]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/iwlwifi/iwl-4965.c
Merge branch 'bjorn-notify' into release
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / iwlwifi / iwl-4965.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2009 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * Intel Linux Wireless <ilw@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *****************************************************************************/
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <linux/skbuff.h>
34 #include <linux/netdevice.h>
35 #include <linux/wireless.h>
36 #include <net/mac80211.h>
37 #include <linux/etherdevice.h>
38 #include <asm/unaligned.h>
39
40 #include "iwl-eeprom.h"
41 #include "iwl-dev.h"
42 #include "iwl-core.h"
43 #include "iwl-io.h"
44 #include "iwl-helpers.h"
45 #include "iwl-calib.h"
46 #include "iwl-sta.h"
47
48 static int iwl4965_send_tx_power(struct iwl_priv *priv);
49 static int iwl4965_hw_get_temperature(const struct iwl_priv *priv);
50
51 /* Highest firmware API version supported */
52 #define IWL4965_UCODE_API_MAX 2
53
54 /* Lowest firmware API version supported */
55 #define IWL4965_UCODE_API_MIN 2
56
57 #define IWL4965_FW_PRE "iwlwifi-4965-"
58 #define _IWL4965_MODULE_FIRMWARE(api) IWL4965_FW_PRE #api ".ucode"
59 #define IWL4965_MODULE_FIRMWARE(api) _IWL4965_MODULE_FIRMWARE(api)
60
61
62 /* module parameters */
63 static struct iwl_mod_params iwl4965_mod_params = {
64 .num_of_queues = IWL49_NUM_QUEUES,
65 .num_of_ampdu_queues = IWL49_NUM_AMPDU_QUEUES,
66 .amsdu_size_8K = 1,
67 .restart_fw = 1,
68 /* the rest are 0 by default */
69 };
70
71 /* check contents of special bootstrap uCode SRAM */
72 static int iwl4965_verify_bsm(struct iwl_priv *priv)
73 {
74 __le32 *image = priv->ucode_boot.v_addr;
75 u32 len = priv->ucode_boot.len;
76 u32 reg;
77 u32 val;
78
79 IWL_DEBUG_INFO(priv, "Begin verify bsm\n");
80
81 /* verify BSM SRAM contents */
82 val = iwl_read_prph(priv, BSM_WR_DWCOUNT_REG);
83 for (reg = BSM_SRAM_LOWER_BOUND;
84 reg < BSM_SRAM_LOWER_BOUND + len;
85 reg += sizeof(u32), image++) {
86 val = iwl_read_prph(priv, reg);
87 if (val != le32_to_cpu(*image)) {
88 IWL_ERR(priv, "BSM uCode verification failed at "
89 "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
90 BSM_SRAM_LOWER_BOUND,
91 reg - BSM_SRAM_LOWER_BOUND, len,
92 val, le32_to_cpu(*image));
93 return -EIO;
94 }
95 }
96
97 IWL_DEBUG_INFO(priv, "BSM bootstrap uCode image OK\n");
98
99 return 0;
100 }
101
102 /**
103 * iwl4965_load_bsm - Load bootstrap instructions
104 *
105 * BSM operation:
106 *
107 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
108 * in special SRAM that does not power down during RFKILL. When powering back
109 * up after power-saving sleeps (or during initial uCode load), the BSM loads
110 * the bootstrap program into the on-board processor, and starts it.
111 *
112 * The bootstrap program loads (via DMA) instructions and data for a new
113 * program from host DRAM locations indicated by the host driver in the
114 * BSM_DRAM_* registers. Once the new program is loaded, it starts
115 * automatically.
116 *
117 * When initializing the NIC, the host driver points the BSM to the
118 * "initialize" uCode image. This uCode sets up some internal data, then
119 * notifies host via "initialize alive" that it is complete.
120 *
121 * The host then replaces the BSM_DRAM_* pointer values to point to the
122 * normal runtime uCode instructions and a backup uCode data cache buffer
123 * (filled initially with starting data values for the on-board processor),
124 * then triggers the "initialize" uCode to load and launch the runtime uCode,
125 * which begins normal operation.
126 *
127 * When doing a power-save shutdown, runtime uCode saves data SRAM into
128 * the backup data cache in DRAM before SRAM is powered down.
129 *
130 * When powering back up, the BSM loads the bootstrap program. This reloads
131 * the runtime uCode instructions and the backup data cache into SRAM,
132 * and re-launches the runtime uCode from where it left off.
133 */
134 static int iwl4965_load_bsm(struct iwl_priv *priv)
135 {
136 __le32 *image = priv->ucode_boot.v_addr;
137 u32 len = priv->ucode_boot.len;
138 dma_addr_t pinst;
139 dma_addr_t pdata;
140 u32 inst_len;
141 u32 data_len;
142 int i;
143 u32 done;
144 u32 reg_offset;
145 int ret;
146
147 IWL_DEBUG_INFO(priv, "Begin load bsm\n");
148
149 priv->ucode_type = UCODE_RT;
150
151 /* make sure bootstrap program is no larger than BSM's SRAM size */
152 if (len > IWL49_MAX_BSM_SIZE)
153 return -EINVAL;
154
155 /* Tell bootstrap uCode where to find the "Initialize" uCode
156 * in host DRAM ... host DRAM physical address bits 35:4 for 4965.
157 * NOTE: iwl_init_alive_start() will replace these values,
158 * after the "initialize" uCode has run, to point to
159 * runtime/protocol instructions and backup data cache.
160 */
161 pinst = priv->ucode_init.p_addr >> 4;
162 pdata = priv->ucode_init_data.p_addr >> 4;
163 inst_len = priv->ucode_init.len;
164 data_len = priv->ucode_init_data.len;
165
166 iwl_write_prph(priv, BSM_DRAM_INST_PTR_REG, pinst);
167 iwl_write_prph(priv, BSM_DRAM_DATA_PTR_REG, pdata);
168 iwl_write_prph(priv, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
169 iwl_write_prph(priv, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
170
171 /* Fill BSM memory with bootstrap instructions */
172 for (reg_offset = BSM_SRAM_LOWER_BOUND;
173 reg_offset < BSM_SRAM_LOWER_BOUND + len;
174 reg_offset += sizeof(u32), image++)
175 _iwl_write_prph(priv, reg_offset, le32_to_cpu(*image));
176
177 ret = iwl4965_verify_bsm(priv);
178 if (ret)
179 return ret;
180
181 /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
182 iwl_write_prph(priv, BSM_WR_MEM_SRC_REG, 0x0);
183 iwl_write_prph(priv, BSM_WR_MEM_DST_REG, IWL49_RTC_INST_LOWER_BOUND);
184 iwl_write_prph(priv, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
185
186 /* Load bootstrap code into instruction SRAM now,
187 * to prepare to load "initialize" uCode */
188 iwl_write_prph(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
189
190 /* Wait for load of bootstrap uCode to finish */
191 for (i = 0; i < 100; i++) {
192 done = iwl_read_prph(priv, BSM_WR_CTRL_REG);
193 if (!(done & BSM_WR_CTRL_REG_BIT_START))
194 break;
195 udelay(10);
196 }
197 if (i < 100)
198 IWL_DEBUG_INFO(priv, "BSM write complete, poll %d iterations\n", i);
199 else {
200 IWL_ERR(priv, "BSM write did not complete!\n");
201 return -EIO;
202 }
203
204 /* Enable future boot loads whenever power management unit triggers it
205 * (e.g. when powering back up after power-save shutdown) */
206 iwl_write_prph(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
207
208
209 return 0;
210 }
211
212 /**
213 * iwl4965_set_ucode_ptrs - Set uCode address location
214 *
215 * Tell initialization uCode where to find runtime uCode.
216 *
217 * BSM registers initially contain pointers to initialization uCode.
218 * We need to replace them to load runtime uCode inst and data,
219 * and to save runtime data when powering down.
220 */
221 static int iwl4965_set_ucode_ptrs(struct iwl_priv *priv)
222 {
223 dma_addr_t pinst;
224 dma_addr_t pdata;
225 int ret = 0;
226
227 /* bits 35:4 for 4965 */
228 pinst = priv->ucode_code.p_addr >> 4;
229 pdata = priv->ucode_data_backup.p_addr >> 4;
230
231 /* Tell bootstrap uCode where to find image to load */
232 iwl_write_prph(priv, BSM_DRAM_INST_PTR_REG, pinst);
233 iwl_write_prph(priv, BSM_DRAM_DATA_PTR_REG, pdata);
234 iwl_write_prph(priv, BSM_DRAM_DATA_BYTECOUNT_REG,
235 priv->ucode_data.len);
236
237 /* Inst byte count must be last to set up, bit 31 signals uCode
238 * that all new ptr/size info is in place */
239 iwl_write_prph(priv, BSM_DRAM_INST_BYTECOUNT_REG,
240 priv->ucode_code.len | BSM_DRAM_INST_LOAD);
241 IWL_DEBUG_INFO(priv, "Runtime uCode pointers are set.\n");
242
243 return ret;
244 }
245
246 /**
247 * iwl4965_init_alive_start - Called after REPLY_ALIVE notification received
248 *
249 * Called after REPLY_ALIVE notification received from "initialize" uCode.
250 *
251 * The 4965 "initialize" ALIVE reply contains calibration data for:
252 * Voltage, temperature, and MIMO tx gain correction, now stored in priv
253 * (3945 does not contain this data).
254 *
255 * Tell "initialize" uCode to go ahead and load the runtime uCode.
256 */
257 static void iwl4965_init_alive_start(struct iwl_priv *priv)
258 {
259 /* Check alive response for "valid" sign from uCode */
260 if (priv->card_alive_init.is_valid != UCODE_VALID_OK) {
261 /* We had an error bringing up the hardware, so take it
262 * all the way back down so we can try again */
263 IWL_DEBUG_INFO(priv, "Initialize Alive failed.\n");
264 goto restart;
265 }
266
267 /* Bootstrap uCode has loaded initialize uCode ... verify inst image.
268 * This is a paranoid check, because we would not have gotten the
269 * "initialize" alive if code weren't properly loaded. */
270 if (iwl_verify_ucode(priv)) {
271 /* Runtime instruction load was bad;
272 * take it all the way back down so we can try again */
273 IWL_DEBUG_INFO(priv, "Bad \"initialize\" uCode load.\n");
274 goto restart;
275 }
276
277 /* Calculate temperature */
278 priv->temperature = iwl4965_hw_get_temperature(priv);
279
280 /* Send pointers to protocol/runtime uCode image ... init code will
281 * load and launch runtime uCode, which will send us another "Alive"
282 * notification. */
283 IWL_DEBUG_INFO(priv, "Initialization Alive received.\n");
284 if (iwl4965_set_ucode_ptrs(priv)) {
285 /* Runtime instruction load won't happen;
286 * take it all the way back down so we can try again */
287 IWL_DEBUG_INFO(priv, "Couldn't set up uCode pointers.\n");
288 goto restart;
289 }
290 return;
291
292 restart:
293 queue_work(priv->workqueue, &priv->restart);
294 }
295
296 static bool is_fat_channel(__le32 rxon_flags)
297 {
298 int chan_mod = le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK)
299 >> RXON_FLG_CHANNEL_MODE_POS;
300 return ((chan_mod == CHANNEL_MODE_PURE_40) ||
301 (chan_mod == CHANNEL_MODE_MIXED));
302 }
303
304 /*
305 * EEPROM handlers
306 */
307 static u16 iwl4965_eeprom_calib_version(struct iwl_priv *priv)
308 {
309 return iwl_eeprom_query16(priv, EEPROM_4965_CALIB_VERSION_OFFSET);
310 }
311
312 /*
313 * Activate/Deactivate Tx DMA/FIFO channels according tx fifos mask
314 * must be called under priv->lock and mac access
315 */
316 static void iwl4965_txq_set_sched(struct iwl_priv *priv, u32 mask)
317 {
318 iwl_write_prph(priv, IWL49_SCD_TXFACT, mask);
319 }
320
321 static int iwl4965_apm_init(struct iwl_priv *priv)
322 {
323 int ret = 0;
324
325 iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
326 CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
327
328 /* disable L0s without affecting L1 :don't wait for ICH L0s bug W/A) */
329 iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
330 CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
331
332 /* set "initialization complete" bit to move adapter
333 * D0U* --> D0A* state */
334 iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
335
336 /* wait for clock stabilization */
337 ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
338 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
339 if (ret < 0) {
340 IWL_DEBUG_INFO(priv, "Failed to init the card\n");
341 goto out;
342 }
343
344 /* enable DMA */
345 iwl_write_prph(priv, APMG_CLK_CTRL_REG, APMG_CLK_VAL_DMA_CLK_RQT |
346 APMG_CLK_VAL_BSM_CLK_RQT);
347
348 udelay(20);
349
350 /* disable L1-Active */
351 iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
352 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
353
354 out:
355 return ret;
356 }
357
358
359 static void iwl4965_nic_config(struct iwl_priv *priv)
360 {
361 unsigned long flags;
362 u16 radio_cfg;
363 u16 lctl;
364
365 spin_lock_irqsave(&priv->lock, flags);
366
367 lctl = iwl_pcie_link_ctl(priv);
368
369 /* HW bug W/A - negligible power consumption */
370 /* L1-ASPM is enabled by BIOS */
371 if ((lctl & PCI_CFG_LINK_CTRL_VAL_L1_EN) == PCI_CFG_LINK_CTRL_VAL_L1_EN)
372 /* L1-ASPM enabled: disable L0S */
373 iwl_set_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
374 else
375 /* L1-ASPM disabled: enable L0S */
376 iwl_clear_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
377
378 radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
379
380 /* write radio config values to register */
381 if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
382 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
383 EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
384 EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
385 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
386
387 /* set CSR_HW_CONFIG_REG for uCode use */
388 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
389 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
390 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
391
392 priv->calib_info = (struct iwl_eeprom_calib_info *)
393 iwl_eeprom_query_addr(priv, EEPROM_4965_CALIB_TXPOWER_OFFSET);
394
395 spin_unlock_irqrestore(&priv->lock, flags);
396 }
397
398 static int iwl4965_apm_stop_master(struct iwl_priv *priv)
399 {
400 unsigned long flags;
401
402 spin_lock_irqsave(&priv->lock, flags);
403
404 /* set stop master bit */
405 iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
406
407 iwl_poll_direct_bit(priv, CSR_RESET,
408 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
409
410 spin_unlock_irqrestore(&priv->lock, flags);
411 IWL_DEBUG_INFO(priv, "stop master\n");
412
413 return 0;
414 }
415
416 static void iwl4965_apm_stop(struct iwl_priv *priv)
417 {
418 unsigned long flags;
419
420 iwl4965_apm_stop_master(priv);
421
422 spin_lock_irqsave(&priv->lock, flags);
423
424 iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
425
426 udelay(10);
427 /* clear "init complete" move adapter D0A* --> D0U state */
428 iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
429 spin_unlock_irqrestore(&priv->lock, flags);
430 }
431
432 static int iwl4965_apm_reset(struct iwl_priv *priv)
433 {
434 int ret = 0;
435
436 iwl4965_apm_stop_master(priv);
437
438
439 iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
440
441 udelay(10);
442
443 /* FIXME: put here L1A -L0S w/a */
444
445 iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
446
447 ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
448 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
449 if (ret < 0)
450 goto out;
451
452 udelay(10);
453
454 /* Enable DMA and BSM Clock */
455 iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT |
456 APMG_CLK_VAL_BSM_CLK_RQT);
457
458 udelay(10);
459
460 /* disable L1A */
461 iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG,
462 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
463
464 clear_bit(STATUS_HCMD_ACTIVE, &priv->status);
465 wake_up_interruptible(&priv->wait_command_queue);
466
467 out:
468 return ret;
469 }
470
471 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
472 * Called after every association, but this runs only once!
473 * ... once chain noise is calibrated the first time, it's good forever. */
474 static void iwl4965_chain_noise_reset(struct iwl_priv *priv)
475 {
476 struct iwl_chain_noise_data *data = &(priv->chain_noise_data);
477
478 if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) {
479 struct iwl_calib_diff_gain_cmd cmd;
480
481 memset(&cmd, 0, sizeof(cmd));
482 cmd.hdr.op_code = IWL_PHY_CALIBRATE_DIFF_GAIN_CMD;
483 cmd.diff_gain_a = 0;
484 cmd.diff_gain_b = 0;
485 cmd.diff_gain_c = 0;
486 if (iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
487 sizeof(cmd), &cmd))
488 IWL_ERR(priv,
489 "Could not send REPLY_PHY_CALIBRATION_CMD\n");
490 data->state = IWL_CHAIN_NOISE_ACCUMULATE;
491 IWL_DEBUG_CALIB(priv, "Run chain_noise_calibrate\n");
492 }
493 }
494
495 static void iwl4965_gain_computation(struct iwl_priv *priv,
496 u32 *average_noise,
497 u16 min_average_noise_antenna_i,
498 u32 min_average_noise)
499 {
500 int i, ret;
501 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
502
503 data->delta_gain_code[min_average_noise_antenna_i] = 0;
504
505 for (i = 0; i < NUM_RX_CHAINS; i++) {
506 s32 delta_g = 0;
507
508 if (!(data->disconn_array[i]) &&
509 (data->delta_gain_code[i] ==
510 CHAIN_NOISE_DELTA_GAIN_INIT_VAL)) {
511 delta_g = average_noise[i] - min_average_noise;
512 data->delta_gain_code[i] = (u8)((delta_g * 10) / 15);
513 data->delta_gain_code[i] =
514 min(data->delta_gain_code[i],
515 (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
516
517 data->delta_gain_code[i] =
518 (data->delta_gain_code[i] | (1 << 2));
519 } else {
520 data->delta_gain_code[i] = 0;
521 }
522 }
523 IWL_DEBUG_CALIB(priv, "delta_gain_codes: a %d b %d c %d\n",
524 data->delta_gain_code[0],
525 data->delta_gain_code[1],
526 data->delta_gain_code[2]);
527
528 /* Differential gain gets sent to uCode only once */
529 if (!data->radio_write) {
530 struct iwl_calib_diff_gain_cmd cmd;
531 data->radio_write = 1;
532
533 memset(&cmd, 0, sizeof(cmd));
534 cmd.hdr.op_code = IWL_PHY_CALIBRATE_DIFF_GAIN_CMD;
535 cmd.diff_gain_a = data->delta_gain_code[0];
536 cmd.diff_gain_b = data->delta_gain_code[1];
537 cmd.diff_gain_c = data->delta_gain_code[2];
538 ret = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
539 sizeof(cmd), &cmd);
540 if (ret)
541 IWL_DEBUG_CALIB(priv, "fail sending cmd "
542 "REPLY_PHY_CALIBRATION_CMD \n");
543
544 /* TODO we might want recalculate
545 * rx_chain in rxon cmd */
546
547 /* Mark so we run this algo only once! */
548 data->state = IWL_CHAIN_NOISE_CALIBRATED;
549 }
550 data->chain_noise_a = 0;
551 data->chain_noise_b = 0;
552 data->chain_noise_c = 0;
553 data->chain_signal_a = 0;
554 data->chain_signal_b = 0;
555 data->chain_signal_c = 0;
556 data->beacon_count = 0;
557 }
558
559 static void iwl4965_rts_tx_cmd_flag(struct ieee80211_tx_info *info,
560 __le32 *tx_flags)
561 {
562 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
563 *tx_flags |= TX_CMD_FLG_RTS_MSK;
564 *tx_flags &= ~TX_CMD_FLG_CTS_MSK;
565 } else if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
566 *tx_flags &= ~TX_CMD_FLG_RTS_MSK;
567 *tx_flags |= TX_CMD_FLG_CTS_MSK;
568 }
569 }
570
571 static void iwl4965_bg_txpower_work(struct work_struct *work)
572 {
573 struct iwl_priv *priv = container_of(work, struct iwl_priv,
574 txpower_work);
575
576 /* If a scan happened to start before we got here
577 * then just return; the statistics notification will
578 * kick off another scheduled work to compensate for
579 * any temperature delta we missed here. */
580 if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
581 test_bit(STATUS_SCANNING, &priv->status))
582 return;
583
584 mutex_lock(&priv->mutex);
585
586 /* Regardless of if we are associated, we must reconfigure the
587 * TX power since frames can be sent on non-radar channels while
588 * not associated */
589 iwl4965_send_tx_power(priv);
590
591 /* Update last_temperature to keep is_calib_needed from running
592 * when it isn't needed... */
593 priv->last_temperature = priv->temperature;
594
595 mutex_unlock(&priv->mutex);
596 }
597
598 /*
599 * Acquire priv->lock before calling this function !
600 */
601 static void iwl4965_set_wr_ptrs(struct iwl_priv *priv, int txq_id, u32 index)
602 {
603 iwl_write_direct32(priv, HBUS_TARG_WRPTR,
604 (index & 0xff) | (txq_id << 8));
605 iwl_write_prph(priv, IWL49_SCD_QUEUE_RDPTR(txq_id), index);
606 }
607
608 /**
609 * iwl4965_tx_queue_set_status - (optionally) start Tx/Cmd queue
610 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed
611 * @scd_retry: (1) Indicates queue will be used in aggregation mode
612 *
613 * NOTE: Acquire priv->lock before calling this function !
614 */
615 static void iwl4965_tx_queue_set_status(struct iwl_priv *priv,
616 struct iwl_tx_queue *txq,
617 int tx_fifo_id, int scd_retry)
618 {
619 int txq_id = txq->q.id;
620
621 /* Find out whether to activate Tx queue */
622 int active = test_bit(txq_id, &priv->txq_ctx_active_msk) ? 1 : 0;
623
624 /* Set up and activate */
625 iwl_write_prph(priv, IWL49_SCD_QUEUE_STATUS_BITS(txq_id),
626 (active << IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
627 (tx_fifo_id << IWL49_SCD_QUEUE_STTS_REG_POS_TXF) |
628 (scd_retry << IWL49_SCD_QUEUE_STTS_REG_POS_WSL) |
629 (scd_retry << IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK) |
630 IWL49_SCD_QUEUE_STTS_REG_MSK);
631
632 txq->sched_retry = scd_retry;
633
634 IWL_DEBUG_INFO(priv, "%s %s Queue %d on AC %d\n",
635 active ? "Activate" : "Deactivate",
636 scd_retry ? "BA" : "AC", txq_id, tx_fifo_id);
637 }
638
639 static const u16 default_queue_to_tx_fifo[] = {
640 IWL_TX_FIFO_AC3,
641 IWL_TX_FIFO_AC2,
642 IWL_TX_FIFO_AC1,
643 IWL_TX_FIFO_AC0,
644 IWL49_CMD_FIFO_NUM,
645 IWL_TX_FIFO_HCCA_1,
646 IWL_TX_FIFO_HCCA_2
647 };
648
649 static int iwl4965_alive_notify(struct iwl_priv *priv)
650 {
651 u32 a;
652 unsigned long flags;
653 int i, chan;
654 u32 reg_val;
655
656 spin_lock_irqsave(&priv->lock, flags);
657
658 /* Clear 4965's internal Tx Scheduler data base */
659 priv->scd_base_addr = iwl_read_prph(priv, IWL49_SCD_SRAM_BASE_ADDR);
660 a = priv->scd_base_addr + IWL49_SCD_CONTEXT_DATA_OFFSET;
661 for (; a < priv->scd_base_addr + IWL49_SCD_TX_STTS_BITMAP_OFFSET; a += 4)
662 iwl_write_targ_mem(priv, a, 0);
663 for (; a < priv->scd_base_addr + IWL49_SCD_TRANSLATE_TBL_OFFSET; a += 4)
664 iwl_write_targ_mem(priv, a, 0);
665 for (; a < sizeof(u16) * priv->hw_params.max_txq_num; a += 4)
666 iwl_write_targ_mem(priv, a, 0);
667
668 /* Tel 4965 where to find Tx byte count tables */
669 iwl_write_prph(priv, IWL49_SCD_DRAM_BASE_ADDR,
670 priv->scd_bc_tbls.dma >> 10);
671
672 /* Enable DMA channel */
673 for (chan = 0; chan < FH49_TCSR_CHNL_NUM ; chan++)
674 iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(chan),
675 FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
676 FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
677
678 /* Update FH chicken bits */
679 reg_val = iwl_read_direct32(priv, FH_TX_CHICKEN_BITS_REG);
680 iwl_write_direct32(priv, FH_TX_CHICKEN_BITS_REG,
681 reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
682
683 /* Disable chain mode for all queues */
684 iwl_write_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, 0);
685
686 /* Initialize each Tx queue (including the command queue) */
687 for (i = 0; i < priv->hw_params.max_txq_num; i++) {
688
689 /* TFD circular buffer read/write indexes */
690 iwl_write_prph(priv, IWL49_SCD_QUEUE_RDPTR(i), 0);
691 iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8));
692
693 /* Max Tx Window size for Scheduler-ACK mode */
694 iwl_write_targ_mem(priv, priv->scd_base_addr +
695 IWL49_SCD_CONTEXT_QUEUE_OFFSET(i),
696 (SCD_WIN_SIZE <<
697 IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) &
698 IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK);
699
700 /* Frame limit */
701 iwl_write_targ_mem(priv, priv->scd_base_addr +
702 IWL49_SCD_CONTEXT_QUEUE_OFFSET(i) +
703 sizeof(u32),
704 (SCD_FRAME_LIMIT <<
705 IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
706 IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK);
707
708 }
709 iwl_write_prph(priv, IWL49_SCD_INTERRUPT_MASK,
710 (1 << priv->hw_params.max_txq_num) - 1);
711
712 /* Activate all Tx DMA/FIFO channels */
713 priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 6));
714
715 iwl4965_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0);
716
717 /* Map each Tx/cmd queue to its corresponding fifo */
718 for (i = 0; i < ARRAY_SIZE(default_queue_to_tx_fifo); i++) {
719 int ac = default_queue_to_tx_fifo[i];
720 iwl_txq_ctx_activate(priv, i);
721 iwl4965_tx_queue_set_status(priv, &priv->txq[i], ac, 0);
722 }
723
724 spin_unlock_irqrestore(&priv->lock, flags);
725
726 return 0;
727 }
728
729 static struct iwl_sensitivity_ranges iwl4965_sensitivity = {
730 .min_nrg_cck = 97,
731 .max_nrg_cck = 0,
732
733 .auto_corr_min_ofdm = 85,
734 .auto_corr_min_ofdm_mrc = 170,
735 .auto_corr_min_ofdm_x1 = 105,
736 .auto_corr_min_ofdm_mrc_x1 = 220,
737
738 .auto_corr_max_ofdm = 120,
739 .auto_corr_max_ofdm_mrc = 210,
740 .auto_corr_max_ofdm_x1 = 140,
741 .auto_corr_max_ofdm_mrc_x1 = 270,
742
743 .auto_corr_min_cck = 125,
744 .auto_corr_max_cck = 200,
745 .auto_corr_min_cck_mrc = 200,
746 .auto_corr_max_cck_mrc = 400,
747
748 .nrg_th_cck = 100,
749 .nrg_th_ofdm = 100,
750 };
751
752 static void iwl4965_set_ct_threshold(struct iwl_priv *priv)
753 {
754 /* want Kelvin */
755 priv->hw_params.ct_kill_threshold = CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD);
756 }
757
758 /**
759 * iwl4965_hw_set_hw_params
760 *
761 * Called when initializing driver
762 */
763 static int iwl4965_hw_set_hw_params(struct iwl_priv *priv)
764 {
765
766 if ((priv->cfg->mod_params->num_of_queues > IWL49_NUM_QUEUES) ||
767 (priv->cfg->mod_params->num_of_queues < IWL_MIN_NUM_QUEUES)) {
768 IWL_ERR(priv,
769 "invalid queues_num, should be between %d and %d\n",
770 IWL_MIN_NUM_QUEUES, IWL49_NUM_QUEUES);
771 return -EINVAL;
772 }
773
774 priv->hw_params.max_txq_num = priv->cfg->mod_params->num_of_queues;
775 priv->hw_params.dma_chnl_num = FH49_TCSR_CHNL_NUM;
776 priv->hw_params.scd_bc_tbls_size =
777 IWL49_NUM_QUEUES * sizeof(struct iwl4965_scd_bc_tbl);
778 priv->hw_params.tfd_size = sizeof(struct iwl_tfd);
779 priv->hw_params.max_stations = IWL4965_STATION_COUNT;
780 priv->hw_params.bcast_sta_id = IWL4965_BROADCAST_ID;
781 priv->hw_params.max_data_size = IWL49_RTC_DATA_SIZE;
782 priv->hw_params.max_inst_size = IWL49_RTC_INST_SIZE;
783 priv->hw_params.max_bsm_size = BSM_SRAM_SIZE;
784 priv->hw_params.fat_channel = BIT(IEEE80211_BAND_5GHZ);
785
786 priv->hw_params.rx_wrt_ptr_reg = FH_RSCSR_CHNL0_WPTR;
787
788 priv->hw_params.tx_chains_num = 2;
789 priv->hw_params.rx_chains_num = 2;
790 priv->hw_params.valid_tx_ant = ANT_A | ANT_B;
791 priv->hw_params.valid_rx_ant = ANT_A | ANT_B;
792 if (priv->cfg->ops->lib->temp_ops.set_ct_kill)
793 priv->cfg->ops->lib->temp_ops.set_ct_kill(priv);
794
795 priv->hw_params.sens = &iwl4965_sensitivity;
796
797 return 0;
798 }
799
800 static s32 iwl4965_math_div_round(s32 num, s32 denom, s32 *res)
801 {
802 s32 sign = 1;
803
804 if (num < 0) {
805 sign = -sign;
806 num = -num;
807 }
808 if (denom < 0) {
809 sign = -sign;
810 denom = -denom;
811 }
812 *res = 1;
813 *res = ((num * 2 + denom) / (denom * 2)) * sign;
814
815 return 1;
816 }
817
818 /**
819 * iwl4965_get_voltage_compensation - Power supply voltage comp for txpower
820 *
821 * Determines power supply voltage compensation for txpower calculations.
822 * Returns number of 1/2-dB steps to subtract from gain table index,
823 * to compensate for difference between power supply voltage during
824 * factory measurements, vs. current power supply voltage.
825 *
826 * Voltage indication is higher for lower voltage.
827 * Lower voltage requires more gain (lower gain table index).
828 */
829 static s32 iwl4965_get_voltage_compensation(s32 eeprom_voltage,
830 s32 current_voltage)
831 {
832 s32 comp = 0;
833
834 if ((TX_POWER_IWL_ILLEGAL_VOLTAGE == eeprom_voltage) ||
835 (TX_POWER_IWL_ILLEGAL_VOLTAGE == current_voltage))
836 return 0;
837
838 iwl4965_math_div_round(current_voltage - eeprom_voltage,
839 TX_POWER_IWL_VOLTAGE_CODES_PER_03V, &comp);
840
841 if (current_voltage > eeprom_voltage)
842 comp *= 2;
843 if ((comp < -2) || (comp > 2))
844 comp = 0;
845
846 return comp;
847 }
848
849 static s32 iwl4965_get_tx_atten_grp(u16 channel)
850 {
851 if (channel >= CALIB_IWL_TX_ATTEN_GR5_FCH &&
852 channel <= CALIB_IWL_TX_ATTEN_GR5_LCH)
853 return CALIB_CH_GROUP_5;
854
855 if (channel >= CALIB_IWL_TX_ATTEN_GR1_FCH &&
856 channel <= CALIB_IWL_TX_ATTEN_GR1_LCH)
857 return CALIB_CH_GROUP_1;
858
859 if (channel >= CALIB_IWL_TX_ATTEN_GR2_FCH &&
860 channel <= CALIB_IWL_TX_ATTEN_GR2_LCH)
861 return CALIB_CH_GROUP_2;
862
863 if (channel >= CALIB_IWL_TX_ATTEN_GR3_FCH &&
864 channel <= CALIB_IWL_TX_ATTEN_GR3_LCH)
865 return CALIB_CH_GROUP_3;
866
867 if (channel >= CALIB_IWL_TX_ATTEN_GR4_FCH &&
868 channel <= CALIB_IWL_TX_ATTEN_GR4_LCH)
869 return CALIB_CH_GROUP_4;
870
871 return -1;
872 }
873
874 static u32 iwl4965_get_sub_band(const struct iwl_priv *priv, u32 channel)
875 {
876 s32 b = -1;
877
878 for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
879 if (priv->calib_info->band_info[b].ch_from == 0)
880 continue;
881
882 if ((channel >= priv->calib_info->band_info[b].ch_from)
883 && (channel <= priv->calib_info->band_info[b].ch_to))
884 break;
885 }
886
887 return b;
888 }
889
890 static s32 iwl4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
891 {
892 s32 val;
893
894 if (x2 == x1)
895 return y1;
896 else {
897 iwl4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
898 return val + y2;
899 }
900 }
901
902 /**
903 * iwl4965_interpolate_chan - Interpolate factory measurements for one channel
904 *
905 * Interpolates factory measurements from the two sample channels within a
906 * sub-band, to apply to channel of interest. Interpolation is proportional to
907 * differences in channel frequencies, which is proportional to differences
908 * in channel number.
909 */
910 static int iwl4965_interpolate_chan(struct iwl_priv *priv, u32 channel,
911 struct iwl_eeprom_calib_ch_info *chan_info)
912 {
913 s32 s = -1;
914 u32 c;
915 u32 m;
916 const struct iwl_eeprom_calib_measure *m1;
917 const struct iwl_eeprom_calib_measure *m2;
918 struct iwl_eeprom_calib_measure *omeas;
919 u32 ch_i1;
920 u32 ch_i2;
921
922 s = iwl4965_get_sub_band(priv, channel);
923 if (s >= EEPROM_TX_POWER_BANDS) {
924 IWL_ERR(priv, "Tx Power can not find channel %d\n", channel);
925 return -1;
926 }
927
928 ch_i1 = priv->calib_info->band_info[s].ch1.ch_num;
929 ch_i2 = priv->calib_info->band_info[s].ch2.ch_num;
930 chan_info->ch_num = (u8) channel;
931
932 IWL_DEBUG_TXPOWER(priv, "channel %d subband %d factory cal ch %d & %d\n",
933 channel, s, ch_i1, ch_i2);
934
935 for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
936 for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
937 m1 = &(priv->calib_info->band_info[s].ch1.
938 measurements[c][m]);
939 m2 = &(priv->calib_info->band_info[s].ch2.
940 measurements[c][m]);
941 omeas = &(chan_info->measurements[c][m]);
942
943 omeas->actual_pow =
944 (u8) iwl4965_interpolate_value(channel, ch_i1,
945 m1->actual_pow,
946 ch_i2,
947 m2->actual_pow);
948 omeas->gain_idx =
949 (u8) iwl4965_interpolate_value(channel, ch_i1,
950 m1->gain_idx, ch_i2,
951 m2->gain_idx);
952 omeas->temperature =
953 (u8) iwl4965_interpolate_value(channel, ch_i1,
954 m1->temperature,
955 ch_i2,
956 m2->temperature);
957 omeas->pa_det =
958 (s8) iwl4965_interpolate_value(channel, ch_i1,
959 m1->pa_det, ch_i2,
960 m2->pa_det);
961
962 IWL_DEBUG_TXPOWER(priv,
963 "chain %d meas %d AP1=%d AP2=%d AP=%d\n", c, m,
964 m1->actual_pow, m2->actual_pow, omeas->actual_pow);
965 IWL_DEBUG_TXPOWER(priv,
966 "chain %d meas %d NI1=%d NI2=%d NI=%d\n", c, m,
967 m1->gain_idx, m2->gain_idx, omeas->gain_idx);
968 IWL_DEBUG_TXPOWER(priv,
969 "chain %d meas %d PA1=%d PA2=%d PA=%d\n", c, m,
970 m1->pa_det, m2->pa_det, omeas->pa_det);
971 IWL_DEBUG_TXPOWER(priv,
972 "chain %d meas %d T1=%d T2=%d T=%d\n", c, m,
973 m1->temperature, m2->temperature,
974 omeas->temperature);
975 }
976 }
977
978 return 0;
979 }
980
981 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
982 * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
983 static s32 back_off_table[] = {
984 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
985 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
986 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
987 10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
988 10 /* CCK */
989 };
990
991 /* Thermal compensation values for txpower for various frequency ranges ...
992 * ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
993 static struct iwl4965_txpower_comp_entry {
994 s32 degrees_per_05db_a;
995 s32 degrees_per_05db_a_denom;
996 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
997 {9, 2}, /* group 0 5.2, ch 34-43 */
998 {4, 1}, /* group 1 5.2, ch 44-70 */
999 {4, 1}, /* group 2 5.2, ch 71-124 */
1000 {4, 1}, /* group 3 5.2, ch 125-200 */
1001 {3, 1} /* group 4 2.4, ch all */
1002 };
1003
1004 static s32 get_min_power_index(s32 rate_power_index, u32 band)
1005 {
1006 if (!band) {
1007 if ((rate_power_index & 7) <= 4)
1008 return MIN_TX_GAIN_INDEX_52GHZ_EXT;
1009 }
1010 return MIN_TX_GAIN_INDEX;
1011 }
1012
1013 struct gain_entry {
1014 u8 dsp;
1015 u8 radio;
1016 };
1017
1018 static const struct gain_entry gain_table[2][108] = {
1019 /* 5.2GHz power gain index table */
1020 {
1021 {123, 0x3F}, /* highest txpower */
1022 {117, 0x3F},
1023 {110, 0x3F},
1024 {104, 0x3F},
1025 {98, 0x3F},
1026 {110, 0x3E},
1027 {104, 0x3E},
1028 {98, 0x3E},
1029 {110, 0x3D},
1030 {104, 0x3D},
1031 {98, 0x3D},
1032 {110, 0x3C},
1033 {104, 0x3C},
1034 {98, 0x3C},
1035 {110, 0x3B},
1036 {104, 0x3B},
1037 {98, 0x3B},
1038 {110, 0x3A},
1039 {104, 0x3A},
1040 {98, 0x3A},
1041 {110, 0x39},
1042 {104, 0x39},
1043 {98, 0x39},
1044 {110, 0x38},
1045 {104, 0x38},
1046 {98, 0x38},
1047 {110, 0x37},
1048 {104, 0x37},
1049 {98, 0x37},
1050 {110, 0x36},
1051 {104, 0x36},
1052 {98, 0x36},
1053 {110, 0x35},
1054 {104, 0x35},
1055 {98, 0x35},
1056 {110, 0x34},
1057 {104, 0x34},
1058 {98, 0x34},
1059 {110, 0x33},
1060 {104, 0x33},
1061 {98, 0x33},
1062 {110, 0x32},
1063 {104, 0x32},
1064 {98, 0x32},
1065 {110, 0x31},
1066 {104, 0x31},
1067 {98, 0x31},
1068 {110, 0x30},
1069 {104, 0x30},
1070 {98, 0x30},
1071 {110, 0x25},
1072 {104, 0x25},
1073 {98, 0x25},
1074 {110, 0x24},
1075 {104, 0x24},
1076 {98, 0x24},
1077 {110, 0x23},
1078 {104, 0x23},
1079 {98, 0x23},
1080 {110, 0x22},
1081 {104, 0x18},
1082 {98, 0x18},
1083 {110, 0x17},
1084 {104, 0x17},
1085 {98, 0x17},
1086 {110, 0x16},
1087 {104, 0x16},
1088 {98, 0x16},
1089 {110, 0x15},
1090 {104, 0x15},
1091 {98, 0x15},
1092 {110, 0x14},
1093 {104, 0x14},
1094 {98, 0x14},
1095 {110, 0x13},
1096 {104, 0x13},
1097 {98, 0x13},
1098 {110, 0x12},
1099 {104, 0x08},
1100 {98, 0x08},
1101 {110, 0x07},
1102 {104, 0x07},
1103 {98, 0x07},
1104 {110, 0x06},
1105 {104, 0x06},
1106 {98, 0x06},
1107 {110, 0x05},
1108 {104, 0x05},
1109 {98, 0x05},
1110 {110, 0x04},
1111 {104, 0x04},
1112 {98, 0x04},
1113 {110, 0x03},
1114 {104, 0x03},
1115 {98, 0x03},
1116 {110, 0x02},
1117 {104, 0x02},
1118 {98, 0x02},
1119 {110, 0x01},
1120 {104, 0x01},
1121 {98, 0x01},
1122 {110, 0x00},
1123 {104, 0x00},
1124 {98, 0x00},
1125 {93, 0x00},
1126 {88, 0x00},
1127 {83, 0x00},
1128 {78, 0x00},
1129 },
1130 /* 2.4GHz power gain index table */
1131 {
1132 {110, 0x3f}, /* highest txpower */
1133 {104, 0x3f},
1134 {98, 0x3f},
1135 {110, 0x3e},
1136 {104, 0x3e},
1137 {98, 0x3e},
1138 {110, 0x3d},
1139 {104, 0x3d},
1140 {98, 0x3d},
1141 {110, 0x3c},
1142 {104, 0x3c},
1143 {98, 0x3c},
1144 {110, 0x3b},
1145 {104, 0x3b},
1146 {98, 0x3b},
1147 {110, 0x3a},
1148 {104, 0x3a},
1149 {98, 0x3a},
1150 {110, 0x39},
1151 {104, 0x39},
1152 {98, 0x39},
1153 {110, 0x38},
1154 {104, 0x38},
1155 {98, 0x38},
1156 {110, 0x37},
1157 {104, 0x37},
1158 {98, 0x37},
1159 {110, 0x36},
1160 {104, 0x36},
1161 {98, 0x36},
1162 {110, 0x35},
1163 {104, 0x35},
1164 {98, 0x35},
1165 {110, 0x34},
1166 {104, 0x34},
1167 {98, 0x34},
1168 {110, 0x33},
1169 {104, 0x33},
1170 {98, 0x33},
1171 {110, 0x32},
1172 {104, 0x32},
1173 {98, 0x32},
1174 {110, 0x31},
1175 {104, 0x31},
1176 {98, 0x31},
1177 {110, 0x30},
1178 {104, 0x30},
1179 {98, 0x30},
1180 {110, 0x6},
1181 {104, 0x6},
1182 {98, 0x6},
1183 {110, 0x5},
1184 {104, 0x5},
1185 {98, 0x5},
1186 {110, 0x4},
1187 {104, 0x4},
1188 {98, 0x4},
1189 {110, 0x3},
1190 {104, 0x3},
1191 {98, 0x3},
1192 {110, 0x2},
1193 {104, 0x2},
1194 {98, 0x2},
1195 {110, 0x1},
1196 {104, 0x1},
1197 {98, 0x1},
1198 {110, 0x0},
1199 {104, 0x0},
1200 {98, 0x0},
1201 {97, 0},
1202 {96, 0},
1203 {95, 0},
1204 {94, 0},
1205 {93, 0},
1206 {92, 0},
1207 {91, 0},
1208 {90, 0},
1209 {89, 0},
1210 {88, 0},
1211 {87, 0},
1212 {86, 0},
1213 {85, 0},
1214 {84, 0},
1215 {83, 0},
1216 {82, 0},
1217 {81, 0},
1218 {80, 0},
1219 {79, 0},
1220 {78, 0},
1221 {77, 0},
1222 {76, 0},
1223 {75, 0},
1224 {74, 0},
1225 {73, 0},
1226 {72, 0},
1227 {71, 0},
1228 {70, 0},
1229 {69, 0},
1230 {68, 0},
1231 {67, 0},
1232 {66, 0},
1233 {65, 0},
1234 {64, 0},
1235 {63, 0},
1236 {62, 0},
1237 {61, 0},
1238 {60, 0},
1239 {59, 0},
1240 }
1241 };
1242
1243 static int iwl4965_fill_txpower_tbl(struct iwl_priv *priv, u8 band, u16 channel,
1244 u8 is_fat, u8 ctrl_chan_high,
1245 struct iwl4965_tx_power_db *tx_power_tbl)
1246 {
1247 u8 saturation_power;
1248 s32 target_power;
1249 s32 user_target_power;
1250 s32 power_limit;
1251 s32 current_temp;
1252 s32 reg_limit;
1253 s32 current_regulatory;
1254 s32 txatten_grp = CALIB_CH_GROUP_MAX;
1255 int i;
1256 int c;
1257 const struct iwl_channel_info *ch_info = NULL;
1258 struct iwl_eeprom_calib_ch_info ch_eeprom_info;
1259 const struct iwl_eeprom_calib_measure *measurement;
1260 s16 voltage;
1261 s32 init_voltage;
1262 s32 voltage_compensation;
1263 s32 degrees_per_05db_num;
1264 s32 degrees_per_05db_denom;
1265 s32 factory_temp;
1266 s32 temperature_comp[2];
1267 s32 factory_gain_index[2];
1268 s32 factory_actual_pwr[2];
1269 s32 power_index;
1270
1271 /* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1272 * are used for indexing into txpower table) */
1273 user_target_power = 2 * priv->tx_power_user_lmt;
1274
1275 /* Get current (RXON) channel, band, width */
1276 IWL_DEBUG_TXPOWER(priv, "chan %d band %d is_fat %d\n", channel, band,
1277 is_fat);
1278
1279 ch_info = iwl_get_channel_info(priv, priv->band, channel);
1280
1281 if (!is_channel_valid(ch_info))
1282 return -EINVAL;
1283
1284 /* get txatten group, used to select 1) thermal txpower adjustment
1285 * and 2) mimo txpower balance between Tx chains. */
1286 txatten_grp = iwl4965_get_tx_atten_grp(channel);
1287 if (txatten_grp < 0) {
1288 IWL_ERR(priv, "Can't find txatten group for channel %d.\n",
1289 channel);
1290 return -EINVAL;
1291 }
1292
1293 IWL_DEBUG_TXPOWER(priv, "channel %d belongs to txatten group %d\n",
1294 channel, txatten_grp);
1295
1296 if (is_fat) {
1297 if (ctrl_chan_high)
1298 channel -= 2;
1299 else
1300 channel += 2;
1301 }
1302
1303 /* hardware txpower limits ...
1304 * saturation (clipping distortion) txpowers are in half-dBm */
1305 if (band)
1306 saturation_power = priv->calib_info->saturation_power24;
1307 else
1308 saturation_power = priv->calib_info->saturation_power52;
1309
1310 if (saturation_power < IWL_TX_POWER_SATURATION_MIN ||
1311 saturation_power > IWL_TX_POWER_SATURATION_MAX) {
1312 if (band)
1313 saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_24;
1314 else
1315 saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_52;
1316 }
1317
1318 /* regulatory txpower limits ... reg_limit values are in half-dBm,
1319 * max_power_avg values are in dBm, convert * 2 */
1320 if (is_fat)
1321 reg_limit = ch_info->fat_max_power_avg * 2;
1322 else
1323 reg_limit = ch_info->max_power_avg * 2;
1324
1325 if ((reg_limit < IWL_TX_POWER_REGULATORY_MIN) ||
1326 (reg_limit > IWL_TX_POWER_REGULATORY_MAX)) {
1327 if (band)
1328 reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_24;
1329 else
1330 reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_52;
1331 }
1332
1333 /* Interpolate txpower calibration values for this channel,
1334 * based on factory calibration tests on spaced channels. */
1335 iwl4965_interpolate_chan(priv, channel, &ch_eeprom_info);
1336
1337 /* calculate tx gain adjustment based on power supply voltage */
1338 voltage = priv->calib_info->voltage;
1339 init_voltage = (s32)le32_to_cpu(priv->card_alive_init.voltage);
1340 voltage_compensation =
1341 iwl4965_get_voltage_compensation(voltage, init_voltage);
1342
1343 IWL_DEBUG_TXPOWER(priv, "curr volt %d eeprom volt %d volt comp %d\n",
1344 init_voltage,
1345 voltage, voltage_compensation);
1346
1347 /* get current temperature (Celsius) */
1348 current_temp = max(priv->temperature, IWL_TX_POWER_TEMPERATURE_MIN);
1349 current_temp = min(priv->temperature, IWL_TX_POWER_TEMPERATURE_MAX);
1350 current_temp = KELVIN_TO_CELSIUS(current_temp);
1351
1352 /* select thermal txpower adjustment params, based on channel group
1353 * (same frequency group used for mimo txatten adjustment) */
1354 degrees_per_05db_num =
1355 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1356 degrees_per_05db_denom =
1357 tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1358
1359 /* get per-chain txpower values from factory measurements */
1360 for (c = 0; c < 2; c++) {
1361 measurement = &ch_eeprom_info.measurements[c][1];
1362
1363 /* txgain adjustment (in half-dB steps) based on difference
1364 * between factory and current temperature */
1365 factory_temp = measurement->temperature;
1366 iwl4965_math_div_round((current_temp - factory_temp) *
1367 degrees_per_05db_denom,
1368 degrees_per_05db_num,
1369 &temperature_comp[c]);
1370
1371 factory_gain_index[c] = measurement->gain_idx;
1372 factory_actual_pwr[c] = measurement->actual_pow;
1373
1374 IWL_DEBUG_TXPOWER(priv, "chain = %d\n", c);
1375 IWL_DEBUG_TXPOWER(priv, "fctry tmp %d, "
1376 "curr tmp %d, comp %d steps\n",
1377 factory_temp, current_temp,
1378 temperature_comp[c]);
1379
1380 IWL_DEBUG_TXPOWER(priv, "fctry idx %d, fctry pwr %d\n",
1381 factory_gain_index[c],
1382 factory_actual_pwr[c]);
1383 }
1384
1385 /* for each of 33 bit-rates (including 1 for CCK) */
1386 for (i = 0; i < POWER_TABLE_NUM_ENTRIES; i++) {
1387 u8 is_mimo_rate;
1388 union iwl4965_tx_power_dual_stream tx_power;
1389
1390 /* for mimo, reduce each chain's txpower by half
1391 * (3dB, 6 steps), so total output power is regulatory
1392 * compliant. */
1393 if (i & 0x8) {
1394 current_regulatory = reg_limit -
1395 IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1396 is_mimo_rate = 1;
1397 } else {
1398 current_regulatory = reg_limit;
1399 is_mimo_rate = 0;
1400 }
1401
1402 /* find txpower limit, either hardware or regulatory */
1403 power_limit = saturation_power - back_off_table[i];
1404 if (power_limit > current_regulatory)
1405 power_limit = current_regulatory;
1406
1407 /* reduce user's txpower request if necessary
1408 * for this rate on this channel */
1409 target_power = user_target_power;
1410 if (target_power > power_limit)
1411 target_power = power_limit;
1412
1413 IWL_DEBUG_TXPOWER(priv, "rate %d sat %d reg %d usr %d tgt %d\n",
1414 i, saturation_power - back_off_table[i],
1415 current_regulatory, user_target_power,
1416 target_power);
1417
1418 /* for each of 2 Tx chains (radio transmitters) */
1419 for (c = 0; c < 2; c++) {
1420 s32 atten_value;
1421
1422 if (is_mimo_rate)
1423 atten_value =
1424 (s32)le32_to_cpu(priv->card_alive_init.
1425 tx_atten[txatten_grp][c]);
1426 else
1427 atten_value = 0;
1428
1429 /* calculate index; higher index means lower txpower */
1430 power_index = (u8) (factory_gain_index[c] -
1431 (target_power -
1432 factory_actual_pwr[c]) -
1433 temperature_comp[c] -
1434 voltage_compensation +
1435 atten_value);
1436
1437 /* IWL_DEBUG_TXPOWER(priv, "calculated txpower index %d\n",
1438 power_index); */
1439
1440 if (power_index < get_min_power_index(i, band))
1441 power_index = get_min_power_index(i, band);
1442
1443 /* adjust 5 GHz index to support negative indexes */
1444 if (!band)
1445 power_index += 9;
1446
1447 /* CCK, rate 32, reduce txpower for CCK */
1448 if (i == POWER_TABLE_CCK_ENTRY)
1449 power_index +=
1450 IWL_TX_POWER_CCK_COMPENSATION_C_STEP;
1451
1452 /* stay within the table! */
1453 if (power_index > 107) {
1454 IWL_WARN(priv, "txpower index %d > 107\n",
1455 power_index);
1456 power_index = 107;
1457 }
1458 if (power_index < 0) {
1459 IWL_WARN(priv, "txpower index %d < 0\n",
1460 power_index);
1461 power_index = 0;
1462 }
1463
1464 /* fill txpower command for this rate/chain */
1465 tx_power.s.radio_tx_gain[c] =
1466 gain_table[band][power_index].radio;
1467 tx_power.s.dsp_predis_atten[c] =
1468 gain_table[band][power_index].dsp;
1469
1470 IWL_DEBUG_TXPOWER(priv, "chain %d mimo %d index %d "
1471 "gain 0x%02x dsp %d\n",
1472 c, atten_value, power_index,
1473 tx_power.s.radio_tx_gain[c],
1474 tx_power.s.dsp_predis_atten[c]);
1475 } /* for each chain */
1476
1477 tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1478
1479 } /* for each rate */
1480
1481 return 0;
1482 }
1483
1484 /**
1485 * iwl4965_send_tx_power - Configure the TXPOWER level user limit
1486 *
1487 * Uses the active RXON for channel, band, and characteristics (fat, high)
1488 * The power limit is taken from priv->tx_power_user_lmt.
1489 */
1490 static int iwl4965_send_tx_power(struct iwl_priv *priv)
1491 {
1492 struct iwl4965_txpowertable_cmd cmd = { 0 };
1493 int ret;
1494 u8 band = 0;
1495 bool is_fat = false;
1496 u8 ctrl_chan_high = 0;
1497
1498 if (test_bit(STATUS_SCANNING, &priv->status)) {
1499 /* If this gets hit a lot, switch it to a BUG() and catch
1500 * the stack trace to find out who is calling this during
1501 * a scan. */
1502 IWL_WARN(priv, "TX Power requested while scanning!\n");
1503 return -EAGAIN;
1504 }
1505
1506 band = priv->band == IEEE80211_BAND_2GHZ;
1507
1508 is_fat = is_fat_channel(priv->active_rxon.flags);
1509
1510 if (is_fat &&
1511 (priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1512 ctrl_chan_high = 1;
1513
1514 cmd.band = band;
1515 cmd.channel = priv->active_rxon.channel;
1516
1517 ret = iwl4965_fill_txpower_tbl(priv, band,
1518 le16_to_cpu(priv->active_rxon.channel),
1519 is_fat, ctrl_chan_high, &cmd.tx_power);
1520 if (ret)
1521 goto out;
1522
1523 ret = iwl_send_cmd_pdu(priv, REPLY_TX_PWR_TABLE_CMD, sizeof(cmd), &cmd);
1524
1525 out:
1526 return ret;
1527 }
1528
1529 static int iwl4965_send_rxon_assoc(struct iwl_priv *priv)
1530 {
1531 int ret = 0;
1532 struct iwl4965_rxon_assoc_cmd rxon_assoc;
1533 const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon;
1534 const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon;
1535
1536 if ((rxon1->flags == rxon2->flags) &&
1537 (rxon1->filter_flags == rxon2->filter_flags) &&
1538 (rxon1->cck_basic_rates == rxon2->cck_basic_rates) &&
1539 (rxon1->ofdm_ht_single_stream_basic_rates ==
1540 rxon2->ofdm_ht_single_stream_basic_rates) &&
1541 (rxon1->ofdm_ht_dual_stream_basic_rates ==
1542 rxon2->ofdm_ht_dual_stream_basic_rates) &&
1543 (rxon1->rx_chain == rxon2->rx_chain) &&
1544 (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) {
1545 IWL_DEBUG_INFO(priv, "Using current RXON_ASSOC. Not resending.\n");
1546 return 0;
1547 }
1548
1549 rxon_assoc.flags = priv->staging_rxon.flags;
1550 rxon_assoc.filter_flags = priv->staging_rxon.filter_flags;
1551 rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates;
1552 rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates;
1553 rxon_assoc.reserved = 0;
1554 rxon_assoc.ofdm_ht_single_stream_basic_rates =
1555 priv->staging_rxon.ofdm_ht_single_stream_basic_rates;
1556 rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1557 priv->staging_rxon.ofdm_ht_dual_stream_basic_rates;
1558 rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain;
1559
1560 ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC,
1561 sizeof(rxon_assoc), &rxon_assoc, NULL);
1562 if (ret)
1563 return ret;
1564
1565 return ret;
1566 }
1567
1568 #ifdef IEEE80211_CONF_CHANNEL_SWITCH
1569 static int iwl4965_hw_channel_switch(struct iwl_priv *priv, u16 channel)
1570 {
1571 int rc;
1572 u8 band = 0;
1573 bool is_fat = false;
1574 u8 ctrl_chan_high = 0;
1575 struct iwl4965_channel_switch_cmd cmd = { 0 };
1576 const struct iwl_channel_info *ch_info;
1577
1578 band = priv->band == IEEE80211_BAND_2GHZ;
1579
1580 ch_info = iwl_get_channel_info(priv, priv->band, channel);
1581
1582 is_fat = is_fat_channel(priv->staging_rxon.flags);
1583
1584 if (is_fat &&
1585 (priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1586 ctrl_chan_high = 1;
1587
1588 cmd.band = band;
1589 cmd.expect_beacon = 0;
1590 cmd.channel = cpu_to_le16(channel);
1591 cmd.rxon_flags = priv->active_rxon.flags;
1592 cmd.rxon_filter_flags = priv->active_rxon.filter_flags;
1593 cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
1594 if (ch_info)
1595 cmd.expect_beacon = is_channel_radar(ch_info);
1596 else
1597 cmd.expect_beacon = 1;
1598
1599 rc = iwl4965_fill_txpower_tbl(priv, band, channel, is_fat,
1600 ctrl_chan_high, &cmd.tx_power);
1601 if (rc) {
1602 IWL_DEBUG_11H(priv, "error:%d fill txpower_tbl\n", rc);
1603 return rc;
1604 }
1605
1606 rc = iwl_send_cmd_pdu(priv, REPLY_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1607 return rc;
1608 }
1609 #endif
1610
1611 /**
1612 * iwl4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1613 */
1614 static void iwl4965_txq_update_byte_cnt_tbl(struct iwl_priv *priv,
1615 struct iwl_tx_queue *txq,
1616 u16 byte_cnt)
1617 {
1618 struct iwl4965_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr;
1619 int txq_id = txq->q.id;
1620 int write_ptr = txq->q.write_ptr;
1621 int len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
1622 __le16 bc_ent;
1623
1624 WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1625
1626 bc_ent = cpu_to_le16(len & 0xFFF);
1627 /* Set up byte count within first 256 entries */
1628 scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1629
1630 /* If within first 64 entries, duplicate at end */
1631 if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1632 scd_bc_tbl[txq_id].
1633 tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent;
1634 }
1635
1636 /**
1637 * sign_extend - Sign extend a value using specified bit as sign-bit
1638 *
1639 * Example: sign_extend(9, 3) would return -7 as bit3 of 1001b is 1
1640 * and bit0..2 is 001b which when sign extended to 1111111111111001b is -7.
1641 *
1642 * @param oper value to sign extend
1643 * @param index 0 based bit index (0<=index<32) to sign bit
1644 */
1645 static s32 sign_extend(u32 oper, int index)
1646 {
1647 u8 shift = 31 - index;
1648
1649 return (s32)(oper << shift) >> shift;
1650 }
1651
1652 /**
1653 * iwl4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1654 * @statistics: Provides the temperature reading from the uCode
1655 *
1656 * A return of <0 indicates bogus data in the statistics
1657 */
1658 static int iwl4965_hw_get_temperature(const struct iwl_priv *priv)
1659 {
1660 s32 temperature;
1661 s32 vt;
1662 s32 R1, R2, R3;
1663 u32 R4;
1664
1665 if (test_bit(STATUS_TEMPERATURE, &priv->status) &&
1666 (priv->statistics.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK)) {
1667 IWL_DEBUG_TEMP(priv, "Running FAT temperature calibration\n");
1668 R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[1]);
1669 R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[1]);
1670 R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[1]);
1671 R4 = le32_to_cpu(priv->card_alive_init.therm_r4[1]);
1672 } else {
1673 IWL_DEBUG_TEMP(priv, "Running temperature calibration\n");
1674 R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[0]);
1675 R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[0]);
1676 R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[0]);
1677 R4 = le32_to_cpu(priv->card_alive_init.therm_r4[0]);
1678 }
1679
1680 /*
1681 * Temperature is only 23 bits, so sign extend out to 32.
1682 *
1683 * NOTE If we haven't received a statistics notification yet
1684 * with an updated temperature, use R4 provided to us in the
1685 * "initialize" ALIVE response.
1686 */
1687 if (!test_bit(STATUS_TEMPERATURE, &priv->status))
1688 vt = sign_extend(R4, 23);
1689 else
1690 vt = sign_extend(
1691 le32_to_cpu(priv->statistics.general.temperature), 23);
1692
1693 IWL_DEBUG_TEMP(priv, "Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1694
1695 if (R3 == R1) {
1696 IWL_ERR(priv, "Calibration conflict R1 == R3\n");
1697 return -1;
1698 }
1699
1700 /* Calculate temperature in degrees Kelvin, adjust by 97%.
1701 * Add offset to center the adjustment around 0 degrees Centigrade. */
1702 temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1703 temperature /= (R3 - R1);
1704 temperature = (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1705
1706 IWL_DEBUG_TEMP(priv, "Calibrated temperature: %dK, %dC\n",
1707 temperature, KELVIN_TO_CELSIUS(temperature));
1708
1709 return temperature;
1710 }
1711
1712 /* Adjust Txpower only if temperature variance is greater than threshold. */
1713 #define IWL_TEMPERATURE_THRESHOLD 3
1714
1715 /**
1716 * iwl4965_is_temp_calib_needed - determines if new calibration is needed
1717 *
1718 * If the temperature changed has changed sufficiently, then a recalibration
1719 * is needed.
1720 *
1721 * Assumes caller will replace priv->last_temperature once calibration
1722 * executed.
1723 */
1724 static int iwl4965_is_temp_calib_needed(struct iwl_priv *priv)
1725 {
1726 int temp_diff;
1727
1728 if (!test_bit(STATUS_STATISTICS, &priv->status)) {
1729 IWL_DEBUG_TEMP(priv, "Temperature not updated -- no statistics.\n");
1730 return 0;
1731 }
1732
1733 temp_diff = priv->temperature - priv->last_temperature;
1734
1735 /* get absolute value */
1736 if (temp_diff < 0) {
1737 IWL_DEBUG_POWER(priv, "Getting cooler, delta %d, \n", temp_diff);
1738 temp_diff = -temp_diff;
1739 } else if (temp_diff == 0)
1740 IWL_DEBUG_POWER(priv, "Same temp, \n");
1741 else
1742 IWL_DEBUG_POWER(priv, "Getting warmer, delta %d, \n", temp_diff);
1743
1744 if (temp_diff < IWL_TEMPERATURE_THRESHOLD) {
1745 IWL_DEBUG_POWER(priv, "Thermal txpower calib not needed\n");
1746 return 0;
1747 }
1748
1749 IWL_DEBUG_POWER(priv, "Thermal txpower calib needed\n");
1750
1751 return 1;
1752 }
1753
1754 static void iwl4965_temperature_calib(struct iwl_priv *priv)
1755 {
1756 s32 temp;
1757
1758 temp = iwl4965_hw_get_temperature(priv);
1759 if (temp < 0)
1760 return;
1761
1762 if (priv->temperature != temp) {
1763 if (priv->temperature)
1764 IWL_DEBUG_TEMP(priv, "Temperature changed "
1765 "from %dC to %dC\n",
1766 KELVIN_TO_CELSIUS(priv->temperature),
1767 KELVIN_TO_CELSIUS(temp));
1768 else
1769 IWL_DEBUG_TEMP(priv, "Temperature "
1770 "initialized to %dC\n",
1771 KELVIN_TO_CELSIUS(temp));
1772 }
1773
1774 priv->temperature = temp;
1775 set_bit(STATUS_TEMPERATURE, &priv->status);
1776
1777 if (!priv->disable_tx_power_cal &&
1778 unlikely(!test_bit(STATUS_SCANNING, &priv->status)) &&
1779 iwl4965_is_temp_calib_needed(priv))
1780 queue_work(priv->workqueue, &priv->txpower_work);
1781 }
1782
1783 /**
1784 * iwl4965_tx_queue_stop_scheduler - Stop queue, but keep configuration
1785 */
1786 static void iwl4965_tx_queue_stop_scheduler(struct iwl_priv *priv,
1787 u16 txq_id)
1788 {
1789 /* Simply stop the queue, but don't change any configuration;
1790 * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */
1791 iwl_write_prph(priv,
1792 IWL49_SCD_QUEUE_STATUS_BITS(txq_id),
1793 (0 << IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE)|
1794 (1 << IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1795 }
1796
1797 /**
1798 * txq_id must be greater than IWL49_FIRST_AMPDU_QUEUE
1799 * priv->lock must be held by the caller
1800 */
1801 static int iwl4965_txq_agg_disable(struct iwl_priv *priv, u16 txq_id,
1802 u16 ssn_idx, u8 tx_fifo)
1803 {
1804 if ((IWL49_FIRST_AMPDU_QUEUE > txq_id) ||
1805 (IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES <= txq_id)) {
1806 IWL_WARN(priv,
1807 "queue number out of range: %d, must be %d to %d\n",
1808 txq_id, IWL49_FIRST_AMPDU_QUEUE,
1809 IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES - 1);
1810 return -EINVAL;
1811 }
1812
1813 iwl4965_tx_queue_stop_scheduler(priv, txq_id);
1814
1815 iwl_clear_bits_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, (1 << txq_id));
1816
1817 priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
1818 priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
1819 /* supposes that ssn_idx is valid (!= 0xFFF) */
1820 iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx);
1821
1822 iwl_clear_bits_prph(priv, IWL49_SCD_INTERRUPT_MASK, (1 << txq_id));
1823 iwl_txq_ctx_deactivate(priv, txq_id);
1824 iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0);
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * iwl4965_tx_queue_set_q2ratid - Map unique receiver/tid combination to a queue
1831 */
1832 static int iwl4965_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid,
1833 u16 txq_id)
1834 {
1835 u32 tbl_dw_addr;
1836 u32 tbl_dw;
1837 u16 scd_q2ratid;
1838
1839 scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK;
1840
1841 tbl_dw_addr = priv->scd_base_addr +
1842 IWL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id);
1843
1844 tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr);
1845
1846 if (txq_id & 0x1)
1847 tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
1848 else
1849 tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
1850
1851 iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw);
1852
1853 return 0;
1854 }
1855
1856
1857 /**
1858 * iwl4965_tx_queue_agg_enable - Set up & enable aggregation for selected queue
1859 *
1860 * NOTE: txq_id must be greater than IWL49_FIRST_AMPDU_QUEUE,
1861 * i.e. it must be one of the higher queues used for aggregation
1862 */
1863 static int iwl4965_txq_agg_enable(struct iwl_priv *priv, int txq_id,
1864 int tx_fifo, int sta_id, int tid, u16 ssn_idx)
1865 {
1866 unsigned long flags;
1867 u16 ra_tid;
1868
1869 if ((IWL49_FIRST_AMPDU_QUEUE > txq_id) ||
1870 (IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES <= txq_id)) {
1871 IWL_WARN(priv,
1872 "queue number out of range: %d, must be %d to %d\n",
1873 txq_id, IWL49_FIRST_AMPDU_QUEUE,
1874 IWL49_FIRST_AMPDU_QUEUE + IWL49_NUM_AMPDU_QUEUES - 1);
1875 return -EINVAL;
1876 }
1877
1878 ra_tid = BUILD_RAxTID(sta_id, tid);
1879
1880 /* Modify device's station table to Tx this TID */
1881 iwl_sta_tx_modify_enable_tid(priv, sta_id, tid);
1882
1883 spin_lock_irqsave(&priv->lock, flags);
1884
1885 /* Stop this Tx queue before configuring it */
1886 iwl4965_tx_queue_stop_scheduler(priv, txq_id);
1887
1888 /* Map receiver-address / traffic-ID to this queue */
1889 iwl4965_tx_queue_set_q2ratid(priv, ra_tid, txq_id);
1890
1891 /* Set this queue as a chain-building queue */
1892 iwl_set_bits_prph(priv, IWL49_SCD_QUEUECHAIN_SEL, (1 << txq_id));
1893
1894 /* Place first TFD at index corresponding to start sequence number.
1895 * Assumes that ssn_idx is valid (!= 0xFFF) */
1896 priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
1897 priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
1898 iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx);
1899
1900 /* Set up Tx window size and frame limit for this queue */
1901 iwl_write_targ_mem(priv,
1902 priv->scd_base_addr + IWL49_SCD_CONTEXT_QUEUE_OFFSET(txq_id),
1903 (SCD_WIN_SIZE << IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) &
1904 IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK);
1905
1906 iwl_write_targ_mem(priv, priv->scd_base_addr +
1907 IWL49_SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32),
1908 (SCD_FRAME_LIMIT << IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS)
1909 & IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK);
1910
1911 iwl_set_bits_prph(priv, IWL49_SCD_INTERRUPT_MASK, (1 << txq_id));
1912
1913 /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */
1914 iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1);
1915
1916 spin_unlock_irqrestore(&priv->lock, flags);
1917
1918 return 0;
1919 }
1920
1921
1922 static u16 iwl4965_get_hcmd_size(u8 cmd_id, u16 len)
1923 {
1924 switch (cmd_id) {
1925 case REPLY_RXON:
1926 return (u16) sizeof(struct iwl4965_rxon_cmd);
1927 default:
1928 return len;
1929 }
1930 }
1931
1932 static u16 iwl4965_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data)
1933 {
1934 struct iwl4965_addsta_cmd *addsta = (struct iwl4965_addsta_cmd *)data;
1935 addsta->mode = cmd->mode;
1936 memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1937 memcpy(&addsta->key, &cmd->key, sizeof(struct iwl4965_keyinfo));
1938 addsta->station_flags = cmd->station_flags;
1939 addsta->station_flags_msk = cmd->station_flags_msk;
1940 addsta->tid_disable_tx = cmd->tid_disable_tx;
1941 addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1942 addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1943 addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1944 addsta->reserved1 = cpu_to_le16(0);
1945 addsta->reserved2 = cpu_to_le32(0);
1946
1947 return (u16)sizeof(struct iwl4965_addsta_cmd);
1948 }
1949
1950 static inline u32 iwl4965_get_scd_ssn(struct iwl4965_tx_resp *tx_resp)
1951 {
1952 return le32_to_cpup(&tx_resp->u.status + tx_resp->frame_count) & MAX_SN;
1953 }
1954
1955 /**
1956 * iwl4965_tx_status_reply_tx - Handle Tx response for frames in aggregation queue
1957 */
1958 static int iwl4965_tx_status_reply_tx(struct iwl_priv *priv,
1959 struct iwl_ht_agg *agg,
1960 struct iwl4965_tx_resp *tx_resp,
1961 int txq_id, u16 start_idx)
1962 {
1963 u16 status;
1964 struct agg_tx_status *frame_status = tx_resp->u.agg_status;
1965 struct ieee80211_tx_info *info = NULL;
1966 struct ieee80211_hdr *hdr = NULL;
1967 u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
1968 int i, sh, idx;
1969 u16 seq;
1970 if (agg->wait_for_ba)
1971 IWL_DEBUG_TX_REPLY(priv, "got tx response w/o block-ack\n");
1972
1973 agg->frame_count = tx_resp->frame_count;
1974 agg->start_idx = start_idx;
1975 agg->rate_n_flags = rate_n_flags;
1976 agg->bitmap = 0;
1977
1978 /* num frames attempted by Tx command */
1979 if (agg->frame_count == 1) {
1980 /* Only one frame was attempted; no block-ack will arrive */
1981 status = le16_to_cpu(frame_status[0].status);
1982 idx = start_idx;
1983
1984 /* FIXME: code repetition */
1985 IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, StartIdx=%d idx=%d\n",
1986 agg->frame_count, agg->start_idx, idx);
1987
1988 info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]);
1989 info->status.rates[0].count = tx_resp->failure_frame + 1;
1990 info->flags &= ~IEEE80211_TX_CTL_AMPDU;
1991 info->flags |= iwl_is_tx_success(status) ?
1992 IEEE80211_TX_STAT_ACK : 0;
1993 iwl_hwrate_to_tx_control(priv, rate_n_flags, info);
1994 /* FIXME: code repetition end */
1995
1996 IWL_DEBUG_TX_REPLY(priv, "1 Frame 0x%x failure :%d\n",
1997 status & 0xff, tx_resp->failure_frame);
1998 IWL_DEBUG_TX_REPLY(priv, "Rate Info rate_n_flags=%x\n", rate_n_flags);
1999
2000 agg->wait_for_ba = 0;
2001 } else {
2002 /* Two or more frames were attempted; expect block-ack */
2003 u64 bitmap = 0;
2004 int start = agg->start_idx;
2005
2006 /* Construct bit-map of pending frames within Tx window */
2007 for (i = 0; i < agg->frame_count; i++) {
2008 u16 sc;
2009 status = le16_to_cpu(frame_status[i].status);
2010 seq = le16_to_cpu(frame_status[i].sequence);
2011 idx = SEQ_TO_INDEX(seq);
2012 txq_id = SEQ_TO_QUEUE(seq);
2013
2014 if (status & (AGG_TX_STATE_FEW_BYTES_MSK |
2015 AGG_TX_STATE_ABORT_MSK))
2016 continue;
2017
2018 IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, txq_id=%d idx=%d\n",
2019 agg->frame_count, txq_id, idx);
2020
2021 hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx);
2022
2023 sc = le16_to_cpu(hdr->seq_ctrl);
2024 if (idx != (SEQ_TO_SN(sc) & 0xff)) {
2025 IWL_ERR(priv,
2026 "BUG_ON idx doesn't match seq control"
2027 " idx=%d, seq_idx=%d, seq=%d\n",
2028 idx, SEQ_TO_SN(sc), hdr->seq_ctrl);
2029 return -1;
2030 }
2031
2032 IWL_DEBUG_TX_REPLY(priv, "AGG Frame i=%d idx %d seq=%d\n",
2033 i, idx, SEQ_TO_SN(sc));
2034
2035 sh = idx - start;
2036 if (sh > 64) {
2037 sh = (start - idx) + 0xff;
2038 bitmap = bitmap << sh;
2039 sh = 0;
2040 start = idx;
2041 } else if (sh < -64)
2042 sh = 0xff - (start - idx);
2043 else if (sh < 0) {
2044 sh = start - idx;
2045 start = idx;
2046 bitmap = bitmap << sh;
2047 sh = 0;
2048 }
2049 bitmap |= 1ULL << sh;
2050 IWL_DEBUG_TX_REPLY(priv, "start=%d bitmap=0x%llx\n",
2051 start, (unsigned long long)bitmap);
2052 }
2053
2054 agg->bitmap = bitmap;
2055 agg->start_idx = start;
2056 IWL_DEBUG_TX_REPLY(priv, "Frames %d start_idx=%d bitmap=0x%llx\n",
2057 agg->frame_count, agg->start_idx,
2058 (unsigned long long)agg->bitmap);
2059
2060 if (bitmap)
2061 agg->wait_for_ba = 1;
2062 }
2063 return 0;
2064 }
2065
2066 /**
2067 * iwl4965_rx_reply_tx - Handle standard (non-aggregation) Tx response
2068 */
2069 static void iwl4965_rx_reply_tx(struct iwl_priv *priv,
2070 struct iwl_rx_mem_buffer *rxb)
2071 {
2072 struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
2073 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
2074 int txq_id = SEQ_TO_QUEUE(sequence);
2075 int index = SEQ_TO_INDEX(sequence);
2076 struct iwl_tx_queue *txq = &priv->txq[txq_id];
2077 struct ieee80211_hdr *hdr;
2078 struct ieee80211_tx_info *info;
2079 struct iwl4965_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
2080 u32 status = le32_to_cpu(tx_resp->u.status);
2081 int tid = MAX_TID_COUNT;
2082 int sta_id;
2083 int freed;
2084 u8 *qc = NULL;
2085
2086 if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) {
2087 IWL_ERR(priv, "Read index for DMA queue txq_id (%d) index %d "
2088 "is out of range [0-%d] %d %d\n", txq_id,
2089 index, txq->q.n_bd, txq->q.write_ptr,
2090 txq->q.read_ptr);
2091 return;
2092 }
2093
2094 info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]);
2095 memset(&info->status, 0, sizeof(info->status));
2096
2097 hdr = iwl_tx_queue_get_hdr(priv, txq_id, index);
2098 if (ieee80211_is_data_qos(hdr->frame_control)) {
2099 qc = ieee80211_get_qos_ctl(hdr);
2100 tid = qc[0] & 0xf;
2101 }
2102
2103 sta_id = iwl_get_ra_sta_id(priv, hdr);
2104 if (txq->sched_retry && unlikely(sta_id == IWL_INVALID_STATION)) {
2105 IWL_ERR(priv, "Station not known\n");
2106 return;
2107 }
2108
2109 if (txq->sched_retry) {
2110 const u32 scd_ssn = iwl4965_get_scd_ssn(tx_resp);
2111 struct iwl_ht_agg *agg = NULL;
2112
2113 WARN_ON(!qc);
2114
2115 agg = &priv->stations[sta_id].tid[tid].agg;
2116
2117 iwl4965_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index);
2118
2119 /* check if BAR is needed */
2120 if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status))
2121 info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
2122
2123 if (txq->q.read_ptr != (scd_ssn & 0xff)) {
2124 index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
2125 IWL_DEBUG_TX_REPLY(priv, "Retry scheduler reclaim scd_ssn "
2126 "%d index %d\n", scd_ssn , index);
2127 freed = iwl_tx_queue_reclaim(priv, txq_id, index);
2128 priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
2129
2130 if (priv->mac80211_registered &&
2131 (iwl_queue_space(&txq->q) > txq->q.low_mark) &&
2132 (agg->state != IWL_EMPTYING_HW_QUEUE_DELBA)) {
2133 if (agg->state == IWL_AGG_OFF)
2134 iwl_wake_queue(priv, txq_id);
2135 else
2136 iwl_wake_queue(priv, txq->swq_id);
2137 }
2138 }
2139 } else {
2140 info->status.rates[0].count = tx_resp->failure_frame + 1;
2141 info->flags |= iwl_is_tx_success(status) ?
2142 IEEE80211_TX_STAT_ACK : 0;
2143 iwl_hwrate_to_tx_control(priv,
2144 le32_to_cpu(tx_resp->rate_n_flags),
2145 info);
2146
2147 IWL_DEBUG_TX_REPLY(priv, "TXQ %d status %s (0x%08x) "
2148 "rate_n_flags 0x%x retries %d\n",
2149 txq_id,
2150 iwl_get_tx_fail_reason(status), status,
2151 le32_to_cpu(tx_resp->rate_n_flags),
2152 tx_resp->failure_frame);
2153
2154 freed = iwl_tx_queue_reclaim(priv, txq_id, index);
2155 if (qc && likely(sta_id != IWL_INVALID_STATION))
2156 priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
2157
2158 if (priv->mac80211_registered &&
2159 (iwl_queue_space(&txq->q) > txq->q.low_mark))
2160 iwl_wake_queue(priv, txq_id);
2161 }
2162
2163 if (qc && likely(sta_id != IWL_INVALID_STATION))
2164 iwl_txq_check_empty(priv, sta_id, tid, txq_id);
2165
2166 if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK))
2167 IWL_ERR(priv, "TODO: Implement Tx ABORT REQUIRED!!!\n");
2168 }
2169
2170 static int iwl4965_calc_rssi(struct iwl_priv *priv,
2171 struct iwl_rx_phy_res *rx_resp)
2172 {
2173 /* data from PHY/DSP regarding signal strength, etc.,
2174 * contents are always there, not configurable by host. */
2175 struct iwl4965_rx_non_cfg_phy *ncphy =
2176 (struct iwl4965_rx_non_cfg_phy *)rx_resp->non_cfg_phy_buf;
2177 u32 agc = (le16_to_cpu(ncphy->agc_info) & IWL49_AGC_DB_MASK)
2178 >> IWL49_AGC_DB_POS;
2179
2180 u32 valid_antennae =
2181 (le16_to_cpu(rx_resp->phy_flags) & IWL49_RX_PHY_FLAGS_ANTENNAE_MASK)
2182 >> IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET;
2183 u8 max_rssi = 0;
2184 u32 i;
2185
2186 /* Find max rssi among 3 possible receivers.
2187 * These values are measured by the digital signal processor (DSP).
2188 * They should stay fairly constant even as the signal strength varies,
2189 * if the radio's automatic gain control (AGC) is working right.
2190 * AGC value (see below) will provide the "interesting" info. */
2191 for (i = 0; i < 3; i++)
2192 if (valid_antennae & (1 << i))
2193 max_rssi = max(ncphy->rssi_info[i << 1], max_rssi);
2194
2195 IWL_DEBUG_STATS(priv, "Rssi In A %d B %d C %d Max %d AGC dB %d\n",
2196 ncphy->rssi_info[0], ncphy->rssi_info[2], ncphy->rssi_info[4],
2197 max_rssi, agc);
2198
2199 /* dBm = max_rssi dB - agc dB - constant.
2200 * Higher AGC (higher radio gain) means lower signal. */
2201 return max_rssi - agc - IWL49_RSSI_OFFSET;
2202 }
2203
2204
2205 /* Set up 4965-specific Rx frame reply handlers */
2206 static void iwl4965_rx_handler_setup(struct iwl_priv *priv)
2207 {
2208 /* Legacy Rx frames */
2209 priv->rx_handlers[REPLY_RX] = iwl_rx_reply_rx;
2210 /* Tx response */
2211 priv->rx_handlers[REPLY_TX] = iwl4965_rx_reply_tx;
2212 }
2213
2214 static void iwl4965_setup_deferred_work(struct iwl_priv *priv)
2215 {
2216 INIT_WORK(&priv->txpower_work, iwl4965_bg_txpower_work);
2217 }
2218
2219 static void iwl4965_cancel_deferred_work(struct iwl_priv *priv)
2220 {
2221 cancel_work_sync(&priv->txpower_work);
2222 }
2223
2224 static struct iwl_hcmd_ops iwl4965_hcmd = {
2225 .rxon_assoc = iwl4965_send_rxon_assoc,
2226 .commit_rxon = iwl_commit_rxon,
2227 .set_rxon_chain = iwl_set_rxon_chain,
2228 };
2229
2230 static struct iwl_hcmd_utils_ops iwl4965_hcmd_utils = {
2231 .get_hcmd_size = iwl4965_get_hcmd_size,
2232 .build_addsta_hcmd = iwl4965_build_addsta_hcmd,
2233 .chain_noise_reset = iwl4965_chain_noise_reset,
2234 .gain_computation = iwl4965_gain_computation,
2235 .rts_tx_cmd_flag = iwl4965_rts_tx_cmd_flag,
2236 .calc_rssi = iwl4965_calc_rssi,
2237 };
2238
2239 static struct iwl_lib_ops iwl4965_lib = {
2240 .set_hw_params = iwl4965_hw_set_hw_params,
2241 .txq_update_byte_cnt_tbl = iwl4965_txq_update_byte_cnt_tbl,
2242 .txq_set_sched = iwl4965_txq_set_sched,
2243 .txq_agg_enable = iwl4965_txq_agg_enable,
2244 .txq_agg_disable = iwl4965_txq_agg_disable,
2245 .txq_attach_buf_to_tfd = iwl_hw_txq_attach_buf_to_tfd,
2246 .txq_free_tfd = iwl_hw_txq_free_tfd,
2247 .txq_init = iwl_hw_tx_queue_init,
2248 .rx_handler_setup = iwl4965_rx_handler_setup,
2249 .setup_deferred_work = iwl4965_setup_deferred_work,
2250 .cancel_deferred_work = iwl4965_cancel_deferred_work,
2251 .is_valid_rtc_data_addr = iwl4965_hw_valid_rtc_data_addr,
2252 .alive_notify = iwl4965_alive_notify,
2253 .init_alive_start = iwl4965_init_alive_start,
2254 .load_ucode = iwl4965_load_bsm,
2255 .apm_ops = {
2256 .init = iwl4965_apm_init,
2257 .reset = iwl4965_apm_reset,
2258 .stop = iwl4965_apm_stop,
2259 .config = iwl4965_nic_config,
2260 .set_pwr_src = iwl_set_pwr_src,
2261 },
2262 .eeprom_ops = {
2263 .regulatory_bands = {
2264 EEPROM_REGULATORY_BAND_1_CHANNELS,
2265 EEPROM_REGULATORY_BAND_2_CHANNELS,
2266 EEPROM_REGULATORY_BAND_3_CHANNELS,
2267 EEPROM_REGULATORY_BAND_4_CHANNELS,
2268 EEPROM_REGULATORY_BAND_5_CHANNELS,
2269 EEPROM_4965_REGULATORY_BAND_24_FAT_CHANNELS,
2270 EEPROM_4965_REGULATORY_BAND_52_FAT_CHANNELS
2271 },
2272 .verify_signature = iwlcore_eeprom_verify_signature,
2273 .acquire_semaphore = iwlcore_eeprom_acquire_semaphore,
2274 .release_semaphore = iwlcore_eeprom_release_semaphore,
2275 .calib_version = iwl4965_eeprom_calib_version,
2276 .query_addr = iwlcore_eeprom_query_addr,
2277 },
2278 .send_tx_power = iwl4965_send_tx_power,
2279 .update_chain_flags = iwl_update_chain_flags,
2280 .post_associate = iwl_post_associate,
2281 .config_ap = iwl_config_ap,
2282 .isr = iwl_isr_legacy,
2283 .temp_ops = {
2284 .temperature = iwl4965_temperature_calib,
2285 .set_ct_kill = iwl4965_set_ct_threshold,
2286 },
2287 };
2288
2289 static struct iwl_ops iwl4965_ops = {
2290 .lib = &iwl4965_lib,
2291 .hcmd = &iwl4965_hcmd,
2292 .utils = &iwl4965_hcmd_utils,
2293 };
2294
2295 struct iwl_cfg iwl4965_agn_cfg = {
2296 .name = "4965AGN",
2297 .fw_name_pre = IWL4965_FW_PRE,
2298 .ucode_api_max = IWL4965_UCODE_API_MAX,
2299 .ucode_api_min = IWL4965_UCODE_API_MIN,
2300 .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N,
2301 .eeprom_size = IWL4965_EEPROM_IMG_SIZE,
2302 .eeprom_ver = EEPROM_4965_EEPROM_VERSION,
2303 .eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
2304 .ops = &iwl4965_ops,
2305 .mod_params = &iwl4965_mod_params,
2306 .use_isr_legacy = true
2307 };
2308
2309 /* Module firmware */
2310 MODULE_FIRMWARE(IWL4965_MODULE_FIRMWARE(IWL4965_UCODE_API_MAX));
2311
2312 module_param_named(antenna, iwl4965_mod_params.antenna, int, 0444);
2313 MODULE_PARM_DESC(antenna, "select antenna (1=Main, 2=Aux, default 0 [both])");
2314 module_param_named(swcrypto, iwl4965_mod_params.sw_crypto, int, 0444);
2315 MODULE_PARM_DESC(swcrypto, "using crypto in software (default 0 [hardware])");
2316 module_param_named(debug, iwl4965_mod_params.debug, uint, 0444);
2317 MODULE_PARM_DESC(debug, "debug output mask");
2318 module_param_named(
2319 disable_hw_scan, iwl4965_mod_params.disable_hw_scan, int, 0444);
2320 MODULE_PARM_DESC(disable_hw_scan, "disable hardware scanning (default 0)");
2321
2322 module_param_named(queues_num, iwl4965_mod_params.num_of_queues, int, 0444);
2323 MODULE_PARM_DESC(queues_num, "number of hw queues.");
2324 /* 11n */
2325 module_param_named(11n_disable, iwl4965_mod_params.disable_11n, int, 0444);
2326 MODULE_PARM_DESC(11n_disable, "disable 11n functionality");
2327 module_param_named(amsdu_size_8K, iwl4965_mod_params.amsdu_size_8K, int, 0444);
2328 MODULE_PARM_DESC(amsdu_size_8K, "enable 8K amsdu size");
2329
2330 module_param_named(fw_restart4965, iwl4965_mod_params.restart_fw, int, 0444);
2331 MODULE_PARM_DESC(fw_restart4965, "restart firmware in case of error");