_cmd_pdu_async);
435
436 /* default: IL_LED_BLINK(0) using blinking idx table */
437 static int led_mode;
438 module_param(led_mode, int, S_IRUGO);
439 MODULE_PARM_DESC(led_mode,
440 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
441
442 /* Throughput OFF time(ms) ON time (ms)
443 * >300 25 25
444 * >200 to 300 40 40
445 * >100 to 200 55 55
446 * >70 to 100 65 65
447 * >50 to 70 75 75
448 * >20 to 50 85 85
449 * >10 to 20 95 95
450 * >5 to 10 110 110
451 * >1 to 5 130 130
452 * >0 to 1 167 167
453 * <=0 SOLID ON
454 */
455 static const struct ieee80211_tpt_blink il_blink[] = {
456 {.throughput = 0, .blink_time = 334},
457 {.throughput = 1 * 1024 - 1, .blink_time = 260},
458 {.throughput = 5 * 1024 - 1, .blink_time = 220},
459 {.throughput = 10 * 1024 - 1, .blink_time = 190},
460 {.throughput = 20 * 1024 - 1, .blink_time = 170},
461 {.throughput = 50 * 1024 - 1, .blink_time = 150},
462 {.throughput = 70 * 1024 - 1, .blink_time = 130},
463 {.throughput = 100 * 1024 - 1, .blink_time = 110},
464 {.throughput = 200 * 1024 - 1, .blink_time = 80},
465 {.throughput = 300 * 1024 - 1, .blink_time = 50},
466 };
467
468 /*
469 * Adjust led blink rate to compensate on a MAC Clock difference on every HW
470 * Led blink rate analysis showed an average deviation of 0% on 3945,
471 * 5% on 4965 HW.
472 * Need to compensate on the led on/off time per HW according to the deviation
473 * to achieve the desired led frequency
474 * The calculation is: (100-averageDeviation)/100 * blinkTime
475 * For code efficiency the calculation will be:
476 * compensation = (100 - averageDeviation) * 64 / 100
477 * NewBlinkTime = (compensation * BlinkTime) / 64
478 */
479 static inline u8
480 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
481 {
482 if (!compensation) {
483 IL_ERR("undefined blink compensation: "
484 "use pre-defined blinking time\n");
485 return time;
486 }
487
488 return (u8) ((time * compensation) >> 6);
489 }
490
491 /* Set led pattern command */
492 static int
493 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
494 {
495 struct il_led_cmd led_cmd = {
496 .id = IL_LED_LINK,
497 .interval = IL_DEF_LED_INTRVL
498 };
499 int ret;
500
501 if (!test_bit(S_READY, &il->status))
502 return -EBUSY;
503
504 if (il->blink_on == on && il->blink_off == off)
505 return 0;
506
507 if (off == 0) {
508 /* led is SOLID_ON */
509 on = IL_LED_SOLID;
510 }
511
512 D_LED("Led blink time compensation=%u\n",
513 il->cfg->led_compensation);
514 led_cmd.on =
515 il_blink_compensation(il, on,
516 il->cfg->led_compensation);
517 led_cmd.off =
518 il_blink_compensation(il, off,
519 il->cfg->led_compensation);
520
521 ret = il->ops->send_led_cmd(il, &led_cmd);
522 if (!ret) {
523 il->blink_on = on;
524 il->blink_off = off;
525 }
526 return ret;
527 }
528
529 static void
530 il_led_brightness_set(struct led_classdev *led_cdev,
531 enum led_brightness brightness)
532 {
533 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
534 unsigned long on = 0;
535
536 if (brightness > 0)
537 on = IL_LED_SOLID;
538
539 il_led_cmd(il, on, 0);
540 }
541
542 static int
543 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
544 unsigned long *delay_off)
545 {
546 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
547
548 return il_led_cmd(il, *delay_on, *delay_off);
549 }
550
551 void
552 il_leds_init(struct il_priv *il)
553 {
554 int mode = led_mode;
555 int ret;
556
557 if (mode == IL_LED_DEFAULT)
558 mode = il->cfg->led_mode;
559
560 il->led.name =
561 kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
562 il->led.brightness_set = il_led_brightness_set;
563 il->led.blink_set = il_led_blink_set;
564 il->led.max_brightness = 1;
565
566 switch (mode) {
567 case IL_LED_DEFAULT:
568 WARN_ON(1);
569 break;
570 case IL_LED_BLINK:
571 il->led.default_trigger =
572 ieee80211_create_tpt_led_trigger(il->hw,
573 IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
574 il_blink,
575 ARRAY_SIZE(il_blink));
576 break;
577 case IL_LED_RF_STATE:
578 il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
579 break;
580 }
581
582 ret = led_classdev_register(&il->pci_dev->dev, &il->led);
583 if (ret) {
584 kfree(il->led.name);
585 return;
586 }
587
588 il->led_registered = true;
589 }
590 EXPORT_SYMBOL(il_leds_init);
591
592 void
593 il_leds_exit(struct il_priv *il)
594 {
595 if (!il->led_registered)
596 return;
597
598 led_classdev_unregister(&il->led);
599 kfree(il->led.name);
600 }
601 EXPORT_SYMBOL(il_leds_exit);
602
603 /************************** EEPROM BANDS ****************************
604 *
605 * The il_eeprom_band definitions below provide the mapping from the
606 * EEPROM contents to the specific channel number supported for each
607 * band.
608 *
609 * For example, il_priv->eeprom.band_3_channels[4] from the band_3
610 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
611 * The specific geography and calibration information for that channel
612 * is contained in the eeprom map itself.
613 *
614 * During init, we copy the eeprom information and channel map
615 * information into il->channel_info_24/52 and il->channel_map_24/52
616 *
617 * channel_map_24/52 provides the idx in the channel_info array for a
618 * given channel. We have to have two separate maps as there is channel
619 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
620 * band_2
621 *
622 * A value of 0xff stored in the channel_map indicates that the channel
623 * is not supported by the hardware at all.
624 *
625 * A value of 0xfe in the channel_map indicates that the channel is not
626 * valid for Tx with the current hardware. This means that
627 * while the system can tune and receive on a given channel, it may not
628 * be able to associate or transmit any frames on that
629 * channel. There is no corresponding channel information for that
630 * entry.
631 *
632 *********************************************************************/
633
634 /* 2.4 GHz */
635 const u8 il_eeprom_band_1[14] = {
636 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
637 };
638
639 /* 5.2 GHz bands */
640 static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
641 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
642 };
643
644 static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
645 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
646 };
647
648 static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
649 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
650 };
651
652 static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
653 145, 149, 153, 157, 161, 165
654 };
655
656 static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
657 1, 2, 3, 4, 5, 6, 7
658 };
659
660 static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
661 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
662 };
663
664 /******************************************************************************
665 *
666 * EEPROM related functions
667 *
668 ******************************************************************************/
669
670 static int
671 il_eeprom_verify_signature(struct il_priv *il)
672 {
673 u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
674 int ret = 0;
675
676 D_EEPROM("EEPROM signature=0x%08x\n", gp);
677 switch (gp) {
678 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
679 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
680 break;
681 default:
682 IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
683 ret = -ENOENT;
684 break;
685 }
686 return ret;
687 }
688
689 const u8 *
690 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
691 {
692 BUG_ON(offset >= il->cfg->eeprom_size);
693 return &il->eeprom[offset];
694 }
695 EXPORT_SYMBOL(il_eeprom_query_addr);
696
697 u16
698 il_eeprom_query16(const struct il_priv *il, size_t offset)
699 {
700 if (!il->eeprom)
701 return 0;
702 return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
703 }
704 EXPORT_SYMBOL(il_eeprom_query16);
705
706 /**
707 * il_eeprom_init - read EEPROM contents
708 *
709 * Load the EEPROM contents from adapter into il->eeprom
710 *
711 * NOTE: This routine uses the non-debug IO access functions.
712 */
713 int
714 il_eeprom_init(struct il_priv *il)
715 {
716 __le16 *e;
717 u32 gp = _il_rd(il, CSR_EEPROM_GP);
718 int sz;
719 int ret;
720 u16 addr;
721
722 /* allocate eeprom */
723 sz = il->cfg->eeprom_size;
724 D_EEPROM("NVM size = %d\n", sz);
725 il->eeprom = kzalloc(sz, GFP_KERNEL);
726 if (!il->eeprom) {
727 ret = -ENOMEM;
728 goto alloc_err;
729 }
730 e = (__le16 *) il->eeprom;
731
732 il->ops->apm_init(il);
733
734 ret = il_eeprom_verify_signature(il);
735 if (ret < 0) {
736 IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
737 ret = -ENOENT;
738 goto err;
739 }
740
741 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
742 ret = il->ops->eeprom_acquire_semaphore(il);
743 if (ret < 0) {
744 IL_ERR("Failed to acquire EEPROM semaphore.\n");
745 ret = -ENOENT;
746 goto err;
747 }
748
749 /* eeprom is an array of 16bit values */
750 for (addr = 0; addr < sz; addr += sizeof(u16)) {
751 u32 r;
752
753 _il_wr(il, CSR_EEPROM_REG,
754 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
755
756 ret =
757 _il_poll_bit(il, CSR_EEPROM_REG,
758 CSR_EEPROM_REG_READ_VALID_MSK,
759 CSR_EEPROM_REG_READ_VALID_MSK,
760 IL_EEPROM_ACCESS_TIMEOUT);
761 if (ret < 0) {
762 IL_ERR("Time out reading EEPROM[%d]\n", addr);
763 goto done;
764 }
765 r = _il_rd(il, CSR_EEPROM_REG);
766 e[addr / 2] = cpu_to_le16(r >> 16);
767 }
768
769 D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
770 il_eeprom_query16(il, EEPROM_VERSION));
771
772 ret = 0;
773 done:
774 il->ops->eeprom_release_semaphore(il);
775
776 err:
777 if (ret)
778 il_eeprom_free(il);
779 /* Reset chip to save power until we load uCode during "up". */
780 il_apm_stop(il);
781 alloc_err:
782 return ret;
783 }
784 EXPORT_SYMBOL(il_eeprom_init);
785
786 void
787 il_eeprom_free(struct il_priv *il)
788 {
789 kfree(il->eeprom);
790 il->eeprom = NULL;
791 }
792 EXPORT_SYMBOL(il_eeprom_free);
793
794 static void
795 il_init_band_reference(const struct il_priv *il, int eep_band,
796 int *eeprom_ch_count,
797 const struct il_eeprom_channel **eeprom_ch_info,
798 const u8 **eeprom_ch_idx)
799 {
800 u32 offset = il->cfg->regulatory_bands[eep_band - 1];
801
802 switch (eep_band) {
803 case 1: /* 2.4GHz band */
804 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
805 *eeprom_ch_info =
806 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
807 offset);
808 *eeprom_ch_idx = il_eeprom_band_1;
809 break;
810 case 2: /* 4.9GHz band */
811 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
812 *eeprom_ch_info =
813 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
814 offset);
815 *eeprom_ch_idx = il_eeprom_band_2;
816 break;
817 case 3: /* 5.2GHz band */
818 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
819 *eeprom_ch_info =
820 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
821 offset);
822 *eeprom_ch_idx = il_eeprom_band_3;
823 break;
824 case 4: /* 5.5GHz band */
825 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
826 *eeprom_ch_info =
827 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
828 offset);
829 *eeprom_ch_idx = il_eeprom_band_4;
830 break;
831 case 5: /* 5.7GHz band */
832 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
833 *eeprom_ch_info =
834 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
835 offset);
836 *eeprom_ch_idx = il_eeprom_band_5;
837 break;
838 case 6: /* 2.4GHz ht40 channels */
839 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
840 *eeprom_ch_info =
841 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
842 offset);
843 *eeprom_ch_idx = il_eeprom_band_6;
844 break;
845 case 7: /* 5 GHz ht40 channels */
846 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
847 *eeprom_ch_info =
848 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
849 offset);
850 *eeprom_ch_idx = il_eeprom_band_7;
851 break;
852 default:
853 BUG();
854 }
855 }
856
857 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
858 ? # x " " : "")
859 /**
860 * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
861 *
862 * Does not set up a command, or touch hardware.
863 */
864 static int
865 il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
866 const struct il_eeprom_channel *eeprom_ch,
867 u8 clear_ht40_extension_channel)
868 {
869 struct il_channel_info *ch_info;
870
871 ch_info =
872 (struct il_channel_info *)il_get_channel_info(il, band, channel);
873
874 if (!il_is_channel_valid(ch_info))
875 return -1;
876
877 D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
878 " Ad-Hoc %ssupported\n", ch_info->channel,
879 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
880 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
881 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
882 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
883 eeprom_ch->max_power_avg,
884 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
885 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
886
887 ch_info->ht40_eeprom = *eeprom_ch;
888 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
889 ch_info->ht40_flags = eeprom_ch->flags;
890 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
891 ch_info->ht40_extension_channel &=
892 ~clear_ht40_extension_channel;
893
894 return 0;
895 }
896
897 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
898 ? # x " " : "")
899
900 /**
901 * il_init_channel_map - Set up driver's info for all possible channels
902 */
903 int
904 il_init_channel_map(struct il_priv *il)
905 {
906 int eeprom_ch_count = 0;
907 const u8 *eeprom_ch_idx = NULL;
908 const struct il_eeprom_channel *eeprom_ch_info = NULL;
909 int band, ch;
910 struct il_channel_info *ch_info;
911
912 if (il->channel_count) {
913 D_EEPROM("Channel map already initialized.\n");
914 return 0;
915 }
916
917 D_EEPROM("Initializing regulatory info from EEPROM\n");
918
919 il->channel_count =
920 ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
921 ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
922 ARRAY_SIZE(il_eeprom_band_5);
923
924 D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
925
926 il->channel_info =
927 kzalloc(sizeof(struct il_channel_info) * il->channel_count,
928 GFP_KERNEL);
929 if (!il->channel_info) {
930 IL_ERR("Could not allocate channel_info\n");
931 il->channel_count = 0;
932 return -ENOMEM;
933 }
934
935 ch_info = il->channel_info;
936
937 /* Loop through the 5 EEPROM bands adding them in order to the
938 * channel map we maintain (that contains additional information than
939 * what just in the EEPROM) */
940 for (band = 1; band <= 5; band++) {
941
942 il_init_band_reference(il, band, &eeprom_ch_count,
943 &eeprom_ch_info, &eeprom_ch_idx);
944
945 /* Loop through each band adding each of the channels */
946 for (ch = 0; ch < eeprom_ch_count; ch++) {
947 ch_info->channel = eeprom_ch_idx[ch];
948 ch_info->band =
949 (band ==
950 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
951
952 /* permanently store EEPROM's channel regulatory flags
953 * and max power in channel info database. */
954 ch_info->eeprom = eeprom_ch_info[ch];
955
956 /* Copy the run-time flags so they are there even on
957 * invalid channels */
958 ch_info->flags = eeprom_ch_info[ch].flags;
959 /* First write that ht40 is not enabled, and then enable
960 * one by one */
961 ch_info->ht40_extension_channel =
962 IEEE80211_CHAN_NO_HT40;
963
964 if (!(il_is_channel_valid(ch_info))) {
965 D_EEPROM("Ch. %d Flags %x [%sGHz] - "
966 "No traffic\n", ch_info->channel,
967 ch_info->flags,
968 il_is_channel_a_band(ch_info) ? "5.2" :
969 "2.4");
970 ch_info++;
971 continue;
972 }
973
974 /* Initialize regulatory-based run-time data */
975 ch_info->max_power_avg = ch_info->curr_txpow =
976 eeprom_ch_info[ch].max_power_avg;
977 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
978 ch_info->min_power = 0;
979
980 D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
981 " Ad-Hoc %ssupported\n", ch_info->channel,
982 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
983 CHECK_AND_PRINT_I(VALID),
984 CHECK_AND_PRINT_I(IBSS),
985 CHECK_AND_PRINT_I(ACTIVE),
986 CHECK_AND_PRINT_I(RADAR),
987 CHECK_AND_PRINT_I(WIDE),
988 CHECK_AND_PRINT_I(DFS),
989 eeprom_ch_info[ch].flags,
990 eeprom_ch_info[ch].max_power_avg,
991 ((eeprom_ch_info[ch].
992 flags & EEPROM_CHANNEL_IBSS) &&
993 !(eeprom_ch_info[ch].
994 flags & EEPROM_CHANNEL_RADAR)) ? "" :
995 "not ");
996
997 ch_info++;
998 }
999 }
1000
1001 /* Check if we do have HT40 channels */
1002 if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
1003 il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
1004 return 0;
1005
1006 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1007 for (band = 6; band <= 7; band++) {
1008 enum ieee80211_band ieeeband;
1009
1010 il_init_band_reference(il, band, &eeprom_ch_count,
1011 &eeprom_ch_info, &eeprom_ch_idx);
1012
1013 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1014 ieeeband =
1015 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1016
1017 /* Loop through each band adding each of the channels */
1018 for (ch = 0; ch < eeprom_ch_count; ch++) {
1019 /* Set up driver's info for lower half */
1020 il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
1021 &eeprom_ch_info[ch],
1022 IEEE80211_CHAN_NO_HT40PLUS);
1023
1024 /* Set up driver's info for upper half */
1025 il_mod_ht40_chan_info(il, ieeeband,
1026 eeprom_ch_idx[ch] + 4,
1027 &eeprom_ch_info[ch],
1028 IEEE80211_CHAN_NO_HT40MINUS);
1029 }
1030 }
1031
1032 return 0;
1033 }
1034 EXPORT_SYMBOL(il_init_channel_map);
1035
1036 /*
1037 * il_free_channel_map - undo allocations in il_init_channel_map
1038 */
1039 void
1040 il_free_channel_map(struct il_priv *il)
1041 {
1042 kfree(il->channel_info);
1043 il->channel_count = 0;
1044 }
1045 EXPORT_SYMBOL(il_free_channel_map);
1046
1047 /**
1048 * il_get_channel_info - Find driver's ilate channel info
1049 *
1050 * Based on band and channel number.
1051 */
1052 const struct il_channel_info *
1053 il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
1054 u16 channel)
1055 {
1056 int i;
1057
1058 switch (band) {
1059 case IEEE80211_BAND_5GHZ:
1060 for (i = 14; i < il->channel_count; i++) {
1061 if (il->channel_info[i].channel == channel)
1062 return &il->channel_info[i];
1063 }
1064 break;
1065 case IEEE80211_BAND_2GHZ:
1066 if (channel >= 1 && channel <= 14)
1067 return &il->channel_info[channel - 1];
1068 break;
1069 default:
1070 BUG();
1071 }
1072
1073 return NULL;
1074 }
1075 EXPORT_SYMBOL(il_get_channel_info);
1076
1077 /*
1078 * Setting power level allows the card to go to sleep when not busy.
1079 *
1080 * We calculate a sleep command based on the required latency, which
1081 * we get from mac80211.
1082 */
1083
1084 #define SLP_VEC(X0, X1, X2, X3, X4) { \
1085 cpu_to_le32(X0), \
1086 cpu_to_le32(X1), \
1087 cpu_to_le32(X2), \
1088 cpu_to_le32(X3), \
1089 cpu_to_le32(X4) \
1090 }
1091
1092 static void
1093 il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
1094 {
1095 const __le32 interval[3][IL_POWER_VEC_SIZE] = {
1096 SLP_VEC(2, 2, 4, 6, 0xFF),
1097 SLP_VEC(2, 4, 7, 10, 10),
1098 SLP_VEC(4, 7, 10, 10, 0xFF)
1099 };
1100 int i, dtim_period, no_dtim;
1101 u32 max_sleep;
1102 bool skip;
1103
1104 memset(cmd, 0, sizeof(*cmd));
1105
1106 if (il->power_data.pci_pm)
1107 cmd->flags |= IL_POWER_PCI_PM_MSK;
1108
1109 /* if no Power Save, we are done */
1110 if (il->power_data.ps_disabled)
1111 return;
1112
1113 cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK;
1114 cmd->keep_alive_seconds = 0;
1115 cmd->debug_flags = 0;
1116 cmd->rx_data_timeout = cpu_to_le32(25 * 1024);
1117 cmd->tx_data_timeout = cpu_to_le32(25 * 1024);
1118 cmd->keep_alive_beacons = 0;
1119
1120 dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0;
1121
1122 if (dtim_period <= 2) {
1123 memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0]));
1124 no_dtim = 2;
1125 } else if (dtim_period <= 10) {
1126 memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1]));
1127 no_dtim = 2;
1128 } else {
1129 memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2]));
1130 no_dtim = 0;
1131 }
1132
1133 if (dtim_period == 0) {
1134 dtim_period = 1;
1135 skip = false;
1136 } else {
1137 skip = !!no_dtim;
1138 }
1139
1140 if (skip) {
1141 __le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1];
1142
1143 max_sleep = le32_to_cpu(tmp);
1144 if (max_sleep == 0xFF)
1145 max_sleep = dtim_period * (skip + 1);
1146 else if (max_sleep > dtim_period)
1147 max_sleep = (max_sleep / dtim_period) * dtim_period;
1148 cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK;
1149 } else {
1150 max_sleep = dtim_period;
1151 cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK;
1152 }
1153
1154 for (i = 0; i < IL_POWER_VEC_SIZE; i++)
1155 if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
1156 cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
1157 }
1158
1159 static int
1160 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
1161 {
1162 D_POWER("Sending power/sleep command\n");
1163 D_POWER("Flags value = 0x%08X\n", cmd->flags);
1164 D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
1165 D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
1166 D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
1167 le32_to_cpu(cmd->sleep_interval[0]),
1168 le32_to_cpu(cmd->sleep_interval[1]),
1169 le32_to_cpu(cmd->sleep_interval[2]),
1170 le32_to_cpu(cmd->sleep_interval[3]),
1171 le32_to_cpu(cmd->sleep_interval[4]));
1172
1173 return il_send_cmd_pdu(il, C_POWER_TBL,
1174 sizeof(struct il_powertable_cmd), cmd);
1175 }
1176
1177 static int
1178 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
1179 {
1180 int ret;
1181 bool update_chains;
1182
1183 lockdep_assert_held(&il->mutex);
1184
1185 /* Don't update the RX chain when chain noise calibration is running */
1186 update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
1187 il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
1188
1189 if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
1190 return 0;
1191
1192 if (!il_is_ready_rf(il))
1193 return -EIO;
1194
1195 /* scan complete use sleep_power_next, need to be updated */
1196 memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1197 if (test_bit(S_SCANNING, &il->status) && !force) {
1198 D_INFO("Defer power set mode while scanning\n");
1199 return 0;
1200 }
1201
1202 if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1203 set_bit(S_POWER_PMI, &il->status);
1204
1205 ret = il_set_power(il, cmd);
1206 if (!ret) {
1207 if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1208 clear_bit(S_POWER_PMI, &il->status);
1209
1210 if (il->ops->update_chain_flags && update_chains)
1211 il->ops->update_chain_flags(il);
1212 else if (il->ops->update_chain_flags)
1213 D_POWER("Cannot update the power, chain noise "
1214 "calibration running: %d\n",
1215 il->chain_noise_data.state);
1216
1217 memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1218 } else
1219 IL_ERR("set power fail, ret = %d", ret);
1220
1221 return ret;
1222 }
1223
1224 int
1225 il_power_update_mode(struct il_priv *il, bool force)
1226 {
1227 struct il_powertable_cmd cmd;
1228
1229 il_build_powertable_cmd(il, &cmd);
1230
1231 return il_power_set_mode(il, &cmd, force);
1232 }
1233 EXPORT_SYMBOL(il_power_update_mode);
1234
1235 /* initialize to default */
1236 void
1237 il_power_initialize(struct il_priv *il)
1238 {
1239 u16 lctl;
1240
1241 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
1242 il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
1243
1244 il->power_data.debug_sleep_level_override = -1;
1245
1246 memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1247 }
1248 EXPORT_SYMBOL(il_power_initialize);
1249
1250 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1251 * sending probe req. This should be set long enough to hear probe responses
1252 * from more than one AP. */
1253 #define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
1254 #define IL_ACTIVE_DWELL_TIME_52 (20)
1255
1256 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1257 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1258
1259 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1260 * Must be set longer than active dwell time.
1261 * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1262 #define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
1263 #define IL_PASSIVE_DWELL_TIME_52 (10)
1264 #define IL_PASSIVE_DWELL_BASE (100)
1265 #define IL_CHANNEL_TUNE_TIME 5
1266
1267 static int
1268 il_send_scan_abort(struct il_priv *il)
1269 {
1270 int ret;
1271 struct il_rx_pkt *pkt;
1272 struct il_host_cmd cmd = {
1273 .id = C_SCAN_ABORT,
1274 .flags = CMD_WANT_SKB,
1275 };
1276
1277 /* Exit instantly with error when device is not ready
1278 * to receive scan abort command or it does not perform
1279 * hardware scan currently */
1280 if (!test_bit(S_READY, &il->status) ||
1281 !test_bit(S_GEO_CONFIGURED, &il->status) ||
1282 !test_bit(S_SCAN_HW, &il->status) ||
1283 test_bit(S_FW_ERROR, &il->status) ||
1284 test_bit(S_EXIT_PENDING, &il->status))
1285 return -EIO;
1286
1287 ret = il_send_cmd_sync(il, &cmd);
1288 if (ret)
1289 return ret;
1290
1291 pkt = (struct il_rx_pkt *)cmd.reply_page;
1292 if (pkt->u.status != CAN_ABORT_STATUS) {
1293 /* The scan abort will return 1 for success or
1294 * 2 for "failure". A failure condition can be
1295 * due to simply not being in an active scan which
1296 * can occur if we send the scan abort before we
1297 * the microcode has notified us that a scan is
1298 * completed. */
1299 D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1300 ret = -EIO;
1301 }
1302
1303 il_free_pages(il, cmd.reply_page);
1304 return ret;
1305 }
1306
1307 static void
1308 il_complete_scan(struct il_priv *il, bool aborted)
1309 {
1310 /* check if scan was requested from mac80211 */
1311 if (il->scan_request) {
1312 D_SCAN("Complete scan in mac80211\n");
1313 ieee80211_scan_completed(il->hw, aborted);
1314 }
1315
1316 il->scan_vif = NULL;
1317 il->scan_request = NULL;
1318 }
1319
1320 void
1321 il_force_scan_end(struct il_priv *il)
1322 {
1323 lockdep_assert_held(&il->mutex);
1324
1325 if (!test_bit(S_SCANNING, &il->status)) {
1326 D_SCAN("Forcing scan end while not scanning\n");
1327 return;
1328 }
1329
1330 D_SCAN("Forcing scan end\n");
1331 clear_bit(S_SCANNING, &il->status);
1332 clear_bit(S_SCAN_HW, &il->status);
1333 clear_bit(S_SCAN_ABORTING, &il->status);
1334 il_complete_scan(il, true);
1335 }
1336
1337 static void
1338 il_do_scan_abort(struct il_priv *il)
1339 {
1340 int ret;
1341
1342 lockdep_assert_held(&il->mutex);
1343
1344 if (!test_bit(S_SCANNING, &il->status)) {
1345 D_SCAN("Not performing scan to abort\n");
1346 return;
1347 }
1348
1349 if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1350 D_SCAN("Scan abort in progress\n");
1351 return;
1352 }
1353
1354 ret = il_send_scan_abort(il);
1355 if (ret) {
1356 D_SCAN("Send scan abort failed %d\n", ret);
1357 il_force_scan_end(il);
1358 } else
1359 D_SCAN("Successfully send scan abort\n");
1360 }
1361
1362 /**
1363 * il_scan_cancel - Cancel any currently executing HW scan
1364 */
1365 int
1366 il_scan_cancel(struct il_priv *il)
1367 {
1368 D_SCAN("Queuing abort scan\n");
1369 queue_work(il->workqueue, &il->abort_scan);
1370 return 0;
1371 }
1372 EXPORT_SYMBOL(il_scan_cancel);
1373
1374 /**
1375 * il_scan_cancel_timeout - Cancel any currently executing HW scan
1376 * @ms: amount of time to wait (in milliseconds) for scan to abort
1377 *
1378 */
1379 int
1380 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1381 {
1382 unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1383
1384 lockdep_assert_held(&il->mutex);
1385
1386 D_SCAN("Scan cancel timeout\n");
1387
1388 il_do_scan_abort(il);
1389
1390 while (time_before_eq(jiffies, timeout)) {
1391 if (!test_bit(S_SCAN_HW, &il->status))
1392 break;
1393 msleep(20);
1394 }
1395
1396 return test_bit(S_SCAN_HW, &il->status);
1397 }
1398 EXPORT_SYMBOL(il_scan_cancel_timeout);
1399
1400 /* Service response to C_SCAN (0x80) */
1401 static void
1402 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1403 {
1404 #ifdef CONFIG_IWLEGACY_DEBUG
1405 struct il_rx_pkt *pkt = rxb_addr(rxb);
1406 struct il_scanreq_notification *notif =
1407 (struct il_scanreq_notification *)pkt->u.raw;
1408
1409 D_SCAN("Scan request status = 0x%x\n", notif->status);
1410 #endif
1411 }
1412
1413 /* Service N_SCAN_START (0x82) */
1414 static void
1415 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1416 {
1417 struct il_rx_pkt *pkt = rxb_addr(rxb);
1418 struct il_scanstart_notification *notif =
1419 (struct il_scanstart_notification *)pkt->u.raw;
1420 il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1421 D_SCAN("Scan start: " "%d [802.11%s] "
1422 "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1423 notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1424 le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1425 }
1426
1427 /* Service N_SCAN_RESULTS (0x83) */
1428 static void
1429 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1430 {
1431 #ifdef CONFIG_IWLEGACY_DEBUG
1432 struct il_rx_pkt *pkt = rxb_addr(rxb);
1433 struct il_scanresults_notification *notif =
1434 (struct il_scanresults_notification *)pkt->u.raw;
1435
1436 D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1437 "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1438 le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1439 le32_to_cpu(notif->stats[0]),
1440 le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1441 #endif
1442 }
1443
1444 /* Service N_SCAN_COMPLETE (0x84) */
1445 static void
1446 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1447 {
1448
1449 #ifdef CONFIG_IWLEGACY_DEBUG
1450 struct il_rx_pkt *pkt = rxb_addr(rxb);
1451 struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1452 #endif
1453
1454 D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1455 scan_notif->scanned_channels, scan_notif->tsf_low,
1456 scan_notif->tsf_high, scan_notif->status);
1457
1458 /* The HW is no longer scanning */
1459 clear_bit(S_SCAN_HW, &il->status);
1460
1461 D_SCAN("Scan on %sGHz took %dms\n",
1462 (il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
1463 jiffies_to_msecs(jiffies - il->scan_start));
1464
1465 queue_work(il->workqueue, &il->scan_completed);
1466 }
1467
1468 void
1469 il_setup_rx_scan_handlers(struct il_priv *il)
1470 {
1471 /* scan handlers */
1472 il->handlers[C_SCAN] = il_hdl_scan;
1473 il->handlers[N_SCAN_START] = il_hdl_scan_start;
1474 il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1475 il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1476 }
1477 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1478
1479 u16
1480 il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
1481 u8 n_probes)
1482 {
1483 if (band == IEEE80211_BAND_5GHZ)
1484 return IL_ACTIVE_DWELL_TIME_52 +
1485 IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1486 else
1487 return IL_ACTIVE_DWELL_TIME_24 +
1488 IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1489 }
1490 EXPORT_SYMBOL(il_get_active_dwell_time);
1491
1492 u16
1493 il_get_passive_dwell_time(struct il_priv *il, enum ieee80211_band band,
1494 struct ieee80211_vif *vif)
1495 {
1496 u16 value;
1497
1498 u16 passive =
1499 (band ==
1500 IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1501 IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1502 IL_PASSIVE_DWELL_TIME_52;
1503
1504 if (il_is_any_associated(il)) {
1505 /*
1506 * If we're associated, we clamp the maximum passive
1507 * dwell time to be 98% of the smallest beacon interval
1508 * (minus 2 * channel tune time)
1509 */
1510 value = il->vif ? il->vif->bss_conf.beacon_int : 0;
1511 if (value > IL_PASSIVE_DWELL_BASE || !value)
1512 value = IL_PASSIVE_DWELL_BASE;
1513 value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1514 passive = min(value, passive);
1515 }
1516
1517 return passive;
1518 }
1519 EXPORT_SYMBOL(il_get_passive_dwell_time);
1520
1521 void
1522 il_init_scan_params(struct il_priv *il)
1523 {
1524 u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1525 if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
1526 il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
1527 if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
1528 il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
1529 }
1530 EXPORT_SYMBOL(il_init_scan_params);
1531
1532 static int
1533 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1534 {
1535 int ret;
1536
1537 lockdep_assert_held(&il->mutex);
1538
1539 cancel_delayed_work(&il->scan_check);
1540
1541 if (!il_is_ready_rf(il)) {
1542 IL_WARN("Request scan called when driver not ready.\n");
1543 return -EIO;
1544 }
1545
1546 if (test_bit(S_SCAN_HW, &il->status)) {
1547 D_SCAN("Multiple concurrent scan requests in parallel.\n");
1548 return -EBUSY;
1549 }
1550
1551 if (test_bit(S_SCAN_ABORTING, &il->status)) {
1552 D_SCAN("Scan request while abort pending.\n");
1553 return -EBUSY;
1554 }
1555
1556 D_SCAN("Starting scan...\n");
1557
1558 set_bit(S_SCANNING, &il->status);
1559 il->scan_start = jiffies;
1560
1561 ret = il->ops->request_scan(il, vif);
1562 if (ret) {
1563 clear_bit(S_SCANNING, &il->status);
1564 return ret;
1565 }
1566
1567 queue_delayed_work(il->workqueue, &il->scan_check,
1568 IL_SCAN_CHECK_WATCHDOG);
1569
1570 return 0;
1571 }
1572
1573 int
1574 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1575 struct ieee80211_scan_request *hw_req)
1576 {
1577 struct cfg80211_scan_request *req = &hw_req->req;
1578 struct il_priv *il = hw->priv;
1579 int ret;
1580
1581 if (req->n_channels == 0) {
1582 IL_ERR("Can not scan on no channels.\n");
1583 return -EINVAL;
1584 }
1585
1586 mutex_lock(&il->mutex);
1587 D_MAC80211("enter\n");
1588
1589 if (test_bit(S_SCANNING, &il->status)) {
1590 D_SCAN("Scan already in progress.\n");
1591 ret = -EAGAIN;
1592 goto out_unlock;
1593 }
1594
1595 /* mac80211 will only ask for one band at a time */
1596 il->scan_request = req;
1597 il->scan_vif = vif;
1598 il->scan_band = req->channels[0]->band;
1599
1600 ret = il_scan_initiate(il, vif);
1601
1602 out_unlock:
1603 D_MAC80211("leave ret %d\n", ret);
1604 mutex_unlock(&il->mutex);
1605
1606 return ret;
1607 }
1608 EXPORT_SYMBOL(il_mac_hw_scan);
1609
1610 static void
1611 il_bg_scan_check(struct work_struct *data)
1612 {
1613 struct il_priv *il =
1614 container_of(data, struct il_priv, scan_check.work);
1615
1616 D_SCAN("Scan check work\n");
1617
1618 /* Since we are here firmware does not finish scan and
1619 * most likely is in bad shape, so we don't bother to
1620 * send abort command, just force scan complete to mac80211 */
1621 mutex_lock(&il->mutex);
1622 il_force_scan_end(il);
1623 mutex_unlock(&il->mutex);
1624 }
1625
1626 /**
1627 * il_fill_probe_req - fill in all required fields and IE for probe request
1628 */
1629
1630 u16
1631 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1632 const u8 *ta, const u8 *ies, int ie_len, int left)
1633 {
1634 int len = 0;
1635 u8 *pos = NULL;
1636
1637 /* Make sure there is enough space for the probe request,
1638 * two mandatory IEs and the data */
1639 left -= 24;
1640 if (left < 0)
1641 return 0;
1642
1643 frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1644 eth_broadcast_addr(frame->da);
1645 memcpy(frame->sa, ta, ETH_ALEN);
1646 eth_broadcast_addr(frame->bssid);
1647 frame->seq_ctrl = 0;
1648
1649 len += 24;
1650
1651 /* ...next IE... */
1652 pos = &frame->u.probe_req.variable[0];
1653
1654 /* fill in our indirect SSID IE */
1655 left -= 2;
1656 if (left < 0)
1657 return 0;
1658 *pos++ = WLAN_EID_SSID;
1659 *pos++ = 0;
1660
1661 len += 2;
1662
1663 if (WARN_ON(left < ie_len))
1664 return len;
1665
1666 if (ies && ie_len) {
1667 memcpy(pos, ies, ie_len);
1668 len += ie_len;
1669 }
1670
1671 return (u16) len;
1672 }
1673 EXPORT_SYMBOL(il_fill_probe_req);
1674
1675 static void
1676 il_bg_abort_scan(struct work_struct *work)
1677 {
1678 struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1679
1680 D_SCAN("Abort scan work\n");
1681
1682 /* We keep scan_check work queued in case when firmware will not
1683 * report back scan completed notification */
1684 mutex_lock(&il->mutex);
1685 il_scan_cancel_timeout(il, 200);
1686 mutex_unlock(&il->mutex);
1687 }
1688
1689 static void
1690 il_bg_scan_completed(struct work_struct *work)
1691 {
1692 struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1693 bool aborted;
1694
1695 D_SCAN("Completed scan.\n");
1696
1697 cancel_delayed_work(&il->scan_check);
1698
1699 mutex_lock(&il->mutex);
1700
1701 aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1702 if (aborted)
1703 D_SCAN("Aborted scan completed.\n");
1704
1705 if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1706 D_SCAN("Scan already completed.\n");
1707 goto out_settings;
1708 }
1709
1710 il_complete_scan(il, aborted);
1711
1712 out_settings:
1713 /* Can we still talk to firmware ? */
1714 if (!il_is_ready_rf(il))
1715 goto out;
1716
1717 /*
1718 * We do not commit power settings while scan is pending,
1719 * do it now if the settings changed.
1720 */
1721 il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1722 il_set_tx_power(il, il->tx_power_next, false);
1723
1724 il->ops->post_scan(il);
1725
1726 out:
1727 mutex_unlock(&il->mutex);
1728 }
1729
1730 void
1731 il_setup_scan_deferred_work(struct il_priv *il)
1732 {
1733 INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1734 INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1735 INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1736 }
1737 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1738
1739 void
1740 il_cancel_scan_deferred_work(struct il_priv *il)
1741 {
1742 cancel_work_sync(&il->abort_scan);
1743 cancel_work_sync(&il->scan_completed);
1744
1745 if (cancel_delayed_work_sync(&il->scan_check)) {
1746 mutex_lock(&il->mutex);
1747 il_force_scan_end(il);
1748 mutex_unlock(&il->mutex);
1749 }
1750 }
1751 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1752
1753 /* il->sta_lock must be held */
1754 static void
1755 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1756 {
1757
1758 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1759 IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1760 sta_id, il->stations[sta_id].sta.sta.addr);
1761
1762 if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1763 D_ASSOC("STA id %u addr %pM already present"
1764 " in uCode (according to driver)\n", sta_id,
1765 il->stations[sta_id].sta.sta.addr);
1766 } else {
1767 il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1768 D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1769 il->stations[sta_id].sta.sta.addr);
1770 }
1771 }
1772
1773 static int
1774 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1775 struct il_rx_pkt *pkt, bool sync)
1776 {
1777 u8 sta_id = addsta->sta.sta_id;
1778 unsigned long flags;
1779 int ret = -EIO;
1780
1781 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1782 IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1783 return ret;
1784 }
1785
1786 D_INFO("Processing response for adding station %u\n", sta_id);
1787
1788 spin_lock_irqsave(&il->sta_lock, flags);
1789
1790 switch (pkt->u.add_sta.status) {
1791 case ADD_STA_SUCCESS_MSK:
1792 D_INFO("C_ADD_STA PASSED\n");
1793 il_sta_ucode_activate(il, sta_id);
1794 ret = 0;
1795 break;
1796 case ADD_STA_NO_ROOM_IN_TBL:
1797 IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1798 break;
1799 case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1800 IL_ERR("Adding station %d failed, no block ack resource.\n",
1801 sta_id);
1802 break;
1803 case ADD_STA_MODIFY_NON_EXIST_STA:
1804 IL_ERR("Attempting to modify non-existing station %d\n",
1805 sta_id);
1806 break;
1807 default:
1808 D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1809 break;
1810 }
1811
1812 D_INFO("%s station id %u addr %pM\n",
1813 il->stations[sta_id].sta.mode ==
1814 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1815 il->stations[sta_id].sta.sta.addr);
1816
1817 /*
1818 * XXX: The MAC address in the command buffer is often changed from
1819 * the original sent to the device. That is, the MAC address
1820 * written to the command buffer often is not the same MAC address
1821 * read from the command buffer when the command returns. This
1822 * issue has not yet been resolved and this debugging is left to
1823 * observe the problem.
1824 */
1825 D_INFO("%s station according to cmd buffer %pM\n",
1826 il->stations[sta_id].sta.mode ==
1827 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1828 spin_unlock_irqrestore(&il->sta_lock, flags);
1829
1830 return ret;
1831 }
1832
1833 static void
1834 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1835 struct il_rx_pkt *pkt)
1836 {
1837 struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1838
1839 il_process_add_sta_resp(il, addsta, pkt, false);
1840
1841 }
1842
1843 int
1844 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1845 {
1846 struct il_rx_pkt *pkt = NULL;
1847 int ret = 0;
1848 u8 data[sizeof(*sta)];
1849 struct il_host_cmd cmd = {
1850 .id = C_ADD_STA,
1851 .flags = flags,
1852 .data = data,
1853 };
1854 u8 sta_id __maybe_unused = sta->sta.sta_id;
1855
1856 D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1857 flags & CMD_ASYNC ? "a" : "");
1858
1859 if (flags & CMD_ASYNC)
1860 cmd.callback = il_add_sta_callback;
1861 else {
1862 cmd.flags |= CMD_WANT_SKB;
1863 might_sleep();
1864 }
1865
1866 cmd.len = il->ops->build_addsta_hcmd(sta, data);
1867 ret = il_send_cmd(il, &cmd);
1868
1869 if (ret || (flags & CMD_ASYNC))
1870 return ret;
1871
1872 if (ret == 0) {
1873 pkt = (struct il_rx_pkt *)cmd.reply_page;
1874 ret = il_process_add_sta_resp(il, sta, pkt, true);
1875 }
1876 il_free_pages(il, cmd.reply_page);
1877
1878 return ret;
1879 }
1880 EXPORT_SYMBOL(il_send_add_sta);
1881
1882 static void
1883 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
1884 {
1885 struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1886 __le32 sta_flags;
1887
1888 if (!sta || !sta_ht_inf->ht_supported)
1889 goto done;
1890
1891 D_ASSOC("spatial multiplexing power save mode: %s\n",
1892 (sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
1893 (sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
1894 "disabled");
1895
1896 sta_flags = il->stations[idx].sta.station_flags;
1897
1898 sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1899
1900 switch (sta->smps_mode) {
1901 case IEEE80211_SMPS_STATIC:
1902 sta_flags |= STA_FLG_MIMO_DIS_MSK;
1903 break;
1904 case IEEE80211_SMPS_DYNAMIC:
1905 sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1906 break;
1907 case IEEE80211_SMPS_OFF:
1908 break;
1909 default:
1910 IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
1911 break;
1912 }
1913
1914 sta_flags |=
1915 cpu_to_le32((u32) sta_ht_inf->
1916 ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1917
1918 sta_flags |=
1919 cpu_to_le32((u32) sta_ht_inf->
1920 ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1921
1922 if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
1923 sta_flags |= STA_FLG_HT40_EN_MSK;
1924 else
1925 sta_flags &= ~STA_FLG_HT40_EN_MSK;
1926
1927 il->stations[idx].sta.station_flags = sta_flags;
1928 done:
1929 return;
1930 }
1931
1932 /**
1933 * il_prep_station - Prepare station information for addition
1934 *
1935 * should be called with sta_lock held
1936 */
1937 u8
1938 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
1939 struct ieee80211_sta *sta)
1940 {
1941 struct il_station_entry *station;
1942 int i;
1943 u8 sta_id = IL_INVALID_STATION;
1944 u16 rate;
1945
1946 if (is_ap)
1947 sta_id = IL_AP_ID;
1948 else if (is_broadcast_ether_addr(addr))
1949 sta_id = il->hw_params.bcast_id;
1950 else
1951 for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1952 if (ether_addr_equal(il->stations[i].sta.sta.addr,
1953 addr)) {
1954 sta_id = i;
1955 break;
1956 }
1957
1958 if (!il->stations[i].used &&
1959 sta_id == IL_INVALID_STATION)
1960 sta_id = i;
1961 }
1962
1963 /*
1964 * These two conditions have the same outcome, but keep them
1965 * separate
1966 */
1967 if (unlikely(sta_id == IL_INVALID_STATION))
1968 return sta_id;
1969
1970 /*
1971 * uCode is not able to deal with multiple requests to add a
1972 * station. Keep track if one is in progress so that we do not send
1973 * another.
1974 */
1975 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1976 D_INFO("STA %d already in process of being added.\n", sta_id);
1977 return sta_id;
1978 }
1979
1980 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1981 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1982 ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
1983 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1984 sta_id, addr);
1985 return sta_id;
1986 }
1987
1988 station = &il->stations[sta_id];
1989 station->used = IL_STA_DRIVER_ACTIVE;
1990 D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1991 il->num_stations++;
1992
1993 /* Set up the C_ADD_STA command to send to device */
1994 memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1995 memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1996 station->sta.mode = 0;
1997 station->sta.sta.sta_id = sta_id;
1998 station->sta.station_flags = 0;
1999
2000 /*
2001 * OK to call unconditionally, since local stations (IBSS BSSID
2002 * STA and broadcast STA) pass in a NULL sta, and mac80211
2003 * doesn't allow HT IBSS.
2004 */
2005 il_set_ht_add_station(il, sta_id, sta);
2006
2007 /* 3945 only */
2008 rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
2009 /* Turn on both antennas for the station... */
2010 station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
2011
2012 return sta_id;
2013
2014 }
2015 EXPORT_SYMBOL_GPL(il_prep_station);
2016
2017 #define STA_WAIT_TIMEOUT (HZ/2)
2018
2019 /**
2020 * il_add_station_common -
2021 */
2022 int
2023 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
2024 struct ieee80211_sta *sta, u8 *sta_id_r)
2025 {
2026 unsigned long flags_spin;
2027 int ret = 0;
2028 u8 sta_id;
2029 struct il_addsta_cmd sta_cmd;
2030
2031 *sta_id_r = 0;
2032 spin_lock_irqsave(&il->sta_lock, flags_spin);
2033 sta_id = il_prep_station(il, addr, is_ap, sta);
2034 if (sta_id == IL_INVALID_STATION) {
2035 IL_ERR("Unable to prepare station %pM for addition\n", addr);
2036 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2037 return -EINVAL;
2038 }
2039
2040 /*
2041 * uCode is not able to deal with multiple requests to add a
2042 * station. Keep track if one is in progress so that we do not send
2043 * another.
2044 */
2045 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
2046 D_INFO("STA %d already in process of being added.\n", sta_id);
2047 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2048 return -EEXIST;
2049 }
2050
2051 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
2052 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2053 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
2054 sta_id, addr);
2055 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2056 return -EEXIST;
2057 }
2058
2059 il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
2060 memcpy(&sta_cmd, &il->stations[sta_id].sta,
2061 sizeof(struct il_addsta_cmd));
2062 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2063
2064 /* Add station to device's station table */
2065 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2066 if (ret) {
2067 spin_lock_irqsave(&il->sta_lock, flags_spin);
2068 IL_ERR("Adding station %pM failed.\n",
2069 il->stations[sta_id].sta.sta.addr);
2070 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2071 il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2072 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2073 }
2074 *sta_id_r = sta_id;
2075 return ret;
2076 }
2077 EXPORT_SYMBOL(il_add_station_common);
2078
2079 /**
2080 * il_sta_ucode_deactivate - deactivate ucode status for a station
2081 *
2082 * il->sta_lock must be held
2083 */
2084 static void
2085 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
2086 {
2087 /* Ucode must be active and driver must be non active */
2088 if ((il->stations[sta_id].
2089 used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
2090 IL_STA_UCODE_ACTIVE)
2091 IL_ERR("removed non active STA %u\n", sta_id);
2092
2093 il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
2094
2095 memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
2096 D_ASSOC("Removed STA %u\n", sta_id);
2097 }
2098
2099 static int
2100 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
2101 bool temporary)
2102 {
2103 struct il_rx_pkt *pkt;
2104 int ret;
2105
2106 unsigned long flags_spin;
2107 struct il_rem_sta_cmd rm_sta_cmd;
2108
2109 struct il_host_cmd cmd = {
2110 .id = C_REM_STA,
2111 .len = sizeof(struct il_rem_sta_cmd),
2112 .flags = CMD_SYNC,
2113 .data = &rm_sta_cmd,
2114 };
2115
2116 memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
2117 rm_sta_cmd.num_sta = 1;
2118 memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
2119
2120 cmd.flags |= CMD_WANT_SKB;
2121
2122 ret = il_send_cmd(il, &cmd);
2123
2124 if (ret)
2125 return ret;
2126
2127 pkt = (struct il_rx_pkt *)cmd.reply_page;
2128 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
2129 IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
2130 ret = -EIO;
2131 }
2132
2133 if (!ret) {
2134 switch (pkt->u.rem_sta.status) {
2135 case REM_STA_SUCCESS_MSK:
2136 if (!temporary) {
2137 spin_lock_irqsave(&il->sta_lock, flags_spin);
2138 il_sta_ucode_deactivate(il, sta_id);
2139 spin_unlock_irqrestore(&il->sta_lock,
2140 flags_spin);
2141 }
2142 D_ASSOC("C_REM_STA PASSED\n");
2143 break;
2144 default:
2145 ret = -EIO;
2146 IL_ERR("C_REM_STA failed\n");
2147 break;
2148 }
2149 }
2150 il_free_pages(il, cmd.reply_page);
2151
2152 return ret;
2153 }
2154
2155 /**
2156 * il_remove_station - Remove driver's knowledge of station.
2157 */
2158 int
2159 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
2160 {
2161 unsigned long flags;
2162
2163 if (!il_is_ready(il)) {
2164 D_INFO("Unable to remove station %pM, device not ready.\n",
2165 addr);
2166 /*
2167 * It is typical for stations to be removed when we are
2168 * going down. Return success since device will be down
2169 * soon anyway
2170 */
2171 return 0;
2172 }
2173
2174 D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr);
2175
2176 if (WARN_ON(sta_id == IL_INVALID_STATION))
2177 return -EINVAL;
2178
2179 spin_lock_irqsave(&il->sta_lock, flags);
2180
2181 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2182 D_INFO("Removing %pM but non DRIVER active\n", addr);
2183 goto out_err;
2184 }
2185
2186 if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2187 D_INFO("Removing %pM but non UCODE active\n", addr);
2188 goto out_err;
2189 }
2190
2191 if (il->stations[sta_id].used & IL_STA_LOCAL) {
2192 kfree(il->stations[sta_id].lq);
2193 il->stations[sta_id].lq = NULL;
2194 }
2195
2196 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2197
2198 il->num_stations--;
2199
2200 BUG_ON(il->num_stations < 0);
2201
2202 spin_unlock_irqrestore(&il->sta_lock, flags);
2203
2204 return il_send_remove_station(il, addr, sta_id, false);
2205 out_err:
2206 spin_unlock_irqrestore(&il->sta_lock, flags);
2207 return -EINVAL;
2208 }
2209 EXPORT_SYMBOL_GPL(il_remove_station);
2210
2211 /**
2212 * il_clear_ucode_stations - clear ucode station table bits
2213 *
2214 * This function clears all the bits in the driver indicating
2215 * which stations are active in the ucode. Call when something
2216 * other than explicit station management would cause this in
2217 * the ucode, e.g. unassociated RXON.
2218 */
2219 void
2220 il_clear_ucode_stations(struct il_priv *il)
2221 {
2222 int i;
2223 unsigned long flags_spin;
2224 bool cleared = false;
2225
2226 D_INFO("Clearing ucode stations in driver\n");
2227
2228 spin_lock_irqsave(&il->sta_lock, flags_spin);
2229 for (i = 0; i < il->hw_params.max_stations; i++) {
2230 if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2231 D_INFO("Clearing ucode active for station %d\n", i);
2232 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2233 cleared = true;
2234 }
2235 }
2236 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2237
2238 if (!cleared)
2239 D_INFO("No active stations found to be cleared\n");
2240 }
2241 EXPORT_SYMBOL(il_clear_ucode_stations);
2242
2243 /**
2244 * il_restore_stations() - Restore driver known stations to device
2245 *
2246 * All stations considered active by driver, but not present in ucode, is
2247 * restored.
2248 *
2249 * Function sleeps.
2250 */
2251 void
2252 il_restore_stations(struct il_priv *il)
2253 {
2254 struct il_addsta_cmd sta_cmd;
2255 struct il_link_quality_cmd lq;
2256 unsigned long flags_spin;
2257 int i;
2258 bool found = false;
2259 int ret;
2260 bool send_lq;
2261
2262 if (!il_is_ready(il)) {
2263 D_INFO("Not ready yet, not restoring any stations.\n");
2264 return;
2265 }
2266
2267 D_ASSOC("Restoring all known stations ... start.\n");
2268 spin_lock_irqsave(&il->sta_lock, flags_spin);
2269 for (i = 0; i < il->hw_params.max_stations; i++) {
2270 if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2271 !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2272 D_ASSOC("Restoring sta %pM\n",
2273 il->stations[i].sta.sta.addr);
2274 il->stations[i].sta.mode = 0;
2275 il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2276 found = true;
2277 }
2278 }
2279
2280 for (i = 0; i < il->hw_params.max_stations; i++) {
2281 if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2282 memcpy(&sta_cmd, &il->stations[i].sta,
2283 sizeof(struct il_addsta_cmd));
2284 send_lq = false;
2285 if (il->stations[i].lq) {
2286 memcpy(&lq, il->stations[i].lq,
2287 sizeof(struct il_link_quality_cmd));
2288 send_lq = true;
2289 }
2290 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2291 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2292 if (ret) {
2293 spin_lock_irqsave(&il->sta_lock, flags_spin);
2294 IL_ERR("Adding station %pM failed.\n",
2295 il->stations[i].sta.sta.addr);
2296 il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2297 il->stations[i].used &=
2298 ~IL_STA_UCODE_INPROGRESS;
2299 spin_unlock_irqrestore(&il->sta_lock,
2300 flags_spin);
2301 }
2302 /*
2303 * Rate scaling has already been initialized, send
2304 * current LQ command
2305 */
2306 if (send_lq)
2307 il_send_lq_cmd(il, &lq, CMD_SYNC, true);
2308 spin_lock_irqsave(&il->sta_lock, flags_spin);
2309 il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2310 }
2311 }
2312
2313 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2314 if (!found)
2315 D_INFO("Restoring all known stations"
2316 " .... no stations to be restored.\n");
2317 else
2318 D_INFO("Restoring all known stations" " .... complete.\n");
2319 }
2320 EXPORT_SYMBOL(il_restore_stations);
2321
2322 int
2323 il_get_free_ucode_key_idx(struct il_priv *il)
2324 {
2325 int i;
2326
2327 for (i = 0; i < il->sta_key_max_num; i++)
2328 if (!test_and_set_bit(i, &il->ucode_key_table))
2329 return i;
2330
2331 return WEP_INVALID_OFFSET;
2332 }
2333 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2334
2335 void
2336 il_dealloc_bcast_stations(struct il_priv *il)
2337 {
2338 unsigned long flags;
2339 int i;
2340
2341 spin_lock_irqsave(&il->sta_lock, flags);
2342 for (i = 0; i < il->hw_params.max_stations; i++) {
2343 if (!(il->stations[i].used & IL_STA_BCAST))
2344 continue;
2345
2346 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2347 il->num_stations--;
2348 BUG_ON(il->num_stations < 0);
2349 kfree(il->stations[i].lq);
2350 il->stations[i].lq = NULL;
2351 }
2352 spin_unlock_irqrestore(&il->sta_lock, flags);
2353 }
2354 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2355
2356 #ifdef CONFIG_IWLEGACY_DEBUG
2357 static void
2358 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2359 {
2360 int i;
2361 D_RATE("lq station id 0x%x\n", lq->sta_id);
2362 D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2363 lq->general_params.dual_stream_ant_msk);
2364
2365 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2366 D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2367 }
2368 #else
2369 static inline void
2370 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2371 {
2372 }
2373 #endif
2374
2375 /**
2376 * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2377 *
2378 * It sometimes happens when a HT rate has been in use and we
2379 * loose connectivity with AP then mac80211 will first tell us that the
2380 * current channel is not HT anymore before removing the station. In such a
2381 * scenario the RXON flags will be updated to indicate we are not
2382 * communicating HT anymore, but the LQ command may still contain HT rates.
2383 * Test for this to prevent driver from sending LQ command between the time
2384 * RXON flags are updated and when LQ command is updated.
2385 */
2386 static bool
2387 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
2388 {
2389 int i;
2390
2391 if (il->ht.enabled)
2392 return true;
2393
2394 D_INFO("Channel %u is not an HT channel\n", il->active.channel);
2395 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2396 if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2397 D_INFO("idx %d of LQ expects HT channel\n", i);
2398 return false;
2399 }
2400 }
2401 return true;
2402 }
2403
2404 /**
2405 * il_send_lq_cmd() - Send link quality command
2406 * @init: This command is sent as part of station initialization right
2407 * after station has been added.
2408 *
2409 * The link quality command is sent as the last step of station creation.
2410 * This is the special case in which init is set and we call a callback in
2411 * this case to clear the state indicating that station creation is in
2412 * progress.
2413 */
2414 int
2415 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
2416 u8 flags, bool init)
2417 {
2418 int ret = 0;
2419 unsigned long flags_spin;
2420
2421 struct il_host_cmd cmd = {
2422 .id = C_TX_LINK_QUALITY_CMD,
2423 .len = sizeof(struct il_link_quality_cmd),
2424 .flags = flags,
2425 .data = lq,
2426 };
2427
2428 if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2429 return -EINVAL;
2430
2431 spin_lock_irqsave(&il->sta_lock, flags_spin);
2432 if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2433 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2434 return -EINVAL;
2435 }
2436 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2437
2438 il_dump_lq_cmd(il, lq);
2439 BUG_ON(init && (cmd.flags & CMD_ASYNC));
2440
2441 if (il_is_lq_table_valid(il, lq))
2442 ret = il_send_cmd(il, &cmd);
2443 else
2444 ret = -EINVAL;
2445
2446 if (cmd.flags & CMD_ASYNC)
2447 return ret;
2448
2449 if (init) {
2450 D_INFO("init LQ command complete,"
2451 " clearing sta addition status for sta %d\n",
2452 lq->sta_id);
2453 spin_lock_irqsave(&il->sta_lock, flags_spin);
2454 il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2455 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2456 }
2457 return ret;
2458 }
2459 EXPORT_SYMBOL(il_send_lq_cmd);
2460
2461 int
2462 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2463 struct ieee80211_sta *sta)
2464 {
2465 struct il_priv *il = hw->priv;
2466 struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2467 int ret;
2468
2469 mutex_lock(&il->mutex);
2470 D_MAC80211("enter station %pM\n", sta->addr);
2471
2472 ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2473 if (ret)
2474 IL_ERR("Error removing station %pM\n", sta->addr);
2475
2476 D_MAC80211("leave ret %d\n", ret);
2477 mutex_unlock(&il->mutex);
2478
2479 return ret;
2480 }
2481 EXPORT_SYMBOL(il_mac_sta_remove);
2482
2483 /************************** RX-FUNCTIONS ****************************/
2484 /*
2485 * Rx theory of operation
2486 *
2487 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2488 * each of which point to Receive Buffers to be filled by the NIC. These get
2489 * used not only for Rx frames, but for any command response or notification
2490 * from the NIC. The driver and NIC manage the Rx buffers by means
2491 * of idxes into the circular buffer.
2492 *
2493 * Rx Queue Indexes
2494 * The host/firmware share two idx registers for managing the Rx buffers.
2495 *
2496 * The READ idx maps to the first position that the firmware may be writing
2497 * to -- the driver can read up to (but not including) this position and get
2498 * good data.
2499 * The READ idx is managed by the firmware once the card is enabled.
2500 *
2501 * The WRITE idx maps to the last position the driver has read from -- the
2502 * position preceding WRITE is the last slot the firmware can place a packet.
2503 *
2504 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2505 * WRITE = READ.
2506 *
2507 * During initialization, the host sets up the READ queue position to the first
2508 * IDX position, and WRITE to the last (READ - 1 wrapped)
2509 *
2510 * When the firmware places a packet in a buffer, it will advance the READ idx
2511 * and fire the RX interrupt. The driver can then query the READ idx and
2512 * process as many packets as possible, moving the WRITE idx forward as it
2513 * resets the Rx queue buffers with new memory.
2514 *
2515 * The management in the driver is as follows:
2516 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
2517 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2518 * to replenish the iwl->rxq->rx_free.
2519 * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2520 * iwl->rxq is replenished and the READ IDX is updated (updating the
2521 * 'processed' and 'read' driver idxes as well)
2522 * + A received packet is processed and handed to the kernel network stack,
2523 * detached from the iwl->rxq. The driver 'processed' idx is updated.
2524 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2525 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2526 * IDX is not incremented and iwl->status(RX_STALLED) is set. If there
2527 * were enough free buffers and RX_STALLED is set it is cleared.
2528 *
2529 *
2530 * Driver sequence:
2531 *
2532 * il_rx_queue_alloc() Allocates rx_free
2533 * il_rx_replenish() Replenishes rx_free list from rx_used, and calls
2534 * il_rx_queue_restock
2535 * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2536 * queue, updates firmware pointers, and updates
2537 * the WRITE idx. If insufficient rx_free buffers
2538 * are available, schedules il_rx_replenish
2539 *
2540 * -- enable interrupts --
2541 * ISR - il_rx() Detach il_rx_bufs from pool up to the
2542 * READ IDX, detaching the SKB from the pool.
2543 * Moves the packet buffer from queue to rx_used.
2544 * Calls il_rx_queue_restock to refill any empty
2545 * slots.
2546 * ...
2547 *
2548 */
2549
2550 /**
2551 * il_rx_queue_space - Return number of free slots available in queue.
2552 */
2553 int
2554 il_rx_queue_space(const struct il_rx_queue *q)
2555 {
2556 int s = q->read - q->write;
2557 if (s <= 0)
2558 s += RX_QUEUE_SIZE;
2559 /* keep some buffer to not confuse full and empty queue */
2560 s -= 2;
2561 if (s < 0)
2562 s = 0;
2563 return s;
2564 }
2565 EXPORT_SYMBOL(il_rx_queue_space);
2566
2567 /**
2568 * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2569 */
2570 void
2571 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2572 {
2573 unsigned long flags;
2574 u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2575 u32 reg;
2576
2577 spin_lock_irqsave(&q->lock, flags);
2578
2579 if (q->need_update == 0)
2580 goto exit_unlock;
2581
2582 /* If power-saving is in use, make sure device is awake */
2583 if (test_bit(S_POWER_PMI, &il->status)) {
2584 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2585
2586 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2587 D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2588 reg);
2589 il_set_bit(il, CSR_GP_CNTRL,
2590 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2591 goto exit_unlock;
2592 }
2593
2594 q->write_actual = (q->write & ~0x7);
2595 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2596
2597 /* Else device is assumed to be awake */
2598 } else {
2599 /* Device expects a multiple of 8 */
2600 q->write_actual = (q->write & ~0x7);
2601 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2602 }
2603
2604 q->need_update = 0;
2605
2606 exit_unlock:
2607 spin_unlock_irqrestore(&q->lock, flags);
2608 }
2609 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2610
2611 int
2612 il_rx_queue_alloc(struct il_priv *il)
2613 {
2614 struct il_rx_queue *rxq = &il->rxq;
2615 struct device *dev = &il->pci_dev->dev;
2616 int i;
2617
2618 spin_lock_init(&rxq->lock);
2619 INIT_LIST_HEAD(&rxq->rx_free);
2620 INIT_LIST_HEAD(&rxq->rx_used);
2621
2622 /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2623 rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2624 GFP_KERNEL);
2625 if (!rxq->bd)
2626 goto err_bd;
2627
2628 rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2629 &rxq->rb_stts_dma, GFP_KERNEL);
2630 if (!rxq->rb_stts)
2631 goto err_rb;
2632
2633 /* Fill the rx_used queue with _all_ of the Rx buffers */
2634 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2635 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2636
2637 /* Set us so that we have processed and used all buffers, but have
2638 * not restocked the Rx queue with fresh buffers */
2639 rxq->read = rxq->write = 0;
2640 rxq->write_actual = 0;
2641 rxq->free_count = 0;
2642 rxq->need_update = 0;
2643 return 0;
2644
2645 err_rb:
2646 dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2647 rxq->bd_dma);
2648 err_bd:
2649 return -ENOMEM;
2650 }
2651 EXPORT_SYMBOL(il_rx_queue_alloc);
2652
2653 void
2654 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2655 {
2656 struct il_rx_pkt *pkt = rxb_addr(rxb);
2657 struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2658
2659 if (!report->state) {
2660 D_11H("Spectrum Measure Notification: Start\n");
2661 return;
2662 }
2663
2664 memcpy(&il->measure_report, report, sizeof(*report));
2665 il->measurement_status |= MEASUREMENT_READY;
2666 }
2667 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2668
2669 /*
2670 * returns non-zero if packet should be dropped
2671 */
2672 int
2673 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2674 u32 decrypt_res, struct ieee80211_rx_status *stats)
2675 {
2676 u16 fc = le16_to_cpu(hdr->frame_control);
2677
2678 /*
2679 * All contexts have the same setting here due to it being
2680 * a module parameter, so OK to check any context.
2681 */
2682 if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2683 return 0;
2684
2685 if (!(fc & IEEE80211_FCTL_PROTECTED))
2686 return 0;
2687
2688 D_RX("decrypt_res:0x%x\n", decrypt_res);
2689 switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2690 case RX_RES_STATUS_SEC_TYPE_TKIP:
2691 /* The uCode has got a bad phase 1 Key, pushes the packet.
2692 * Decryption will be done in SW. */
2693 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2694 RX_RES_STATUS_BAD_KEY_TTAK)
2695 break;
2696
2697 case RX_RES_STATUS_SEC_TYPE_WEP:
2698 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2699 RX_RES_STATUS_BAD_ICV_MIC) {
2700 /* bad ICV, the packet is destroyed since the
2701 * decryption is inplace, drop it */
2702 D_RX("Packet destroyed\n");
2703 return -1;
2704 }
2705 case RX_RES_STATUS_SEC_TYPE_CCMP:
2706 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2707 RX_RES_STATUS_DECRYPT_OK) {
2708 D_RX("hw decrypt successfully!!!\n");
2709 stats->flag |= RX_FLAG_DECRYPTED;
2710 }
2711 break;
2712
2713 default:
2714 break;
2715 }
2716 return 0;
2717 }
2718 EXPORT_SYMBOL(il_set_decrypted_flag);
2719
2720 /**
2721 * il_txq_update_write_ptr - Send new write idx to hardware
2722 */
2723 void
2724 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2725 {
2726 u32 reg = 0;
2727 int txq_id = txq->q.id;
2728
2729 if (txq->need_update == 0)
2730 return;
2731
2732 /* if we're trying to save power */
2733 if (test_bit(S_POWER_PMI, &il->status)) {
2734 /* wake up nic if it's powered down ...
2735 * uCode will wake up, and interrupt us again, so next
2736 * time we'll skip this part. */
2737 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2738
2739 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2740 D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2741 txq_id, reg);
2742 il_set_bit(il, CSR_GP_CNTRL,
2743 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2744 return;
2745 }
2746
2747 il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2748
2749 /*
2750 * else not in power-save mode,
2751 * uCode will never sleep when we're
2752 * trying to tx (during RFKILL, we're not trying to tx).
2753 */
2754 } else
2755 _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2756 txq->need_update = 0;
2757 }
2758 EXPORT_SYMBOL(il_txq_update_write_ptr);
2759
2760 /**
2761 * il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
2762 */
2763 void
2764 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2765 {
2766 struct il_tx_queue *txq = &il->txq[txq_id];
2767 struct il_queue *q = &txq->q;
2768
2769 if (q->n_bd == 0)
2770 return;
2771
2772 while (q->write_ptr != q->read_ptr) {
2773 il->ops->txq_free_tfd(il, txq);
2774 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2775 }
2776 }
2777 EXPORT_SYMBOL(il_tx_queue_unmap);
2778
2779 /**
2780 * il_tx_queue_free - Deallocate DMA queue.
2781 * @txq: Transmit queue to deallocate.
2782 *
2783 * Empty queue by removing and destroying all BD's.
2784 * Free all buffers.
2785 * 0-fill, but do not free "txq" descriptor structure.
2786 */
2787 void
2788 il_tx_queue_free(struct il_priv *il, int txq_id)
2789 {
2790 struct il_tx_queue *txq = &il->txq[txq_id];
2791 struct device *dev = &il->pci_dev->dev;
2792 int i;
2793
2794 il_tx_queue_unmap(il, txq_id);
2795
2796 /* De-alloc array of command/tx buffers */
2797 for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2798 kfree(txq->cmd[i]);
2799
2800 /* De-alloc circular buffer of TFDs */
2801 if (txq->q.n_bd)
2802 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2803 txq->tfds, txq->q.dma_addr);
2804
2805 /* De-alloc array of per-TFD driver data */
2806 kfree(txq->skbs);
2807 txq->skbs = NULL;
2808
2809 /* deallocate arrays */
2810 kfree(txq->cmd);
2811 kfree(txq->meta);
2812 txq->cmd = NULL;
2813 txq->meta = NULL;
2814
2815 /* 0-fill queue descriptor structure */
2816 memset(txq, 0, sizeof(*txq));
2817 }
2818 EXPORT_SYMBOL(il_tx_queue_free);
2819
2820 /**
2821 * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2822 */
2823 void
2824 il_cmd_queue_unmap(struct il_priv *il)
2825 {
2826 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2827 struct il_queue *q = &txq->q;
2828 int i;
2829
2830 if (q->n_bd == 0)
2831 return;
2832
2833 while (q->read_ptr != q->write_ptr) {
2834 i = il_get_cmd_idx(q, q->read_ptr, 0);
2835
2836 if (txq->meta[i].flags & CMD_MAPPED) {
2837 pci_unmap_single(il->pci_dev,
2838 dma_unmap_addr(&txq->meta[i], mapping),
2839 dma_unmap_len(&txq->meta[i], len),
2840 PCI_DMA_BIDIRECTIONAL);
2841 txq->meta[i].flags = 0;
2842 }
2843
2844 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2845 }
2846
2847 i = q->n_win;
2848 if (txq->meta[i].flags & CMD_MAPPED) {
2849 pci_unmap_single(il->pci_dev,
2850 dma_unmap_addr(&txq->meta[i], mapping),
2851 dma_unmap_len(&txq->meta[i], len),
2852 PCI_DMA_BIDIRECTIONAL);
2853 txq->meta[i].flags = 0;
2854 }
2855 }
2856 EXPORT_SYMBOL(il_cmd_queue_unmap);
2857
2858 /**
2859 * il_cmd_queue_free - Deallocate DMA queue.
2860 * @txq: Transmit queue to deallocate.
2861 *
2862 * Empty queue by removing and destroying all BD's.
2863 * Free all buffers.
2864 * 0-fill, but do not free "txq" descriptor structure.
2865 */
2866 void
2867 il_cmd_queue_free(struct il_priv *il)
2868 {
2869 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2870 struct device *dev = &il->pci_dev->dev;
2871 int i;
2872
2873 il_cmd_queue_unmap(il);
2874
2875 /* De-alloc array of command/tx buffers */
2876 for (i = 0; i <= TFD_CMD_SLOTS; i++)
2877 kfree(txq->cmd[i]);
2878
2879 /* De-alloc circular buffer of TFDs */
2880 if (txq->q.n_bd)
2881 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2882 txq->tfds, txq->q.dma_addr);
2883
2884 /* deallocate arrays */
2885 kfree(txq->cmd);
2886 kfree(txq->meta);
2887 txq->cmd = NULL;
2888 txq->meta = NULL;
2889
2890 /* 0-fill queue descriptor structure */
2891 memset(txq, 0, sizeof(*txq));
2892 }
2893 EXPORT_SYMBOL(il_cmd_queue_free);
2894
2895 /*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
2896 * DMA services
2897 *
2898 * Theory of operation
2899 *
2900 * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2901 * of buffer descriptors, each of which points to one or more data buffers for
2902 * the device to read from or fill. Driver and device exchange status of each
2903 * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
2904 * entries in each circular buffer, to protect against confusing empty and full
2905 * queue states.
2906 *
2907 * The device reads or writes the data in the queues via the device's several
2908 * DMA/FIFO channels. Each queue is mapped to a single DMA channel.
2909 *
2910 * For Tx queue, there are low mark and high mark limits. If, after queuing
2911 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2912 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2913 * Tx queue resumed.
2914 *
2915 * See more detailed info in 4965.h.
2916 ***************************************************/
2917
2918 int
2919 il_queue_space(const struct il_queue *q)
2920 {
2921 int s = q->read_ptr - q->write_ptr;
2922
2923 if (q->read_ptr > q->write_ptr)
2924 s -= q->n_bd;
2925
2926 if (s <= 0)
2927 s += q->n_win;
2928 /* keep some reserve to not confuse empty and full situations */
2929 s -= 2;
2930 if (s < 0)
2931 s = 0;
2932 return s;
2933 }
2934 EXPORT_SYMBOL(il_queue_space);
2935
2936
2937 /**
2938 * il_queue_init - Initialize queue's high/low-water and read/write idxes
2939 */
2940 static int
2941 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
2942 {
2943 /*
2944 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2945 * il_queue_inc_wrap and il_queue_dec_wrap are broken.
2946 */
2947 BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2948 /* FIXME: remove q->n_bd */
2949 q->n_bd = TFD_QUEUE_SIZE_MAX;
2950
2951 q->n_win = slots;
2952 q->id = id;
2953
2954 /* slots_must be power-of-two size, otherwise
2955 * il_get_cmd_idx is broken. */
2956 BUG_ON(!is_power_of_2(slots));
2957
2958 q->low_mark = q->n_win / 4;
2959 if (q->low_mark < 4)
2960 q->low_mark = 4;
2961
2962 q->high_mark = q->n_win / 8;
2963 if (q->high_mark < 2)
2964 q->high_mark = 2;
2965
2966 q->write_ptr = q->read_ptr = 0;
2967
2968 return 0;
2969 }
2970
2971 /**
2972 * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2973 */
2974 static int
2975 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2976 {
2977 struct device *dev = &il->pci_dev->dev;
2978 size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2979
2980 /* Driver ilate data, only for Tx (not command) queues,
2981 * not shared with device. */
2982 if (id != il->cmd_queue) {
2983 txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX,
2984 sizeof(struct sk_buff *),
2985 GFP_KERNEL);
2986 if (!txq->skbs) {
2987 IL_ERR("Fail to alloc skbs\n");
2988 goto error;
2989 }
2990 } else
2991 txq->skbs = NULL;
2992
2993 /* Circular buffer of transmit frame descriptors (TFDs),
2994 * shared with device */
2995 txq->tfds =
2996 dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2997 if (!txq->tfds)
2998 goto error;
2999
3000 txq->q.id = id;
3001
3002 return 0;
3003
3004 error:
3005 kfree(txq->skbs);
3006 txq->skbs = NULL;
3007
3008 return -ENOMEM;
3009 }
3010
3011 /**
3012 * il_tx_queue_init - Allocate and initialize one tx/cmd queue
3013 */
3014 int
3015 il_tx_queue_init(struct il_priv *il, u32 txq_id)
3016 {
3017 int i, len, ret;
3018 int slots, actual_slots;
3019 struct il_tx_queue *txq = &il->txq[txq_id];
3020
3021 /*
3022 * Alloc buffer array for commands (Tx or other types of commands).
3023 * For the command queue (#4/#9), allocate command space + one big
3024 * command for scan, since scan command is very huge; the system will
3025 * not have two scans at the same time, so only one is needed.
3026 * For normal Tx queues (all other queues), no super-size command
3027 * space is needed.
3028 */
3029 if (txq_id == il->cmd_queue) {
3030 slots = TFD_CMD_SLOTS;
3031 actual_slots = slots + 1;
3032 } else {
3033 slots = TFD_TX_CMD_SLOTS;
3034 actual_slots = slots;
3035 }
3036
3037 txq->meta =
3038 kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
3039 txq->cmd =
3040 kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
3041
3042 if (!txq->meta || !txq->cmd)
3043 goto out_free_arrays;
3044
3045 len = sizeof(struct il_device_cmd);
3046 for (i = 0; i < actual_slots; i++) {
3047 /* only happens for cmd queue */
3048 if (i == slots)
3049 len = IL_MAX_CMD_SIZE;
3050
3051 txq->cmd[i] = kmalloc(len, GFP_KERNEL);
3052 if (!txq->cmd[i])
3053 goto err;
3054 }
3055
3056 /* Alloc driver data array and TFD circular buffer */
3057 ret = il_tx_queue_alloc(il, txq, txq_id);
3058 if (ret)
3059 goto err;
3060
3061 txq->need_update = 0;
3062
3063 /*
3064 * For the default queues 0-3, set up the swq_id
3065 * already -- all others need to get one later
3066 * (if they need one at all).
3067 */
3068 if (txq_id < 4)
3069 il_set_swq_id(txq, txq_id, txq_id);
3070
3071 /* Initialize queue's high/low-water marks, and head/tail idxes */
3072 il_queue_init(il, &txq->q, slots, txq_id);
3073
3074 /* Tell device where to find queue */
3075 il->ops->txq_init(il, txq);
3076
3077 return 0;
3078 err:
3079 for (i = 0; i < actual_slots; i++)
3080 kfree(txq->cmd[i]);
3081 out_free_arrays:
3082 kfree(txq->meta);
3083 kfree(txq->cmd);
3084
3085 return -ENOMEM;
3086 }
3087 EXPORT_SYMBOL(il_tx_queue_init);
3088
3089 void
3090 il_tx_queue_reset(struct il_priv *il, u32 txq_id)
3091 {
3092 int slots, actual_slots;
3093 struct il_tx_queue *txq = &il->txq[txq_id];
3094
3095 if (txq_id == il->cmd_queue) {
3096 slots = TFD_CMD_SLOTS;
3097 actual_slots = TFD_CMD_SLOTS + 1;
3098 } else {
3099 slots = TFD_TX_CMD_SLOTS;
3100 actual_slots = TFD_TX_CMD_SLOTS;
3101 }
3102
3103 memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
3104 txq->need_update = 0;
3105
3106 /* Initialize queue's high/low-water marks, and head/tail idxes */
3107 il_queue_init(il, &txq->q, slots, txq_id);
3108
3109 /* Tell device where to find queue */
3110 il->ops->txq_init(il, txq);
3111 }
3112 EXPORT_SYMBOL(il_tx_queue_reset);
3113
3114 /*************** HOST COMMAND QUEUE FUNCTIONS *****/
3115
3116 /**
3117 * il_enqueue_hcmd - enqueue a uCode command
3118 * @il: device ilate data point
3119 * @cmd: a point to the ucode command structure
3120 *
3121 * The function returns < 0 values to indicate the operation is
3122 * failed. On success, it turns the idx (> 0) of command in the
3123 * command queue.
3124 */
3125 int
3126 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
3127 {
3128 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3129 struct il_queue *q = &txq->q;
3130 struct il_device_cmd *out_cmd;
3131 struct il_cmd_meta *out_meta;
3132 dma_addr_t phys_addr;
3133 unsigned long flags;
3134 int len;
3135 u32 idx;
3136 u16 fix_size;
3137
3138 cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
3139 fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
3140
3141 /* If any of the command structures end up being larger than
3142 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
3143 * we will need to increase the size of the TFD entries
3144 * Also, check to see if command buffer should not exceed the size
3145 * of device_cmd and max_cmd_size. */
3146 BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3147 !(cmd->flags & CMD_SIZE_HUGE));
3148 BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3149
3150 if (il_is_rfkill(il) || il_is_ctkill(il)) {
3151 IL_WARN("Not sending command - %s KILL\n",
3152 il_is_rfkill(il) ? "RF" : "CT");
3153 return -EIO;
3154 }
3155
3156 spin_lock_irqsave(&il->hcmd_lock, flags);
3157
3158 if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3159 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3160
3161 IL_ERR("Restarting adapter due to command queue full\n");
3162 queue_work(il->workqueue, &il->restart);
3163 return -ENOSPC;
3164 }
3165
3166 idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3167 out_cmd = txq->cmd[idx];
3168 out_meta = &txq->meta[idx];
3169
3170 if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3171 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3172 return -ENOSPC;
3173 }
3174
3175 memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
3176 out_meta->flags = cmd->flags | CMD_MAPPED;
3177 if (cmd->flags & CMD_WANT_SKB)
3178 out_meta->source = cmd;
3179 if (cmd->flags & CMD_ASYNC)
3180 out_meta->callback = cmd->callback;
3181
3182 out_cmd->hdr.cmd = cmd->id;
3183 memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3184
3185 /* At this point, the out_cmd now has all of the incoming cmd
3186 * information */
3187
3188 out_cmd->hdr.flags = 0;
3189 out_cmd->hdr.sequence =
3190 cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3191 if (cmd->flags & CMD_SIZE_HUGE)
3192 out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3193 len = sizeof(struct il_device_cmd);
3194 if (idx == TFD_CMD_SLOTS)
3195 len = IL_MAX_CMD_SIZE;
3196
3197 #ifdef CONFIG_IWLEGACY_DEBUG
3198 switch (out_cmd->hdr.cmd) {
3199 case C_TX_LINK_QUALITY_CMD:
3200 case C_SENSITIVITY:
3201 D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3202 "%d bytes at %d[%d]:%d\n",
3203 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3204 le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3205 q->write_ptr, idx, il->cmd_queue);
3206 break;
3207 default:
3208 D_HC("Sending command %s (#%x), seq: 0x%04X, "
3209 "%d bytes at %d[%d]:%d\n",
3210 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3211 le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3212 idx, il->cmd_queue);
3213 }
3214 #endif
3215
3216 phys_addr =
3217 pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3218 PCI_DMA_BIDIRECTIONAL);
3219 if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) {
3220 idx = -ENOMEM;
3221 goto out;
3222 }
3223 dma_unmap_addr_set(out_meta, mapping, phys_addr);
3224 dma_unmap_len_set(out_meta, len, fix_size);
3225
3226 txq->need_update = 1;
3227
3228 if (il->ops->txq_update_byte_cnt_tbl)
3229 /* Set up entry in queue's byte count circular buffer */
3230 il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
3231
3232 il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
3233 U32_PAD(cmd->len));
3234
3235 /* Increment and update queue's write idx */
3236 q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3237 il_txq_update_write_ptr(il, txq);
3238
3239 out:
3240 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3241 return idx;
3242 }
3243
3244 /**
3245 * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3246 *
3247 * When FW advances 'R' idx, all entries between old and new 'R' idx
3248 * need to be reclaimed. As result, some free space forms. If there is
3249 * enough free space (> low mark), wake the stack that feeds us.
3250 */
3251 static void
3252 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3253 {
3254 struct il_tx_queue *txq = &il->txq[txq_id];
3255 struct il_queue *q = &txq->q;
3256 int nfreed = 0;
3257
3258 if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3259 IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3260 "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3261 q->write_ptr, q->read_ptr);
3262 return;
3263 }
3264
3265 for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3266 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3267
3268 if (nfreed++ > 0) {
3269 IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3270 q->write_ptr, q->read_ptr);
3271 queue_work(il->workqueue, &il->restart);
3272 }
3273
3274 }
3275 }
3276
3277 /**
3278 * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3279 * @rxb: Rx buffer to reclaim
3280 *
3281 * If an Rx buffer has an async callback associated with it the callback
3282 * will be executed. The attached skb (if present) will only be freed
3283 * if the callback returns 1
3284 */
3285 void
3286 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3287 {
3288 struct il_rx_pkt *pkt = rxb_addr(rxb);
3289 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3290 int txq_id = SEQ_TO_QUEUE(sequence);
3291 int idx = SEQ_TO_IDX(sequence);
3292 int cmd_idx;
3293 bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3294 struct il_device_cmd *cmd;
3295 struct il_cmd_meta *meta;
3296 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3297 unsigned long flags;
3298
3299 /* If a Tx command is being handled and it isn't in the actual
3300 * command queue then there a command routing bug has been introduced
3301 * in the queue management code. */
3302 if (WARN
3303 (txq_id != il->cmd_queue,
3304 "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3305 txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3306 il->txq[il->cmd_queue].q.write_ptr)) {
3307 il_print_hex_error(il, pkt, 32);
3308 return;
3309 }
3310
3311 cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3312 cmd = txq->cmd[cmd_idx];
3313 meta = &txq->meta[cmd_idx];
3314
3315 txq->time_stamp = jiffies;
3316
3317 pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3318 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3319
3320 /* Input error checking is done when commands are added to queue. */
3321 if (meta->flags & CMD_WANT_SKB) {
3322 meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3323 rxb->page = NULL;
3324 } else if (meta->callback)
3325 meta->callback(il, cmd, pkt);
3326
3327 spin_lock_irqsave(&il->hcmd_lock, flags);
3328
3329 il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3330
3331 if (!(meta->flags & CMD_ASYNC)) {
3332 clear_bit(S_HCMD_ACTIVE, &il->status);
3333 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3334 il_get_cmd_string(cmd->hdr.cmd));
3335 wake_up(&il->wait_command_queue);
3336 }
3337
3338 /* Mark as unmapped */
3339 meta->flags = 0;
3340
3341 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3342 }
3343 EXPORT_SYMBOL(il_tx_cmd_complete);
3344
3345 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3346 MODULE_VERSION(IWLWIFI_VERSION);
3347 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3348 MODULE_LICENSE("GPL");
3349
3350 /*
3351 * set bt_coex_active to true, uCode will do kill/defer
3352 * every time the priority line is asserted (BT is sending signals on the
3353 * priority line in the PCIx).
3354 * set bt_coex_active to false, uCode will ignore the BT activity and
3355 * perform the normal operation
3356 *
3357 * User might experience transmit issue on some platform due to WiFi/BT
3358 * co-exist problem. The possible behaviors are:
3359 * Able to scan and finding all the available AP
3360 * Not able to associate with any AP
3361 * On those platforms, WiFi communication can be restored by set
3362 * "bt_coex_active" module parameter to "false"
3363 *
3364 * default: bt_coex_active = true (BT_COEX_ENABLE)
3365 */
3366 static bool bt_coex_active = true;
3367 module_param(bt_coex_active, bool, S_IRUGO);
3368 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3369
3370 u32 il_debug_level;
3371 EXPORT_SYMBOL(il_debug_level);
3372
3373 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3374 EXPORT_SYMBOL(il_bcast_addr);
3375
3376 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
3377 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
3378 static void
3379 il_init_ht_hw_capab(const struct il_priv *il,
3380 struct ieee80211_sta_ht_cap *ht_info,
3381 enum ieee80211_band band)
3382 {
3383 u16 max_bit_rate = 0;
3384 u8 rx_chains_num = il->hw_params.rx_chains_num;
3385 u8 tx_chains_num = il->hw_params.tx_chains_num;
3386
3387 ht_info->cap = 0;
3388 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3389
3390 ht_info->ht_supported = true;
3391
3392 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3393 max_bit_rate = MAX_BIT_RATE_20_MHZ;
3394 if (il->hw_params.ht40_channel & BIT(band)) {
3395 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3396 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3397 ht_info->mcs.rx_mask[4] = 0x01;
3398 max_bit_rate = MAX_BIT_RATE_40_MHZ;
3399 }
3400
3401 if (il->cfg->mod_params->amsdu_size_8K)
3402 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3403
3404 ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3405 ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3406
3407 ht_info->mcs.rx_mask[0] = 0xFF;
3408 if (rx_chains_num >= 2)
3409 ht_info->mcs.rx_mask[1] = 0xFF;
3410 if (rx_chains_num >= 3)
3411 ht_info->mcs.rx_mask[2] = 0xFF;
3412
3413 /* Highest supported Rx data rate */
3414 max_bit_rate *= rx_chains_num;
3415 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3416 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3417
3418 /* Tx MCS capabilities */
3419 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3420 if (tx_chains_num != rx_chains_num) {
3421 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3422 ht_info->mcs.tx_params |=
3423 ((tx_chains_num -
3424 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3425 }
3426 }
3427
3428 /**
3429 * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3430 */
3431 int
3432 il_init_geos(struct il_priv *il)
3433 {
3434 struct il_channel_info *ch;
3435 struct ieee80211_supported_band *sband;
3436 struct ieee80211_channel *channels;
3437 struct ieee80211_channel *geo_ch;
3438 struct ieee80211_rate *rates;
3439 int i = 0;
3440 s8 max_tx_power = 0;
3441
3442 if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
3443 il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
3444 D_INFO("Geography modes already initialized.\n");
3445 set_bit(S_GEO_CONFIGURED, &il->status);
3446 return 0;
3447 }
3448
3449 channels =
3450 kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
3451 GFP_KERNEL);
3452 if (!channels)
3453 return -ENOMEM;
3454
3455 rates =
3456 kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3457 GFP_KERNEL);
3458 if (!rates) {
3459 kfree(channels);
3460 return -ENOMEM;
3461 }
3462
3463 /* 5.2GHz channels start after the 2.4GHz channels */
3464 sband = &il->bands[IEEE80211_BAND_5GHZ];
3465 sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3466 /* just OFDM */
3467 sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3468 sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3469
3470 if (il->cfg->sku & IL_SKU_N)
3471 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_5GHZ);
3472
3473 sband = &il->bands[IEEE80211_BAND_2GHZ];
3474 sband->channels = channels;
3475 /* OFDM & CCK */
3476 sband->bitrates = rates;
3477 sband->n_bitrates = RATE_COUNT_LEGACY;
3478
3479 if (il->cfg->sku & IL_SKU_N)
3480 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_2GHZ);
3481
3482 il->ieee_channels = channels;
3483 il->ieee_rates = rates;
3484
3485 for (i = 0; i < il->channel_count; i++) {
3486 ch = &il->channel_info[i];
3487
3488 if (!il_is_channel_valid(ch))
3489 continue;
3490
3491 sband = &il->bands[ch->band];
3492
3493 geo_ch = &sband->channels[sband->n_channels++];
3494
3495 geo_ch->center_freq =
3496 ieee80211_channel_to_frequency(ch->channel, ch->band);
3497 geo_ch->max_power = ch->max_power_avg;
3498 geo_ch->max_antenna_gain = 0xff;
3499 geo_ch->hw_value = ch->channel;
3500
3501 if (il_is_channel_valid(ch)) {
3502 if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3503 geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3504
3505 if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3506 geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3507
3508 if (ch->flags & EEPROM_CHANNEL_RADAR)
3509 geo_ch->flags |= IEEE80211_CHAN_RADAR;
3510
3511 geo_ch->flags |= ch->ht40_extension_channel;
3512
3513 if (ch->max_power_avg > max_tx_power)
3514 max_tx_power = ch->max_power_avg;
3515 } else {
3516 geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3517 }
3518
3519 D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3520 geo_ch->center_freq,
3521 il_is_channel_a_band(ch) ? "5.2" : "2.4",
3522 geo_ch->
3523 flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3524 geo_ch->flags);
3525 }
3526
3527 il->tx_power_device_lmt = max_tx_power;
3528 il->tx_power_user_lmt = max_tx_power;
3529 il->tx_power_next = max_tx_power;
3530
3531 if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
3532 (il->cfg->sku & IL_SKU_A)) {
3533 IL_INFO("Incorrectly detected BG card as ABG. "
3534 "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3535 il->pci_dev->device, il->pci_dev->subsystem_device);
3536 il->cfg->sku &= ~IL_SKU_A;
3537 }
3538
3539 IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3540 il->bands[IEEE80211_BAND_2GHZ].n_channels,
3541 il->bands[IEEE80211_BAND_5GHZ].n_channels);
3542
3543 set_bit(S_GEO_CONFIGURED, &il->status);
3544
3545 return 0;
3546 }
3547 EXPORT_SYMBOL(il_init_geos);
3548
3549 /*
3550 * il_free_geos - undo allocations in il_init_geos
3551 */
3552 void
3553 il_free_geos(struct il_priv *il)
3554 {
3555 kfree(il->ieee_channels);
3556 kfree(il->ieee_rates);
3557 clear_bit(S_GEO_CONFIGURED, &il->status);
3558 }
3559 EXPORT_SYMBOL(il_free_geos);
3560
3561 static bool
3562 il_is_channel_extension(struct il_priv *il, enum ieee80211_band band,
3563 u16 channel, u8 extension_chan_offset)
3564 {
3565 const struct il_channel_info *ch_info;
3566
3567 ch_info = il_get_channel_info(il, band, channel);
3568 if (!il_is_channel_valid(ch_info))
3569 return false;
3570
3571 if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3572 return !(ch_info->
3573 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3574 else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3575 return !(ch_info->
3576 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3577
3578 return false;
3579 }
3580
3581 bool
3582 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
3583 {
3584 if (!il->ht.enabled || !il->ht.is_40mhz)
3585 return false;
3586
3587 /*
3588 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3589 * the bit will not set if it is pure 40MHz case
3590 */
3591 if (ht_cap && !ht_cap->ht_supported)
3592 return false;
3593
3594 #ifdef CONFIG_IWLEGACY_DEBUGFS
3595 if (il->disable_ht40)
3596 return false;
3597 #endif
3598
3599 return il_is_channel_extension(il, il->band,
3600 le16_to_cpu(il->staging.channel),
3601 il->ht.extension_chan_offset);
3602 }
3603 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3604
3605 static u16
3606 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3607 {
3608 u16 new_val;
3609 u16 beacon_factor;
3610
3611 /*
3612 * If mac80211 hasn't given us a beacon interval, program
3613 * the default into the device.
3614 */
3615 if (!beacon_val)
3616 return DEFAULT_BEACON_INTERVAL;
3617
3618 /*
3619 * If the beacon interval we obtained from the peer
3620 * is too large, we'll have to wake up more often
3621 * (and in IBSS case, we'll beacon too much)
3622 *
3623 * For example, if max_beacon_val is 4096, and the
3624 * requested beacon interval is 7000, we'll have to
3625 * use 3500 to be able to wake up on the beacons.
3626 *
3627 * This could badly influence beacon detection stats.
3628 */
3629
3630 beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3631 new_val = beacon_val / beacon_factor;
3632
3633 if (!new_val)
3634 new_val = max_beacon_val;
3635
3636 return new_val;
3637 }
3638
3639 int
3640 il_send_rxon_timing(struct il_priv *il)
3641 {
3642 u64 tsf;
3643 s32 interval_tm, rem;
3644 struct ieee80211_conf *conf = NULL;
3645 u16 beacon_int;
3646 struct ieee80211_vif *vif = il->vif;
3647
3648 conf = &il->hw->conf;
3649
3650 lockdep_assert_held(&il->mutex);
3651
3652 memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
3653
3654 il->timing.timestamp = cpu_to_le64(il->timestamp);
3655 il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3656
3657 beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3658
3659 /*
3660 * TODO: For IBSS we need to get atim_win from mac80211,
3661 * for now just always use 0
3662 */
3663 il->timing.atim_win = 0;
3664
3665 beacon_int =
3666 il_adjust_beacon_interval(beacon_int,
3667 il->hw_params.max_beacon_itrvl *
3668 TIME_UNIT);
3669 il->timing.beacon_interval = cpu_to_le16(beacon_int);
3670
3671 tsf = il->timestamp; /* tsf is modifed by do_div: copy it */
3672 interval_tm = beacon_int * TIME_UNIT;
3673 rem = do_div(tsf, interval_tm);
3674 il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3675
3676 il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3677
3678 D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3679 le16_to_cpu(il->timing.beacon_interval),
3680 le32_to_cpu(il->timing.beacon_init_val),
3681 le16_to_cpu(il->timing.atim_win));
3682
3683 return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
3684 &il->timing);
3685 }
3686 EXPORT_SYMBOL(il_send_rxon_timing);
3687
3688 void
3689 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
3690 {
3691 struct il_rxon_cmd *rxon = &il->staging;
3692
3693 if (hw_decrypt)
3694 rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3695 else
3696 rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3697
3698 }
3699 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3700
3701 /* validate RXON structure is valid */
3702 int
3703 il_check_rxon_cmd(struct il_priv *il)
3704 {
3705 struct il_rxon_cmd *rxon = &il->staging;
3706 bool error = false;
3707
3708 if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3709 if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3710 IL_WARN("check 2.4G: wrong narrow\n");
3711 error = true;
3712 }
3713 if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3714 IL_WARN("check 2.4G: wrong radar\n");
3715 error = true;
3716 }
3717 } else {
3718 if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3719 IL_WARN("check 5.2G: not short slot!\n");
3720 error = true;
3721 }
3722 if (rxon->flags & RXON_FLG_CCK_MSK) {
3723 IL_WARN("check 5.2G: CCK!\n");
3724 error = true;
3725 }
3726 }
3727 if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3728 IL_WARN("mac/bssid mcast!\n");
3729 error = true;
3730 }
3731
3732 /* make sure basic rates 6Mbps and 1Mbps are supported */
3733 if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3734 (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3735 IL_WARN("neither 1 nor 6 are basic\n");
3736 error = true;
3737 }
3738
3739 if (le16_to_cpu(rxon->assoc_id) > 2007) {
3740 IL_WARN("aid > 2007\n");
3741 error = true;
3742 }
3743
3744 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3745 (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3746 IL_WARN("CCK and short slot\n");
3747 error = true;
3748 }
3749
3750 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3751 (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3752 IL_WARN("CCK and auto detect");
3753 error = true;
3754 }
3755
3756 if ((rxon->
3757 flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3758 RXON_FLG_TGG_PROTECT_MSK) {
3759 IL_WARN("TGg but no auto-detect\n");
3760 error = true;
3761 }
3762
3763 if (error)
3764 IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3765
3766 if (error) {
3767 IL_ERR("Invalid RXON\n");
3768 return -EINVAL;
3769 }
3770 return 0;
3771 }
3772 EXPORT_SYMBOL(il_check_rxon_cmd);
3773
3774 /**
3775 * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3776 * @il: staging_rxon is compared to active_rxon
3777 *
3778 * If the RXON structure is changing enough to require a new tune,
3779 * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3780 * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3781 */
3782 int
3783 il_full_rxon_required(struct il_priv *il)
3784 {
3785 const struct il_rxon_cmd *staging = &il->staging;
3786 const struct il_rxon_cmd *active = &il->active;
3787
3788 #define CHK(cond) \
3789 if ((cond)) { \
3790 D_INFO("need full RXON - " #cond "\n"); \
3791 return 1; \
3792 }
3793
3794 #define CHK_NEQ(c1, c2) \
3795 if ((c1) != (c2)) { \
3796 D_INFO("need full RXON - " \
3797 #c1 " != " #c2 " - %d != %d\n", \
3798 (c1), (c2)); \
3799 return 1; \
3800 }
3801
3802 /* These items are only settable from the full RXON command */
3803 CHK(!il_is_associated(il));
3804 CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr));
3805 CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr));
3806 CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr,
3807 active->wlap_bssid_addr));
3808 CHK_NEQ(staging->dev_type, active->dev_type);
3809 CHK_NEQ(staging->channel, active->channel);
3810 CHK_NEQ(staging->air_propagation, active->air_propagation);
3811 CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3812 active->ofdm_ht_single_stream_basic_rates);
3813 CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3814 active->ofdm_ht_dual_stream_basic_rates);
3815 CHK_NEQ(staging->assoc_id, active->assoc_id);
3816
3817 /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3818 * be updated with the RXON_ASSOC command -- however only some
3819 * flag transitions are allowed using RXON_ASSOC */
3820
3821 /* Check if we are not switching bands */
3822 CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3823 active->flags & RXON_FLG_BAND_24G_MSK);
3824
3825 /* Check if we are switching association toggle */
3826 CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3827 active->filter_flags & RXON_FILTER_ASSOC_MSK);
3828
3829 #undef CHK
3830 #undef CHK_NEQ
3831
3832 return 0;
3833 }
3834 EXPORT_SYMBOL(il_full_rxon_required);
3835
3836 u8
3837 il_get_lowest_plcp(struct il_priv *il)
3838 {
3839 /*
3840 * Assign the lowest rate -- should really get this from
3841 * the beacon skb from mac80211.
3842 */
3843 if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
3844 return RATE_1M_PLCP;
3845 else
3846 return RATE_6M_PLCP;
3847 }
3848 EXPORT_SYMBOL(il_get_lowest_plcp);
3849
3850 static void
3851 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3852 {
3853 struct il_rxon_cmd *rxon = &il->staging;
3854
3855 if (!il->ht.enabled) {
3856 rxon->flags &=
3857 ~(RXON_FLG_CHANNEL_MODE_MSK |
3858 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3859 | RXON_FLG_HT_PROT_MSK);
3860 return;
3861 }
3862
3863 rxon->flags |=
3864 cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3865
3866 /* Set up channel bandwidth:
3867 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3868 /* clear the HT channel mode before set the mode */
3869 rxon->flags &=
3870 ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3871 if (il_is_ht40_tx_allowed(il, NULL)) {
3872 /* pure ht40 */
3873 if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3874 rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3875 /* Note: control channel is opposite of extension channel */
3876 switch (il->ht.extension_chan_offset) {
3877 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3878 rxon->flags &=
3879 ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3880 break;
3881 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3882 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3883 break;
3884 }
3885 } else {
3886 /* Note: control channel is opposite of extension channel */
3887 switch (il->ht.extension_chan_offset) {
3888 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3889 rxon->flags &=
3890 ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3891 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3892 break;
3893 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3894 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3895 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3896 break;
3897 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3898 default:
3899 /* channel location only valid if in Mixed mode */
3900 IL_ERR("invalid extension channel offset\n");
3901 break;
3902 }
3903 }
3904 } else {
3905 rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
3906 }
3907
3908 if (il->ops->set_rxon_chain)
3909 il->ops->set_rxon_chain(il);
3910
3911 D_ASSOC("rxon flags 0x%X operation mode :0x%X "
3912 "extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
3913 il->ht.protection, il->ht.extension_chan_offset);
3914 }
3915
3916 void
3917 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3918 {
3919 _il_set_rxon_ht(il, ht_conf);
3920 }
3921 EXPORT_SYMBOL(il_set_rxon_ht);
3922
3923 /* Return valid, unused, channel for a passive scan to reset the RF */
3924 u8
3925 il_get_single_channel_number(struct il_priv *il, enum ieee80211_band band)
3926 {
3927 const struct il_channel_info *ch_info;
3928 int i;
3929 u8 channel = 0;
3930 u8 min, max;
3931
3932 if (band == IEEE80211_BAND_5GHZ) {
3933 min = 14;
3934 max = il->channel_count;
3935 } else {
3936 min = 0;
3937 max = 14;
3938 }
3939
3940 for (i = min; i < max; i++) {
3941 channel = il->channel_info[i].channel;
3942 if (channel == le16_to_cpu(il->staging.channel))
3943 continue;
3944
3945 ch_info = il_get_channel_info(il, band, channel);
3946 if (il_is_channel_valid(ch_info))
3947 break;
3948 }
3949
3950 return channel;
3951 }
3952 EXPORT_SYMBOL(il_get_single_channel_number);
3953
3954 /**
3955 * il_set_rxon_channel - Set the band and channel values in staging RXON
3956 * @ch: requested channel as a pointer to struct ieee80211_channel
3957
3958 * NOTE: Does not commit to the hardware; it sets appropriate bit fields
3959 * in the staging RXON flag structure based on the ch->band
3960 */
3961 int
3962 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
3963 {
3964 enum ieee80211_band band = ch->band;
3965 u16 channel = ch->hw_value;
3966
3967 if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
3968 return 0;
3969
3970 il->staging.channel = cpu_to_le16(channel);
3971 if (band == IEEE80211_BAND_5GHZ)
3972 il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
3973 else
3974 il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3975
3976 il->band = band;
3977
3978 D_INFO("Staging channel set to %d [%d]\n", channel, band);
3979
3980 return 0;
3981 }
3982 EXPORT_SYMBOL(il_set_rxon_channel);
3983
3984 void
3985 il_set_flags_for_band(struct il_priv *il, enum ieee80211_band band,
3986 struct ieee80211_vif *vif)
3987 {
3988 if (band == IEEE80211_BAND_5GHZ) {
3989 il->staging.flags &=
3990 ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
3991 RXON_FLG_CCK_MSK);
3992 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3993 } else {
3994 /* Copied from il_post_associate() */
3995 if (vif && vif->bss_conf.use_short_slot)
3996 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3997 else
3998 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
3999
4000 il->staging.flags |= RXON_FLG_BAND_24G_MSK;
4001 il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
4002 il->staging.flags &= ~RXON_FLG_CCK_MSK;
4003 }
4004 }
4005 EXPORT_SYMBOL(il_set_flags_for_band);
4006
4007 /*
4008 * initialize rxon structure with default values from eeprom
4009 */
4010 void
4011 il_connection_init_rx_config(struct il_priv *il)
4012 {
4013 const struct il_channel_info *ch_info;
4014
4015 memset(&il->staging, 0, sizeof(il->staging));
4016
4017 switch (il->iw_mode) {
4018 case NL80211_IFTYPE_UNSPECIFIED:
4019 il->staging.dev_type = RXON_DEV_TYPE_ESS;
4020 break;
4021 case NL80211_IFTYPE_STATION:
4022 il->staging.dev_type = RXON_DEV_TYPE_ESS;
4023 il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
4024 break;
4025 case NL80211_IFTYPE_ADHOC:
4026 il->staging.dev_type = RXON_DEV_TYPE_IBSS;
4027 il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
4028 il->staging.filter_flags =
4029 RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
4030 break;
4031 default:
4032 IL_ERR("Unsupported interface type %d\n", il->vif->type);
4033 return;
4034 }
4035
4036 #if 0
4037 /* TODO: Figure out when short_preamble would be set and cache from
4038 * that */
4039 if (!hw_to_local(il->hw)->short_preamble)
4040 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
4041 else
4042 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
4043 #endif
4044
4045 ch_info =
4046 il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
4047
4048 if (!ch_info)
4049 ch_info = &il->channel_info[0];
4050
4051 il->staging.channel = cpu_to_le16(ch_info->channel);
4052 il->band = ch_info->band;
4053
4054 il_set_flags_for_band(il, il->band, il->vif);
4055
4056 il->staging.ofdm_basic_rates =
4057 (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4058 il->staging.cck_basic_rates =
4059 (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4060
4061 /* clear both MIX and PURE40 mode flag */
4062 il->staging.flags &=
4063 ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
4064 if (il->vif)
4065 memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
4066
4067 il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
4068 il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
4069 }
4070 EXPORT_SYMBOL(il_connection_init_rx_config);
4071
4072 void
4073 il_set_rate(struct il_priv *il)
4074 {
4075 const struct ieee80211_supported_band *hw = NULL;
4076 struct ieee80211_rate *rate;
4077 int i;
4078
4079 hw = il_get_hw_mode(il, il->band);
4080 if (!hw) {
4081 IL_ERR("Failed to set rate: unable to get hw mode\n");
4082 return;
4083 }
4084
4085 il->active_rate = 0;
4086
4087 for (i = 0; i < hw->n_bitrates; i++) {
4088 rate = &(hw->bitrates[i]);
4089 if (rate->hw_value < RATE_COUNT_LEGACY)
4090 il->active_rate |= (1 << rate->hw_value);
4091 }
4092
4093 D_RATE("Set active_rate = %0x\n", il->active_rate);
4094
4095 il->staging.cck_basic_rates =
4096 (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4097
4098 il->staging.ofdm_basic_rates =
4099 (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4100 }
4101 EXPORT_SYMBOL(il_set_rate);
4102
4103 void
4104 il_chswitch_done(struct il_priv *il, bool is_success)
4105 {
4106 if (test_bit(S_EXIT_PENDING, &il->status))
4107 return;
4108
4109 if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4110 ieee80211_chswitch_done(il->vif, is_success);
4111 }
4112 EXPORT_SYMBOL(il_chswitch_done);
4113
4114 void
4115 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
4116 {
4117 struct il_rx_pkt *pkt = rxb_addr(rxb);
4118 struct il_csa_notification *csa = &(pkt->u.csa_notif);
4119 struct il_rxon_cmd *rxon = (void *)&il->active;
4120
4121 if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4122 return;
4123
4124 if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
4125 rxon->channel = csa->channel;
4126 il->staging.channel = csa->channel;
4127 D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
4128 il_chswitch_done(il, true);
4129 } else {
4130 IL_ERR("CSA notif (fail) : channel %d\n",
4131 le16_to_cpu(csa->channel));
4132 il_chswitch_done(il, false);
4133 }
4134 }
4135 EXPORT_SYMBOL(il_hdl_csa);
4136
4137 #ifdef CONFIG_IWLEGACY_DEBUG
4138 void
4139 il_print_rx_config_cmd(struct il_priv *il)
4140 {
4141 struct il_rxon_cmd *rxon = &il->staging;
4142
4143 D_RADIO("RX CONFIG:\n");
4144 il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
4145 D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
4146 D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
4147 D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
4148 D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
4149 D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
4150 D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
4151 D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
4152 D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
4153 D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
4154 }
4155 EXPORT_SYMBOL(il_print_rx_config_cmd);
4156 #endif
4157 /**
4158 * il_irq_handle_error - called for HW or SW error interrupt from card
4159 */
4160 void
4161 il_irq_handle_error(struct il_priv *il)
4162 {
4163 /* Set the FW error flag -- cleared on il_down */
4164 set_bit(S_FW_ERROR, &il->status);
4165
4166 /* Cancel currently queued command. */
4167 clear_bit(S_HCMD_ACTIVE, &il->status);
4168
4169 IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
4170
4171 il->ops->dump_nic_error_log(il);
4172 if (il->ops->dump_fh)
4173 il->ops->dump_fh(il, NULL, false);
4174 #ifdef CONFIG_IWLEGACY_DEBUG
4175 if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
4176 il_print_rx_config_cmd(il);
4177 #endif
4178
4179 wake_up(&il->wait_command_queue);
4180
4181 /* Keep the restart process from trying to send host
4182 * commands by clearing the INIT status bit */
4183 clear_bit(S_READY, &il->status);
4184
4185 if (!test_bit(S_EXIT_PENDING, &il->status)) {
4186 IL_DBG(IL_DL_FW_ERRORS,
4187 "Restarting adapter due to uCode error.\n");
4188
4189 if (il->cfg->mod_params->restart_fw)
4190 queue_work(il->workqueue, &il->restart);
4191 }
4192 }
4193 EXPORT_SYMBOL(il_irq_handle_error);
4194
4195 static int
4196 _il_apm_stop_master(struct il_priv *il)
4197 {
4198 int ret = 0;
4199
4200 /* stop device's busmaster DMA activity */
4201 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
4202
4203 ret =
4204 _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
4205 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
4206 if (ret < 0)
4207 IL_WARN("Master Disable Timed Out, 100 usec\n");
4208
4209 D_INFO("stop master\n");
4210
4211 return ret;
4212 }
4213
4214 void
4215 _il_apm_stop(struct il_priv *il)
4216 {
4217 lockdep_assert_held(&il->reg_lock);
4218
4219 D_INFO("Stop card, put in low power state\n");
4220
4221 /* Stop device's DMA activity */
4222 _il_apm_stop_master(il);
4223
4224 /* Reset the entire device */
4225 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
4226
4227 udelay(10);
4228
4229 /*
4230 * Clear "initialization complete" bit to move adapter from
4231 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
4232 */
4233 _il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4234 }
4235 EXPORT_SYMBOL(_il_apm_stop);
4236
4237 void
4238 il_apm_stop(struct il_priv *il)
4239 {
4240 unsigned long flags;
4241
4242 spin_lock_irqsave(&il->reg_lock, flags);
4243 _il_apm_stop(il);
4244 spin_unlock_irqrestore(&il->reg_lock, flags);
4245 }
4246 EXPORT_SYMBOL(il_apm_stop);
4247
4248 /*
4249 * Start up NIC's basic functionality after it has been reset
4250 * (e.g. after platform boot, or shutdown via il_apm_stop())
4251 * NOTE: This does not load uCode nor start the embedded processor
4252 */
4253 int
4254 il_apm_init(struct il_priv *il)
4255 {
4256 int ret = 0;
4257 u16 lctl;
4258
4259 D_INFO("Init card's basic functions\n");
4260
4261 /*
4262 * Use "set_bit" below rather than "write", to preserve any hardware
4263 * bits already set by default after reset.
4264 */
4265
4266 /* Disable L0S exit timer (platform NMI Work/Around) */
4267 il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4268 CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4269
4270 /*
4271 * Disable L0s without affecting L1;
4272 * don't wait for ICH L0s (ICH bug W/A)
4273 */
4274 il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4275 CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
4276
4277 /* Set FH wait threshold to maximum (HW error during stress W/A) */
4278 il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
4279
4280 /*
4281 * Enable HAP INTA (interrupt from management bus) to
4282 * wake device's PCI Express link L1a -> L0s
4283 * NOTE: This is no-op for 3945 (non-existent bit)
4284 */
4285 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
4286 CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
4287
4288 /*
4289 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
4290 * Check if BIOS (or OS) enabled L1-ASPM on this device.
4291 * If so (likely), disable L0S, so device moves directly L0->L1;
4292 * costs negligible amount of power savings.
4293 * If not (unlikely), enable L0S, so there is at least some
4294 * power savings, even without L1.
4295 */
4296 if (il->cfg->set_l0s) {
4297 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
4298 if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
4299 /* L1-ASPM enabled; disable(!) L0S */
4300 il_set_bit(il, CSR_GIO_REG,
4301 CSR_GIO_REG_VAL_L0S_ENABLED);
4302 D_POWER("L1 Enabled; Disabling L0S\n");
4303 } else {
4304 /* L1-ASPM disabled; enable(!) L0S */
4305 il_clear_bit(il, CSR_GIO_REG,
4306 CSR_GIO_REG_VAL_L0S_ENABLED);
4307 D_POWER("L1 Disabled; Enabling L0S\n");
4308 }
4309 }
4310
4311 /* Configure analog phase-lock-loop before activating to D0A */
4312 if (il->cfg->pll_cfg_val)
4313 il_set_bit(il, CSR_ANA_PLL_CFG,
4314 il->cfg->pll_cfg_val);
4315
4316 /*
4317 * Set "initialization complete" bit to move adapter from
4318 * D0U* --> D0A* (powered-up active) state.
4319 */
4320 il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4321
4322 /*
4323 * Wait for clock stabilization; once stabilized, access to
4324 * device-internal resources is supported, e.g. il_wr_prph()
4325 * and accesses to uCode SRAM.
4326 */
4327 ret =
4328 _il_poll_bit(il, CSR_GP_CNTRL,
4329 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
4330 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
4331 if (ret < 0) {
4332 D_INFO("Failed to init the card\n");
4333 goto out;
4334 }
4335
4336 /*
4337 * Enable DMA and BSM (if used) clocks, wait for them to stabilize.
4338 * BSM (Boostrap State Machine) is only in 3945 and 4965.
4339 *
4340 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
4341 * do not disable clocks. This preserves any hardware bits already
4342 * set by default in "CLK_CTRL_REG" after reset.
4343 */
4344 if (il->cfg->use_bsm)
4345 il_wr_prph(il, APMG_CLK_EN_REG,
4346 APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
4347 else
4348 il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
4349 udelay(20);
4350
4351 /* Disable L1-Active */
4352 il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
4353 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
4354
4355 out:
4356 return ret;
4357 }
4358 EXPORT_SYMBOL(il_apm_init);
4359
4360 int
4361 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
4362 {
4363 int ret;
4364 s8 prev_tx_power;
4365 bool defer;
4366
4367 lockdep_assert_held(&il->mutex);
4368
4369 if (il->tx_power_user_lmt == tx_power && !force)
4370 return 0;
4371
4372 if (!il->ops->send_tx_power)
4373 return -EOPNOTSUPP;
4374
4375 /* 0 dBm mean 1 milliwatt */
4376 if (tx_power < 0) {
4377 IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
4378 return -EINVAL;
4379 }
4380
4381 if (tx_power > il->tx_power_device_lmt) {
4382 IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
4383 tx_power, il->tx_power_device_lmt);
4384 return -EINVAL;
4385 }
4386
4387 if (!il_is_ready_rf(il))
4388 return -EIO;
4389
4390 /* scan complete and commit_rxon use tx_power_next value,
4391 * it always need to be updated for newest request */
4392 il->tx_power_next = tx_power;
4393
4394 /* do not set tx power when scanning or channel changing */
4395 defer = test_bit(S_SCANNING, &il->status) ||
4396 memcmp(&il->active, &il->staging, sizeof(il->staging));
4397 if (defer && !force) {
4398 D_INFO("Deferring tx power set\n");
4399 return 0;
4400 }
4401
4402 prev_tx_power = il->tx_power_user_lmt;
4403 il->tx_power_user_lmt = tx_power;
4404
4405 ret = il->ops->send_tx_power(il);
4406
4407 /* if fail to set tx_power, restore the orig. tx power */
4408 if (ret) {
4409 il->tx_power_user_lmt = prev_tx_power;
4410 il->tx_power_next = prev_tx_power;
4411 }
4412 return ret;
4413 }
4414 EXPORT_SYMBOL(il_set_tx_power);
4415
4416 void
4417 il_send_bt_config(struct il_priv *il)
4418 {
4419 struct il_bt_cmd bt_cmd = {
4420 .lead_time = BT_LEAD_TIME_DEF,
4421 .max_kill = BT_MAX_KILL_DEF,
4422 .kill_ack_mask = 0,
4423 .kill_cts_mask = 0,
4424 };
4425
4426 if (!bt_coex_active)
4427 bt_cmd.flags = BT_COEX_DISABLE;
4428 else
4429 bt_cmd.flags = BT_COEX_ENABLE;
4430
4431 D_INFO("BT coex %s\n",
4432 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
4433
4434 if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
4435 IL_ERR("failed to send BT Coex Config\n");
4436 }
4437 EXPORT_SYMBOL(il_send_bt_config);
4438
4439 int
4440 il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
4441 {
4442 struct il_stats_cmd stats_cmd = {
4443 .configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
4444 };
4445
4446 if (flags & CMD_ASYNC)
4447 return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
4448 &stats_cmd, NULL);
4449 else
4450 return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
4451 &stats_cmd);
4452 }
4453 EXPORT_SYMBOL(il_send_stats_request);
4454
4455 void
4456 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
4457 {
4458 #ifdef CONFIG_IWLEGACY_DEBUG
4459 struct il_rx_pkt *pkt = rxb_addr(rxb);
4460 struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
4461 D_RX("sleep mode: %d, src: %d\n",
4462 sleep->pm_sleep_mode, sleep->pm_wakeup_src);
4463 #endif
4464 }
4465 EXPORT_SYMBOL(il_hdl_pm_sleep);
4466
4467 void
4468 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
4469 {
4470 struct il_rx_pkt *pkt = rxb_addr(rxb);
4471 u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
4472 D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
4473 il_get_cmd_string(pkt->hdr.cmd));
4474 il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
4475 }
4476 EXPORT_SYMBOL(il_hdl_pm_debug_stats);
4477
4478 void
4479 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
4480 {
4481 struct il_rx_pkt *pkt = rxb_addr(rxb);
4482
4483 IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
4484 "seq 0x%04X ser 0x%08X\n",
4485 le32_to_cpu(pkt->u.err_resp.error_type),
4486 il_get_cmd_string(pkt->u.err_resp.cmd_id),
4487 pkt->u.err_resp.cmd_id,
4488 le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
4489 le32_to_cpu(pkt->u.err_resp.error_info));
4490 }
4491 EXPORT_SYMBOL(il_hdl_error);
4492
4493 void
4494 il_clear_isr_stats(struct il_priv *il)
4495 {
4496 memset(&il->isr_stats, 0, sizeof(il->isr_stats));
4497 }
4498
4499 int
4500 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
4501 const struct ieee80211_tx_queue_params *params)
4502 {
4503 struct il_priv *il = hw->priv;
4504 unsigned long flags;
4505 int q;
4506
4507 D_MAC80211("enter\n");
4508
4509 if (!il_is_ready_rf(il)) {
4510 D_MAC80211("leave - RF not ready\n");
4511 return -EIO;
4512 }
4513
4514 if (queue >= AC_NUM) {
4515 D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
4516 return 0;
4517 }
4518
4519 q = AC_NUM - 1 - queue;
4520
4521 spin_lock_irqsave(&il->lock, flags);
4522
4523 il->qos_data.def_qos_parm.ac[q].cw_min =
4524 cpu_to_le16(params->cw_min);
4525 il->qos_data.def_qos_parm.ac[q].cw_max =
4526 cpu_to_le16(params->cw_max);
4527 il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
4528 il->qos_data.def_qos_parm.ac[q].edca_txop =
4529 cpu_to_le16((params->txop * 32));
4530
4531 il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
4532
4533 spin_unlock_irqrestore(&il->lock, flags);
4534
4535 D_MAC80211("leave\n");
4536 return 0;
4537 }
4538 EXPORT_SYMBOL(il_mac_conf_tx);
4539
4540 int
4541 il_mac_tx_last_beacon(struct ieee80211_hw *hw)
4542 {
4543 struct il_priv *il = hw->priv;
4544 int ret;
4545
4546 D_MAC80211("enter\n");
4547
4548 ret = (il->ibss_manager == IL_IBSS_MANAGER);
4549
4550 D_MAC80211("leave ret %d\n", ret);
4551 return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
4554
4555 static int
4556 il_set_mode(struct il_priv *il)
4557 {
4558 il_connection_init_rx_config(il);
4559
4560 if (il->ops->set_rxon_chain)
4561 il->ops->set_rxon_chain(il);
4562
4563 return il_commit_rxon(il);
4564 }
4565
4566 int
4567 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4568 {
4569 struct il_priv *il = hw->priv;
4570 int err;
4571 bool reset;
4572
4573 mutex_lock(&il->mutex);
4574 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4575
4576 if (!il_is_ready_rf(il)) {
4577 IL_WARN("Try to add interface when device not ready\n");
4578 err = -EINVAL;
4579 goto out;
4580 }
4581
4582 /*
4583 * We do not support multiple virtual interfaces, but on hardware reset
4584 * we have to add the same interface again.
4585 */
4586 reset = (il->vif == vif);
4587 if (il->vif && !reset) {
4588 err = -EOPNOTSUPP;
4589 goto out;
4590 }
4591
4592 il->vif = vif;
4593 il->iw_mode = vif->type;
4594
4595 err = il_set_mode(il);
4596 if (err) {
4597 IL_WARN("Fail to set mode %d\n", vif->type);
4598 if (!reset) {
4599 il->vif = NULL;
4600 il->iw_mode = NL80211_IFTYPE_STATION;
4601 }
4602 }
4603
4604 out:
4605 D_MAC80211("leave err %d\n", err);
4606 mutex_unlock(&il->mutex);
4607
4608 return err;
4609 }
4610 EXPORT_SYMBOL(il_mac_add_interface);
4611
4612 static void
4613 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
4614 {
4615 lockdep_assert_held(&il->mutex);
4616
4617 if (il->scan_vif == vif) {
4618 il_scan_cancel_timeout(il, 200);
4619 il_force_scan_end(il);
4620 }
4621
4622 il_set_mode(il);
4623 }
4624
4625 void
4626 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4627 {
4628 struct il_priv *il = hw->priv;
4629
4630 mutex_lock(&il->mutex);
4631 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4632
4633 WARN_ON(il->vif != vif);
4634 il->vif = NULL;
4635 il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
4636 il_teardown_interface(il, vif);
4637 memset(il->bssid, 0, ETH_ALEN);
4638
4639 D_MAC80211("leave\n");
4640 mutex_unlock(&il->mutex);
4641 }
4642 EXPORT_SYMBOL(il_mac_remove_interface);
4643
4644 int
4645 il_alloc_txq_mem(struct il_priv *il)
4646 {
4647 if (!il->txq)
4648 il->txq =
4649 kzalloc(sizeof(struct il_tx_queue) *
4650 il->cfg->num_of_queues, GFP_KERNEL);
4651 if (!il->txq) {
4652 IL_ERR("Not enough memory for txq\n");
4653 return -ENOMEM;
4654 }
4655 return 0;
4656 }
4657 EXPORT_SYMBOL(il_alloc_txq_mem);
4658
4659 void
4660 il_free_txq_mem(struct il_priv *il)
4661 {
4662 kfree(il->txq);
4663 il->txq = NULL;
4664 }
4665 EXPORT_SYMBOL(il_free_txq_mem);
4666
4667 int
4668 il_force_reset(struct il_priv *il, bool external)
4669 {
4670 struct il_force_reset *force_reset;
4671
4672 if (test_bit(S_EXIT_PENDING, &il->status))
4673 return -EINVAL;
4674
4675 force_reset = &il->force_reset;
4676 force_reset->reset_request_count++;
4677 if (!external) {
4678 if (force_reset->last_force_reset_jiffies &&
4679 time_after(force_reset->last_force_reset_jiffies +
4680 force_reset->reset_duration, jiffies)) {
4681 D_INFO("force reset rejected\n");
4682 force_reset->reset_reject_count++;
4683 return -EAGAIN;
4684 }
4685 }
4686 force_reset->reset_success_count++;
4687 force_reset->last_force_reset_jiffies = jiffies;
4688
4689 /*
4690 * if the request is from external(ex: debugfs),
4691 * then always perform the request in regardless the module
4692 * parameter setting
4693 * if the request is from internal (uCode error or driver
4694 * detect failure), then fw_restart module parameter
4695 * need to be check before performing firmware reload
4696 */
4697
4698 if (!external && !il->cfg->mod_params->restart_fw) {
4699 D_INFO("Cancel firmware reload based on "
4700 "module parameter setting\n");
4701 return 0;
4702 }
4703
4704 IL_ERR("On demand firmware reload\n");
4705
4706 /* Set the FW error flag -- cleared on il_down */
4707 set_bit(S_FW_ERROR, &il->status);
4708 wake_up(&il->wait_command_queue);
4709 /*
4710 * Keep the restart process from trying to send host
4711 * commands by clearing the INIT status bit
4712 */
4713 clear_bit(S_READY, &il->status);
4714 queue_work(il->workqueue, &il->restart);
4715
4716 return 0;
4717 }
4718 EXPORT_SYMBOL(il_force_reset);
4719
4720 int
4721 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4722 enum nl80211_iftype newtype, bool newp2p)
4723 {
4724 struct il_priv *il = hw->priv;
4725 int err;
4726
4727 mutex_lock(&il->mutex);
4728 D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
4729 vif->type, vif->addr, newtype, newp2p);
4730
4731 if (newp2p) {
4732 err = -EOPNOTSUPP;
4733 goto out;
4734 }
4735
4736 if (!il->vif || !il_is_ready_rf(il)) {
4737 /*
4738 * Huh? But wait ... this can maybe happen when
4739 * we're in the middle of a firmware restart!
4740 */
4741 err = -EBUSY;
4742 goto out;
4743 }
4744
4745 /* success */
4746 vif->type = newtype;
4747 vif->p2p = false;
4748 il->iw_mode = newtype;
4749 il_teardown_interface(il, vif);
4750 err = 0;
4751
4752 out:
4753 D_MAC80211("leave err %d\n", err);
4754 mutex_unlock(&il->mutex);
4755
4756 return err;
4757 }
4758 EXPORT_SYMBOL(il_mac_change_interface);
4759
4760 void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4761 u32 queues, bool drop)
4762 {
4763 struct il_priv *il = hw->priv;
4764 unsigned long timeout = jiffies + msecs_to_jiffies(500);
4765 int i;
4766
4767 mutex_lock(&il->mutex);
4768 D_MAC80211("enter\n");
4769
4770 if (il->txq == NULL)
4771 goto out;
4772
4773 for (i = 0; i < il->hw_params.max_txq_num; i++) {
4774 struct il_queue *q;
4775
4776 if (i == il->cmd_queue)
4777 continue;
4778
4779 q = &il->txq[i].q;
4780 if (q->read_ptr == q->write_ptr)
4781 continue;
4782
4783 if (time_after(jiffies, timeout)) {
4784 IL_ERR("Failed to flush queue %d\n", q->id);
4785 break;
4786 }
4787
4788 msleep(20);
4789 }
4790 out:
4791 D_MAC80211("leave\n");
4792 mutex_unlock(&il->mutex);
4793 }
4794 EXPORT_SYMBOL(il_mac_flush);
4795
4796 /*
4797 * On every watchdog tick we check (latest) time stamp. If it does not
4798 * change during timeout period and queue is not empty we reset firmware.
4799 */
4800 static int
4801 il_check_stuck_queue(struct il_priv *il, int cnt)
4802 {
4803 struct il_tx_queue *txq = &il->txq[cnt];
4804 struct il_queue *q = &txq->q;
4805 unsigned long timeout;
4806 unsigned long now = jiffies;
4807 int ret;
4808
4809 if (q->read_ptr == q->write_ptr) {
4810 txq->time_stamp = now;
4811 return 0;
4812 }
4813
4814 timeout =
4815 txq->time_stamp +
4816 msecs_to_jiffies(il->cfg->wd_timeout);
4817
4818 if (time_after(now, timeout)) {
4819 IL_ERR("Queue %d stuck for %u ms.\n", q->id,
4820 jiffies_to_msecs(now - txq->time_stamp));
4821 ret = il_force_reset(il, false);
4822 return (ret == -EAGAIN) ? 0 : 1;
4823 }
4824
4825 return 0;
4826 }
4827
4828 /*
4829 * Making watchdog tick be a quarter of timeout assure we will
4830 * discover the queue hung between timeout and 1.25*timeout
4831 */
4832 #define IL_WD_TICK(timeout) ((timeout) / 4)
4833
4834 /*
4835 * Watchdog timer callback, we check each tx queue for stuck, if if hung
4836 * we reset the firmware. If everything is fine just rearm the timer.
4837 */
4838 void
4839 il_bg_watchdog(unsigned long data)
4840 {
4841 struct il_priv *il = (struct il_priv *)data;
4842 int cnt;
4843 unsigned long timeout;
4844
4845 if (test_bit(S_EXIT_PENDING, &il->status))
4846 return;
4847
4848 timeout = il->cfg->wd_timeout;
4849 if (timeout == 0)
4850 return;
4851
4852 /* monitor and check for stuck cmd queue */
4853 if (il_check_stuck_queue(il, il->cmd_queue))
4854 return;
4855
4856 /* monitor and check for other stuck queues */
4857 for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
4858 /* skip as we already checked the command queue */
4859 if (cnt == il->cmd_queue)
4860 continue;
4861 if (il_check_stuck_queue(il, cnt))
4862 return;
4863 }
4864
4865 mod_timer(&il->watchdog,
4866 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4867 }
4868 EXPORT_SYMBOL(il_bg_watchdog);
4869
4870 void
4871 il_setup_watchdog(struct il_priv *il)
4872 {
4873 unsigned int timeout = il->cfg->wd_timeout;
4874
4875 if (timeout)
4876 mod_timer(&il->watchdog,
4877 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4878 else
4879 del_timer(&il->watchdog);
4880 }
4881 EXPORT_SYMBOL(il_setup_watchdog);
4882
4883 /*
4884 * extended beacon time format
4885 * time in usec will be changed into a 32-bit value in extended:internal format
4886 * the extended part is the beacon counts
4887 * the internal part is the time in usec within one beacon interval
4888 */
4889 u32
4890 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
4891 {
4892 u32 quot;
4893 u32 rem;
4894 u32 interval = beacon_interval * TIME_UNIT;
4895
4896 if (!interval || !usec)
4897 return 0;
4898
4899 quot =
4900 (usec /
4901 interval) & (il_beacon_time_mask_high(il,
4902 il->hw_params.
4903 beacon_time_tsf_bits) >> il->
4904 hw_params.beacon_time_tsf_bits);
4905 rem =
4906 (usec % interval) & il_beacon_time_mask_low(il,
4907 il->hw_params.
4908 beacon_time_tsf_bits);
4909
4910 return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
4911 }
4912 EXPORT_SYMBOL(il_usecs_to_beacons);
4913
4914 /* base is usually what we get from ucode with each received frame,
4915 * the same as HW timer counter counting down
4916 */
4917 __le32
4918 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
4919 u32 beacon_interval)
4920 {
4921 u32 base_low = base & il_beacon_time_mask_low(il,
4922 il->hw_params.
4923 beacon_time_tsf_bits);
4924 u32 addon_low = addon & il_beacon_time_mask_low(il,
4925 il->hw_params.
4926 beacon_time_tsf_bits);
4927 u32 interval = beacon_interval * TIME_UNIT;
4928 u32 res = (base & il_beacon_time_mask_high(il,
4929 il->hw_params.
4930 beacon_time_tsf_bits)) +
4931 (addon & il_beacon_time_mask_high(il,
4932 il->hw_params.
4933 beacon_time_tsf_bits));
4934
4935 if (base_low > addon_low)
4936 res += base_low - addon_low;
4937 else if (base_low < addon_low) {
4938 res += interval + base_low - addon_low;
4939 res += (1 << il->hw_params.beacon_time_tsf_bits);
4940 } else
4941 res += (1 << il->hw_params.beacon_time_tsf_bits);
4942
4943 return cpu_to_le32(res);
4944 }
4945 EXPORT_SYMBOL(il_add_beacon_time);
4946
4947 #ifdef CONFIG_PM_SLEEP
4948
4949 static int
4950 il_pci_suspend(struct device *device)
4951 {
4952 struct pci_dev *pdev = to_pci_dev(device);
4953 struct il_priv *il = pci_get_drvdata(pdev);
4954
4955 /*
4956 * This function is called when system goes into suspend state
4957 * mac80211 will call il_mac_stop() from the mac80211 suspend function
4958 * first but since il_mac_stop() has no knowledge of who the caller is,
4959 * it will not call apm_ops.stop() to stop the DMA operation.
4960 * Calling apm_ops.stop here to make sure we stop the DMA.
4961 */
4962 il_apm_stop(il);
4963
4964 return 0;
4965 }
4966
4967 static int
4968 il_pci_resume(struct device *device)
4969 {
4970 struct pci_dev *pdev = to_pci_dev(device);
4971 struct il_priv *il = pci_get_drvdata(pdev);
4972 bool hw_rfkill = false;
4973
4974 /*
4975 * We disable the RETRY_TIMEOUT register (0x41) to keep
4976 * PCI Tx retries from interfering with C3 CPU state.
4977 */
4978 pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
4979
4980 il_enable_interrupts(il);
4981
4982 if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
4983 hw_rfkill = true;
4984
4985 if (hw_rfkill)
4986 set_bit(S_RFKILL, &il->status);
4987 else
4988 clear_bit(S_RFKILL, &il->status);
4989
4990 wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
4991
4992 return 0;
4993 }
4994
4995 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
4996 EXPORT_SYMBOL(il_pm_ops);
4997
4998 #endif /* CONFIG_PM_SLEEP */
4999
5000 static void
5001 il_update_qos(struct il_priv *il)
5002 {
5003 if (test_bit(S_EXIT_PENDING, &il->status))
5004 return;
5005
5006 il->qos_data.def_qos_parm.qos_flags = 0;
5007
5008 if (il->qos_data.qos_active)
5009 il->qos_data.def_qos_parm.qos_flags |=
5010 QOS_PARAM_FLG_UPDATE_EDCA_MSK;
5011
5012 if (il->ht.enabled)
5013 il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
5014
5015 D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
5016 il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
5017
5018 il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
5019 &il->qos_data.def_qos_parm, NULL);
5020 }
5021
5022 /**
5023 * il_mac_config - mac80211 config callback
5024 */
5025 int
5026 il_mac_config(struct ieee80211_hw *hw, u32 changed)
5027 {
5028 struct il_priv *il = hw->priv;
5029 const struct il_channel_info *ch_info;
5030 struct ieee80211_conf *conf = &hw->conf;
5031 struct ieee80211_channel *channel = conf->chandef.chan;
5032 struct il_ht_config *ht_conf = &il->current_ht_config;
5033 unsigned long flags = 0;
5034 int ret = 0;
5035 u16 ch;
5036 int scan_active = 0;
5037 bool ht_changed = false;
5038
5039 mutex_lock(&il->mutex);
5040 D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
5041 changed);
5042
5043 if (unlikely(test_bit(S_SCANNING, &il->status))) {
5044 scan_active = 1;
5045 D_MAC80211("scan active\n");
5046 }
5047
5048 if (changed &
5049 (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
5050 /* mac80211 uses static for non-HT which is what we want */
5051 il->current_ht_config.smps = conf->smps_mode;
5052
5053 /*
5054 * Recalculate chain counts.
5055 *
5056 * If monitor mode is enabled then mac80211 will
5057 * set up the SM PS mode to OFF if an HT channel is
5058 * configured.
5059 */
5060 if (il->ops->set_rxon_chain)
5061 il->ops->set_rxon_chain(il);
5062 }
5063
5064 /* during scanning mac80211 will delay channel setting until
5065 * scan finish with changed = 0
5066 */
5067 if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
5068
5069 if (scan_active)
5070 goto set_ch_out;
5071
5072 ch = channel->hw_value;
5073 ch_info = il_get_channel_info(il, channel->band, ch);
5074 if (!il_is_channel_valid(ch_info)) {
5075 D_MAC80211("leave - invalid channel\n");
5076 ret = -EINVAL;
5077 goto set_ch_out;
5078 }
5079
5080 if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
5081 !il_is_channel_ibss(ch_info)) {
5082 D_MAC80211("leave - not IBSS channel\n");
5083 ret = -EINVAL;
5084 goto set_ch_out;
5085 }
5086
5087 spin_lock_irqsave(&il->lock, flags);
5088
5089 /* Configure HT40 channels */
5090 if (il->ht.enabled != conf_is_ht(conf)) {
5091 il->ht.enabled = conf_is_ht(conf);
5092 ht_changed = true;
5093 }
5094 if (il->ht.enabled) {
5095 if (conf_is_ht40_minus(conf)) {
5096 il->ht.extension_chan_offset =
5097 IEEE80211_HT_PARAM_CHA_SEC_BELOW;
5098 il->ht.is_40mhz = true;
5099 } else if (conf_is_ht40_plus(conf)) {
5100 il->ht.extension_chan_offset =
5101 IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
5102 il->ht.is_40mhz = true;
5103 } else {
5104 il->ht.extension_chan_offset =
5105 IEEE80211_HT_PARAM_CHA_SEC_NONE;
5106 il->ht.is_40mhz = false;
5107 }
5108 } else
5109 il->ht.is_40mhz = false;
5110
5111 /*
5112 * Default to no protection. Protection mode will
5113 * later be set from BSS config in il_ht_conf
5114 */
5115 il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
5116
5117 /* if we are switching from ht to 2.4 clear flags
5118 * from any ht related info since 2.4 does not
5119 * support ht */
5120 if ((le16_to_cpu(il->staging.channel) != ch))
5121 il->staging.flags = 0;
5122
5123 il_set_rxon_channel(il, channel);
5124 il_set_rxon_ht(il, ht_conf);
5125
5126 il_set_flags_for_band(il, channel->band, il->vif);
5127
5128 spin_unlock_irqrestore(&il->lock, flags);
5129
5130 if (il->ops->update_bcast_stations)
5131 ret = il->ops->update_bcast_stations(il);
5132
5133 set_ch_out:
5134 /* The list of supported rates and rate mask can be different
5135 * for each band; since the band may have changed, reset
5136 * the rate mask to what mac80211 lists */
5137 il_set_rate(il);
5138 }
5139
5140 if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
5141 il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS);
5142 ret = il_power_update_mode(il, false);
5143 if (ret)
5144 D_MAC80211("Error setting sleep level\n");
5145 }
5146
5147 if (changed & IEEE80211_CONF_CHANGE_POWER) {
5148 D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
5149 conf->power_level);
5150
5151 il_set_tx_power(il, conf->power_level, false);
5152 }
5153
5154 if (!il_is_ready(il)) {
5155 D_MAC80211("leave - not ready\n");
5156 goto out;
5157 }
5158
5159 if (scan_active)
5160 goto out;
5161
5162 if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
5163 il_commit_rxon(il);
5164 else
5165 D_INFO("Not re-sending same RXON configuration.\n");
5166 if (ht_changed)
5167 il_update_qos(il);
5168
5169 out:
5170 D_MAC80211("leave ret %d\n", ret);
5171 mutex_unlock(&il->mutex);
5172
5173 return ret;
5174 }
5175 EXPORT_SYMBOL(il_mac_config);
5176
5177 void
5178 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5179 {
5180 struct il_priv *il = hw->priv;
5181 unsigned long flags;
5182
5183 mutex_lock(&il->mutex);
5184 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
5185
5186 spin_lock_irqsave(&il->lock, flags);
5187
5188 memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
5189
5190 /* new association get rid of ibss beacon skb */
5191 if (il->beacon_skb)
5192 dev_kfree_skb(il->beacon_skb);
5193 il->beacon_skb = NULL;
5194 il->timestamp = 0;
5195
5196 spin_unlock_irqrestore(&il->lock, flags);
5197
5198 il_scan_cancel_timeout(il, 100);
5199 if (!il_is_ready_rf(il)) {
5200 D_MAC80211("leave - not ready\n");
5201 mutex_unlock(&il->mutex);
5202 return;
5203 }
5204
5205 /* we are restarting association process */
5206 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5207 il_commit_rxon(il);
5208
5209 il_set_rate(il);
5210
5211 D_MAC80211("leave\n");
5212 mutex_unlock(&il->mutex);
5213 }
5214 EXPORT_SYMBOL(il_mac_reset_tsf);
5215
5216 static void
5217 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
5218 {
5219 struct il_ht_config *ht_conf = &il->current_ht_config;
5220 struct ieee80211_sta *sta;
5221 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
5222
5223 D_ASSOC("enter:\n");
5224
5225 if (!il->ht.enabled)
5226 return;
5227
5228 il->ht.protection =
5229 bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
5230 il->ht.non_gf_sta_present =
5231 !!(bss_conf->
5232 ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
5233
5234 ht_conf->single_chain_sufficient = false;
5235
5236 switch (vif->type) {
5237 case NL80211_IFTYPE_STATION:
5238 rcu_read_lock();
5239 sta = ieee80211_find_sta(vif, bss_conf->bssid);
5240 if (sta) {
5241 struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
5242 int maxstreams;
5243
5244 maxstreams =
5245 (ht_cap->mcs.
5246 tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
5247 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
5248 maxstreams += 1;
5249
5250 if (ht_cap->mcs.rx_mask[1] == 0 &&
5251 ht_cap->mcs.rx_mask[2] == 0)
5252 ht_conf->single_chain_sufficient = true;
5253 if (maxstreams <= 1)
5254 ht_conf->single_chain_sufficient = true;
5255 } else {
5256 /*
5257 * If at all, this can only happen through a race
5258 * when the AP disconnects us while we're still
5259 * setting up the connection, in that case mac80211
5260 * will soon tell us about that.
5261 */
5262 ht_conf->single_chain_sufficient = true;
5263 }
5264 rcu_read_unlock();
5265 break;
5266 case NL80211_IFTYPE_ADHOC:
5267 ht_conf->single_chain_sufficient = true;
5268 break;
5269 default:
5270 break;
5271 }
5272
5273 D_ASSOC("leave\n");
5274 }
5275
5276 static inline void
5277 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
5278 {
5279 /*
5280 * inform the ucode that there is no longer an
5281 * association and that no more packets should be
5282 * sent
5283 */
5284 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5285 il->staging.assoc_id = 0;
5286 il_commit_rxon(il);
5287 }
5288
5289 static void
5290 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5291 {
5292 struct il_priv *il = hw->priv;
5293 unsigned long flags;
5294 __le64 timestamp;
5295 struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
5296
5297 if (!skb)
5298 return;
5299
5300 D_MAC80211("enter\n");
5301
5302 lockdep_assert_held(&il->mutex);
5303
5304 if (!il->beacon_enabled) {
5305 IL_ERR("update beacon with no beaconing enabled\n");
5306 dev_kfree_skb(skb);
5307 return;
5308 }
5309
5310 spin_lock_irqsave(&il->lock, flags);
5311
5312 if (il->beacon_skb)
5313 dev_kfree_skb(il->beacon_skb);
5314
5315 il->beacon_skb = skb;
5316
5317 timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
5318 il->timestamp = le64_to_cpu(timestamp);
5319
5320 D_MAC80211("leave\n");
5321 spin_unlock_irqrestore(&il->lock, flags);
5322
5323 if (!il_is_ready_rf(il)) {
5324 D_MAC80211("leave - RF not ready\n");
5325 return;
5326 }
5327
5328 il->ops->post_associate(il);
5329 }
5330
5331 void
5332 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5333 struct ieee80211_bss_conf *bss_conf, u32 changes)
5334 {
5335 struct il_priv *il = hw->priv;
5336 int ret;
5337
5338 mutex_lock(&il->mutex);
5339 D_MAC80211("enter: changes 0x%x\n", changes);
5340
5341 if (!il_is_alive(il)) {
5342 D_MAC80211("leave - not alive\n");
5343 mutex_unlock(&il->mutex);
5344 return;
5345 }
5346
5347 if (changes & BSS_CHANGED_QOS) {
5348 unsigned long flags;
5349
5350 spin_lock_irqsave(&il->lock, flags);
5351 il->qos_data.qos_active = bss_conf->qos;
5352 il_update_qos(il);
5353 spin_unlock_irqrestore(&il->lock, flags);
5354 }
5355
5356 if (changes & BSS_CHANGED_BEACON_ENABLED) {
5357 /* FIXME: can we remove beacon_enabled ? */
5358 if (vif->bss_conf.enable_beacon)
5359 il->beacon_enabled = true;
5360 else
5361 il->beacon_enabled = false;
5362 }
5363
5364 if (changes & BSS_CHANGED_BSSID) {
5365 D_MAC80211("BSSID %pM\n", bss_conf->bssid);
5366
5367 /*
5368 * On passive channel we wait with blocked queues to see if
5369 * there is traffic on that channel. If no frame will be
5370 * received (what is very unlikely since scan detects AP on
5371 * that channel, but theoretically possible), mac80211 associate
5372 * procedure will time out and mac80211 will call us with NULL
5373 * bssid. We have to unblock queues on such condition.
5374 */
5375 if (is_zero_ether_addr(bss_conf->bssid))
5376 il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
5377
5378 /*
5379 * If there is currently a HW scan going on in the background,
5380 * then we need to cancel it, otherwise sometimes we are not
5381 * able to authenticate (FIXME: why ?)
5382 */
5383 if (il_scan_cancel_timeout(il, 100)) {
5384 D_MAC80211("leave - scan abort failed\n");
5385 mutex_unlock(&il->mutex);
5386 return;
5387 }
5388
5389 /* mac80211 only sets assoc when in STATION mode */
5390 memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
5391
5392 /* FIXME: currently needed in a few places */
5393 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5394 }
5395
5396 /*
5397 * This needs to be after setting the BSSID in case
5398 * mac80211 decides to do both changes at once because
5399 * it will invoke post_associate.
5400 */
5401 if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
5402 il_beacon_update(hw, vif);
5403
5404 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
5405 D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
5406 if (bss_conf->use_short_preamble)
5407 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
5408 else
5409 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
5410 }
5411
5412 if (changes & BSS_CHANGED_ERP_CTS_PROT) {
5413 D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
5414 if (bss_conf->use_cts_prot && il->band != IEEE80211_BAND_5GHZ)
5415 il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
5416 else
5417 il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
5418 if (bss_conf->use_cts_prot)
5419 il->staging.flags |= RXON_FLG_SELF_CTS_EN;
5420 else
5421 il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
5422 }
5423
5424 if (changes & BSS_CHANGED_BASIC_RATES) {
5425 /* XXX use this information
5426 *
5427 * To do that, remove code from il_set_rate() and put something
5428 * like this here:
5429 *
5430 if (A-band)
5431 il->staging.ofdm_basic_rates =
5432 bss_conf->basic_rates;
5433 else
5434 il->staging.ofdm_basic_rates =
5435 bss_conf->basic_rates >> 4;
5436 il->staging.cck_basic_rates =
5437 bss_conf->basic_rates & 0xF;
5438 */
5439 }
5440
5441 if (changes & BSS_CHANGED_HT) {
5442 il_ht_conf(il, vif);
5443
5444 if (il->ops->set_rxon_chain)
5445 il->ops->set_rxon_chain(il);
5446 }
5447
5448 if (changes & BSS_CHANGED_ASSOC) {
5449 D_MAC80211("ASSOC %d\n", bss_conf->assoc);
5450 if (bss_conf->assoc) {
5451 il->timestamp = bss_conf->sync_tsf;
5452
5453 if (!il_is_rfkill(il))
5454 il->ops->post_associate(il);
5455 } else
5456 il_set_no_assoc(il, vif);
5457 }
5458
5459 if (changes && il_is_associated(il) && bss_conf->aid) {
5460 D_MAC80211("Changes (%#x) while associated\n", changes);
5461 ret = il_send_rxon_assoc(il);
5462 if (!ret) {
5463 /* Sync active_rxon with latest change. */
5464 memcpy((void *)&il->active, &il->staging,
5465 sizeof(struct il_rxon_cmd));
5466 }
5467 }
5468
5469 if (changes & BSS_CHANGED_BEACON_ENABLED) {
5470 if (vif->bss_conf.enable_beacon) {
5471 memcpy(il->staging.bssid_addr, bss_conf->bssid,
5472 ETH_ALEN);
5473 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5474 il->ops->config_ap(il);
5475 } else
5476 il_set_no_assoc(il, vif);
5477 }
5478
5479 if (changes & BSS_CHANGED_IBSS) {
5480 ret = il->ops->manage_ibss_station(il, vif,
5481 bss_conf->ibss_joined);
5482 if (ret)
5483 IL_ERR("failed to %s IBSS station %pM\n",
5484 bss_conf->ibss_joined ? "add" : "remove",
5485 bss_conf->bssid);
5486 }
5487
5488 D_MAC80211("leave\n");
5489 mutex_unlock(&il->mutex);
5490 }
5491 EXPORT_SYMBOL(il_mac_bss_info_changed);
5492
5493 irqreturn_t
5494 il_isr(int irq, void *data)
5495 {
5496 struct il_priv *il = data;
5497 u32 inta, inta_mask;
5498 u32 inta_fh;
5499 unsigned long flags;
5500 if (!il)
5501 return IRQ_NONE;
5502
5503 spin_lock_irqsave(&il->lock, flags);
5504
5505 /* Disable (but don't clear!) interrupts here to avoid
5506 * back-to-back ISRs and sporadic interrupts from our NIC.
5507 * If we have something to service, the tasklet will re-enable ints.
5508 * If we *don't* have something, we'll re-enable before leaving here. */
5509 inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */
5510 _il_wr(il, CSR_INT_MASK, 0x00000000);
5511
5512 /* Discover which interrupts are active/pending */
5513 inta = _il_rd(il, CSR_INT);
5514 inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
5515
5516 /* Ignore interrupt if there's nothing in NIC to service.
5517 * This may be due to IRQ shared with another device,
5518 * or due to sporadic interrupts thrown from our NIC. */
5519 if (!inta && !inta_fh) {
5520 D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
5521 goto none;
5522 }
5523
5524 if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
5525 /* Hardware disappeared. It might have already raised
5526 * an interrupt */
5527 IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
5528 goto unplugged;
5529 }
5530
5531 D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
5532 inta_fh);
5533
5534 inta &= ~CSR_INT_BIT_SCD;
5535
5536 /* il_irq_tasklet() will service interrupts and re-enable them */
5537 if (likely(inta || inta_fh))
5538 tasklet_schedule(&il->irq_tasklet);
5539
5540 unplugged:
5541 spin_unlock_irqrestore(&il->lock, flags);
5542 return IRQ_HANDLED;
5543
5544 none:
5545 /* re-enable interrupts here since we don't have anything to service. */
5546 /* only Re-enable if disabled by irq */
5547 if (test_bit(S_INT_ENABLED, &il->status))
5548 il_enable_interrupts(il);
5549 spin_unlock_irqrestore(&il->lock, flags);
5550 return IRQ_NONE;
5551 }
5552 EXPORT_SYMBOL(il_isr);
5553
5554 /*
5555 * il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
5556 * function.
5557 */
5558 void
5559 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
5560 __le16 fc, __le32 *tx_flags)
5561 {
5562 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
5563 *tx_flags |= TX_CMD_FLG_RTS_MSK;
5564 *tx_flags &= ~TX_CMD_FLG_CTS_MSK;
5565 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5566
5567 if (!ieee80211_is_mgmt(fc))
5568 return;
5569
5570 switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
5571 case cpu_to_le16(IEEE80211_STYPE_AUTH):
5572 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
5573 case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
5574 case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
5575 *tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5576 *tx_flags |= TX_CMD_FLG_CTS_MSK;
5577 break;
5578 }
5579 } else if (info->control.rates[0].
5580 flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
5581 *tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5582 *tx_flags |= TX_CMD_FLG_CTS_MSK;
5583 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5584 }
5585 }
5586 EXPORT_SYMBOL(il_tx_cmd_protection);