]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/iwlwifi/iwl-eeprom-parse.c
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / iwlwifi / iwl-eeprom-parse.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62 #include <linux/types.h>
63 #include <linux/slab.h>
64 #include <linux/export.h>
65 #include "iwl-drv.h"
66 #include "iwl-modparams.h"
67 #include "iwl-eeprom-parse.h"
68
69 /* EEPROM offset definitions */
70
71 /* indirect access definitions */
72 #define ADDRESS_MSK 0x0000FFFF
73 #define INDIRECT_TYPE_MSK 0x000F0000
74 #define INDIRECT_HOST 0x00010000
75 #define INDIRECT_GENERAL 0x00020000
76 #define INDIRECT_REGULATORY 0x00030000
77 #define INDIRECT_CALIBRATION 0x00040000
78 #define INDIRECT_PROCESS_ADJST 0x00050000
79 #define INDIRECT_OTHERS 0x00060000
80 #define INDIRECT_TXP_LIMIT 0x00070000
81 #define INDIRECT_TXP_LIMIT_SIZE 0x00080000
82 #define INDIRECT_ADDRESS 0x00100000
83
84 /* corresponding link offsets in EEPROM */
85 #define EEPROM_LINK_HOST (2*0x64)
86 #define EEPROM_LINK_GENERAL (2*0x65)
87 #define EEPROM_LINK_REGULATORY (2*0x66)
88 #define EEPROM_LINK_CALIBRATION (2*0x67)
89 #define EEPROM_LINK_PROCESS_ADJST (2*0x68)
90 #define EEPROM_LINK_OTHERS (2*0x69)
91 #define EEPROM_LINK_TXP_LIMIT (2*0x6a)
92 #define EEPROM_LINK_TXP_LIMIT_SIZE (2*0x6b)
93
94 /* General */
95 #define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
96 #define EEPROM_SUBSYSTEM_ID (2*0x0A) /* 2 bytes */
97 #define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
98 #define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
99 #define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
100 #define EEPROM_VERSION (2*0x44) /* 2 bytes */
101 #define EEPROM_SKU_CAP (2*0x45) /* 2 bytes */
102 #define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
103 #define EEPROM_RADIO_CONFIG (2*0x48) /* 2 bytes */
104 #define EEPROM_NUM_MAC_ADDRESS (2*0x4C) /* 2 bytes */
105
106 /* calibration */
107 struct iwl_eeprom_calib_hdr {
108 u8 version;
109 u8 pa_type;
110 __le16 voltage;
111 } __packed;
112
113 #define EEPROM_CALIB_ALL (INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
114 #define EEPROM_XTAL ((2*0x128) | EEPROM_CALIB_ALL)
115
116 /* temperature */
117 #define EEPROM_KELVIN_TEMPERATURE ((2*0x12A) | EEPROM_CALIB_ALL)
118 #define EEPROM_RAW_TEMPERATURE ((2*0x12B) | EEPROM_CALIB_ALL)
119
120 /* SKU Capabilities (actual values from EEPROM definition) */
121 enum eeprom_sku_bits {
122 EEPROM_SKU_CAP_BAND_24GHZ = BIT(4),
123 EEPROM_SKU_CAP_BAND_52GHZ = BIT(5),
124 EEPROM_SKU_CAP_11N_ENABLE = BIT(6),
125 EEPROM_SKU_CAP_AMT_ENABLE = BIT(7),
126 EEPROM_SKU_CAP_IPAN_ENABLE = BIT(8)
127 };
128
129 /* radio config bits (actual values from EEPROM definition) */
130 #define EEPROM_RF_CFG_TYPE_MSK(x) (x & 0x3) /* bits 0-1 */
131 #define EEPROM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */
132 #define EEPROM_RF_CFG_DASH_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */
133 #define EEPROM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */
134 #define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */
135 #define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
136
137
138 /*
139 * EEPROM bands
140 * These are the channel numbers from each band in the order
141 * that they are stored in the EEPROM band information. Note
142 * that EEPROM bands aren't the same as mac80211 bands, and
143 * there are even special "ht40 bands" in the EEPROM.
144 */
145 static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
146 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
147 };
148
149 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
150 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
151 };
152
153 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
154 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
155 };
156
157 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
158 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
159 };
160
161 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
162 145, 149, 153, 157, 161, 165
163 };
164
165 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
166 1, 2, 3, 4, 5, 6, 7
167 };
168
169 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
170 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
171 };
172
173 #define IWL_NUM_CHANNELS (ARRAY_SIZE(iwl_eeprom_band_1) + \
174 ARRAY_SIZE(iwl_eeprom_band_2) + \
175 ARRAY_SIZE(iwl_eeprom_band_3) + \
176 ARRAY_SIZE(iwl_eeprom_band_4) + \
177 ARRAY_SIZE(iwl_eeprom_band_5))
178
179 /* rate data (static) */
180 static struct ieee80211_rate iwl_cfg80211_rates[] = {
181 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
182 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
183 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
184 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
185 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
186 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
187 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
188 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
189 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
190 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
191 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
192 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
193 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
194 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
195 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
196 };
197 #define RATES_24_OFFS 0
198 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
199 #define RATES_52_OFFS 4
200 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
201
202 /* EEPROM reading functions */
203
204 static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
205 {
206 if (WARN_ON(offset + sizeof(u16) > eeprom_size))
207 return 0;
208 return le16_to_cpup((__le16 *)(eeprom + offset));
209 }
210
211 static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
212 u32 address)
213 {
214 u16 offset = 0;
215
216 if ((address & INDIRECT_ADDRESS) == 0)
217 return address;
218
219 switch (address & INDIRECT_TYPE_MSK) {
220 case INDIRECT_HOST:
221 offset = iwl_eeprom_query16(eeprom, eeprom_size,
222 EEPROM_LINK_HOST);
223 break;
224 case INDIRECT_GENERAL:
225 offset = iwl_eeprom_query16(eeprom, eeprom_size,
226 EEPROM_LINK_GENERAL);
227 break;
228 case INDIRECT_REGULATORY:
229 offset = iwl_eeprom_query16(eeprom, eeprom_size,
230 EEPROM_LINK_REGULATORY);
231 break;
232 case INDIRECT_TXP_LIMIT:
233 offset = iwl_eeprom_query16(eeprom, eeprom_size,
234 EEPROM_LINK_TXP_LIMIT);
235 break;
236 case INDIRECT_TXP_LIMIT_SIZE:
237 offset = iwl_eeprom_query16(eeprom, eeprom_size,
238 EEPROM_LINK_TXP_LIMIT_SIZE);
239 break;
240 case INDIRECT_CALIBRATION:
241 offset = iwl_eeprom_query16(eeprom, eeprom_size,
242 EEPROM_LINK_CALIBRATION);
243 break;
244 case INDIRECT_PROCESS_ADJST:
245 offset = iwl_eeprom_query16(eeprom, eeprom_size,
246 EEPROM_LINK_PROCESS_ADJST);
247 break;
248 case INDIRECT_OTHERS:
249 offset = iwl_eeprom_query16(eeprom, eeprom_size,
250 EEPROM_LINK_OTHERS);
251 break;
252 default:
253 WARN_ON(1);
254 break;
255 }
256
257 /* translate the offset from words to byte */
258 return (address & ADDRESS_MSK) + (offset << 1);
259 }
260
261 static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
262 u32 offset)
263 {
264 u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
265
266 if (WARN_ON(address >= eeprom_size))
267 return NULL;
268
269 return &eeprom[address];
270 }
271
272 static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
273 struct iwl_nvm_data *data)
274 {
275 struct iwl_eeprom_calib_hdr *hdr;
276
277 hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
278 EEPROM_CALIB_ALL);
279 if (!hdr)
280 return -ENODATA;
281 data->calib_version = hdr->version;
282 data->calib_voltage = hdr->voltage;
283
284 return 0;
285 }
286
287 /**
288 * enum iwl_eeprom_channel_flags - channel flags in EEPROM
289 * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
290 * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
291 * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
292 * @EEPROM_CHANNEL_RADAR: radar detection required
293 * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
294 * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
295 */
296 enum iwl_eeprom_channel_flags {
297 EEPROM_CHANNEL_VALID = BIT(0),
298 EEPROM_CHANNEL_IBSS = BIT(1),
299 EEPROM_CHANNEL_ACTIVE = BIT(3),
300 EEPROM_CHANNEL_RADAR = BIT(4),
301 EEPROM_CHANNEL_WIDE = BIT(5),
302 EEPROM_CHANNEL_DFS = BIT(7),
303 };
304
305 /**
306 * struct iwl_eeprom_channel - EEPROM channel data
307 * @flags: %EEPROM_CHANNEL_* flags
308 * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
309 */
310 struct iwl_eeprom_channel {
311 u8 flags;
312 s8 max_power_avg;
313 } __packed;
314
315
316 enum iwl_eeprom_enhanced_txpwr_flags {
317 IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
318 IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
319 IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
320 IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
321 IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
322 IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
323 IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
324 IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
325 };
326
327 /**
328 * iwl_eeprom_enhanced_txpwr structure
329 * @flags: entry flags
330 * @channel: channel number
331 * @chain_a_max_pwr: chain a max power in 1/2 dBm
332 * @chain_b_max_pwr: chain b max power in 1/2 dBm
333 * @chain_c_max_pwr: chain c max power in 1/2 dBm
334 * @delta_20_in_40: 20-in-40 deltas (hi/lo)
335 * @mimo2_max_pwr: mimo2 max power in 1/2 dBm
336 * @mimo3_max_pwr: mimo3 max power in 1/2 dBm
337 *
338 * This structure presents the enhanced regulatory tx power limit layout
339 * in an EEPROM image.
340 */
341 struct iwl_eeprom_enhanced_txpwr {
342 u8 flags;
343 u8 channel;
344 s8 chain_a_max;
345 s8 chain_b_max;
346 s8 chain_c_max;
347 u8 delta_20_in_40;
348 s8 mimo2_max;
349 s8 mimo3_max;
350 } __packed;
351
352 static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
353 struct iwl_eeprom_enhanced_txpwr *txp)
354 {
355 s8 result = 0; /* (.5 dBm) */
356
357 /* Take the highest tx power from any valid chains */
358 if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
359 result = txp->chain_a_max;
360
361 if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
362 result = txp->chain_b_max;
363
364 if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
365 result = txp->chain_c_max;
366
367 if ((data->valid_tx_ant == ANT_AB ||
368 data->valid_tx_ant == ANT_BC ||
369 data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
370 result = txp->mimo2_max;
371
372 if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
373 result = txp->mimo3_max;
374
375 return result;
376 }
377
378 #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
379 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
380 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
381
382 #define TXP_CHECK_AND_PRINT(x) \
383 ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
384
385 static void
386 iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
387 struct iwl_eeprom_enhanced_txpwr *txp,
388 int n_channels, s8 max_txpower_avg)
389 {
390 int ch_idx;
391 enum ieee80211_band band;
392
393 band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
394 IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
395
396 for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
397 struct ieee80211_channel *chan = &data->channels[ch_idx];
398
399 /* update matching channel or from common data only */
400 if (txp->channel != 0 && chan->hw_value != txp->channel)
401 continue;
402
403 /* update matching band only */
404 if (band != chan->band)
405 continue;
406
407 if (chan->max_power < max_txpower_avg &&
408 !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
409 chan->max_power = max_txpower_avg;
410 }
411 }
412
413 static void iwl_eeprom_enhanced_txpower(struct device *dev,
414 struct iwl_nvm_data *data,
415 const u8 *eeprom, size_t eeprom_size,
416 int n_channels)
417 {
418 struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
419 int idx, entries;
420 __le16 *txp_len;
421 s8 max_txp_avg_halfdbm;
422
423 BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
424
425 /* the length is in 16-bit words, but we want entries */
426 txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
427 EEPROM_TXP_SZ_OFFS);
428 entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
429
430 txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
431 EEPROM_TXP_OFFS);
432
433 for (idx = 0; idx < entries; idx++) {
434 txp = &txp_array[idx];
435 /* skip invalid entries */
436 if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
437 continue;
438
439 IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
440 (txp->channel && (txp->flags &
441 IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
442 "Common " : (txp->channel) ?
443 "Channel" : "Common",
444 (txp->channel),
445 TXP_CHECK_AND_PRINT(VALID),
446 TXP_CHECK_AND_PRINT(BAND_52G),
447 TXP_CHECK_AND_PRINT(OFDM),
448 TXP_CHECK_AND_PRINT(40MHZ),
449 TXP_CHECK_AND_PRINT(HT_AP),
450 TXP_CHECK_AND_PRINT(RES1),
451 TXP_CHECK_AND_PRINT(RES2),
452 TXP_CHECK_AND_PRINT(COMMON_TYPE),
453 txp->flags);
454 IWL_DEBUG_EEPROM(dev,
455 "\t\t chain_A: 0x%02x chain_B: 0X%02x chain_C: 0X%02x\n",
456 txp->chain_a_max, txp->chain_b_max,
457 txp->chain_c_max);
458 IWL_DEBUG_EEPROM(dev,
459 "\t\t MIMO2: 0x%02x MIMO3: 0x%02x High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
460 txp->mimo2_max, txp->mimo3_max,
461 ((txp->delta_20_in_40 & 0xf0) >> 4),
462 (txp->delta_20_in_40 & 0x0f));
463
464 max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
465
466 iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
467 DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
468
469 if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
470 data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
471 }
472 }
473
474 static void iwl_init_band_reference(const struct iwl_cfg *cfg,
475 const u8 *eeprom, size_t eeprom_size,
476 int eeprom_band, int *eeprom_ch_count,
477 const struct iwl_eeprom_channel **ch_info,
478 const u8 **eeprom_ch_array)
479 {
480 u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
481
482 offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
483
484 *ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
485
486 switch (eeprom_band) {
487 case 1: /* 2.4GHz band */
488 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
489 *eeprom_ch_array = iwl_eeprom_band_1;
490 break;
491 case 2: /* 4.9GHz band */
492 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
493 *eeprom_ch_array = iwl_eeprom_band_2;
494 break;
495 case 3: /* 5.2GHz band */
496 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
497 *eeprom_ch_array = iwl_eeprom_band_3;
498 break;
499 case 4: /* 5.5GHz band */
500 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
501 *eeprom_ch_array = iwl_eeprom_band_4;
502 break;
503 case 5: /* 5.7GHz band */
504 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
505 *eeprom_ch_array = iwl_eeprom_band_5;
506 break;
507 case 6: /* 2.4GHz ht40 channels */
508 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
509 *eeprom_ch_array = iwl_eeprom_band_6;
510 break;
511 case 7: /* 5 GHz ht40 channels */
512 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
513 *eeprom_ch_array = iwl_eeprom_band_7;
514 break;
515 default:
516 *eeprom_ch_count = 0;
517 *eeprom_ch_array = NULL;
518 WARN_ON(1);
519 }
520 }
521
522 #define CHECK_AND_PRINT(x) \
523 ((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
524
525 static void iwl_mod_ht40_chan_info(struct device *dev,
526 struct iwl_nvm_data *data, int n_channels,
527 enum ieee80211_band band, u16 channel,
528 const struct iwl_eeprom_channel *eeprom_ch,
529 u8 clear_ht40_extension_channel)
530 {
531 struct ieee80211_channel *chan = NULL;
532 int i;
533
534 for (i = 0; i < n_channels; i++) {
535 if (data->channels[i].band != band)
536 continue;
537 if (data->channels[i].hw_value != channel)
538 continue;
539 chan = &data->channels[i];
540 break;
541 }
542
543 if (!chan)
544 return;
545
546 IWL_DEBUG_EEPROM(dev,
547 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
548 channel,
549 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
550 CHECK_AND_PRINT(IBSS),
551 CHECK_AND_PRINT(ACTIVE),
552 CHECK_AND_PRINT(RADAR),
553 CHECK_AND_PRINT(WIDE),
554 CHECK_AND_PRINT(DFS),
555 eeprom_ch->flags,
556 eeprom_ch->max_power_avg,
557 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
558 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
559 : "not ");
560
561 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
562 chan->flags &= ~clear_ht40_extension_channel;
563 }
564
565 #define CHECK_AND_PRINT_I(x) \
566 ((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
567
568 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
569 struct iwl_nvm_data *data,
570 const u8 *eeprom, size_t eeprom_size)
571 {
572 int band, ch_idx;
573 const struct iwl_eeprom_channel *eeprom_ch_info;
574 const u8 *eeprom_ch_array;
575 int eeprom_ch_count;
576 int n_channels = 0;
577
578 /*
579 * Loop through the 5 EEPROM bands and add them to the parse list
580 */
581 for (band = 1; band <= 5; band++) {
582 struct ieee80211_channel *channel;
583
584 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
585 &eeprom_ch_count, &eeprom_ch_info,
586 &eeprom_ch_array);
587
588 /* Loop through each band adding each of the channels */
589 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
590 const struct iwl_eeprom_channel *eeprom_ch;
591
592 eeprom_ch = &eeprom_ch_info[ch_idx];
593
594 if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
595 IWL_DEBUG_EEPROM(dev,
596 "Ch. %d Flags %x [%sGHz] - No traffic\n",
597 eeprom_ch_array[ch_idx],
598 eeprom_ch_info[ch_idx].flags,
599 (band != 1) ? "5.2" : "2.4");
600 continue;
601 }
602
603 channel = &data->channels[n_channels];
604 n_channels++;
605
606 channel->hw_value = eeprom_ch_array[ch_idx];
607 channel->band = (band == 1) ? IEEE80211_BAND_2GHZ
608 : IEEE80211_BAND_5GHZ;
609 channel->center_freq =
610 ieee80211_channel_to_frequency(
611 channel->hw_value, channel->band);
612
613 /* set no-HT40, will enable as appropriate later */
614 channel->flags = IEEE80211_CHAN_NO_HT40;
615
616 if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
617 channel->flags |= IEEE80211_CHAN_NO_IR;
618
619 if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
620 channel->flags |= IEEE80211_CHAN_NO_IR;
621
622 if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
623 channel->flags |= IEEE80211_CHAN_RADAR;
624
625 /* Initialize regulatory-based run-time data */
626 channel->max_power =
627 eeprom_ch_info[ch_idx].max_power_avg;
628 IWL_DEBUG_EEPROM(dev,
629 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
630 channel->hw_value,
631 (band != 1) ? "5.2" : "2.4",
632 CHECK_AND_PRINT_I(VALID),
633 CHECK_AND_PRINT_I(IBSS),
634 CHECK_AND_PRINT_I(ACTIVE),
635 CHECK_AND_PRINT_I(RADAR),
636 CHECK_AND_PRINT_I(WIDE),
637 CHECK_AND_PRINT_I(DFS),
638 eeprom_ch_info[ch_idx].flags,
639 eeprom_ch_info[ch_idx].max_power_avg,
640 ((eeprom_ch_info[ch_idx].flags &
641 EEPROM_CHANNEL_IBSS) &&
642 !(eeprom_ch_info[ch_idx].flags &
643 EEPROM_CHANNEL_RADAR))
644 ? "" : "not ");
645 }
646 }
647
648 if (cfg->eeprom_params->enhanced_txpower) {
649 /*
650 * for newer device (6000 series and up)
651 * EEPROM contain enhanced tx power information
652 * driver need to process addition information
653 * to determine the max channel tx power limits
654 */
655 iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
656 n_channels);
657 } else {
658 /* All others use data from channel map */
659 int i;
660
661 data->max_tx_pwr_half_dbm = -128;
662
663 for (i = 0; i < n_channels; i++)
664 data->max_tx_pwr_half_dbm =
665 max_t(s8, data->max_tx_pwr_half_dbm,
666 data->channels[i].max_power * 2);
667 }
668
669 /* Check if we do have HT40 channels */
670 if (cfg->eeprom_params->regulatory_bands[5] ==
671 EEPROM_REGULATORY_BAND_NO_HT40 &&
672 cfg->eeprom_params->regulatory_bands[6] ==
673 EEPROM_REGULATORY_BAND_NO_HT40)
674 return n_channels;
675
676 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
677 for (band = 6; band <= 7; band++) {
678 enum ieee80211_band ieeeband;
679
680 iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
681 &eeprom_ch_count, &eeprom_ch_info,
682 &eeprom_ch_array);
683
684 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
685 ieeeband = (band == 6) ? IEEE80211_BAND_2GHZ
686 : IEEE80211_BAND_5GHZ;
687
688 /* Loop through each band adding each of the channels */
689 for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
690 /* Set up driver's info for lower half */
691 iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
692 eeprom_ch_array[ch_idx],
693 &eeprom_ch_info[ch_idx],
694 IEEE80211_CHAN_NO_HT40PLUS);
695
696 /* Set up driver's info for upper half */
697 iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
698 eeprom_ch_array[ch_idx] + 4,
699 &eeprom_ch_info[ch_idx],
700 IEEE80211_CHAN_NO_HT40MINUS);
701 }
702 }
703
704 return n_channels;
705 }
706
707 int iwl_init_sband_channels(struct iwl_nvm_data *data,
708 struct ieee80211_supported_band *sband,
709 int n_channels, enum ieee80211_band band)
710 {
711 struct ieee80211_channel *chan = &data->channels[0];
712 int n = 0, idx = 0;
713
714 while (chan->band != band && idx < n_channels)
715 chan = &data->channels[++idx];
716
717 sband->channels = &data->channels[idx];
718
719 while (chan->band == band && idx < n_channels) {
720 chan = &data->channels[++idx];
721 n++;
722 }
723
724 sband->n_channels = n;
725
726 return n;
727 }
728
729 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
730 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
731
732 void iwl_init_ht_hw_capab(const struct iwl_cfg *cfg,
733 struct iwl_nvm_data *data,
734 struct ieee80211_sta_ht_cap *ht_info,
735 enum ieee80211_band band,
736 u8 tx_chains, u8 rx_chains)
737 {
738 int max_bit_rate = 0;
739
740 tx_chains = hweight8(tx_chains);
741 if (cfg->rx_with_siso_diversity)
742 rx_chains = 1;
743 else
744 rx_chains = hweight8(rx_chains);
745
746 if (!(data->sku_cap_11n_enable) || !cfg->ht_params) {
747 ht_info->ht_supported = false;
748 return;
749 }
750
751 ht_info->ht_supported = true;
752 ht_info->cap = IEEE80211_HT_CAP_DSSSCCK40;
753
754 if (cfg->ht_params->stbc) {
755 ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
756
757 if (tx_chains > 1)
758 ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
759 }
760
761 if (cfg->ht_params->ldpc)
762 ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
763
764 if (iwlwifi_mod_params.amsdu_size_8K)
765 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
766
767 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
768 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
769
770 ht_info->mcs.rx_mask[0] = 0xFF;
771 if (rx_chains >= 2)
772 ht_info->mcs.rx_mask[1] = 0xFF;
773 if (rx_chains >= 3)
774 ht_info->mcs.rx_mask[2] = 0xFF;
775
776 if (cfg->ht_params->ht_greenfield_support)
777 ht_info->cap |= IEEE80211_HT_CAP_GRN_FLD;
778 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
779
780 max_bit_rate = MAX_BIT_RATE_20_MHZ;
781
782 if (cfg->ht_params->ht40_bands & BIT(band)) {
783 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
784 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
785 max_bit_rate = MAX_BIT_RATE_40_MHZ;
786 }
787
788 /* Highest supported Rx data rate */
789 max_bit_rate *= rx_chains;
790 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
791 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
792
793 /* Tx MCS capabilities */
794 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
795 if (tx_chains != rx_chains) {
796 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
797 ht_info->mcs.tx_params |= ((tx_chains - 1) <<
798 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
799 }
800 }
801
802 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
803 struct iwl_nvm_data *data,
804 const u8 *eeprom, size_t eeprom_size)
805 {
806 int n_channels = iwl_init_channel_map(dev, cfg, data,
807 eeprom, eeprom_size);
808 int n_used = 0;
809 struct ieee80211_supported_band *sband;
810
811 sband = &data->bands[IEEE80211_BAND_2GHZ];
812 sband->band = IEEE80211_BAND_2GHZ;
813 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
814 sband->n_bitrates = N_RATES_24;
815 n_used += iwl_init_sband_channels(data, sband, n_channels,
816 IEEE80211_BAND_2GHZ);
817 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
818 data->valid_tx_ant, data->valid_rx_ant);
819
820 sband = &data->bands[IEEE80211_BAND_5GHZ];
821 sband->band = IEEE80211_BAND_5GHZ;
822 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
823 sband->n_bitrates = N_RATES_52;
824 n_used += iwl_init_sband_channels(data, sband, n_channels,
825 IEEE80211_BAND_5GHZ);
826 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
827 data->valid_tx_ant, data->valid_rx_ant);
828
829 if (n_channels != n_used)
830 IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
831 n_used, n_channels);
832 }
833
834 /* EEPROM data functions */
835
836 struct iwl_nvm_data *
837 iwl_parse_eeprom_data(struct device *dev, const struct iwl_cfg *cfg,
838 const u8 *eeprom, size_t eeprom_size)
839 {
840 struct iwl_nvm_data *data;
841 const void *tmp;
842 u16 radio_cfg, sku;
843
844 if (WARN_ON(!cfg || !cfg->eeprom_params))
845 return NULL;
846
847 data = kzalloc(sizeof(*data) +
848 sizeof(struct ieee80211_channel) * IWL_NUM_CHANNELS,
849 GFP_KERNEL);
850 if (!data)
851 return NULL;
852
853 /* get MAC address(es) */
854 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
855 if (!tmp)
856 goto err_free;
857 memcpy(data->hw_addr, tmp, ETH_ALEN);
858 data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
859 EEPROM_NUM_MAC_ADDRESS);
860
861 if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
862 goto err_free;
863
864 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
865 if (!tmp)
866 goto err_free;
867 memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
868
869 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
870 EEPROM_RAW_TEMPERATURE);
871 if (!tmp)
872 goto err_free;
873 data->raw_temperature = *(__le16 *)tmp;
874
875 tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
876 EEPROM_KELVIN_TEMPERATURE);
877 if (!tmp)
878 goto err_free;
879 data->kelvin_temperature = *(__le16 *)tmp;
880 data->kelvin_voltage = *((__le16 *)tmp + 1);
881
882 radio_cfg = iwl_eeprom_query16(eeprom, eeprom_size,
883 EEPROM_RADIO_CONFIG);
884 data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
885 data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
886 data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
887 data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
888 data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
889 data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
890
891 sku = iwl_eeprom_query16(eeprom, eeprom_size,
892 EEPROM_SKU_CAP);
893 data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
894 data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
895 data->sku_cap_band_24GHz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
896 data->sku_cap_band_52GHz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
897 data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
898 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
899 data->sku_cap_11n_enable = false;
900
901 data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
902 EEPROM_VERSION);
903
904 /* check overrides (some devices have wrong EEPROM) */
905 if (cfg->valid_tx_ant)
906 data->valid_tx_ant = cfg->valid_tx_ant;
907 if (cfg->valid_rx_ant)
908 data->valid_rx_ant = cfg->valid_rx_ant;
909
910 if (!data->valid_tx_ant || !data->valid_rx_ant) {
911 IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
912 data->valid_tx_ant, data->valid_rx_ant);
913 goto err_free;
914 }
915
916 iwl_init_sbands(dev, cfg, data, eeprom, eeprom_size);
917
918 return data;
919 err_free:
920 kfree(data);
921 return NULL;
922 }
923 IWL_EXPORT_SYMBOL(iwl_parse_eeprom_data);
924
925 /* helper functions */
926 int iwl_nvm_check_version(struct iwl_nvm_data *data,
927 struct iwl_trans *trans)
928 {
929 if (data->nvm_version >= trans->cfg->nvm_ver ||
930 data->calib_version >= trans->cfg->nvm_calib_ver) {
931 IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
932 data->nvm_version, data->calib_version);
933 return 0;
934 }
935
936 IWL_ERR(trans,
937 "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
938 data->nvm_version, trans->cfg->nvm_ver,
939 data->calib_version, trans->cfg->nvm_calib_ver);
940 return -EINVAL;
941 }
942 IWL_EXPORT_SYMBOL(iwl_nvm_check_version);