]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/iwlwifi/pcie/rx.c
Merge branches 'no-rebases', 'arch-avr32', 'arch-blackfin', 'arch-cris', 'arch-h8300...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
32
33 #include "iwl-prph.h"
34 #include "iwl-io.h"
35 #include "internal.h"
36 #include "iwl-op-mode.h"
37
38 /******************************************************************************
39 *
40 * RX path functions
41 *
42 ******************************************************************************/
43
44 /*
45 * Rx theory of operation
46 *
47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48 * each of which point to Receive Buffers to be filled by the NIC. These get
49 * used not only for Rx frames, but for any command response or notification
50 * from the NIC. The driver and NIC manage the Rx buffers by means
51 * of indexes into the circular buffer.
52 *
53 * Rx Queue Indexes
54 * The host/firmware share two index registers for managing the Rx buffers.
55 *
56 * The READ index maps to the first position that the firmware may be writing
57 * to -- the driver can read up to (but not including) this position and get
58 * good data.
59 * The READ index is managed by the firmware once the card is enabled.
60 *
61 * The WRITE index maps to the last position the driver has read from -- the
62 * position preceding WRITE is the last slot the firmware can place a packet.
63 *
64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65 * WRITE = READ.
66 *
67 * During initialization, the host sets up the READ queue position to the first
68 * INDEX position, and WRITE to the last (READ - 1 wrapped)
69 *
70 * When the firmware places a packet in a buffer, it will advance the READ index
71 * and fire the RX interrupt. The driver can then query the READ index and
72 * process as many packets as possible, moving the WRITE index forward as it
73 * resets the Rx queue buffers with new memory.
74 *
75 * The management in the driver is as follows:
76 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
77 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78 * to replenish the iwl->rxq->rx_free.
79 * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
80 * iwl->rxq is replenished and the READ INDEX is updated (updating the
81 * 'processed' and 'read' driver indexes as well)
82 * + A received packet is processed and handed to the kernel network stack,
83 * detached from the iwl->rxq. The driver 'processed' index is updated.
84 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
85 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
86 * INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
87 * were enough free buffers and RX_STALLED is set it is cleared.
88 *
89 *
90 * Driver sequence:
91 *
92 * iwl_rx_queue_alloc() Allocates rx_free
93 * iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
94 * iwl_rx_queue_restock
95 * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
96 * queue, updates firmware pointers, and updates
97 * the WRITE index. If insufficient rx_free buffers
98 * are available, schedules iwl_rx_replenish
99 *
100 * -- enable interrupts --
101 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
102 * READ INDEX, detaching the SKB from the pool.
103 * Moves the packet buffer from queue to rx_used.
104 * Calls iwl_rx_queue_restock to refill any empty
105 * slots.
106 * ...
107 *
108 */
109
110 /**
111 * iwl_rx_queue_space - Return number of free slots available in queue.
112 */
113 static int iwl_rx_queue_space(const struct iwl_rx_queue *q)
114 {
115 int s = q->read - q->write;
116 if (s <= 0)
117 s += RX_QUEUE_SIZE;
118 /* keep some buffer to not confuse full and empty queue */
119 s -= 2;
120 if (s < 0)
121 s = 0;
122 return s;
123 }
124
125 /**
126 * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
127 */
128 void iwl_rx_queue_update_write_ptr(struct iwl_trans *trans,
129 struct iwl_rx_queue *q)
130 {
131 unsigned long flags;
132 u32 reg;
133
134 spin_lock_irqsave(&q->lock, flags);
135
136 if (q->need_update == 0)
137 goto exit_unlock;
138
139 if (trans->cfg->base_params->shadow_reg_enable) {
140 /* shadow register enabled */
141 /* Device expects a multiple of 8 */
142 q->write_actual = (q->write & ~0x7);
143 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, q->write_actual);
144 } else {
145 struct iwl_trans_pcie *trans_pcie =
146 IWL_TRANS_GET_PCIE_TRANS(trans);
147
148 /* If power-saving is in use, make sure device is awake */
149 if (test_bit(STATUS_TPOWER_PMI, &trans_pcie->status)) {
150 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
151
152 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
153 IWL_DEBUG_INFO(trans,
154 "Rx queue requesting wakeup,"
155 " GP1 = 0x%x\n", reg);
156 iwl_set_bit(trans, CSR_GP_CNTRL,
157 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
158 goto exit_unlock;
159 }
160
161 q->write_actual = (q->write & ~0x7);
162 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
163 q->write_actual);
164
165 /* Else device is assumed to be awake */
166 } else {
167 /* Device expects a multiple of 8 */
168 q->write_actual = (q->write & ~0x7);
169 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
170 q->write_actual);
171 }
172 }
173 q->need_update = 0;
174
175 exit_unlock:
176 spin_unlock_irqrestore(&q->lock, flags);
177 }
178
179 /**
180 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
181 */
182 static inline __le32 iwl_dma_addr2rbd_ptr(dma_addr_t dma_addr)
183 {
184 return cpu_to_le32((u32)(dma_addr >> 8));
185 }
186
187 /**
188 * iwl_rx_queue_restock - refill RX queue from pre-allocated pool
189 *
190 * If there are slots in the RX queue that need to be restocked,
191 * and we have free pre-allocated buffers, fill the ranks as much
192 * as we can, pulling from rx_free.
193 *
194 * This moves the 'write' index forward to catch up with 'processed', and
195 * also updates the memory address in the firmware to reference the new
196 * target buffer.
197 */
198 static void iwl_rx_queue_restock(struct iwl_trans *trans)
199 {
200 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
201 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
202 struct list_head *element;
203 struct iwl_rx_mem_buffer *rxb;
204 unsigned long flags;
205
206 /*
207 * If the device isn't enabled - not need to try to add buffers...
208 * This can happen when we stop the device and still have an interrupt
209 * pending. We stop the APM before we sync the interrupts / tasklets
210 * because we have to (see comment there). On the other hand, since
211 * the APM is stopped, we cannot access the HW (in particular not prph).
212 * So don't try to restock if the APM has been already stopped.
213 */
214 if (!test_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status))
215 return;
216
217 spin_lock_irqsave(&rxq->lock, flags);
218 while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
219 /* The overwritten rxb must be a used one */
220 rxb = rxq->queue[rxq->write];
221 BUG_ON(rxb && rxb->page);
222
223 /* Get next free Rx buffer, remove from free list */
224 element = rxq->rx_free.next;
225 rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
226 list_del(element);
227
228 /* Point to Rx buffer via next RBD in circular buffer */
229 rxq->bd[rxq->write] = iwl_dma_addr2rbd_ptr(rxb->page_dma);
230 rxq->queue[rxq->write] = rxb;
231 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
232 rxq->free_count--;
233 }
234 spin_unlock_irqrestore(&rxq->lock, flags);
235 /* If the pre-allocated buffer pool is dropping low, schedule to
236 * refill it */
237 if (rxq->free_count <= RX_LOW_WATERMARK)
238 schedule_work(&trans_pcie->rx_replenish);
239
240 /* If we've added more space for the firmware to place data, tell it.
241 * Increment device's write pointer in multiples of 8. */
242 if (rxq->write_actual != (rxq->write & ~0x7)) {
243 spin_lock_irqsave(&rxq->lock, flags);
244 rxq->need_update = 1;
245 spin_unlock_irqrestore(&rxq->lock, flags);
246 iwl_rx_queue_update_write_ptr(trans, rxq);
247 }
248 }
249
250 /*
251 * iwl_rx_allocate - allocate a page for each used RBD
252 *
253 * A used RBD is an Rx buffer that has been given to the stack. To use it again
254 * a page must be allocated and the RBD must point to the page. This function
255 * doesn't change the HW pointer but handles the list of pages that is used by
256 * iwl_rx_queue_restock. The latter function will update the HW to use the newly
257 * allocated buffers.
258 */
259 static void iwl_rx_allocate(struct iwl_trans *trans, gfp_t priority)
260 {
261 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
262 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
263 struct list_head *element;
264 struct iwl_rx_mem_buffer *rxb;
265 struct page *page;
266 unsigned long flags;
267 gfp_t gfp_mask = priority;
268
269 while (1) {
270 spin_lock_irqsave(&rxq->lock, flags);
271 if (list_empty(&rxq->rx_used)) {
272 spin_unlock_irqrestore(&rxq->lock, flags);
273 return;
274 }
275 spin_unlock_irqrestore(&rxq->lock, flags);
276
277 if (rxq->free_count > RX_LOW_WATERMARK)
278 gfp_mask |= __GFP_NOWARN;
279
280 if (trans_pcie->rx_page_order > 0)
281 gfp_mask |= __GFP_COMP;
282
283 /* Alloc a new receive buffer */
284 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
285 if (!page) {
286 if (net_ratelimit())
287 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
288 "order: %d\n",
289 trans_pcie->rx_page_order);
290
291 if ((rxq->free_count <= RX_LOW_WATERMARK) &&
292 net_ratelimit())
293 IWL_CRIT(trans, "Failed to alloc_pages with %s."
294 "Only %u free buffers remaining.\n",
295 priority == GFP_ATOMIC ?
296 "GFP_ATOMIC" : "GFP_KERNEL",
297 rxq->free_count);
298 /* We don't reschedule replenish work here -- we will
299 * call the restock method and if it still needs
300 * more buffers it will schedule replenish */
301 return;
302 }
303
304 spin_lock_irqsave(&rxq->lock, flags);
305
306 if (list_empty(&rxq->rx_used)) {
307 spin_unlock_irqrestore(&rxq->lock, flags);
308 __free_pages(page, trans_pcie->rx_page_order);
309 return;
310 }
311 element = rxq->rx_used.next;
312 rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
313 list_del(element);
314
315 spin_unlock_irqrestore(&rxq->lock, flags);
316
317 BUG_ON(rxb->page);
318 rxb->page = page;
319 /* Get physical address of the RB */
320 rxb->page_dma =
321 dma_map_page(trans->dev, page, 0,
322 PAGE_SIZE << trans_pcie->rx_page_order,
323 DMA_FROM_DEVICE);
324 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
325 rxb->page = NULL;
326 spin_lock_irqsave(&rxq->lock, flags);
327 list_add(&rxb->list, &rxq->rx_used);
328 spin_unlock_irqrestore(&rxq->lock, flags);
329 __free_pages(page, trans_pcie->rx_page_order);
330 return;
331 }
332 /* dma address must be no more than 36 bits */
333 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
334 /* and also 256 byte aligned! */
335 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
336
337 spin_lock_irqsave(&rxq->lock, flags);
338
339 list_add_tail(&rxb->list, &rxq->rx_free);
340 rxq->free_count++;
341
342 spin_unlock_irqrestore(&rxq->lock, flags);
343 }
344 }
345
346 /*
347 * iwl_rx_replenish - Move all used buffers from rx_used to rx_free
348 *
349 * When moving to rx_free an page is allocated for the slot.
350 *
351 * Also restock the Rx queue via iwl_rx_queue_restock.
352 * This is called as a scheduled work item (except for during initialization)
353 */
354 void iwl_rx_replenish(struct iwl_trans *trans)
355 {
356 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
357 unsigned long flags;
358
359 iwl_rx_allocate(trans, GFP_KERNEL);
360
361 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
362 iwl_rx_queue_restock(trans);
363 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
364 }
365
366 static void iwl_rx_replenish_now(struct iwl_trans *trans)
367 {
368 iwl_rx_allocate(trans, GFP_ATOMIC);
369
370 iwl_rx_queue_restock(trans);
371 }
372
373 void iwl_bg_rx_replenish(struct work_struct *data)
374 {
375 struct iwl_trans_pcie *trans_pcie =
376 container_of(data, struct iwl_trans_pcie, rx_replenish);
377
378 iwl_rx_replenish(trans_pcie->trans);
379 }
380
381 static void iwl_rx_handle_rxbuf(struct iwl_trans *trans,
382 struct iwl_rx_mem_buffer *rxb)
383 {
384 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
385 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
386 struct iwl_tx_queue *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
387 unsigned long flags;
388 bool page_stolen = false;
389 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
390 u32 offset = 0;
391
392 if (WARN_ON(!rxb))
393 return;
394
395 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
396
397 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
398 struct iwl_rx_packet *pkt;
399 struct iwl_device_cmd *cmd;
400 u16 sequence;
401 bool reclaim;
402 int index, cmd_index, err, len;
403 struct iwl_rx_cmd_buffer rxcb = {
404 ._offset = offset,
405 ._page = rxb->page,
406 ._page_stolen = false,
407 .truesize = max_len,
408 };
409
410 pkt = rxb_addr(&rxcb);
411
412 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
413 break;
414
415 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
416 rxcb._offset,
417 trans_pcie_get_cmd_string(trans_pcie, pkt->hdr.cmd),
418 pkt->hdr.cmd);
419
420 len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
421 len += sizeof(u32); /* account for status word */
422 trace_iwlwifi_dev_rx(trans->dev, pkt, len);
423
424 /* Reclaim a command buffer only if this packet is a response
425 * to a (driver-originated) command.
426 * If the packet (e.g. Rx frame) originated from uCode,
427 * there is no command buffer to reclaim.
428 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
429 * but apparently a few don't get set; catch them here. */
430 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
431 if (reclaim) {
432 int i;
433
434 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
435 if (trans_pcie->no_reclaim_cmds[i] ==
436 pkt->hdr.cmd) {
437 reclaim = false;
438 break;
439 }
440 }
441 }
442
443 sequence = le16_to_cpu(pkt->hdr.sequence);
444 index = SEQ_TO_INDEX(sequence);
445 cmd_index = get_cmd_index(&txq->q, index);
446
447 if (reclaim) {
448 struct iwl_pcie_tx_queue_entry *ent;
449 ent = &txq->entries[cmd_index];
450 cmd = ent->copy_cmd;
451 WARN_ON_ONCE(!cmd && ent->meta.flags & CMD_WANT_HCMD);
452 } else {
453 cmd = NULL;
454 }
455
456 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
457
458 if (reclaim) {
459 /* The original command isn't needed any more */
460 kfree(txq->entries[cmd_index].copy_cmd);
461 txq->entries[cmd_index].copy_cmd = NULL;
462 }
463
464 /*
465 * After here, we should always check rxcb._page_stolen,
466 * if it is true then one of the handlers took the page.
467 */
468
469 if (reclaim) {
470 /* Invoke any callbacks, transfer the buffer to caller,
471 * and fire off the (possibly) blocking
472 * iwl_trans_send_cmd()
473 * as we reclaim the driver command queue */
474 if (!rxcb._page_stolen)
475 iwl_tx_cmd_complete(trans, &rxcb, err);
476 else
477 IWL_WARN(trans, "Claim null rxb?\n");
478 }
479
480 page_stolen |= rxcb._page_stolen;
481 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
482 }
483
484 /* page was stolen from us -- free our reference */
485 if (page_stolen) {
486 __free_pages(rxb->page, trans_pcie->rx_page_order);
487 rxb->page = NULL;
488 }
489
490 /* Reuse the page if possible. For notification packets and
491 * SKBs that fail to Rx correctly, add them back into the
492 * rx_free list for reuse later. */
493 spin_lock_irqsave(&rxq->lock, flags);
494 if (rxb->page != NULL) {
495 rxb->page_dma =
496 dma_map_page(trans->dev, rxb->page, 0,
497 PAGE_SIZE << trans_pcie->rx_page_order,
498 DMA_FROM_DEVICE);
499 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
500 /*
501 * free the page(s) as well to not break
502 * the invariant that the items on the used
503 * list have no page(s)
504 */
505 __free_pages(rxb->page, trans_pcie->rx_page_order);
506 rxb->page = NULL;
507 list_add_tail(&rxb->list, &rxq->rx_used);
508 } else {
509 list_add_tail(&rxb->list, &rxq->rx_free);
510 rxq->free_count++;
511 }
512 } else
513 list_add_tail(&rxb->list, &rxq->rx_used);
514 spin_unlock_irqrestore(&rxq->lock, flags);
515 }
516
517 /**
518 * iwl_rx_handle - Main entry function for receiving responses from uCode
519 *
520 * Uses the priv->rx_handlers callback function array to invoke
521 * the appropriate handlers, including command responses,
522 * frame-received notifications, and other notifications.
523 */
524 static void iwl_rx_handle(struct iwl_trans *trans)
525 {
526 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
527 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
528 u32 r, i;
529 u8 fill_rx = 0;
530 u32 count = 8;
531 int total_empty;
532
533 /* uCode's read index (stored in shared DRAM) indicates the last Rx
534 * buffer that the driver may process (last buffer filled by ucode). */
535 r = le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF;
536 i = rxq->read;
537
538 /* Rx interrupt, but nothing sent from uCode */
539 if (i == r)
540 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
541
542 /* calculate total frames need to be restock after handling RX */
543 total_empty = r - rxq->write_actual;
544 if (total_empty < 0)
545 total_empty += RX_QUEUE_SIZE;
546
547 if (total_empty > (RX_QUEUE_SIZE / 2))
548 fill_rx = 1;
549
550 while (i != r) {
551 struct iwl_rx_mem_buffer *rxb;
552
553 rxb = rxq->queue[i];
554 rxq->queue[i] = NULL;
555
556 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
557 r, i, rxb);
558 iwl_rx_handle_rxbuf(trans, rxb);
559
560 i = (i + 1) & RX_QUEUE_MASK;
561 /* If there are a lot of unused frames,
562 * restock the Rx queue so ucode wont assert. */
563 if (fill_rx) {
564 count++;
565 if (count >= 8) {
566 rxq->read = i;
567 iwl_rx_replenish_now(trans);
568 count = 0;
569 }
570 }
571 }
572
573 /* Backtrack one entry */
574 rxq->read = i;
575 if (fill_rx)
576 iwl_rx_replenish_now(trans);
577 else
578 iwl_rx_queue_restock(trans);
579 }
580
581 /**
582 * iwl_irq_handle_error - called for HW or SW error interrupt from card
583 */
584 static void iwl_irq_handle_error(struct iwl_trans *trans)
585 {
586 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
587 if (trans->cfg->internal_wimax_coex &&
588 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
589 APMS_CLK_VAL_MRB_FUNC_MODE) ||
590 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
591 APMG_PS_CTRL_VAL_RESET_REQ))) {
592 struct iwl_trans_pcie *trans_pcie =
593 IWL_TRANS_GET_PCIE_TRANS(trans);
594
595 clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
596 iwl_op_mode_wimax_active(trans->op_mode);
597 wake_up(&trans->wait_command_queue);
598 return;
599 }
600
601 iwl_dump_csr(trans);
602 iwl_dump_fh(trans, NULL);
603
604 iwl_op_mode_nic_error(trans->op_mode);
605 }
606
607 /* tasklet for iwlagn interrupt */
608 void iwl_irq_tasklet(struct iwl_trans *trans)
609 {
610 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
612 u32 inta = 0;
613 u32 handled = 0;
614 unsigned long flags;
615 u32 i;
616 #ifdef CONFIG_IWLWIFI_DEBUG
617 u32 inta_mask;
618 #endif
619
620 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
621
622 /* Ack/clear/reset pending uCode interrupts.
623 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
624 */
625 /* There is a hardware bug in the interrupt mask function that some
626 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
627 * they are disabled in the CSR_INT_MASK register. Furthermore the
628 * ICT interrupt handling mechanism has another bug that might cause
629 * these unmasked interrupts fail to be detected. We workaround the
630 * hardware bugs here by ACKing all the possible interrupts so that
631 * interrupt coalescing can still be achieved.
632 */
633 iwl_write32(trans, CSR_INT,
634 trans_pcie->inta | ~trans_pcie->inta_mask);
635
636 inta = trans_pcie->inta;
637
638 #ifdef CONFIG_IWLWIFI_DEBUG
639 if (iwl_have_debug_level(IWL_DL_ISR)) {
640 /* just for debug */
641 inta_mask = iwl_read32(trans, CSR_INT_MASK);
642 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
643 inta, inta_mask);
644 }
645 #endif
646
647 /* saved interrupt in inta variable now we can reset trans_pcie->inta */
648 trans_pcie->inta = 0;
649
650 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
651
652 /* Now service all interrupt bits discovered above. */
653 if (inta & CSR_INT_BIT_HW_ERR) {
654 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
655
656 /* Tell the device to stop sending interrupts */
657 iwl_disable_interrupts(trans);
658
659 isr_stats->hw++;
660 iwl_irq_handle_error(trans);
661
662 handled |= CSR_INT_BIT_HW_ERR;
663
664 return;
665 }
666
667 #ifdef CONFIG_IWLWIFI_DEBUG
668 if (iwl_have_debug_level(IWL_DL_ISR)) {
669 /* NIC fires this, but we don't use it, redundant with WAKEUP */
670 if (inta & CSR_INT_BIT_SCD) {
671 IWL_DEBUG_ISR(trans, "Scheduler finished to transmit "
672 "the frame/frames.\n");
673 isr_stats->sch++;
674 }
675
676 /* Alive notification via Rx interrupt will do the real work */
677 if (inta & CSR_INT_BIT_ALIVE) {
678 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
679 isr_stats->alive++;
680 }
681 }
682 #endif
683 /* Safely ignore these bits for debug checks below */
684 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
685
686 /* HW RF KILL switch toggled */
687 if (inta & CSR_INT_BIT_RF_KILL) {
688 bool hw_rfkill;
689
690 hw_rfkill = iwl_is_rfkill_set(trans);
691 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
692 hw_rfkill ? "disable radio" : "enable radio");
693
694 isr_stats->rfkill++;
695
696 iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
697
698 handled |= CSR_INT_BIT_RF_KILL;
699 }
700
701 /* Chip got too hot and stopped itself */
702 if (inta & CSR_INT_BIT_CT_KILL) {
703 IWL_ERR(trans, "Microcode CT kill error detected.\n");
704 isr_stats->ctkill++;
705 handled |= CSR_INT_BIT_CT_KILL;
706 }
707
708 /* Error detected by uCode */
709 if (inta & CSR_INT_BIT_SW_ERR) {
710 IWL_ERR(trans, "Microcode SW error detected. "
711 " Restarting 0x%X.\n", inta);
712 isr_stats->sw++;
713 iwl_irq_handle_error(trans);
714 handled |= CSR_INT_BIT_SW_ERR;
715 }
716
717 /* uCode wakes up after power-down sleep */
718 if (inta & CSR_INT_BIT_WAKEUP) {
719 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
720 iwl_rx_queue_update_write_ptr(trans, &trans_pcie->rxq);
721 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
722 iwl_txq_update_write_ptr(trans,
723 &trans_pcie->txq[i]);
724
725 isr_stats->wakeup++;
726
727 handled |= CSR_INT_BIT_WAKEUP;
728 }
729
730 /* All uCode command responses, including Tx command responses,
731 * Rx "responses" (frame-received notification), and other
732 * notifications from uCode come through here*/
733 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
734 CSR_INT_BIT_RX_PERIODIC)) {
735 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
736 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
737 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
738 iwl_write32(trans, CSR_FH_INT_STATUS,
739 CSR_FH_INT_RX_MASK);
740 }
741 if (inta & CSR_INT_BIT_RX_PERIODIC) {
742 handled |= CSR_INT_BIT_RX_PERIODIC;
743 iwl_write32(trans,
744 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
745 }
746 /* Sending RX interrupt require many steps to be done in the
747 * the device:
748 * 1- write interrupt to current index in ICT table.
749 * 2- dma RX frame.
750 * 3- update RX shared data to indicate last write index.
751 * 4- send interrupt.
752 * This could lead to RX race, driver could receive RX interrupt
753 * but the shared data changes does not reflect this;
754 * periodic interrupt will detect any dangling Rx activity.
755 */
756
757 /* Disable periodic interrupt; we use it as just a one-shot. */
758 iwl_write8(trans, CSR_INT_PERIODIC_REG,
759 CSR_INT_PERIODIC_DIS);
760
761 iwl_rx_handle(trans);
762
763 /*
764 * Enable periodic interrupt in 8 msec only if we received
765 * real RX interrupt (instead of just periodic int), to catch
766 * any dangling Rx interrupt. If it was just the periodic
767 * interrupt, there was no dangling Rx activity, and no need
768 * to extend the periodic interrupt; one-shot is enough.
769 */
770 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
771 iwl_write8(trans, CSR_INT_PERIODIC_REG,
772 CSR_INT_PERIODIC_ENA);
773
774 isr_stats->rx++;
775 }
776
777 /* This "Tx" DMA channel is used only for loading uCode */
778 if (inta & CSR_INT_BIT_FH_TX) {
779 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
780 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
781 isr_stats->tx++;
782 handled |= CSR_INT_BIT_FH_TX;
783 /* Wake up uCode load routine, now that load is complete */
784 trans_pcie->ucode_write_complete = true;
785 wake_up(&trans_pcie->ucode_write_waitq);
786 }
787
788 if (inta & ~handled) {
789 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
790 isr_stats->unhandled++;
791 }
792
793 if (inta & ~(trans_pcie->inta_mask)) {
794 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
795 inta & ~trans_pcie->inta_mask);
796 }
797
798 /* Re-enable all interrupts */
799 /* only Re-enable if disabled by irq */
800 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status))
801 iwl_enable_interrupts(trans);
802 /* Re-enable RF_KILL if it occurred */
803 else if (handled & CSR_INT_BIT_RF_KILL)
804 iwl_enable_rfkill_int(trans);
805 }
806
807 /******************************************************************************
808 *
809 * ICT functions
810 *
811 ******************************************************************************/
812
813 /* a device (PCI-E) page is 4096 bytes long */
814 #define ICT_SHIFT 12
815 #define ICT_SIZE (1 << ICT_SHIFT)
816 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
817
818 /* Free dram table */
819 void iwl_free_isr_ict(struct iwl_trans *trans)
820 {
821 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
822
823 if (trans_pcie->ict_tbl) {
824 dma_free_coherent(trans->dev, ICT_SIZE,
825 trans_pcie->ict_tbl,
826 trans_pcie->ict_tbl_dma);
827 trans_pcie->ict_tbl = NULL;
828 trans_pcie->ict_tbl_dma = 0;
829 }
830 }
831
832
833 /*
834 * allocate dram shared table, it is an aligned memory
835 * block of ICT_SIZE.
836 * also reset all data related to ICT table interrupt.
837 */
838 int iwl_alloc_isr_ict(struct iwl_trans *trans)
839 {
840 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
841
842 trans_pcie->ict_tbl =
843 dma_alloc_coherent(trans->dev, ICT_SIZE,
844 &trans_pcie->ict_tbl_dma,
845 GFP_KERNEL);
846 if (!trans_pcie->ict_tbl)
847 return -ENOMEM;
848
849 /* just an API sanity check ... it is guaranteed to be aligned */
850 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
851 iwl_free_isr_ict(trans);
852 return -EINVAL;
853 }
854
855 IWL_DEBUG_ISR(trans, "ict dma addr %Lx\n",
856 (unsigned long long)trans_pcie->ict_tbl_dma);
857
858 IWL_DEBUG_ISR(trans, "ict vir addr %p\n", trans_pcie->ict_tbl);
859
860 /* reset table and index to all 0 */
861 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
862 trans_pcie->ict_index = 0;
863
864 /* add periodic RX interrupt */
865 trans_pcie->inta_mask |= CSR_INT_BIT_RX_PERIODIC;
866 return 0;
867 }
868
869 /* Device is going up inform it about using ICT interrupt table,
870 * also we need to tell the driver to start using ICT interrupt.
871 */
872 void iwl_reset_ict(struct iwl_trans *trans)
873 {
874 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
875 u32 val;
876 unsigned long flags;
877
878 if (!trans_pcie->ict_tbl)
879 return;
880
881 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
882 iwl_disable_interrupts(trans);
883
884 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
885
886 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
887
888 val |= CSR_DRAM_INT_TBL_ENABLE;
889 val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
890
891 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
892
893 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
894 trans_pcie->use_ict = true;
895 trans_pcie->ict_index = 0;
896 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
897 iwl_enable_interrupts(trans);
898 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
899 }
900
901 /* Device is going down disable ict interrupt usage */
902 void iwl_disable_ict(struct iwl_trans *trans)
903 {
904 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
905 unsigned long flags;
906
907 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
908 trans_pcie->use_ict = false;
909 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
910 }
911
912 /* legacy (non-ICT) ISR. Assumes that trans_pcie->irq_lock is held */
913 static irqreturn_t iwl_isr(int irq, void *data)
914 {
915 struct iwl_trans *trans = data;
916 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
917 u32 inta, inta_mask;
918 #ifdef CONFIG_IWLWIFI_DEBUG
919 u32 inta_fh;
920 #endif
921
922 lockdep_assert_held(&trans_pcie->irq_lock);
923
924 trace_iwlwifi_dev_irq(trans->dev);
925
926 /* Disable (but don't clear!) interrupts here to avoid
927 * back-to-back ISRs and sporadic interrupts from our NIC.
928 * If we have something to service, the tasklet will re-enable ints.
929 * If we *don't* have something, we'll re-enable before leaving here. */
930 inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
931 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
932
933 /* Discover which interrupts are active/pending */
934 inta = iwl_read32(trans, CSR_INT);
935
936 /* Ignore interrupt if there's nothing in NIC to service.
937 * This may be due to IRQ shared with another device,
938 * or due to sporadic interrupts thrown from our NIC. */
939 if (!inta) {
940 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
941 goto none;
942 }
943
944 if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
945 /* Hardware disappeared. It might have already raised
946 * an interrupt */
947 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
948 return IRQ_HANDLED;
949 }
950
951 #ifdef CONFIG_IWLWIFI_DEBUG
952 if (iwl_have_debug_level(IWL_DL_ISR)) {
953 inta_fh = iwl_read32(trans, CSR_FH_INT_STATUS);
954 IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x, "
955 "fh 0x%08x\n", inta, inta_mask, inta_fh);
956 }
957 #endif
958
959 trans_pcie->inta |= inta;
960 /* iwl_irq_tasklet() will service interrupts and re-enable them */
961 if (likely(inta))
962 tasklet_schedule(&trans_pcie->irq_tasklet);
963 else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
964 !trans_pcie->inta)
965 iwl_enable_interrupts(trans);
966
967 none:
968 /* re-enable interrupts here since we don't have anything to service. */
969 /* only Re-enable if disabled by irq and no schedules tasklet. */
970 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
971 !trans_pcie->inta)
972 iwl_enable_interrupts(trans);
973
974 return IRQ_NONE;
975 }
976
977 /* interrupt handler using ict table, with this interrupt driver will
978 * stop using INTA register to get device's interrupt, reading this register
979 * is expensive, device will write interrupts in ICT dram table, increment
980 * index then will fire interrupt to driver, driver will OR all ICT table
981 * entries from current index up to table entry with 0 value. the result is
982 * the interrupt we need to service, driver will set the entries back to 0 and
983 * set index.
984 */
985 irqreturn_t iwl_isr_ict(int irq, void *data)
986 {
987 struct iwl_trans *trans = data;
988 struct iwl_trans_pcie *trans_pcie;
989 u32 inta, inta_mask;
990 u32 val = 0;
991 u32 read;
992 unsigned long flags;
993
994 if (!trans)
995 return IRQ_NONE;
996
997 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
998
999 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
1000
1001 /* dram interrupt table not set yet,
1002 * use legacy interrupt.
1003 */
1004 if (unlikely(!trans_pcie->use_ict)) {
1005 irqreturn_t ret = iwl_isr(irq, data);
1006 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1007 return ret;
1008 }
1009
1010 trace_iwlwifi_dev_irq(trans->dev);
1011
1012
1013 /* Disable (but don't clear!) interrupts here to avoid
1014 * back-to-back ISRs and sporadic interrupts from our NIC.
1015 * If we have something to service, the tasklet will re-enable ints.
1016 * If we *don't* have something, we'll re-enable before leaving here.
1017 */
1018 inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
1019 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1020
1021
1022 /* Ignore interrupt if there's nothing in NIC to service.
1023 * This may be due to IRQ shared with another device,
1024 * or due to sporadic interrupts thrown from our NIC. */
1025 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1026 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1027 if (!read) {
1028 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1029 goto none;
1030 }
1031
1032 /*
1033 * Collect all entries up to the first 0, starting from ict_index;
1034 * note we already read at ict_index.
1035 */
1036 do {
1037 val |= read;
1038 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1039 trans_pcie->ict_index, read);
1040 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1041 trans_pcie->ict_index =
1042 iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
1043
1044 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1045 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1046 read);
1047 } while (read);
1048
1049 /* We should not get this value, just ignore it. */
1050 if (val == 0xffffffff)
1051 val = 0;
1052
1053 /*
1054 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1055 * (bit 15 before shifting it to 31) to clear when using interrupt
1056 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1057 * so we use them to decide on the real state of the Rx bit.
1058 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1059 */
1060 if (val & 0xC0000)
1061 val |= 0x8000;
1062
1063 inta = (0xff & val) | ((0xff00 & val) << 16);
1064 IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x ict 0x%08x\n",
1065 inta, inta_mask, val);
1066
1067 inta &= trans_pcie->inta_mask;
1068 trans_pcie->inta |= inta;
1069
1070 /* iwl_irq_tasklet() will service interrupts and re-enable them */
1071 if (likely(inta))
1072 tasklet_schedule(&trans_pcie->irq_tasklet);
1073 else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1074 !trans_pcie->inta) {
1075 /* Allow interrupt if was disabled by this handler and
1076 * no tasklet was schedules, We should not enable interrupt,
1077 * tasklet will enable it.
1078 */
1079 iwl_enable_interrupts(trans);
1080 }
1081
1082 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1083 return IRQ_HANDLED;
1084
1085 none:
1086 /* re-enable interrupts here since we don't have anything to service.
1087 * only Re-enable if disabled by irq.
1088 */
1089 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1090 !trans_pcie->inta)
1091 iwl_enable_interrupts(trans);
1092
1093 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1094 return IRQ_NONE;
1095 }