]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/iwlwifi/iwl-agn.c
iwlwifi: remove uCode alternatives mechanism
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / iwlwifi / iwl-agn.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/sched.h>
38 #include <linux/skbuff.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_arp.h>
42
43 #include <net/mac80211.h>
44
45 #include <asm/div64.h>
46
47 #include "iwl-eeprom.h"
48 #include "iwl-dev.h"
49 #include "iwl-core.h"
50 #include "iwl-io.h"
51 #include "iwl-agn-calib.h"
52 #include "iwl-agn.h"
53 #include "iwl-shared.h"
54 #include "iwl-trans.h"
55 #include "iwl-op-mode.h"
56
57 /******************************************************************************
58 *
59 * module boiler plate
60 *
61 ******************************************************************************/
62
63 /*
64 * module name, copyright, version, etc.
65 */
66 #define DRV_DESCRIPTION "Intel(R) Wireless WiFi Link AGN driver for Linux"
67
68 #ifdef CONFIG_IWLWIFI_DEBUG
69 #define VD "d"
70 #else
71 #define VD
72 #endif
73
74 #define DRV_VERSION IWLWIFI_VERSION VD
75
76
77 MODULE_DESCRIPTION(DRV_DESCRIPTION);
78 MODULE_VERSION(DRV_VERSION);
79 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
80 MODULE_LICENSE("GPL");
81 MODULE_ALIAS("iwlagn");
82
83 void iwl_update_chain_flags(struct iwl_priv *priv)
84 {
85 struct iwl_rxon_context *ctx;
86
87 for_each_context(priv, ctx) {
88 iwlagn_set_rxon_chain(priv, ctx);
89 if (ctx->active.rx_chain != ctx->staging.rx_chain)
90 iwlagn_commit_rxon(priv, ctx);
91 }
92 }
93
94 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
95 static void iwl_set_beacon_tim(struct iwl_priv *priv,
96 struct iwl_tx_beacon_cmd *tx_beacon_cmd,
97 u8 *beacon, u32 frame_size)
98 {
99 u16 tim_idx;
100 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
101
102 /*
103 * The index is relative to frame start but we start looking at the
104 * variable-length part of the beacon.
105 */
106 tim_idx = mgmt->u.beacon.variable - beacon;
107
108 /* Parse variable-length elements of beacon to find WLAN_EID_TIM */
109 while ((tim_idx < (frame_size - 2)) &&
110 (beacon[tim_idx] != WLAN_EID_TIM))
111 tim_idx += beacon[tim_idx+1] + 2;
112
113 /* If TIM field was found, set variables */
114 if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
115 tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
116 tx_beacon_cmd->tim_size = beacon[tim_idx+1];
117 } else
118 IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
119 }
120
121 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
122 {
123 struct iwl_tx_beacon_cmd *tx_beacon_cmd;
124 struct iwl_host_cmd cmd = {
125 .id = REPLY_TX_BEACON,
126 .flags = CMD_SYNC,
127 };
128 struct ieee80211_tx_info *info;
129 u32 frame_size;
130 u32 rate_flags;
131 u32 rate;
132
133 /*
134 * We have to set up the TX command, the TX Beacon command, and the
135 * beacon contents.
136 */
137
138 lockdep_assert_held(&priv->mutex);
139
140 if (!priv->beacon_ctx) {
141 IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
142 return 0;
143 }
144
145 if (WARN_ON(!priv->beacon_skb))
146 return -EINVAL;
147
148 /* Allocate beacon command */
149 if (!priv->beacon_cmd)
150 priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
151 tx_beacon_cmd = priv->beacon_cmd;
152 if (!tx_beacon_cmd)
153 return -ENOMEM;
154
155 frame_size = priv->beacon_skb->len;
156
157 /* Set up TX command fields */
158 tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
159 tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
160 tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
161 tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
162 TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
163
164 /* Set up TX beacon command fields */
165 iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
166 frame_size);
167
168 /* Set up packet rate and flags */
169 info = IEEE80211_SKB_CB(priv->beacon_skb);
170
171 /*
172 * Let's set up the rate at least somewhat correctly;
173 * it will currently not actually be used by the uCode,
174 * it uses the broadcast station's rate instead.
175 */
176 if (info->control.rates[0].idx < 0 ||
177 info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
178 rate = 0;
179 else
180 rate = info->control.rates[0].idx;
181
182 priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
183 priv->hw_params.valid_tx_ant);
184 rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
185
186 /* In mac80211, rates for 5 GHz start at 0 */
187 if (info->band == IEEE80211_BAND_5GHZ)
188 rate += IWL_FIRST_OFDM_RATE;
189 else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
190 rate_flags |= RATE_MCS_CCK_MSK;
191
192 tx_beacon_cmd->tx.rate_n_flags =
193 iwl_hw_set_rate_n_flags(rate, rate_flags);
194
195 /* Submit command */
196 cmd.len[0] = sizeof(*tx_beacon_cmd);
197 cmd.data[0] = tx_beacon_cmd;
198 cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
199 cmd.len[1] = frame_size;
200 cmd.data[1] = priv->beacon_skb->data;
201 cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
202
203 return iwl_dvm_send_cmd(priv, &cmd);
204 }
205
206 static void iwl_bg_beacon_update(struct work_struct *work)
207 {
208 struct iwl_priv *priv =
209 container_of(work, struct iwl_priv, beacon_update);
210 struct sk_buff *beacon;
211
212 mutex_lock(&priv->mutex);
213 if (!priv->beacon_ctx) {
214 IWL_ERR(priv, "updating beacon w/o beacon context!\n");
215 goto out;
216 }
217
218 if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
219 /*
220 * The ucode will send beacon notifications even in
221 * IBSS mode, but we don't want to process them. But
222 * we need to defer the type check to here due to
223 * requiring locking around the beacon_ctx access.
224 */
225 goto out;
226 }
227
228 /* Pull updated AP beacon from mac80211. will fail if not in AP mode */
229 beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif);
230 if (!beacon) {
231 IWL_ERR(priv, "update beacon failed -- keeping old\n");
232 goto out;
233 }
234
235 /* new beacon skb is allocated every time; dispose previous.*/
236 dev_kfree_skb(priv->beacon_skb);
237
238 priv->beacon_skb = beacon;
239
240 iwlagn_send_beacon_cmd(priv);
241 out:
242 mutex_unlock(&priv->mutex);
243 }
244
245 static void iwl_bg_bt_runtime_config(struct work_struct *work)
246 {
247 struct iwl_priv *priv =
248 container_of(work, struct iwl_priv, bt_runtime_config);
249
250 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
251 return;
252
253 /* dont send host command if rf-kill is on */
254 if (!iwl_is_ready_rf(priv))
255 return;
256 iwlagn_send_advance_bt_config(priv);
257 }
258
259 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
260 {
261 struct iwl_priv *priv =
262 container_of(work, struct iwl_priv, bt_full_concurrency);
263 struct iwl_rxon_context *ctx;
264
265 mutex_lock(&priv->mutex);
266
267 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
268 goto out;
269
270 /* dont send host command if rf-kill is on */
271 if (!iwl_is_ready_rf(priv))
272 goto out;
273
274 IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
275 priv->bt_full_concurrent ?
276 "full concurrency" : "3-wire");
277
278 /*
279 * LQ & RXON updated cmds must be sent before BT Config cmd
280 * to avoid 3-wire collisions
281 */
282 for_each_context(priv, ctx) {
283 iwlagn_set_rxon_chain(priv, ctx);
284 iwlagn_commit_rxon(priv, ctx);
285 }
286
287 iwlagn_send_advance_bt_config(priv);
288 out:
289 mutex_unlock(&priv->mutex);
290 }
291
292 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
293 {
294 struct iwl_statistics_cmd statistics_cmd = {
295 .configuration_flags =
296 clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
297 };
298
299 if (flags & CMD_ASYNC)
300 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
301 CMD_ASYNC,
302 sizeof(struct iwl_statistics_cmd),
303 &statistics_cmd);
304 else
305 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
306 CMD_SYNC,
307 sizeof(struct iwl_statistics_cmd),
308 &statistics_cmd);
309 }
310
311 /**
312 * iwl_bg_statistics_periodic - Timer callback to queue statistics
313 *
314 * This callback is provided in order to send a statistics request.
315 *
316 * This timer function is continually reset to execute within
317 * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
318 * was received. We need to ensure we receive the statistics in order
319 * to update the temperature used for calibrating the TXPOWER.
320 */
321 static void iwl_bg_statistics_periodic(unsigned long data)
322 {
323 struct iwl_priv *priv = (struct iwl_priv *)data;
324
325 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
326 return;
327
328 /* dont send host command if rf-kill is on */
329 if (!iwl_is_ready_rf(priv))
330 return;
331
332 iwl_send_statistics_request(priv, CMD_ASYNC, false);
333 }
334
335
336 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
337 u32 start_idx, u32 num_events,
338 u32 capacity, u32 mode)
339 {
340 u32 i;
341 u32 ptr; /* SRAM byte address of log data */
342 u32 ev, time, data; /* event log data */
343 unsigned long reg_flags;
344
345 if (mode == 0)
346 ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
347 else
348 ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
349
350 /* Make sure device is powered up for SRAM reads */
351 spin_lock_irqsave(&trans(priv)->reg_lock, reg_flags);
352 if (unlikely(!iwl_grab_nic_access(trans(priv)))) {
353 spin_unlock_irqrestore(&trans(priv)->reg_lock, reg_flags);
354 return;
355 }
356
357 /* Set starting address; reads will auto-increment */
358 iwl_write32(trans(priv), HBUS_TARG_MEM_RADDR, ptr);
359
360 /*
361 * Refuse to read more than would have fit into the log from
362 * the current start_idx. This used to happen due to the race
363 * described below, but now WARN because the code below should
364 * prevent it from happening here.
365 */
366 if (WARN_ON(num_events > capacity - start_idx))
367 num_events = capacity - start_idx;
368
369 /*
370 * "time" is actually "data" for mode 0 (no timestamp).
371 * place event id # at far right for easier visual parsing.
372 */
373 for (i = 0; i < num_events; i++) {
374 ev = iwl_read32(trans(priv), HBUS_TARG_MEM_RDAT);
375 time = iwl_read32(trans(priv), HBUS_TARG_MEM_RDAT);
376 if (mode == 0) {
377 trace_iwlwifi_dev_ucode_cont_event(
378 trans(priv)->dev, 0, time, ev);
379 } else {
380 data = iwl_read32(trans(priv), HBUS_TARG_MEM_RDAT);
381 trace_iwlwifi_dev_ucode_cont_event(
382 trans(priv)->dev, time, data, ev);
383 }
384 }
385 /* Allow device to power down */
386 iwl_release_nic_access(trans(priv));
387 spin_unlock_irqrestore(&trans(priv)->reg_lock, reg_flags);
388 }
389
390 static void iwl_continuous_event_trace(struct iwl_priv *priv)
391 {
392 u32 capacity; /* event log capacity in # entries */
393 struct {
394 u32 capacity;
395 u32 mode;
396 u32 wrap_counter;
397 u32 write_counter;
398 } __packed read;
399 u32 base; /* SRAM byte address of event log header */
400 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */
401 u32 num_wraps; /* # times uCode wrapped to top of log */
402 u32 next_entry; /* index of next entry to be written by uCode */
403
404 base = priv->device_pointers.log_event_table;
405 if (iwlagn_hw_valid_rtc_data_addr(base)) {
406 iwl_read_targ_mem_words(trans(priv), base, &read, sizeof(read));
407
408 capacity = read.capacity;
409 mode = read.mode;
410 num_wraps = read.wrap_counter;
411 next_entry = read.write_counter;
412 } else
413 return;
414
415 /*
416 * Unfortunately, the uCode doesn't use temporary variables.
417 * Therefore, it can happen that we read next_entry == capacity,
418 * which really means next_entry == 0.
419 */
420 if (unlikely(next_entry == capacity))
421 next_entry = 0;
422 /*
423 * Additionally, the uCode increases the write pointer before
424 * the wraps counter, so if the write pointer is smaller than
425 * the old write pointer (wrap occurred) but we read that no
426 * wrap occurred, we actually read between the next_entry and
427 * num_wraps update (this does happen in practice!!) -- take
428 * that into account by increasing num_wraps.
429 */
430 if (unlikely(next_entry < priv->event_log.next_entry &&
431 num_wraps == priv->event_log.num_wraps))
432 num_wraps++;
433
434 if (num_wraps == priv->event_log.num_wraps) {
435 iwl_print_cont_event_trace(
436 priv, base, priv->event_log.next_entry,
437 next_entry - priv->event_log.next_entry,
438 capacity, mode);
439
440 priv->event_log.non_wraps_count++;
441 } else {
442 if (num_wraps - priv->event_log.num_wraps > 1)
443 priv->event_log.wraps_more_count++;
444 else
445 priv->event_log.wraps_once_count++;
446
447 trace_iwlwifi_dev_ucode_wrap_event(trans(priv)->dev,
448 num_wraps - priv->event_log.num_wraps,
449 next_entry, priv->event_log.next_entry);
450
451 if (next_entry < priv->event_log.next_entry) {
452 iwl_print_cont_event_trace(
453 priv, base, priv->event_log.next_entry,
454 capacity - priv->event_log.next_entry,
455 capacity, mode);
456
457 iwl_print_cont_event_trace(
458 priv, base, 0, next_entry, capacity, mode);
459 } else {
460 iwl_print_cont_event_trace(
461 priv, base, next_entry,
462 capacity - next_entry,
463 capacity, mode);
464
465 iwl_print_cont_event_trace(
466 priv, base, 0, next_entry, capacity, mode);
467 }
468 }
469
470 priv->event_log.num_wraps = num_wraps;
471 priv->event_log.next_entry = next_entry;
472 }
473
474 /**
475 * iwl_bg_ucode_trace - Timer callback to log ucode event
476 *
477 * The timer is continually set to execute every
478 * UCODE_TRACE_PERIOD milliseconds after the last timer expired
479 * this function is to perform continuous uCode event logging operation
480 * if enabled
481 */
482 static void iwl_bg_ucode_trace(unsigned long data)
483 {
484 struct iwl_priv *priv = (struct iwl_priv *)data;
485
486 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
487 return;
488
489 if (priv->event_log.ucode_trace) {
490 iwl_continuous_event_trace(priv);
491 /* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
492 mod_timer(&priv->ucode_trace,
493 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
494 }
495 }
496
497 static void iwl_bg_tx_flush(struct work_struct *work)
498 {
499 struct iwl_priv *priv =
500 container_of(work, struct iwl_priv, tx_flush);
501
502 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
503 return;
504
505 /* do nothing if rf-kill is on */
506 if (!iwl_is_ready_rf(priv))
507 return;
508
509 IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
510 iwlagn_dev_txfifo_flush(priv, IWL_DROP_ALL);
511 }
512
513 /*
514 * queue/FIFO/AC mapping definitions
515 */
516
517 #define IWL_TX_FIFO_BK 0 /* shared */
518 #define IWL_TX_FIFO_BE 1
519 #define IWL_TX_FIFO_VI 2 /* shared */
520 #define IWL_TX_FIFO_VO 3
521 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
522 #define IWL_TX_FIFO_BE_IPAN 4
523 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
524 #define IWL_TX_FIFO_VO_IPAN 5
525 /* re-uses the VO FIFO, uCode will properly flush/schedule */
526 #define IWL_TX_FIFO_AUX 5
527 #define IWL_TX_FIFO_UNUSED -1
528
529 #define IWLAGN_CMD_FIFO_NUM 7
530
531 /*
532 * This queue number is required for proper operation
533 * because the ucode will stop/start the scheduler as
534 * required.
535 */
536 #define IWL_IPAN_MCAST_QUEUE 8
537
538 static const u8 iwlagn_default_queue_to_tx_fifo[] = {
539 IWL_TX_FIFO_VO,
540 IWL_TX_FIFO_VI,
541 IWL_TX_FIFO_BE,
542 IWL_TX_FIFO_BK,
543 IWLAGN_CMD_FIFO_NUM,
544 };
545
546 static const u8 iwlagn_ipan_queue_to_tx_fifo[] = {
547 IWL_TX_FIFO_VO,
548 IWL_TX_FIFO_VI,
549 IWL_TX_FIFO_BE,
550 IWL_TX_FIFO_BK,
551 IWL_TX_FIFO_BK_IPAN,
552 IWL_TX_FIFO_BE_IPAN,
553 IWL_TX_FIFO_VI_IPAN,
554 IWL_TX_FIFO_VO_IPAN,
555 IWL_TX_FIFO_BE_IPAN,
556 IWLAGN_CMD_FIFO_NUM,
557 IWL_TX_FIFO_AUX,
558 };
559
560 static const u8 iwlagn_bss_ac_to_fifo[] = {
561 IWL_TX_FIFO_VO,
562 IWL_TX_FIFO_VI,
563 IWL_TX_FIFO_BE,
564 IWL_TX_FIFO_BK,
565 };
566
567 static const u8 iwlagn_bss_ac_to_queue[] = {
568 0, 1, 2, 3,
569 };
570
571 static const u8 iwlagn_pan_ac_to_fifo[] = {
572 IWL_TX_FIFO_VO_IPAN,
573 IWL_TX_FIFO_VI_IPAN,
574 IWL_TX_FIFO_BE_IPAN,
575 IWL_TX_FIFO_BK_IPAN,
576 };
577
578 static const u8 iwlagn_pan_ac_to_queue[] = {
579 7, 6, 5, 4,
580 };
581
582 static const u8 iwlagn_bss_queue_to_ac[] = {
583 IEEE80211_AC_VO,
584 IEEE80211_AC_VI,
585 IEEE80211_AC_BE,
586 IEEE80211_AC_BK,
587 };
588
589 static const u8 iwlagn_pan_queue_to_ac[] = {
590 IEEE80211_AC_VO,
591 IEEE80211_AC_VI,
592 IEEE80211_AC_BE,
593 IEEE80211_AC_BK,
594 IEEE80211_AC_BK,
595 IEEE80211_AC_BE,
596 IEEE80211_AC_VI,
597 IEEE80211_AC_VO,
598 };
599
600 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
601 {
602 int i;
603
604 /*
605 * The default context is always valid,
606 * the PAN context depends on uCode.
607 */
608 priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
609 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
610 priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
611
612 for (i = 0; i < NUM_IWL_RXON_CTX; i++)
613 priv->contexts[i].ctxid = i;
614
615 priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
616 priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
617 priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
618 priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
619 priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
620 priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
621 priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
622 priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
623 priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
624 priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
625 BIT(NL80211_IFTYPE_ADHOC);
626 priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
627 BIT(NL80211_IFTYPE_STATION);
628 priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
629 priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
630 priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
631 priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
632 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
633 iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
634 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
635 iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
636
637 priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
638 priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
639 REPLY_WIPAN_RXON_TIMING;
640 priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
641 REPLY_WIPAN_RXON_ASSOC;
642 priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
643 priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
644 priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
645 priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
646 priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
647 priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
648 BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
649
650 if (ucode_flags & IWL_UCODE_TLV_FLAGS_P2P)
651 priv->contexts[IWL_RXON_CTX_PAN].interface_modes |=
652 BIT(NL80211_IFTYPE_P2P_CLIENT) |
653 BIT(NL80211_IFTYPE_P2P_GO);
654
655 priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
656 priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
657 priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
658 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
659 iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
660 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
661 iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
662 priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
663
664 BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
665 }
666
667 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
668 {
669 struct iwl_ct_kill_config cmd;
670 struct iwl_ct_kill_throttling_config adv_cmd;
671 int ret = 0;
672
673 iwl_write32(trans(priv), CSR_UCODE_DRV_GP1_CLR,
674 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
675
676 priv->thermal_throttle.ct_kill_toggle = false;
677
678 if (cfg(priv)->base_params->support_ct_kill_exit) {
679 adv_cmd.critical_temperature_enter =
680 cpu_to_le32(priv->hw_params.ct_kill_threshold);
681 adv_cmd.critical_temperature_exit =
682 cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
683
684 ret = iwl_dvm_send_cmd_pdu(priv,
685 REPLY_CT_KILL_CONFIG_CMD,
686 CMD_SYNC, sizeof(adv_cmd), &adv_cmd);
687 if (ret)
688 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
689 else
690 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
691 "succeeded, critical temperature enter is %d,"
692 "exit is %d\n",
693 priv->hw_params.ct_kill_threshold,
694 priv->hw_params.ct_kill_exit_threshold);
695 } else {
696 cmd.critical_temperature_R =
697 cpu_to_le32(priv->hw_params.ct_kill_threshold);
698
699 ret = iwl_dvm_send_cmd_pdu(priv,
700 REPLY_CT_KILL_CONFIG_CMD,
701 CMD_SYNC, sizeof(cmd), &cmd);
702 if (ret)
703 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
704 else
705 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
706 "succeeded, "
707 "critical temperature is %d\n",
708 priv->hw_params.ct_kill_threshold);
709 }
710 }
711
712 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
713 {
714 struct iwl_calib_cfg_cmd calib_cfg_cmd;
715 struct iwl_host_cmd cmd = {
716 .id = CALIBRATION_CFG_CMD,
717 .len = { sizeof(struct iwl_calib_cfg_cmd), },
718 .data = { &calib_cfg_cmd, },
719 };
720
721 memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
722 calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
723 calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
724
725 return iwl_dvm_send_cmd(priv, &cmd);
726 }
727
728
729 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
730 {
731 struct iwl_tx_ant_config_cmd tx_ant_cmd = {
732 .valid = cpu_to_le32(valid_tx_ant),
733 };
734
735 if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
736 IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
737 return iwl_dvm_send_cmd_pdu(priv,
738 TX_ANT_CONFIGURATION_CMD,
739 CMD_SYNC,
740 sizeof(struct iwl_tx_ant_config_cmd),
741 &tx_ant_cmd);
742 } else {
743 IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
744 return -EOPNOTSUPP;
745 }
746 }
747
748 static void iwl_send_bt_config(struct iwl_priv *priv)
749 {
750 struct iwl_bt_cmd bt_cmd = {
751 .lead_time = BT_LEAD_TIME_DEF,
752 .max_kill = BT_MAX_KILL_DEF,
753 .kill_ack_mask = 0,
754 .kill_cts_mask = 0,
755 };
756
757 if (!iwlagn_mod_params.bt_coex_active)
758 bt_cmd.flags = BT_COEX_DISABLE;
759 else
760 bt_cmd.flags = BT_COEX_ENABLE;
761
762 priv->bt_enable_flag = bt_cmd.flags;
763 IWL_DEBUG_INFO(priv, "BT coex %s\n",
764 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
765
766 if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
767 CMD_SYNC, sizeof(struct iwl_bt_cmd), &bt_cmd))
768 IWL_ERR(priv, "failed to send BT Coex Config\n");
769 }
770
771 /**
772 * iwl_alive_start - called after REPLY_ALIVE notification received
773 * from protocol/runtime uCode (initialization uCode's
774 * Alive gets handled by iwl_init_alive_start()).
775 */
776 int iwl_alive_start(struct iwl_priv *priv)
777 {
778 int ret = 0;
779 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
780
781 IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
782
783 /* After the ALIVE response, we can send host commands to the uCode */
784 set_bit(STATUS_ALIVE, &priv->status);
785
786 if (iwl_is_rfkill(priv))
787 return -ERFKILL;
788
789 if (priv->event_log.ucode_trace) {
790 /* start collecting data now */
791 mod_timer(&priv->ucode_trace, jiffies);
792 }
793
794 /* download priority table before any calibration request */
795 if (cfg(priv)->bt_params &&
796 cfg(priv)->bt_params->advanced_bt_coexist) {
797 /* Configure Bluetooth device coexistence support */
798 if (cfg(priv)->bt_params->bt_sco_disable)
799 priv->bt_enable_pspoll = false;
800 else
801 priv->bt_enable_pspoll = true;
802
803 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
804 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
805 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
806 iwlagn_send_advance_bt_config(priv);
807 priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
808 priv->cur_rssi_ctx = NULL;
809
810 iwl_send_prio_tbl(priv);
811
812 /* FIXME: w/a to force change uCode BT state machine */
813 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
814 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
815 if (ret)
816 return ret;
817 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
818 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
819 if (ret)
820 return ret;
821 } else {
822 /*
823 * default is 2-wire BT coexexistence support
824 */
825 iwl_send_bt_config(priv);
826 }
827
828 /*
829 * Perform runtime calibrations, including DC calibration.
830 */
831 iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
832
833 ieee80211_wake_queues(priv->hw);
834
835 /* Configure Tx antenna selection based on H/W config */
836 iwlagn_send_tx_ant_config(priv, priv->hw_params.valid_tx_ant);
837
838 if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
839 struct iwl_rxon_cmd *active_rxon =
840 (struct iwl_rxon_cmd *)&ctx->active;
841 /* apply any changes in staging */
842 ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
843 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
844 } else {
845 struct iwl_rxon_context *tmp;
846 /* Initialize our rx_config data */
847 for_each_context(priv, tmp)
848 iwl_connection_init_rx_config(priv, tmp);
849
850 iwlagn_set_rxon_chain(priv, ctx);
851 }
852
853 if (!priv->wowlan) {
854 /* WoWLAN ucode will not reply in the same way, skip it */
855 iwl_reset_run_time_calib(priv);
856 }
857
858 set_bit(STATUS_READY, &priv->status);
859
860 /* Configure the adapter for unassociated operation */
861 ret = iwlagn_commit_rxon(priv, ctx);
862 if (ret)
863 return ret;
864
865 /* At this point, the NIC is initialized and operational */
866 iwl_rf_kill_ct_config(priv);
867
868 IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
869
870 return iwl_power_update_mode(priv, true);
871 }
872
873 /**
874 * iwl_clear_driver_stations - clear knowledge of all stations from driver
875 * @priv: iwl priv struct
876 *
877 * This is called during iwl_down() to make sure that in the case
878 * we're coming there from a hardware restart mac80211 will be
879 * able to reconfigure stations -- if we're getting there in the
880 * normal down flow then the stations will already be cleared.
881 */
882 static void iwl_clear_driver_stations(struct iwl_priv *priv)
883 {
884 struct iwl_rxon_context *ctx;
885
886 spin_lock_bh(&priv->sta_lock);
887 memset(priv->stations, 0, sizeof(priv->stations));
888 priv->num_stations = 0;
889
890 priv->ucode_key_table = 0;
891
892 for_each_context(priv, ctx) {
893 /*
894 * Remove all key information that is not stored as part
895 * of station information since mac80211 may not have had
896 * a chance to remove all the keys. When device is
897 * reconfigured by mac80211 after an error all keys will
898 * be reconfigured.
899 */
900 memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
901 ctx->key_mapping_keys = 0;
902 }
903
904 spin_unlock_bh(&priv->sta_lock);
905 }
906
907 void iwl_down(struct iwl_priv *priv)
908 {
909 int exit_pending;
910
911 IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
912
913 lockdep_assert_held(&priv->mutex);
914
915 iwl_scan_cancel_timeout(priv, 200);
916
917 /*
918 * If active, scanning won't cancel it, so say it expired.
919 * No race since we hold the mutex here and a new one
920 * can't come in at this time.
921 */
922 ieee80211_remain_on_channel_expired(priv->hw);
923
924 exit_pending =
925 test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
926
927 iwl_clear_ucode_stations(priv, NULL);
928 iwl_dealloc_bcast_stations(priv);
929 iwl_clear_driver_stations(priv);
930
931 /* reset BT coex data */
932 priv->bt_status = 0;
933 priv->cur_rssi_ctx = NULL;
934 priv->bt_is_sco = 0;
935 if (cfg(priv)->bt_params)
936 priv->bt_traffic_load =
937 cfg(priv)->bt_params->bt_init_traffic_load;
938 else
939 priv->bt_traffic_load = 0;
940 priv->bt_full_concurrent = false;
941 priv->bt_ci_compliance = 0;
942
943 /* Wipe out the EXIT_PENDING status bit if we are not actually
944 * exiting the module */
945 if (!exit_pending)
946 clear_bit(STATUS_EXIT_PENDING, &priv->status);
947
948 if (priv->mac80211_registered)
949 ieee80211_stop_queues(priv->hw);
950
951 priv->ucode_loaded = false;
952 iwl_trans_stop_device(trans(priv));
953
954 /* Clear out all status bits but a few that are stable across reset */
955 priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
956 STATUS_RF_KILL_HW |
957 test_bit(STATUS_GEO_CONFIGURED, &priv->status) <<
958 STATUS_GEO_CONFIGURED |
959 test_bit(STATUS_FW_ERROR, &priv->status) <<
960 STATUS_FW_ERROR |
961 test_bit(STATUS_EXIT_PENDING, &priv->status) <<
962 STATUS_EXIT_PENDING;
963
964 dev_kfree_skb(priv->beacon_skb);
965 priv->beacon_skb = NULL;
966 }
967
968 /*****************************************************************************
969 *
970 * Workqueue callbacks
971 *
972 *****************************************************************************/
973
974 static void iwl_bg_run_time_calib_work(struct work_struct *work)
975 {
976 struct iwl_priv *priv = container_of(work, struct iwl_priv,
977 run_time_calib_work);
978
979 mutex_lock(&priv->mutex);
980
981 if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
982 test_bit(STATUS_SCANNING, &priv->status)) {
983 mutex_unlock(&priv->mutex);
984 return;
985 }
986
987 if (priv->start_calib) {
988 iwl_chain_noise_calibration(priv);
989 iwl_sensitivity_calibration(priv);
990 }
991
992 mutex_unlock(&priv->mutex);
993 }
994
995 void iwlagn_prepare_restart(struct iwl_priv *priv)
996 {
997 struct iwl_rxon_context *ctx;
998 bool bt_full_concurrent;
999 u8 bt_ci_compliance;
1000 u8 bt_load;
1001 u8 bt_status;
1002 bool bt_is_sco;
1003 int i;
1004
1005 lockdep_assert_held(&priv->mutex);
1006
1007 for_each_context(priv, ctx)
1008 ctx->vif = NULL;
1009 priv->is_open = 0;
1010
1011 /*
1012 * __iwl_down() will clear the BT status variables,
1013 * which is correct, but when we restart we really
1014 * want to keep them so restore them afterwards.
1015 *
1016 * The restart process will later pick them up and
1017 * re-configure the hw when we reconfigure the BT
1018 * command.
1019 */
1020 bt_full_concurrent = priv->bt_full_concurrent;
1021 bt_ci_compliance = priv->bt_ci_compliance;
1022 bt_load = priv->bt_traffic_load;
1023 bt_status = priv->bt_status;
1024 bt_is_sco = priv->bt_is_sco;
1025
1026 iwl_down(priv);
1027
1028 priv->bt_full_concurrent = bt_full_concurrent;
1029 priv->bt_ci_compliance = bt_ci_compliance;
1030 priv->bt_traffic_load = bt_load;
1031 priv->bt_status = bt_status;
1032 priv->bt_is_sco = bt_is_sco;
1033
1034 /* reset all queues */
1035 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1036 atomic_set(&priv->ac_stop_count[i], 0);
1037
1038 for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1039 priv->queue_to_ac[i] = IWL_INVALID_AC;
1040
1041 memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1042 }
1043
1044 static void iwl_bg_restart(struct work_struct *data)
1045 {
1046 struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1047
1048 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1049 return;
1050
1051 if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1052 mutex_lock(&priv->mutex);
1053 iwlagn_prepare_restart(priv);
1054 mutex_unlock(&priv->mutex);
1055 iwl_cancel_deferred_work(priv);
1056 ieee80211_restart_hw(priv->hw);
1057 } else {
1058 WARN_ON(1);
1059 }
1060 }
1061
1062
1063
1064
1065 void iwlagn_disable_roc(struct iwl_priv *priv)
1066 {
1067 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_PAN];
1068
1069 lockdep_assert_held(&priv->mutex);
1070
1071 if (!priv->hw_roc_setup)
1072 return;
1073
1074 ctx->staging.dev_type = RXON_DEV_TYPE_P2P;
1075 ctx->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1076
1077 priv->hw_roc_channel = NULL;
1078
1079 memset(ctx->staging.node_addr, 0, ETH_ALEN);
1080
1081 iwlagn_commit_rxon(priv, ctx);
1082
1083 ctx->is_active = false;
1084 priv->hw_roc_setup = false;
1085 }
1086
1087 static void iwlagn_disable_roc_work(struct work_struct *work)
1088 {
1089 struct iwl_priv *priv = container_of(work, struct iwl_priv,
1090 hw_roc_disable_work.work);
1091
1092 mutex_lock(&priv->mutex);
1093 iwlagn_disable_roc(priv);
1094 mutex_unlock(&priv->mutex);
1095 }
1096
1097 /*****************************************************************************
1098 *
1099 * driver setup and teardown
1100 *
1101 *****************************************************************************/
1102
1103 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1104 {
1105 priv->workqueue = create_singlethread_workqueue(DRV_NAME);
1106
1107 INIT_WORK(&priv->restart, iwl_bg_restart);
1108 INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1109 INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1110 INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1111 INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1112 INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1113 INIT_DELAYED_WORK(&priv->hw_roc_disable_work,
1114 iwlagn_disable_roc_work);
1115
1116 iwl_setup_scan_deferred_work(priv);
1117
1118 if (cfg(priv)->bt_params)
1119 iwlagn_bt_setup_deferred_work(priv);
1120
1121 init_timer(&priv->statistics_periodic);
1122 priv->statistics_periodic.data = (unsigned long)priv;
1123 priv->statistics_periodic.function = iwl_bg_statistics_periodic;
1124
1125 init_timer(&priv->ucode_trace);
1126 priv->ucode_trace.data = (unsigned long)priv;
1127 priv->ucode_trace.function = iwl_bg_ucode_trace;
1128 }
1129
1130 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1131 {
1132 if (cfg(priv)->bt_params)
1133 iwlagn_bt_cancel_deferred_work(priv);
1134
1135 cancel_work_sync(&priv->run_time_calib_work);
1136 cancel_work_sync(&priv->beacon_update);
1137
1138 iwl_cancel_scan_deferred_work(priv);
1139
1140 cancel_work_sync(&priv->bt_full_concurrency);
1141 cancel_work_sync(&priv->bt_runtime_config);
1142 cancel_delayed_work_sync(&priv->hw_roc_disable_work);
1143
1144 del_timer_sync(&priv->statistics_periodic);
1145 del_timer_sync(&priv->ucode_trace);
1146 }
1147
1148 static void iwl_init_hw_rates(struct ieee80211_rate *rates)
1149 {
1150 int i;
1151
1152 for (i = 0; i < IWL_RATE_COUNT_LEGACY; i++) {
1153 rates[i].bitrate = iwl_rates[i].ieee * 5;
1154 rates[i].hw_value = i; /* Rate scaling will work on indexes */
1155 rates[i].hw_value_short = i;
1156 rates[i].flags = 0;
1157 if ((i >= IWL_FIRST_CCK_RATE) && (i <= IWL_LAST_CCK_RATE)) {
1158 /*
1159 * If CCK != 1M then set short preamble rate flag.
1160 */
1161 rates[i].flags |=
1162 (iwl_rates[i].plcp == IWL_RATE_1M_PLCP) ?
1163 0 : IEEE80211_RATE_SHORT_PREAMBLE;
1164 }
1165 }
1166 }
1167
1168 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
1169 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
1170 static void iwl_init_ht_hw_capab(const struct iwl_priv *priv,
1171 struct ieee80211_sta_ht_cap *ht_info,
1172 enum ieee80211_band band)
1173 {
1174 u16 max_bit_rate = 0;
1175 u8 rx_chains_num = priv->hw_params.rx_chains_num;
1176 u8 tx_chains_num = priv->hw_params.tx_chains_num;
1177
1178 ht_info->cap = 0;
1179 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
1180
1181 ht_info->ht_supported = true;
1182
1183 if (cfg(priv)->ht_params &&
1184 cfg(priv)->ht_params->ht_greenfield_support)
1185 ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD;
1186 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
1187 max_bit_rate = MAX_BIT_RATE_20_MHZ;
1188 if (priv->hw_params.ht40_channel & BIT(band)) {
1189 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1190 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
1191 ht_info->mcs.rx_mask[4] = 0x01;
1192 max_bit_rate = MAX_BIT_RATE_40_MHZ;
1193 }
1194
1195 if (iwlagn_mod_params.amsdu_size_8K)
1196 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
1197
1198 ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
1199 ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
1200
1201 ht_info->mcs.rx_mask[0] = 0xFF;
1202 if (rx_chains_num >= 2)
1203 ht_info->mcs.rx_mask[1] = 0xFF;
1204 if (rx_chains_num >= 3)
1205 ht_info->mcs.rx_mask[2] = 0xFF;
1206
1207 /* Highest supported Rx data rate */
1208 max_bit_rate *= rx_chains_num;
1209 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
1210 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
1211
1212 /* Tx MCS capabilities */
1213 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1214 if (tx_chains_num != rx_chains_num) {
1215 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
1216 ht_info->mcs.tx_params |= ((tx_chains_num - 1) <<
1217 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
1218 }
1219 }
1220
1221 /**
1222 * iwl_init_geos - Initialize mac80211's geo/channel info based from eeprom
1223 */
1224 static int iwl_init_geos(struct iwl_priv *priv)
1225 {
1226 struct iwl_channel_info *ch;
1227 struct ieee80211_supported_band *sband;
1228 struct ieee80211_channel *channels;
1229 struct ieee80211_channel *geo_ch;
1230 struct ieee80211_rate *rates;
1231 int i = 0;
1232 s8 max_tx_power = IWLAGN_TX_POWER_TARGET_POWER_MIN;
1233
1234 if (priv->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
1235 priv->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
1236 IWL_DEBUG_INFO(priv, "Geography modes already initialized.\n");
1237 set_bit(STATUS_GEO_CONFIGURED, &priv->status);
1238 return 0;
1239 }
1240
1241 channels = kcalloc(priv->channel_count,
1242 sizeof(struct ieee80211_channel), GFP_KERNEL);
1243 if (!channels)
1244 return -ENOMEM;
1245
1246 rates = kcalloc(IWL_RATE_COUNT_LEGACY, sizeof(struct ieee80211_rate),
1247 GFP_KERNEL);
1248 if (!rates) {
1249 kfree(channels);
1250 return -ENOMEM;
1251 }
1252
1253 /* 5.2GHz channels start after the 2.4GHz channels */
1254 sband = &priv->bands[IEEE80211_BAND_5GHZ];
1255 sband->channels = &channels[ARRAY_SIZE(iwl_eeprom_band_1)];
1256 /* just OFDM */
1257 sband->bitrates = &rates[IWL_FIRST_OFDM_RATE];
1258 sband->n_bitrates = IWL_RATE_COUNT_LEGACY - IWL_FIRST_OFDM_RATE;
1259
1260 if (priv->hw_params.sku & EEPROM_SKU_CAP_11N_ENABLE)
1261 iwl_init_ht_hw_capab(priv, &sband->ht_cap,
1262 IEEE80211_BAND_5GHZ);
1263
1264 sband = &priv->bands[IEEE80211_BAND_2GHZ];
1265 sband->channels = channels;
1266 /* OFDM & CCK */
1267 sband->bitrates = rates;
1268 sband->n_bitrates = IWL_RATE_COUNT_LEGACY;
1269
1270 if (priv->hw_params.sku & EEPROM_SKU_CAP_11N_ENABLE)
1271 iwl_init_ht_hw_capab(priv, &sband->ht_cap,
1272 IEEE80211_BAND_2GHZ);
1273
1274 priv->ieee_channels = channels;
1275 priv->ieee_rates = rates;
1276
1277 for (i = 0; i < priv->channel_count; i++) {
1278 ch = &priv->channel_info[i];
1279
1280 /* FIXME: might be removed if scan is OK */
1281 if (!is_channel_valid(ch))
1282 continue;
1283
1284 sband = &priv->bands[ch->band];
1285
1286 geo_ch = &sband->channels[sband->n_channels++];
1287
1288 geo_ch->center_freq =
1289 ieee80211_channel_to_frequency(ch->channel, ch->band);
1290 geo_ch->max_power = ch->max_power_avg;
1291 geo_ch->max_antenna_gain = 0xff;
1292 geo_ch->hw_value = ch->channel;
1293
1294 if (is_channel_valid(ch)) {
1295 if (!(ch->flags & EEPROM_CHANNEL_IBSS))
1296 geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
1297
1298 if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
1299 geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1300
1301 if (ch->flags & EEPROM_CHANNEL_RADAR)
1302 geo_ch->flags |= IEEE80211_CHAN_RADAR;
1303
1304 geo_ch->flags |= ch->ht40_extension_channel;
1305
1306 if (ch->max_power_avg > max_tx_power)
1307 max_tx_power = ch->max_power_avg;
1308 } else {
1309 geo_ch->flags |= IEEE80211_CHAN_DISABLED;
1310 }
1311
1312 IWL_DEBUG_INFO(priv, "Channel %d Freq=%d[%sGHz] %s flag=0x%X\n",
1313 ch->channel, geo_ch->center_freq,
1314 is_channel_a_band(ch) ? "5.2" : "2.4",
1315 geo_ch->flags & IEEE80211_CHAN_DISABLED ?
1316 "restricted" : "valid",
1317 geo_ch->flags);
1318 }
1319
1320 priv->tx_power_device_lmt = max_tx_power;
1321 priv->tx_power_user_lmt = max_tx_power;
1322 priv->tx_power_next = max_tx_power;
1323
1324 if ((priv->bands[IEEE80211_BAND_5GHZ].n_channels == 0) &&
1325 priv->hw_params.sku & EEPROM_SKU_CAP_BAND_52GHZ) {
1326 IWL_INFO(priv, "Incorrectly detected BG card as ABG. "
1327 "Please send your %s to maintainer.\n",
1328 trans(priv)->hw_id_str);
1329 priv->hw_params.sku &= ~EEPROM_SKU_CAP_BAND_52GHZ;
1330 }
1331
1332 IWL_INFO(priv, "Tunable channels: %d 802.11bg, %d 802.11a channels\n",
1333 priv->bands[IEEE80211_BAND_2GHZ].n_channels,
1334 priv->bands[IEEE80211_BAND_5GHZ].n_channels);
1335
1336 set_bit(STATUS_GEO_CONFIGURED, &priv->status);
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * iwl_free_geos - undo allocations in iwl_init_geos
1343 */
1344 static void iwl_free_geos(struct iwl_priv *priv)
1345 {
1346 kfree(priv->ieee_channels);
1347 kfree(priv->ieee_rates);
1348 clear_bit(STATUS_GEO_CONFIGURED, &priv->status);
1349 }
1350
1351 static int iwl_init_drv(struct iwl_priv *priv)
1352 {
1353 int ret;
1354
1355 spin_lock_init(&priv->sta_lock);
1356
1357 mutex_init(&priv->mutex);
1358
1359 INIT_LIST_HEAD(&priv->calib_results);
1360
1361 priv->ieee_channels = NULL;
1362 priv->ieee_rates = NULL;
1363 priv->band = IEEE80211_BAND_2GHZ;
1364
1365 priv->plcp_delta_threshold =
1366 cfg(priv)->base_params->plcp_delta_threshold;
1367
1368 priv->iw_mode = NL80211_IFTYPE_STATION;
1369 priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1370 priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1371 priv->agg_tids_count = 0;
1372
1373 priv->ucode_owner = IWL_OWNERSHIP_DRIVER;
1374
1375 priv->rx_statistics_jiffies = jiffies;
1376
1377 /* Choose which receivers/antennas to use */
1378 iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1379
1380 iwl_init_scan_params(priv);
1381
1382 /* init bt coex */
1383 if (cfg(priv)->bt_params &&
1384 cfg(priv)->bt_params->advanced_bt_coexist) {
1385 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1386 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1387 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1388 priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1389 priv->bt_duration = BT_DURATION_LIMIT_DEF;
1390 priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1391 }
1392
1393 ret = iwl_init_channel_map(priv);
1394 if (ret) {
1395 IWL_ERR(priv, "initializing regulatory failed: %d\n", ret);
1396 goto err;
1397 }
1398
1399 ret = iwl_init_geos(priv);
1400 if (ret) {
1401 IWL_ERR(priv, "initializing geos failed: %d\n", ret);
1402 goto err_free_channel_map;
1403 }
1404 iwl_init_hw_rates(priv->ieee_rates);
1405
1406 return 0;
1407
1408 err_free_channel_map:
1409 iwl_free_channel_map(priv);
1410 err:
1411 return ret;
1412 }
1413
1414 static void iwl_uninit_drv(struct iwl_priv *priv)
1415 {
1416 iwl_free_geos(priv);
1417 iwl_free_channel_map(priv);
1418 kfree(priv->scan_cmd);
1419 kfree(priv->beacon_cmd);
1420 kfree(rcu_dereference_raw(priv->noa_data));
1421 iwl_calib_free_results(priv);
1422 #ifdef CONFIG_IWLWIFI_DEBUGFS
1423 kfree(priv->wowlan_sram);
1424 #endif
1425 }
1426
1427 static void iwl_set_hw_params(struct iwl_priv *priv)
1428 {
1429 if (cfg(priv)->ht_params)
1430 priv->hw_params.use_rts_for_aggregation =
1431 cfg(priv)->ht_params->use_rts_for_aggregation;
1432
1433 if (iwlagn_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1434 priv->hw_params.sku &= ~EEPROM_SKU_CAP_11N_ENABLE;
1435
1436 /* Device-specific setup */
1437 priv->lib->set_hw_params(priv);
1438 }
1439
1440
1441
1442 static void iwl_debug_config(struct iwl_priv *priv)
1443 {
1444 dev_printk(KERN_INFO, trans(priv)->dev, "CONFIG_IWLWIFI_DEBUG "
1445 #ifdef CONFIG_IWLWIFI_DEBUG
1446 "enabled\n");
1447 #else
1448 "disabled\n");
1449 #endif
1450 dev_printk(KERN_INFO, trans(priv)->dev, "CONFIG_IWLWIFI_DEBUGFS "
1451 #ifdef CONFIG_IWLWIFI_DEBUGFS
1452 "enabled\n");
1453 #else
1454 "disabled\n");
1455 #endif
1456 dev_printk(KERN_INFO, trans(priv)->dev, "CONFIG_IWLWIFI_DEVICE_TRACING "
1457 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1458 "enabled\n");
1459 #else
1460 "disabled\n");
1461 #endif
1462
1463 dev_printk(KERN_INFO, trans(priv)->dev, "CONFIG_IWLWIFI_DEVICE_TESTMODE "
1464 #ifdef CONFIG_IWLWIFI_DEVICE_TESTMODE
1465 "enabled\n");
1466 #else
1467 "disabled\n");
1468 #endif
1469 dev_printk(KERN_INFO, trans(priv)->dev, "CONFIG_IWLWIFI_P2P "
1470 #ifdef CONFIG_IWLWIFI_P2P
1471 "enabled\n");
1472 #else
1473 "disabled\n");
1474 #endif
1475 }
1476
1477 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1478 const struct iwl_fw *fw)
1479 {
1480 struct iwl_priv *priv;
1481 struct ieee80211_hw *hw;
1482 struct iwl_op_mode *op_mode;
1483 u16 num_mac;
1484 u32 ucode_flags;
1485 struct iwl_trans_config trans_cfg;
1486 static const u8 no_reclaim_cmds[] = {
1487 REPLY_RX_PHY_CMD,
1488 REPLY_RX,
1489 REPLY_RX_MPDU_CMD,
1490 REPLY_COMPRESSED_BA,
1491 STATISTICS_NOTIFICATION,
1492 REPLY_TX,
1493 };
1494 const u8 *q_to_ac;
1495 int n_q_to_ac;
1496 int i;
1497
1498 /************************
1499 * 1. Allocating HW data
1500 ************************/
1501 hw = iwl_alloc_all();
1502 if (!hw) {
1503 pr_err("%s: Cannot allocate network device\n",
1504 cfg(trans)->name);
1505 goto out;
1506 }
1507
1508 op_mode = hw->priv;
1509 op_mode->ops = &iwl_dvm_ops;
1510 priv = IWL_OP_MODE_GET_DVM(op_mode);
1511 priv->shrd = trans->shrd;
1512 priv->fw = fw;
1513
1514 switch (cfg(priv)->device_family) {
1515 case IWL_DEVICE_FAMILY_1000:
1516 case IWL_DEVICE_FAMILY_100:
1517 priv->lib = &iwl1000_lib;
1518 break;
1519 case IWL_DEVICE_FAMILY_2000:
1520 case IWL_DEVICE_FAMILY_105:
1521 priv->lib = &iwl2000_lib;
1522 break;
1523 case IWL_DEVICE_FAMILY_2030:
1524 case IWL_DEVICE_FAMILY_135:
1525 priv->lib = &iwl2030_lib;
1526 break;
1527 case IWL_DEVICE_FAMILY_5000:
1528 priv->lib = &iwl5000_lib;
1529 break;
1530 case IWL_DEVICE_FAMILY_5150:
1531 priv->lib = &iwl5150_lib;
1532 break;
1533 case IWL_DEVICE_FAMILY_6000:
1534 case IWL_DEVICE_FAMILY_6005:
1535 case IWL_DEVICE_FAMILY_6000i:
1536 case IWL_DEVICE_FAMILY_6050:
1537 case IWL_DEVICE_FAMILY_6150:
1538 priv->lib = &iwl6000_lib;
1539 break;
1540 case IWL_DEVICE_FAMILY_6030:
1541 priv->lib = &iwl6030_lib;
1542 break;
1543 default:
1544 break;
1545 }
1546
1547 if (WARN_ON(!priv->lib))
1548 goto out_free_traffic_mem;
1549
1550 /*
1551 * Populate the state variables that the transport layer needs
1552 * to know about.
1553 */
1554 trans_cfg.op_mode = op_mode;
1555 trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
1556 trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
1557 trans_cfg.rx_buf_size_8k = iwlagn_mod_params.amsdu_size_8K;
1558 if (!iwlagn_mod_params.wd_disable)
1559 trans_cfg.queue_watchdog_timeout =
1560 cfg(priv)->base_params->wd_timeout;
1561 else
1562 trans_cfg.queue_watchdog_timeout = IWL_WATCHHDOG_DISABLED;
1563
1564 ucode_flags = fw->ucode_capa.flags;
1565
1566 #ifndef CONFIG_IWLWIFI_P2P
1567 ucode_flags &= ~IWL_UCODE_TLV_FLAGS_P2P;
1568 #endif
1569
1570 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1571 priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1572 trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1573 trans_cfg.queue_to_fifo = iwlagn_ipan_queue_to_tx_fifo;
1574 trans_cfg.n_queue_to_fifo =
1575 ARRAY_SIZE(iwlagn_ipan_queue_to_tx_fifo);
1576 q_to_ac = iwlagn_pan_queue_to_ac;
1577 n_q_to_ac = ARRAY_SIZE(iwlagn_pan_queue_to_ac);
1578 } else {
1579 priv->sta_key_max_num = STA_KEY_MAX_NUM;
1580 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1581 trans_cfg.queue_to_fifo = iwlagn_default_queue_to_tx_fifo;
1582 trans_cfg.n_queue_to_fifo =
1583 ARRAY_SIZE(iwlagn_default_queue_to_tx_fifo);
1584 q_to_ac = iwlagn_bss_queue_to_ac;
1585 n_q_to_ac = ARRAY_SIZE(iwlagn_bss_queue_to_ac);
1586 }
1587
1588 /* Configure transport layer */
1589 iwl_trans_configure(trans(priv), &trans_cfg);
1590
1591 /* At this point both hw and priv are allocated. */
1592
1593 SET_IEEE80211_DEV(priv->hw, trans(priv)->dev);
1594
1595 /* show what debugging capabilities we have */
1596 iwl_debug_config(priv);
1597
1598 IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1599
1600 /* is antenna coupling more than 35dB ? */
1601 priv->bt_ant_couple_ok =
1602 (iwlagn_mod_params.ant_coupling >
1603 IWL_BT_ANTENNA_COUPLING_THRESHOLD) ?
1604 true : false;
1605
1606 /* enable/disable bt channel inhibition */
1607 priv->bt_ch_announce = iwlagn_mod_params.bt_ch_announce;
1608 IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1609 (priv->bt_ch_announce) ? "On" : "Off");
1610
1611 if (iwl_alloc_traffic_mem(priv))
1612 IWL_ERR(priv, "Not enough memory to generate traffic log\n");
1613
1614 /* these spin locks will be used in apm_ops.init and EEPROM access
1615 * we should init now
1616 */
1617 spin_lock_init(&trans(priv)->reg_lock);
1618 spin_lock_init(&priv->statistics.lock);
1619
1620 /***********************
1621 * 2. Read REV register
1622 ***********************/
1623 IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1624 cfg(priv)->name, trans(priv)->hw_rev);
1625
1626 if (iwl_trans_start_hw(trans(priv)))
1627 goto out_free_traffic_mem;
1628
1629 /* Read the EEPROM */
1630 if (iwl_eeprom_init(priv, trans(priv)->hw_rev)) {
1631 IWL_ERR(priv, "Unable to init EEPROM\n");
1632 goto out_free_traffic_mem;
1633 }
1634 /* Reset chip to save power until we load uCode during "up". */
1635 iwl_trans_stop_hw(trans(priv));
1636
1637 if (iwl_eeprom_check_version(priv))
1638 goto out_free_eeprom;
1639
1640 if (iwl_eeprom_init_hw_params(priv))
1641 goto out_free_eeprom;
1642
1643 /* extract MAC Address */
1644 iwl_eeprom_get_mac(priv, priv->addresses[0].addr);
1645 IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1646 priv->hw->wiphy->addresses = priv->addresses;
1647 priv->hw->wiphy->n_addresses = 1;
1648 num_mac = iwl_eeprom_query16(priv, EEPROM_NUM_MAC_ADDRESS);
1649 if (num_mac > 1) {
1650 memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1651 ETH_ALEN);
1652 priv->addresses[1].addr[5]++;
1653 priv->hw->wiphy->n_addresses++;
1654 }
1655
1656 /************************
1657 * 4. Setup HW constants
1658 ************************/
1659 iwl_set_hw_params(priv);
1660
1661 if (!(priv->hw_params.sku & EEPROM_SKU_CAP_IPAN_ENABLE)) {
1662 IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN");
1663 ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1664 /*
1665 * if not PAN, then don't support P2P -- might be a uCode
1666 * packaging bug or due to the eeprom check above
1667 */
1668 ucode_flags &= ~IWL_UCODE_TLV_FLAGS_P2P;
1669 priv->sta_key_max_num = STA_KEY_MAX_NUM;
1670 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1671 trans_cfg.queue_to_fifo = iwlagn_default_queue_to_tx_fifo;
1672 trans_cfg.n_queue_to_fifo =
1673 ARRAY_SIZE(iwlagn_default_queue_to_tx_fifo);
1674 q_to_ac = iwlagn_bss_queue_to_ac;
1675 n_q_to_ac = ARRAY_SIZE(iwlagn_bss_queue_to_ac);
1676
1677 /* Configure transport layer again*/
1678 iwl_trans_configure(trans(priv), &trans_cfg);
1679 }
1680
1681 /*******************
1682 * 5. Setup priv
1683 *******************/
1684 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1685 atomic_set(&priv->ac_stop_count[i], 0);
1686
1687 for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1688 if (i < n_q_to_ac)
1689 priv->queue_to_ac[i] = q_to_ac[i];
1690 else
1691 priv->queue_to_ac[i] = IWL_INVALID_AC;
1692 }
1693
1694 WARN_ON(trans_cfg.queue_to_fifo[trans_cfg.cmd_queue] !=
1695 IWLAGN_CMD_FIFO_NUM);
1696
1697 if (iwl_init_drv(priv))
1698 goto out_free_eeprom;
1699
1700 /* At this point both hw and priv are initialized. */
1701
1702 /********************
1703 * 6. Setup services
1704 ********************/
1705 iwl_setup_deferred_work(priv);
1706 iwl_setup_rx_handlers(priv);
1707 iwl_testmode_init(priv);
1708
1709 iwl_power_initialize(priv);
1710 iwl_tt_initialize(priv);
1711
1712 snprintf(priv->hw->wiphy->fw_version,
1713 sizeof(priv->hw->wiphy->fw_version),
1714 "%s", fw->fw_version);
1715
1716 priv->new_scan_threshold_behaviour =
1717 !!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1718
1719 priv->phy_calib_chain_noise_reset_cmd =
1720 fw->ucode_capa.standard_phy_calibration_size;
1721 priv->phy_calib_chain_noise_gain_cmd =
1722 fw->ucode_capa.standard_phy_calibration_size + 1;
1723
1724 /* initialize all valid contexts */
1725 iwl_init_context(priv, ucode_flags);
1726
1727 /**************************************************
1728 * This is still part of probe() in a sense...
1729 *
1730 * 7. Setup and register with mac80211 and debugfs
1731 **************************************************/
1732 if (iwlagn_mac_setup_register(priv, &fw->ucode_capa))
1733 goto out_destroy_workqueue;
1734
1735 if (iwl_dbgfs_register(priv, DRV_NAME))
1736 IWL_ERR(priv,
1737 "failed to create debugfs files. Ignoring error\n");
1738
1739 return op_mode;
1740
1741 out_destroy_workqueue:
1742 destroy_workqueue(priv->workqueue);
1743 priv->workqueue = NULL;
1744 iwl_uninit_drv(priv);
1745 out_free_eeprom:
1746 iwl_eeprom_free(priv);
1747 out_free_traffic_mem:
1748 iwl_free_traffic_mem(priv);
1749 ieee80211_free_hw(priv->hw);
1750 out:
1751 op_mode = NULL;
1752 return op_mode;
1753 }
1754
1755 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1756 {
1757 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1758
1759 IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1760
1761 iwl_dbgfs_unregister(priv);
1762
1763 iwl_testmode_cleanup(priv);
1764 iwlagn_mac_unregister(priv);
1765
1766 iwl_tt_exit(priv);
1767
1768 /*This will stop the queues, move the device to low power state */
1769 priv->ucode_loaded = false;
1770 iwl_trans_stop_device(trans(priv));
1771
1772 iwl_eeprom_free(priv);
1773
1774 /*netif_stop_queue(dev); */
1775 flush_workqueue(priv->workqueue);
1776
1777 /* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1778 * priv->workqueue... so we can't take down the workqueue
1779 * until now... */
1780 destroy_workqueue(priv->workqueue);
1781 priv->workqueue = NULL;
1782 iwl_free_traffic_mem(priv);
1783
1784 iwl_uninit_drv(priv);
1785
1786 dev_kfree_skb(priv->beacon_skb);
1787
1788 ieee80211_free_hw(priv->hw);
1789 }
1790
1791 static const char * const desc_lookup_text[] = {
1792 "OK",
1793 "FAIL",
1794 "BAD_PARAM",
1795 "BAD_CHECKSUM",
1796 "NMI_INTERRUPT_WDG",
1797 "SYSASSERT",
1798 "FATAL_ERROR",
1799 "BAD_COMMAND",
1800 "HW_ERROR_TUNE_LOCK",
1801 "HW_ERROR_TEMPERATURE",
1802 "ILLEGAL_CHAN_FREQ",
1803 "VCC_NOT_STABLE",
1804 "FH_ERROR",
1805 "NMI_INTERRUPT_HOST",
1806 "NMI_INTERRUPT_ACTION_PT",
1807 "NMI_INTERRUPT_UNKNOWN",
1808 "UCODE_VERSION_MISMATCH",
1809 "HW_ERROR_ABS_LOCK",
1810 "HW_ERROR_CAL_LOCK_FAIL",
1811 "NMI_INTERRUPT_INST_ACTION_PT",
1812 "NMI_INTERRUPT_DATA_ACTION_PT",
1813 "NMI_TRM_HW_ER",
1814 "NMI_INTERRUPT_TRM",
1815 "NMI_INTERRUPT_BREAK_POINT",
1816 "DEBUG_0",
1817 "DEBUG_1",
1818 "DEBUG_2",
1819 "DEBUG_3",
1820 };
1821
1822 static struct { char *name; u8 num; } advanced_lookup[] = {
1823 { "NMI_INTERRUPT_WDG", 0x34 },
1824 { "SYSASSERT", 0x35 },
1825 { "UCODE_VERSION_MISMATCH", 0x37 },
1826 { "BAD_COMMAND", 0x38 },
1827 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1828 { "FATAL_ERROR", 0x3D },
1829 { "NMI_TRM_HW_ERR", 0x46 },
1830 { "NMI_INTERRUPT_TRM", 0x4C },
1831 { "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1832 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1833 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1834 { "NMI_INTERRUPT_HOST", 0x66 },
1835 { "NMI_INTERRUPT_ACTION_PT", 0x7C },
1836 { "NMI_INTERRUPT_UNKNOWN", 0x84 },
1837 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1838 { "ADVANCED_SYSASSERT", 0 },
1839 };
1840
1841 static const char *desc_lookup(u32 num)
1842 {
1843 int i;
1844 int max = ARRAY_SIZE(desc_lookup_text);
1845
1846 if (num < max)
1847 return desc_lookup_text[num];
1848
1849 max = ARRAY_SIZE(advanced_lookup) - 1;
1850 for (i = 0; i < max; i++) {
1851 if (advanced_lookup[i].num == num)
1852 break;
1853 }
1854 return advanced_lookup[i].name;
1855 }
1856
1857 #define ERROR_START_OFFSET (1 * sizeof(u32))
1858 #define ERROR_ELEM_SIZE (7 * sizeof(u32))
1859
1860 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1861 {
1862 struct iwl_trans *trans = trans(priv);
1863 u32 base;
1864 struct iwl_error_event_table table;
1865
1866 base = priv->device_pointers.error_event_table;
1867 if (priv->cur_ucode == IWL_UCODE_INIT) {
1868 if (!base)
1869 base = priv->fw->init_errlog_ptr;
1870 } else {
1871 if (!base)
1872 base = priv->fw->inst_errlog_ptr;
1873 }
1874
1875 if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1876 IWL_ERR(priv,
1877 "Not valid error log pointer 0x%08X for %s uCode\n",
1878 base,
1879 (priv->cur_ucode == IWL_UCODE_INIT)
1880 ? "Init" : "RT");
1881 return;
1882 }
1883
1884 /*TODO: Update dbgfs with ISR error stats obtained below */
1885 iwl_read_targ_mem_words(trans, base, &table, sizeof(table));
1886
1887 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1888 IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1889 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1890 priv->shrd->status, table.valid);
1891 }
1892
1893 trace_iwlwifi_dev_ucode_error(trans->dev, table.error_id, table.tsf_low,
1894 table.data1, table.data2, table.line,
1895 table.blink1, table.blink2, table.ilink1,
1896 table.ilink2, table.bcon_time, table.gp1,
1897 table.gp2, table.gp3, table.ucode_ver,
1898 table.hw_ver, table.brd_ver);
1899 IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1900 desc_lookup(table.error_id));
1901 IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1902 IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1903 IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1904 IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1905 IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1906 IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1907 IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1908 IWL_ERR(priv, "0x%08X | line\n", table.line);
1909 IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1910 IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1911 IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1912 IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1913 IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1914 IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1915 IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1916 IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1917 IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1918 IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1919 IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1920 IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1921 IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1922 IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1923 IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1924 IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1925 IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1926 IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1927 IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1928 IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1929 IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1930 IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1931 IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1932 IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1933 }
1934
1935 #define EVENT_START_OFFSET (4 * sizeof(u32))
1936
1937 /**
1938 * iwl_print_event_log - Dump error event log to syslog
1939 *
1940 */
1941 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1942 u32 num_events, u32 mode,
1943 int pos, char **buf, size_t bufsz)
1944 {
1945 u32 i;
1946 u32 base; /* SRAM byte address of event log header */
1947 u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1948 u32 ptr; /* SRAM byte address of log data */
1949 u32 ev, time, data; /* event log data */
1950 unsigned long reg_flags;
1951
1952 struct iwl_trans *trans = trans(priv);
1953
1954 if (num_events == 0)
1955 return pos;
1956
1957 base = priv->device_pointers.log_event_table;
1958 if (priv->cur_ucode == IWL_UCODE_INIT) {
1959 if (!base)
1960 base = priv->fw->init_evtlog_ptr;
1961 } else {
1962 if (!base)
1963 base = priv->fw->inst_evtlog_ptr;
1964 }
1965
1966 if (mode == 0)
1967 event_size = 2 * sizeof(u32);
1968 else
1969 event_size = 3 * sizeof(u32);
1970
1971 ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1972
1973 /* Make sure device is powered up for SRAM reads */
1974 spin_lock_irqsave(&trans->reg_lock, reg_flags);
1975 if (unlikely(!iwl_grab_nic_access(trans)))
1976 goto out_unlock;
1977
1978 /* Set starting address; reads will auto-increment */
1979 iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1980
1981 /* "time" is actually "data" for mode 0 (no timestamp).
1982 * place event id # at far right for easier visual parsing. */
1983 for (i = 0; i < num_events; i++) {
1984 ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1985 time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1986 if (mode == 0) {
1987 /* data, ev */
1988 if (bufsz) {
1989 pos += scnprintf(*buf + pos, bufsz - pos,
1990 "EVT_LOG:0x%08x:%04u\n",
1991 time, ev);
1992 } else {
1993 trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1994 time, ev);
1995 IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1996 time, ev);
1997 }
1998 } else {
1999 data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
2000 if (bufsz) {
2001 pos += scnprintf(*buf + pos, bufsz - pos,
2002 "EVT_LOGT:%010u:0x%08x:%04u\n",
2003 time, data, ev);
2004 } else {
2005 IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
2006 time, data, ev);
2007 trace_iwlwifi_dev_ucode_event(trans->dev, time,
2008 data, ev);
2009 }
2010 }
2011 }
2012
2013 /* Allow device to power down */
2014 iwl_release_nic_access(trans);
2015 out_unlock:
2016 spin_unlock_irqrestore(&trans->reg_lock, reg_flags);
2017 return pos;
2018 }
2019
2020 /**
2021 * iwl_print_last_event_logs - Dump the newest # of event log to syslog
2022 */
2023 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
2024 u32 num_wraps, u32 next_entry,
2025 u32 size, u32 mode,
2026 int pos, char **buf, size_t bufsz)
2027 {
2028 /*
2029 * display the newest DEFAULT_LOG_ENTRIES entries
2030 * i.e the entries just before the next ont that uCode would fill.
2031 */
2032 if (num_wraps) {
2033 if (next_entry < size) {
2034 pos = iwl_print_event_log(priv,
2035 capacity - (size - next_entry),
2036 size - next_entry, mode,
2037 pos, buf, bufsz);
2038 pos = iwl_print_event_log(priv, 0,
2039 next_entry, mode,
2040 pos, buf, bufsz);
2041 } else
2042 pos = iwl_print_event_log(priv, next_entry - size,
2043 size, mode, pos, buf, bufsz);
2044 } else {
2045 if (next_entry < size) {
2046 pos = iwl_print_event_log(priv, 0, next_entry,
2047 mode, pos, buf, bufsz);
2048 } else {
2049 pos = iwl_print_event_log(priv, next_entry - size,
2050 size, mode, pos, buf, bufsz);
2051 }
2052 }
2053 return pos;
2054 }
2055
2056 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
2057
2058 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
2059 char **buf, bool display)
2060 {
2061 u32 base; /* SRAM byte address of event log header */
2062 u32 capacity; /* event log capacity in # entries */
2063 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */
2064 u32 num_wraps; /* # times uCode wrapped to top of log */
2065 u32 next_entry; /* index of next entry to be written by uCode */
2066 u32 size; /* # entries that we'll print */
2067 u32 logsize;
2068 int pos = 0;
2069 size_t bufsz = 0;
2070 struct iwl_trans *trans = trans(priv);
2071
2072 base = priv->device_pointers.log_event_table;
2073 if (priv->cur_ucode == IWL_UCODE_INIT) {
2074 logsize = priv->fw->init_evtlog_size;
2075 if (!base)
2076 base = priv->fw->init_evtlog_ptr;
2077 } else {
2078 logsize = priv->fw->inst_evtlog_size;
2079 if (!base)
2080 base = priv->fw->inst_evtlog_ptr;
2081 }
2082
2083 if (!iwlagn_hw_valid_rtc_data_addr(base)) {
2084 IWL_ERR(priv,
2085 "Invalid event log pointer 0x%08X for %s uCode\n",
2086 base,
2087 (priv->cur_ucode == IWL_UCODE_INIT)
2088 ? "Init" : "RT");
2089 return -EINVAL;
2090 }
2091
2092 /* event log header */
2093 capacity = iwl_read_targ_mem(trans, base);
2094 mode = iwl_read_targ_mem(trans, base + (1 * sizeof(u32)));
2095 num_wraps = iwl_read_targ_mem(trans, base + (2 * sizeof(u32)));
2096 next_entry = iwl_read_targ_mem(trans, base + (3 * sizeof(u32)));
2097
2098 if (capacity > logsize) {
2099 IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
2100 "entries\n", capacity, logsize);
2101 capacity = logsize;
2102 }
2103
2104 if (next_entry > logsize) {
2105 IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
2106 next_entry, logsize);
2107 next_entry = logsize;
2108 }
2109
2110 size = num_wraps ? capacity : next_entry;
2111
2112 /* bail out if nothing in log */
2113 if (size == 0) {
2114 IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
2115 return pos;
2116 }
2117
2118 #ifdef CONFIG_IWLWIFI_DEBUG
2119 if (!(iwl_have_debug_level(IWL_DL_FW_ERRORS)) && !full_log)
2120 size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
2121 ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
2122 #else
2123 size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
2124 ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
2125 #endif
2126 IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
2127 size);
2128
2129 #ifdef CONFIG_IWLWIFI_DEBUG
2130 if (display) {
2131 if (full_log)
2132 bufsz = capacity * 48;
2133 else
2134 bufsz = size * 48;
2135 *buf = kmalloc(bufsz, GFP_KERNEL);
2136 if (!*buf)
2137 return -ENOMEM;
2138 }
2139 if (iwl_have_debug_level(IWL_DL_FW_ERRORS) || full_log) {
2140 /*
2141 * if uCode has wrapped back to top of log,
2142 * start at the oldest entry,
2143 * i.e the next one that uCode would fill.
2144 */
2145 if (num_wraps)
2146 pos = iwl_print_event_log(priv, next_entry,
2147 capacity - next_entry, mode,
2148 pos, buf, bufsz);
2149 /* (then/else) start at top of log */
2150 pos = iwl_print_event_log(priv, 0,
2151 next_entry, mode, pos, buf, bufsz);
2152 } else
2153 pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
2154 next_entry, size, mode,
2155 pos, buf, bufsz);
2156 #else
2157 pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
2158 next_entry, size, mode,
2159 pos, buf, bufsz);
2160 #endif
2161 return pos;
2162 }
2163
2164 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
2165 {
2166 unsigned int reload_msec;
2167 unsigned long reload_jiffies;
2168
2169 #ifdef CONFIG_IWLWIFI_DEBUG
2170 if (iwl_have_debug_level(IWL_DL_FW_ERRORS))
2171 iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
2172 #endif
2173
2174 /* uCode is no longer loaded. */
2175 priv->ucode_loaded = false;
2176
2177 /* Set the FW error flag -- cleared on iwl_down */
2178 set_bit(STATUS_FW_ERROR, &priv->status);
2179
2180 /* Cancel currently queued command. */
2181 clear_bit(STATUS_HCMD_ACTIVE, &priv->shrd->status);
2182
2183 iwl_abort_notification_waits(&priv->notif_wait);
2184
2185 /* Keep the restart process from trying to send host
2186 * commands by clearing the ready bit */
2187 clear_bit(STATUS_READY, &priv->status);
2188
2189 wake_up(&trans(priv)->wait_command_queue);
2190
2191 if (!ondemand) {
2192 /*
2193 * If firmware keep reloading, then it indicate something
2194 * serious wrong and firmware having problem to recover
2195 * from it. Instead of keep trying which will fill the syslog
2196 * and hang the system, let's just stop it
2197 */
2198 reload_jiffies = jiffies;
2199 reload_msec = jiffies_to_msecs((long) reload_jiffies -
2200 (long) priv->reload_jiffies);
2201 priv->reload_jiffies = reload_jiffies;
2202 if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
2203 priv->reload_count++;
2204 if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
2205 IWL_ERR(priv, "BUG_ON, Stop restarting\n");
2206 return;
2207 }
2208 } else
2209 priv->reload_count = 0;
2210 }
2211
2212 if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
2213 if (iwlagn_mod_params.restart_fw) {
2214 IWL_DEBUG_FW_ERRORS(priv,
2215 "Restarting adapter due to uCode error.\n");
2216 queue_work(priv->workqueue, &priv->restart);
2217 } else
2218 IWL_DEBUG_FW_ERRORS(priv,
2219 "Detected FW error, but not restarting\n");
2220 }
2221 }
2222
2223 static void iwl_nic_error(struct iwl_op_mode *op_mode)
2224 {
2225 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2226
2227 IWL_ERR(priv, "Loaded firmware version: %s\n",
2228 priv->fw->fw_version);
2229
2230 iwl_dump_nic_error_log(priv);
2231 iwl_dump_nic_event_log(priv, false, NULL, false);
2232
2233 iwlagn_fw_error(priv, false);
2234 }
2235
2236 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode)
2237 {
2238 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2239
2240 if (!iwl_check_for_ct_kill(priv)) {
2241 IWL_ERR(priv, "Restarting adapter queue is full\n");
2242 iwlagn_fw_error(priv, false);
2243 }
2244 }
2245
2246 static void iwl_nic_config(struct iwl_op_mode *op_mode)
2247 {
2248 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2249
2250 priv->lib->nic_config(priv);
2251 }
2252
2253 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2254 {
2255 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2256 int ac = priv->queue_to_ac[queue];
2257
2258 if (WARN_ON_ONCE(ac == IWL_INVALID_AC))
2259 return;
2260
2261 if (atomic_inc_return(&priv->ac_stop_count[ac]) > 1) {
2262 IWL_DEBUG_TX_QUEUES(priv,
2263 "queue %d (AC %d) already stopped\n",
2264 queue, ac);
2265 return;
2266 }
2267
2268 set_bit(ac, &priv->transport_queue_stop);
2269 ieee80211_stop_queue(priv->hw, ac);
2270 }
2271
2272 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2273 {
2274 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2275 int ac = priv->queue_to_ac[queue];
2276
2277 if (WARN_ON_ONCE(ac == IWL_INVALID_AC))
2278 return;
2279
2280 if (atomic_dec_return(&priv->ac_stop_count[ac]) > 0) {
2281 IWL_DEBUG_TX_QUEUES(priv,
2282 "queue %d (AC %d) already awake\n",
2283 queue, ac);
2284 return;
2285 }
2286
2287 clear_bit(ac, &priv->transport_queue_stop);
2288
2289 if (!priv->passive_no_rx)
2290 ieee80211_wake_queue(priv->hw, ac);
2291 }
2292
2293 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2294 {
2295 int ac;
2296
2297 if (!priv->passive_no_rx)
2298 return;
2299
2300 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) {
2301 if (!test_bit(ac, &priv->transport_queue_stop)) {
2302 IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d");
2303 ieee80211_wake_queue(priv->hw, ac);
2304 } else {
2305 IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d");
2306 }
2307 }
2308
2309 priv->passive_no_rx = false;
2310 }
2311
2312 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2313 {
2314 struct ieee80211_tx_info *info;
2315
2316 info = IEEE80211_SKB_CB(skb);
2317 kmem_cache_free(iwl_tx_cmd_pool, (info->driver_data[1]));
2318 dev_kfree_skb_any(skb);
2319 }
2320
2321 static void iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2322 {
2323 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2324
2325 if (state)
2326 set_bit(STATUS_RF_KILL_HW, &priv->status);
2327 else
2328 clear_bit(STATUS_RF_KILL_HW, &priv->status);
2329
2330 wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2331 }
2332
2333 const struct iwl_op_mode_ops iwl_dvm_ops = {
2334 .start = iwl_op_mode_dvm_start,
2335 .stop = iwl_op_mode_dvm_stop,
2336 .rx = iwl_rx_dispatch,
2337 .queue_full = iwl_stop_sw_queue,
2338 .queue_not_full = iwl_wake_sw_queue,
2339 .hw_rf_kill = iwl_set_hw_rfkill_state,
2340 .free_skb = iwl_free_skb,
2341 .nic_error = iwl_nic_error,
2342 .cmd_queue_full = iwl_cmd_queue_full,
2343 .nic_config = iwl_nic_config,
2344 };
2345
2346 /*****************************************************************************
2347 *
2348 * driver and module entry point
2349 *
2350 *****************************************************************************/
2351
2352 struct kmem_cache *iwl_tx_cmd_pool;
2353
2354 static int __init iwl_init(void)
2355 {
2356
2357 int ret;
2358 pr_info(DRV_DESCRIPTION ", " DRV_VERSION "\n");
2359 pr_info(DRV_COPYRIGHT "\n");
2360
2361 iwl_tx_cmd_pool = kmem_cache_create("iwl_dev_cmd",
2362 sizeof(struct iwl_device_cmd),
2363 sizeof(void *), 0, NULL);
2364 if (!iwl_tx_cmd_pool)
2365 return -ENOMEM;
2366
2367 ret = iwlagn_rate_control_register();
2368 if (ret) {
2369 pr_err("Unable to register rate control algorithm: %d\n", ret);
2370 goto error_rc_register;
2371 }
2372
2373 ret = iwl_pci_register_driver();
2374 if (ret)
2375 goto error_pci_register;
2376 return ret;
2377
2378 error_pci_register:
2379 iwlagn_rate_control_unregister();
2380 error_rc_register:
2381 kmem_cache_destroy(iwl_tx_cmd_pool);
2382 return ret;
2383 }
2384
2385 static void __exit iwl_exit(void)
2386 {
2387 iwl_pci_unregister_driver();
2388 iwlagn_rate_control_unregister();
2389 kmem_cache_destroy(iwl_tx_cmd_pool);
2390 }
2391
2392 module_exit(iwl_exit);
2393 module_init(iwl_init);
2394
2395 #ifdef CONFIG_IWLWIFI_DEBUG
2396 module_param_named(debug, iwlagn_mod_params.debug_level, uint,
2397 S_IRUGO | S_IWUSR);
2398 MODULE_PARM_DESC(debug, "debug output mask");
2399 #endif
2400
2401 module_param_named(swcrypto, iwlagn_mod_params.sw_crypto, int, S_IRUGO);
2402 MODULE_PARM_DESC(swcrypto, "using crypto in software (default 0 [hardware])");
2403 module_param_named(11n_disable, iwlagn_mod_params.disable_11n, uint, S_IRUGO);
2404 MODULE_PARM_DESC(11n_disable,
2405 "disable 11n functionality, bitmap: 1: full, 2: agg TX, 4: agg RX");
2406 module_param_named(amsdu_size_8K, iwlagn_mod_params.amsdu_size_8K,
2407 int, S_IRUGO);
2408 MODULE_PARM_DESC(amsdu_size_8K, "enable 8K amsdu size");
2409 module_param_named(fw_restart, iwlagn_mod_params.restart_fw, int, S_IRUGO);
2410 MODULE_PARM_DESC(fw_restart, "restart firmware in case of error");
2411
2412 module_param_named(antenna_coupling, iwlagn_mod_params.ant_coupling,
2413 int, S_IRUGO);
2414 MODULE_PARM_DESC(antenna_coupling,
2415 "specify antenna coupling in dB (defualt: 0 dB)");
2416
2417 module_param_named(bt_ch_inhibition, iwlagn_mod_params.bt_ch_announce,
2418 bool, S_IRUGO);
2419 MODULE_PARM_DESC(bt_ch_inhibition,
2420 "Enable BT channel inhibition (default: enable)");
2421
2422 module_param_named(plcp_check, iwlagn_mod_params.plcp_check, bool, S_IRUGO);
2423 MODULE_PARM_DESC(plcp_check, "Check plcp health (default: 1 [enabled])");
2424
2425 module_param_named(wd_disable, iwlagn_mod_params.wd_disable, int, S_IRUGO);
2426 MODULE_PARM_DESC(wd_disable,
2427 "Disable stuck queue watchdog timer 0=system default, "
2428 "1=disable, 2=enable (default: 0)");
2429
2430 /*
2431 * set bt_coex_active to true, uCode will do kill/defer
2432 * every time the priority line is asserted (BT is sending signals on the
2433 * priority line in the PCIx).
2434 * set bt_coex_active to false, uCode will ignore the BT activity and
2435 * perform the normal operation
2436 *
2437 * User might experience transmit issue on some platform due to WiFi/BT
2438 * co-exist problem. The possible behaviors are:
2439 * Able to scan and finding all the available AP
2440 * Not able to associate with any AP
2441 * On those platforms, WiFi communication can be restored by set
2442 * "bt_coex_active" module parameter to "false"
2443 *
2444 * default: bt_coex_active = true (BT_COEX_ENABLE)
2445 */
2446 module_param_named(bt_coex_active, iwlagn_mod_params.bt_coex_active,
2447 bool, S_IRUGO);
2448 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bt co-exist (default: enable)");
2449
2450 module_param_named(led_mode, iwlagn_mod_params.led_mode, int, S_IRUGO);
2451 MODULE_PARM_DESC(led_mode, "0=system default, "
2452 "1=On(RF On)/Off(RF Off), 2=blinking, 3=Off (default: 0)");
2453
2454 module_param_named(power_save, iwlagn_mod_params.power_save,
2455 bool, S_IRUGO);
2456 MODULE_PARM_DESC(power_save,
2457 "enable WiFi power management (default: disable)");
2458
2459 module_param_named(power_level, iwlagn_mod_params.power_level,
2460 int, S_IRUGO);
2461 MODULE_PARM_DESC(power_level,
2462 "default power save level (range from 1 - 5, default: 1)");
2463
2464 module_param_named(auto_agg, iwlagn_mod_params.auto_agg,
2465 bool, S_IRUGO);
2466 MODULE_PARM_DESC(auto_agg,
2467 "enable agg w/o check traffic load (default: enable)");