]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/iwlwifi/iwl-trans.h
iwlwifi: clean up (wowlan) suspend flow
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / iwlwifi / iwl-trans.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2007 - 2012 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 #ifndef __iwl_trans_h__
64 #define __iwl_trans_h__
65
66 #include <linux/ieee80211.h>
67
68 #include "iwl-shared.h"
69 #include "iwl-debug.h"
70
71 /**
72 * DOC: Transport layer - what is it ?
73 *
74 * The tranport layer is the layer that deals with the HW directly. It provides
75 * an abstraction of the underlying HW to the upper layer. The transport layer
76 * doesn't provide any policy, algorithm or anything of this kind, but only
77 * mechanisms to make the HW do something.It is not completely stateless but
78 * close to it.
79 * We will have an implementation for each different supported bus.
80 */
81
82 /**
83 * DOC: Life cycle of the transport layer
84 *
85 * The transport layer has a very precise life cycle.
86 *
87 * 1) A helper function is called during the module initialization and
88 * registers the bus driver's ops with the transport's alloc function.
89 * 2) Bus's probe calls to the transport layer's allocation functions.
90 * Of course this function is bus specific.
91 * 3) This allocation functions will spawn the upper layer which will
92 * register mac80211.
93 *
94 * 4) At some point (i.e. mac80211's start call), the op_mode will call
95 * the following sequence:
96 * start_hw
97 * start_fw
98 *
99 * 5) Then when finished (or reset):
100 * stop_fw (a.k.a. stop device for the moment)
101 * stop_hw
102 *
103 * 6) Eventually, the free function will be called.
104 */
105
106 struct iwl_priv;
107 struct iwl_shared;
108 struct iwl_op_mode;
109 struct fw_img;
110 struct sk_buff;
111 struct dentry;
112
113 /**
114 * DOC: Host command section
115 *
116 * A host command is a commaned issued by the upper layer to the fw. There are
117 * several versions of fw that have several APIs. The transport layer is
118 * completely agnostic to these differences.
119 * The transport does provide helper functionnality (i.e. SYNC / ASYNC mode),
120 */
121 #define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
122 #define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
123 #define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4)
124
125 /**
126 * enum CMD_MODE - how to send the host commands ?
127 *
128 * @CMD_SYNC: The caller will be stalled until the fw responds to the command
129 * @CMD_ASYNC: Return right away and don't want for the response
130 * @CMD_WANT_SKB: valid only with CMD_SYNC. The caller needs the buffer of the
131 * response.
132 * @CMD_ON_DEMAND: This command is sent by the test mode pipe.
133 */
134 enum CMD_MODE {
135 CMD_SYNC = 0,
136 CMD_ASYNC = BIT(0),
137 CMD_WANT_SKB = BIT(1),
138 CMD_ON_DEMAND = BIT(2),
139 };
140
141 #define DEF_CMD_PAYLOAD_SIZE 320
142
143 /**
144 * struct iwl_device_cmd
145 *
146 * For allocation of the command and tx queues, this establishes the overall
147 * size of the largest command we send to uCode, except for commands that
148 * aren't fully copied and use other TFD space.
149 */
150 struct iwl_device_cmd {
151 struct iwl_cmd_header hdr; /* uCode API */
152 u8 payload[DEF_CMD_PAYLOAD_SIZE];
153 } __packed;
154
155 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
156
157 #define IWL_MAX_CMD_TFDS 2
158
159 /**
160 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
161 *
162 * IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
163 * ring. The transport layer doesn't map the command's buffer to DMA, but
164 * rather copies it to an previously allocated DMA buffer. This flag tells
165 * the transport layer not to copy the command, but to map the existing
166 * buffer. This can save memcpy and is worth with very big comamnds.
167 */
168 enum iwl_hcmd_dataflag {
169 IWL_HCMD_DFL_NOCOPY = BIT(0),
170 };
171
172 /**
173 * struct iwl_host_cmd - Host command to the uCode
174 *
175 * @data: array of chunks that composes the data of the host command
176 * @reply_page: pointer to the page that holds the response to the host command
177 * @handler_status: return value of the handler of the command
178 * (put in setup_rx_handlers) - valid for SYNC mode only
179 * @flags: can be CMD_*
180 * @len: array of the lenths of the chunks in data
181 * @dataflags: IWL_HCMD_DFL_*
182 * @id: id of the host command
183 */
184 struct iwl_host_cmd {
185 const void *data[IWL_MAX_CMD_TFDS];
186 unsigned long reply_page;
187 int handler_status;
188
189 u32 flags;
190 u16 len[IWL_MAX_CMD_TFDS];
191 u8 dataflags[IWL_MAX_CMD_TFDS];
192 u8 id;
193 };
194
195 /**
196 * struct iwl_trans_ops - transport specific operations
197 *
198 * All the handlers MUST be implemented
199 *
200 * @start_hw: starts the HW- from that point on, the HW can send interrupts
201 * May sleep
202 * @stop_hw: stops the HW- from that point on, the HW will be in low power but
203 * will still issue interrupt if the HW RF kill is triggered.
204 * May sleep
205 * @start_fw: allocates and inits all the resources for the transport
206 * layer. Also kick a fw image.
207 * May sleep
208 * @fw_alive: called when the fw sends alive notification
209 * May sleep
210 * @wake_any_queue: wake all the queues of a specfic context IWL_RXON_CTX_*
211 * @stop_device:stops the whole device (embedded CPU put to reset)
212 * May sleep
213 * @wowlan_suspend: put the device into the correct mode for WoWLAN during
214 * suspend. This is optional, if not implemented WoWLAN will not be
215 * supported. This callback may sleep.
216 * @send_cmd:send a host command
217 * May sleep only if CMD_SYNC is set
218 * @tx: send an skb
219 * Must be atomic
220 * @reclaim: free packet until ssn. Returns a list of freed packets.
221 * Must be atomic
222 * @tx_agg_alloc: allocate resources for a TX BA session
223 * May sleep
224 * @tx_agg_setup: setup a tx queue for AMPDU - will be called once the HW is
225 * ready and a successful ADDBA response has been received.
226 * May sleep
227 * @tx_agg_disable: de-configure a Tx queue to send AMPDUs
228 * May sleep
229 * @free: release all the ressource for the transport layer itself such as
230 * irq, tasklet etc... From this point on, the device may not issue
231 * any interrupt (incl. RFKILL).
232 * May sleep
233 * @stop_queue: stop a specific queue
234 * @check_stuck_queue: check if a specific queue is stuck
235 * @wait_tx_queue_empty: wait until all tx queues are empty
236 * May sleep
237 * @dbgfs_register: add the dbgfs files under this directory. Files will be
238 * automatically deleted.
239 * @suspend: stop the device unless WoWLAN is configured
240 * @resume: resume activity of the device
241 * @write8: write a u8 to a register at offset ofs from the BAR
242 * @write32: write a u32 to a register at offset ofs from the BAR
243 * @read32: read a u32 register at offset ofs from the BAR
244 */
245 struct iwl_trans_ops {
246
247 int (*start_hw)(struct iwl_trans *iwl_trans);
248 void (*stop_hw)(struct iwl_trans *iwl_trans);
249 int (*start_fw)(struct iwl_trans *trans, struct fw_img *fw);
250 void (*fw_alive)(struct iwl_trans *trans);
251 void (*stop_device)(struct iwl_trans *trans);
252
253 void (*wowlan_suspend)(struct iwl_trans *trans);
254
255 void (*wake_any_queue)(struct iwl_trans *trans,
256 enum iwl_rxon_context_id ctx,
257 const char *msg);
258
259 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
260
261 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
262 struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
263 u8 sta_id, u8 tid);
264 int (*reclaim)(struct iwl_trans *trans, int sta_id, int tid,
265 int txq_id, int ssn, u32 status,
266 struct sk_buff_head *skbs);
267
268 int (*tx_agg_disable)(struct iwl_trans *trans,
269 int sta_id, int tid);
270 int (*tx_agg_alloc)(struct iwl_trans *trans,
271 int sta_id, int tid);
272 void (*tx_agg_setup)(struct iwl_trans *trans,
273 enum iwl_rxon_context_id ctx, int sta_id, int tid,
274 int frame_limit, u16 ssn);
275
276 void (*free)(struct iwl_trans *trans);
277
278 void (*stop_queue)(struct iwl_trans *trans, int q, const char *msg);
279
280 int (*dbgfs_register)(struct iwl_trans *trans, struct dentry* dir);
281 int (*check_stuck_queue)(struct iwl_trans *trans, int q);
282 int (*wait_tx_queue_empty)(struct iwl_trans *trans);
283 #ifdef CONFIG_PM_SLEEP
284 int (*suspend)(struct iwl_trans *trans);
285 int (*resume)(struct iwl_trans *trans);
286 #endif
287 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
288 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
289 u32 (*read32)(struct iwl_trans *trans, u32 ofs);
290 };
291
292 /* Opaque calibration results */
293 struct iwl_calib_result {
294 struct list_head list;
295 size_t cmd_len;
296 struct iwl_calib_hdr hdr;
297 /* data follows */
298 };
299
300 /**
301 * enum iwl_trans_state - state of the transport layer
302 *
303 * @IWL_TRANS_NO_FW: no fw has sent an alive response
304 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
305 */
306 enum iwl_trans_state {
307 IWL_TRANS_NO_FW = 0,
308 IWL_TRANS_FW_ALIVE = 1,
309 };
310
311 /**
312 * struct iwl_trans - transport common data
313 *
314 * @ops - pointer to iwl_trans_ops
315 * @op_mode - pointer to the op_mode
316 * @shrd - pointer to iwl_shared which holds shared data from the upper layer
317 * @reg_lock - protect hw register access
318 * @dev - pointer to struct device * that represents the device
319 * @irq - the irq number for the device
320 * @hw_id: a u32 with the ID of the device / subdevice.
321 * Set during transport allocation.
322 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
323 * @ucode_write_complete: indicates that the ucode has been copied.
324 * @nvm_device_type: indicates OTP or eeprom
325 * @pm_support: set to true in start_hw if link pm is supported
326 * @calib_results: list head for init calibration results
327 */
328 struct iwl_trans {
329 const struct iwl_trans_ops *ops;
330 struct iwl_op_mode *op_mode;
331 struct iwl_shared *shrd;
332 enum iwl_trans_state state;
333 spinlock_t reg_lock;
334
335 struct device *dev;
336 unsigned int irq;
337 u32 hw_rev;
338 u32 hw_id;
339 char hw_id_str[52];
340
341 u8 ucode_write_complete;
342
343 int nvm_device_type;
344 bool pm_support;
345
346 struct list_head calib_results;
347
348 /* pointer to trans specific struct */
349 /*Ensure that this pointer will always be aligned to sizeof pointer */
350 char trans_specific[0] __aligned(sizeof(void *));
351 };
352
353 static inline void iwl_trans_configure(struct iwl_trans *trans,
354 struct iwl_op_mode *op_mode)
355 {
356 /*
357 * only set the op_mode for the moment. Later on, this function will do
358 * more
359 */
360 trans->op_mode = op_mode;
361 }
362
363 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
364 {
365 might_sleep();
366
367 return trans->ops->start_hw(trans);
368 }
369
370 static inline void iwl_trans_stop_hw(struct iwl_trans *trans)
371 {
372 might_sleep();
373
374 trans->ops->stop_hw(trans);
375
376 trans->state = IWL_TRANS_NO_FW;
377 }
378
379 static inline void iwl_trans_fw_alive(struct iwl_trans *trans)
380 {
381 might_sleep();
382
383 trans->ops->fw_alive(trans);
384
385 trans->state = IWL_TRANS_FW_ALIVE;
386 }
387
388 static inline int iwl_trans_start_fw(struct iwl_trans *trans, struct fw_img *fw)
389 {
390 might_sleep();
391
392 return trans->ops->start_fw(trans, fw);
393 }
394
395 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
396 {
397 might_sleep();
398
399 trans->ops->stop_device(trans);
400
401 trans->state = IWL_TRANS_NO_FW;
402 }
403
404 static inline void iwl_trans_wowlan_suspend(struct iwl_trans *trans)
405 {
406 might_sleep();
407 trans->ops->wowlan_suspend(trans);
408 }
409
410 static inline void iwl_trans_wake_any_queue(struct iwl_trans *trans,
411 enum iwl_rxon_context_id ctx,
412 const char *msg)
413 {
414 if (trans->state != IWL_TRANS_FW_ALIVE)
415 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
416
417 trans->ops->wake_any_queue(trans, ctx, msg);
418 }
419
420
421 static inline int iwl_trans_send_cmd(struct iwl_trans *trans,
422 struct iwl_host_cmd *cmd)
423 {
424 if (trans->state != IWL_TRANS_FW_ALIVE)
425 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
426
427 return trans->ops->send_cmd(trans, cmd);
428 }
429
430 int iwl_trans_send_cmd_pdu(struct iwl_trans *trans, u8 id,
431 u32 flags, u16 len, const void *data);
432
433 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
434 struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
435 u8 sta_id, u8 tid)
436 {
437 if (trans->state != IWL_TRANS_FW_ALIVE)
438 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
439
440 return trans->ops->tx(trans, skb, dev_cmd, ctx, sta_id, tid);
441 }
442
443 static inline int iwl_trans_reclaim(struct iwl_trans *trans, int sta_id,
444 int tid, int txq_id, int ssn, u32 status,
445 struct sk_buff_head *skbs)
446 {
447 if (trans->state != IWL_TRANS_FW_ALIVE)
448 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
449
450 return trans->ops->reclaim(trans, sta_id, tid, txq_id, ssn,
451 status, skbs);
452 }
453
454 static inline int iwl_trans_tx_agg_disable(struct iwl_trans *trans,
455 int sta_id, int tid)
456 {
457 might_sleep();
458
459 if (trans->state != IWL_TRANS_FW_ALIVE)
460 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
461
462 return trans->ops->tx_agg_disable(trans, sta_id, tid);
463 }
464
465 static inline int iwl_trans_tx_agg_alloc(struct iwl_trans *trans,
466 int sta_id, int tid)
467 {
468 might_sleep();
469
470 if (trans->state != IWL_TRANS_FW_ALIVE)
471 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
472
473 return trans->ops->tx_agg_alloc(trans, sta_id, tid);
474 }
475
476
477 static inline void iwl_trans_tx_agg_setup(struct iwl_trans *trans,
478 enum iwl_rxon_context_id ctx,
479 int sta_id, int tid,
480 int frame_limit, u16 ssn)
481 {
482 might_sleep();
483
484 if (trans->state != IWL_TRANS_FW_ALIVE)
485 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
486
487 trans->ops->tx_agg_setup(trans, ctx, sta_id, tid, frame_limit, ssn);
488 }
489
490 static inline void iwl_trans_free(struct iwl_trans *trans)
491 {
492 trans->ops->free(trans);
493 }
494
495 static inline void iwl_trans_stop_queue(struct iwl_trans *trans, int q,
496 const char *msg)
497 {
498 if (trans->state != IWL_TRANS_FW_ALIVE)
499 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
500
501 trans->ops->stop_queue(trans, q, msg);
502 }
503
504 static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans)
505 {
506 if (trans->state != IWL_TRANS_FW_ALIVE)
507 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
508
509 return trans->ops->wait_tx_queue_empty(trans);
510 }
511
512 static inline int iwl_trans_check_stuck_queue(struct iwl_trans *trans, int q)
513 {
514 if (trans->state != IWL_TRANS_FW_ALIVE)
515 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
516
517 return trans->ops->check_stuck_queue(trans, q);
518 }
519 static inline int iwl_trans_dbgfs_register(struct iwl_trans *trans,
520 struct dentry *dir)
521 {
522 return trans->ops->dbgfs_register(trans, dir);
523 }
524
525 #ifdef CONFIG_PM_SLEEP
526 static inline int iwl_trans_suspend(struct iwl_trans *trans)
527 {
528 return trans->ops->suspend(trans);
529 }
530
531 static inline int iwl_trans_resume(struct iwl_trans *trans)
532 {
533 return trans->ops->resume(trans);
534 }
535 #endif
536
537 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
538 {
539 trans->ops->write8(trans, ofs, val);
540 }
541
542 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
543 {
544 trans->ops->write32(trans, ofs, val);
545 }
546
547 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
548 {
549 return trans->ops->read32(trans, ofs);
550 }
551
552 /*****************************************************
553 * Utils functions
554 ******************************************************/
555 int iwl_send_calib_results(struct iwl_trans *trans);
556 int iwl_calib_set(struct iwl_trans *trans,
557 const struct iwl_calib_hdr *cmd, int len);
558 void iwl_calib_free_results(struct iwl_trans *trans);
559
560 /*****************************************************
561 * Transport layers implementations + their allocation function
562 ******************************************************/
563 struct pci_dev;
564 struct pci_device_id;
565 extern const struct iwl_trans_ops trans_ops_pcie;
566 struct iwl_trans *iwl_trans_pcie_alloc(struct iwl_shared *shrd,
567 struct pci_dev *pdev,
568 const struct pci_device_id *ent);
569 int __must_check iwl_pci_register_driver(void);
570 void iwl_pci_unregister_driver(void);
571
572 extern const struct iwl_trans_ops trans_ops_idi;
573 struct iwl_trans *iwl_trans_idi_alloc(struct iwl_shared *shrd,
574 void *pdev_void,
575 const void *ent_void);
576 #endif /* __iwl_trans_h__ */