]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/iwlwifi/pcie/rx.c
Merge tag 'for-v3.13-fixes' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2013 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
32
33 #include "iwl-prph.h"
34 #include "iwl-io.h"
35 #include "internal.h"
36 #include "iwl-op-mode.h"
37
38 /******************************************************************************
39 *
40 * RX path functions
41 *
42 ******************************************************************************/
43
44 /*
45 * Rx theory of operation
46 *
47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48 * each of which point to Receive Buffers to be filled by the NIC. These get
49 * used not only for Rx frames, but for any command response or notification
50 * from the NIC. The driver and NIC manage the Rx buffers by means
51 * of indexes into the circular buffer.
52 *
53 * Rx Queue Indexes
54 * The host/firmware share two index registers for managing the Rx buffers.
55 *
56 * The READ index maps to the first position that the firmware may be writing
57 * to -- the driver can read up to (but not including) this position and get
58 * good data.
59 * The READ index is managed by the firmware once the card is enabled.
60 *
61 * The WRITE index maps to the last position the driver has read from -- the
62 * position preceding WRITE is the last slot the firmware can place a packet.
63 *
64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65 * WRITE = READ.
66 *
67 * During initialization, the host sets up the READ queue position to the first
68 * INDEX position, and WRITE to the last (READ - 1 wrapped)
69 *
70 * When the firmware places a packet in a buffer, it will advance the READ index
71 * and fire the RX interrupt. The driver can then query the READ index and
72 * process as many packets as possible, moving the WRITE index forward as it
73 * resets the Rx queue buffers with new memory.
74 *
75 * The management in the driver is as follows:
76 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
77 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78 * to replenish the iwl->rxq->rx_free.
79 * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
80 * iwl->rxq is replenished and the READ INDEX is updated (updating the
81 * 'processed' and 'read' driver indexes as well)
82 * + A received packet is processed and handed to the kernel network stack,
83 * detached from the iwl->rxq. The driver 'processed' index is updated.
84 * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
85 * rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
86 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
87 * If there were enough free buffers and RX_STALLED is set it is cleared.
88 *
89 *
90 * Driver sequence:
91 *
92 * iwl_rxq_alloc() Allocates rx_free
93 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
94 * iwl_pcie_rxq_restock
95 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
96 * queue, updates firmware pointers, and updates
97 * the WRITE index. If insufficient rx_free buffers
98 * are available, schedules iwl_pcie_rx_replenish
99 *
100 * -- enable interrupts --
101 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
102 * READ INDEX, detaching the SKB from the pool.
103 * Moves the packet buffer from queue to rx_used.
104 * Calls iwl_pcie_rxq_restock to refill any empty
105 * slots.
106 * ...
107 *
108 */
109
110 /*
111 * iwl_rxq_space - Return number of free slots available in queue.
112 */
113 static int iwl_rxq_space(const struct iwl_rxq *rxq)
114 {
115 /* Make sure RX_QUEUE_SIZE is a power of 2 */
116 BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
117
118 /*
119 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
120 * between empty and completely full queues.
121 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
122 * defined for negative dividends.
123 */
124 return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
125 }
126
127 /*
128 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
129 */
130 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
131 {
132 return cpu_to_le32((u32)(dma_addr >> 8));
133 }
134
135 /*
136 * iwl_pcie_rx_stop - stops the Rx DMA
137 */
138 int iwl_pcie_rx_stop(struct iwl_trans *trans)
139 {
140 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
141 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
142 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
143 }
144
145 /*
146 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
147 */
148 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
149 struct iwl_rxq *rxq)
150 {
151 unsigned long flags;
152 u32 reg;
153
154 spin_lock_irqsave(&rxq->lock, flags);
155
156 if (rxq->need_update == 0)
157 goto exit_unlock;
158
159 if (trans->cfg->base_params->shadow_reg_enable) {
160 /* shadow register enabled */
161 /* Device expects a multiple of 8 */
162 rxq->write_actual = (rxq->write & ~0x7);
163 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
164 } else {
165 struct iwl_trans_pcie *trans_pcie =
166 IWL_TRANS_GET_PCIE_TRANS(trans);
167
168 /* If power-saving is in use, make sure device is awake */
169 if (test_bit(STATUS_TPOWER_PMI, &trans_pcie->status)) {
170 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
171
172 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
173 IWL_DEBUG_INFO(trans,
174 "Rx queue requesting wakeup,"
175 " GP1 = 0x%x\n", reg);
176 iwl_set_bit(trans, CSR_GP_CNTRL,
177 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
178 goto exit_unlock;
179 }
180
181 rxq->write_actual = (rxq->write & ~0x7);
182 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
183 rxq->write_actual);
184
185 /* Else device is assumed to be awake */
186 } else {
187 /* Device expects a multiple of 8 */
188 rxq->write_actual = (rxq->write & ~0x7);
189 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
190 rxq->write_actual);
191 }
192 }
193 rxq->need_update = 0;
194
195 exit_unlock:
196 spin_unlock_irqrestore(&rxq->lock, flags);
197 }
198
199 /*
200 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
201 *
202 * If there are slots in the RX queue that need to be restocked,
203 * and we have free pre-allocated buffers, fill the ranks as much
204 * as we can, pulling from rx_free.
205 *
206 * This moves the 'write' index forward to catch up with 'processed', and
207 * also updates the memory address in the firmware to reference the new
208 * target buffer.
209 */
210 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
211 {
212 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
213 struct iwl_rxq *rxq = &trans_pcie->rxq;
214 struct iwl_rx_mem_buffer *rxb;
215 unsigned long flags;
216
217 /*
218 * If the device isn't enabled - not need to try to add buffers...
219 * This can happen when we stop the device and still have an interrupt
220 * pending. We stop the APM before we sync the interrupts because we
221 * have to (see comment there). On the other hand, since the APM is
222 * stopped, we cannot access the HW (in particular not prph).
223 * So don't try to restock if the APM has been already stopped.
224 */
225 if (!test_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status))
226 return;
227
228 spin_lock_irqsave(&rxq->lock, flags);
229 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
230 /* The overwritten rxb must be a used one */
231 rxb = rxq->queue[rxq->write];
232 BUG_ON(rxb && rxb->page);
233
234 /* Get next free Rx buffer, remove from free list */
235 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
236 list);
237 list_del(&rxb->list);
238
239 /* Point to Rx buffer via next RBD in circular buffer */
240 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
241 rxq->queue[rxq->write] = rxb;
242 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
243 rxq->free_count--;
244 }
245 spin_unlock_irqrestore(&rxq->lock, flags);
246 /* If the pre-allocated buffer pool is dropping low, schedule to
247 * refill it */
248 if (rxq->free_count <= RX_LOW_WATERMARK)
249 schedule_work(&trans_pcie->rx_replenish);
250
251 /* If we've added more space for the firmware to place data, tell it.
252 * Increment device's write pointer in multiples of 8. */
253 if (rxq->write_actual != (rxq->write & ~0x7)) {
254 spin_lock_irqsave(&rxq->lock, flags);
255 rxq->need_update = 1;
256 spin_unlock_irqrestore(&rxq->lock, flags);
257 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
258 }
259 }
260
261 /*
262 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
263 *
264 * A used RBD is an Rx buffer that has been given to the stack. To use it again
265 * a page must be allocated and the RBD must point to the page. This function
266 * doesn't change the HW pointer but handles the list of pages that is used by
267 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
268 * allocated buffers.
269 */
270 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
271 {
272 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
273 struct iwl_rxq *rxq = &trans_pcie->rxq;
274 struct iwl_rx_mem_buffer *rxb;
275 struct page *page;
276 unsigned long flags;
277 gfp_t gfp_mask = priority;
278
279 while (1) {
280 spin_lock_irqsave(&rxq->lock, flags);
281 if (list_empty(&rxq->rx_used)) {
282 spin_unlock_irqrestore(&rxq->lock, flags);
283 return;
284 }
285 spin_unlock_irqrestore(&rxq->lock, flags);
286
287 if (rxq->free_count > RX_LOW_WATERMARK)
288 gfp_mask |= __GFP_NOWARN;
289
290 if (trans_pcie->rx_page_order > 0)
291 gfp_mask |= __GFP_COMP;
292
293 /* Alloc a new receive buffer */
294 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
295 if (!page) {
296 if (net_ratelimit())
297 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
298 "order: %d\n",
299 trans_pcie->rx_page_order);
300
301 if ((rxq->free_count <= RX_LOW_WATERMARK) &&
302 net_ratelimit())
303 IWL_CRIT(trans, "Failed to alloc_pages with %s."
304 "Only %u free buffers remaining.\n",
305 priority == GFP_ATOMIC ?
306 "GFP_ATOMIC" : "GFP_KERNEL",
307 rxq->free_count);
308 /* We don't reschedule replenish work here -- we will
309 * call the restock method and if it still needs
310 * more buffers it will schedule replenish */
311 return;
312 }
313
314 spin_lock_irqsave(&rxq->lock, flags);
315
316 if (list_empty(&rxq->rx_used)) {
317 spin_unlock_irqrestore(&rxq->lock, flags);
318 __free_pages(page, trans_pcie->rx_page_order);
319 return;
320 }
321 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
322 list);
323 list_del(&rxb->list);
324 spin_unlock_irqrestore(&rxq->lock, flags);
325
326 BUG_ON(rxb->page);
327 rxb->page = page;
328 /* Get physical address of the RB */
329 rxb->page_dma =
330 dma_map_page(trans->dev, page, 0,
331 PAGE_SIZE << trans_pcie->rx_page_order,
332 DMA_FROM_DEVICE);
333 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
334 rxb->page = NULL;
335 spin_lock_irqsave(&rxq->lock, flags);
336 list_add(&rxb->list, &rxq->rx_used);
337 spin_unlock_irqrestore(&rxq->lock, flags);
338 __free_pages(page, trans_pcie->rx_page_order);
339 return;
340 }
341 /* dma address must be no more than 36 bits */
342 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
343 /* and also 256 byte aligned! */
344 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
345
346 spin_lock_irqsave(&rxq->lock, flags);
347
348 list_add_tail(&rxb->list, &rxq->rx_free);
349 rxq->free_count++;
350
351 spin_unlock_irqrestore(&rxq->lock, flags);
352 }
353 }
354
355 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
356 {
357 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
358 struct iwl_rxq *rxq = &trans_pcie->rxq;
359 int i;
360
361 lockdep_assert_held(&rxq->lock);
362
363 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
364 if (!rxq->pool[i].page)
365 continue;
366 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
367 PAGE_SIZE << trans_pcie->rx_page_order,
368 DMA_FROM_DEVICE);
369 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
370 rxq->pool[i].page = NULL;
371 }
372 }
373
374 /*
375 * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
376 *
377 * When moving to rx_free an page is allocated for the slot.
378 *
379 * Also restock the Rx queue via iwl_pcie_rxq_restock.
380 * This is called as a scheduled work item (except for during initialization)
381 */
382 static void iwl_pcie_rx_replenish(struct iwl_trans *trans)
383 {
384 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
385 unsigned long flags;
386
387 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL);
388
389 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
390 iwl_pcie_rxq_restock(trans);
391 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
392 }
393
394 static void iwl_pcie_rx_replenish_now(struct iwl_trans *trans)
395 {
396 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC);
397
398 iwl_pcie_rxq_restock(trans);
399 }
400
401 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
402 {
403 struct iwl_trans_pcie *trans_pcie =
404 container_of(data, struct iwl_trans_pcie, rx_replenish);
405
406 iwl_pcie_rx_replenish(trans_pcie->trans);
407 }
408
409 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
410 {
411 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
412 struct iwl_rxq *rxq = &trans_pcie->rxq;
413 struct device *dev = trans->dev;
414
415 memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
416
417 spin_lock_init(&rxq->lock);
418
419 if (WARN_ON(rxq->bd || rxq->rb_stts))
420 return -EINVAL;
421
422 /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
423 rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
424 &rxq->bd_dma, GFP_KERNEL);
425 if (!rxq->bd)
426 goto err_bd;
427
428 /*Allocate the driver's pointer to receive buffer status */
429 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
430 &rxq->rb_stts_dma, GFP_KERNEL);
431 if (!rxq->rb_stts)
432 goto err_rb_stts;
433
434 return 0;
435
436 err_rb_stts:
437 dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
438 rxq->bd, rxq->bd_dma);
439 rxq->bd_dma = 0;
440 rxq->bd = NULL;
441 err_bd:
442 return -ENOMEM;
443 }
444
445 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
446 {
447 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
448 u32 rb_size;
449 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
450
451 if (trans_pcie->rx_buf_size_8k)
452 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
453 else
454 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
455
456 /* Stop Rx DMA */
457 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
458 /* reset and flush pointers */
459 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
460 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
461 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
462
463 /* Reset driver's Rx queue write index */
464 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
465
466 /* Tell device where to find RBD circular buffer in DRAM */
467 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
468 (u32)(rxq->bd_dma >> 8));
469
470 /* Tell device where in DRAM to update its Rx status */
471 iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
472 rxq->rb_stts_dma >> 4);
473
474 /* Enable Rx DMA
475 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
476 * the credit mechanism in 5000 HW RX FIFO
477 * Direct rx interrupts to hosts
478 * Rx buffer size 4 or 8k
479 * RB timeout 0x10
480 * 256 RBDs
481 */
482 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
483 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
484 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
485 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
486 rb_size|
487 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
488 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
489
490 /* Set interrupt coalescing timer to default (2048 usecs) */
491 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
492
493 /* W/A for interrupt coalescing bug in 7260 and 3160 */
494 if (trans->cfg->host_interrupt_operation_mode)
495 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
496 }
497
498 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
499 {
500 int i;
501
502 lockdep_assert_held(&rxq->lock);
503
504 INIT_LIST_HEAD(&rxq->rx_free);
505 INIT_LIST_HEAD(&rxq->rx_used);
506 rxq->free_count = 0;
507
508 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
509 list_add(&rxq->pool[i].list, &rxq->rx_used);
510 }
511
512 int iwl_pcie_rx_init(struct iwl_trans *trans)
513 {
514 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
515 struct iwl_rxq *rxq = &trans_pcie->rxq;
516 int i, err;
517 unsigned long flags;
518
519 if (!rxq->bd) {
520 err = iwl_pcie_rx_alloc(trans);
521 if (err)
522 return err;
523 }
524
525 spin_lock_irqsave(&rxq->lock, flags);
526
527 INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
528
529 /* free all first - we might be reconfigured for a different size */
530 iwl_pcie_rxq_free_rbs(trans);
531 iwl_pcie_rx_init_rxb_lists(rxq);
532
533 for (i = 0; i < RX_QUEUE_SIZE; i++)
534 rxq->queue[i] = NULL;
535
536 /* Set us so that we have processed and used all buffers, but have
537 * not restocked the Rx queue with fresh buffers */
538 rxq->read = rxq->write = 0;
539 rxq->write_actual = 0;
540 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
541 spin_unlock_irqrestore(&rxq->lock, flags);
542
543 iwl_pcie_rx_replenish(trans);
544
545 iwl_pcie_rx_hw_init(trans, rxq);
546
547 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
548 rxq->need_update = 1;
549 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
550 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
551
552 return 0;
553 }
554
555 void iwl_pcie_rx_free(struct iwl_trans *trans)
556 {
557 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
558 struct iwl_rxq *rxq = &trans_pcie->rxq;
559 unsigned long flags;
560
561 /*if rxq->bd is NULL, it means that nothing has been allocated,
562 * exit now */
563 if (!rxq->bd) {
564 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
565 return;
566 }
567
568 cancel_work_sync(&trans_pcie->rx_replenish);
569
570 spin_lock_irqsave(&rxq->lock, flags);
571 iwl_pcie_rxq_free_rbs(trans);
572 spin_unlock_irqrestore(&rxq->lock, flags);
573
574 dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
575 rxq->bd, rxq->bd_dma);
576 rxq->bd_dma = 0;
577 rxq->bd = NULL;
578
579 if (rxq->rb_stts)
580 dma_free_coherent(trans->dev,
581 sizeof(struct iwl_rb_status),
582 rxq->rb_stts, rxq->rb_stts_dma);
583 else
584 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
585 rxq->rb_stts_dma = 0;
586 rxq->rb_stts = NULL;
587 }
588
589 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
590 struct iwl_rx_mem_buffer *rxb)
591 {
592 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
593 struct iwl_rxq *rxq = &trans_pcie->rxq;
594 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
595 unsigned long flags;
596 bool page_stolen = false;
597 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
598 u32 offset = 0;
599
600 if (WARN_ON(!rxb))
601 return;
602
603 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
604
605 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
606 struct iwl_rx_packet *pkt;
607 struct iwl_device_cmd *cmd;
608 u16 sequence;
609 bool reclaim;
610 int index, cmd_index, err, len;
611 struct iwl_rx_cmd_buffer rxcb = {
612 ._offset = offset,
613 ._rx_page_order = trans_pcie->rx_page_order,
614 ._page = rxb->page,
615 ._page_stolen = false,
616 .truesize = max_len,
617 };
618
619 pkt = rxb_addr(&rxcb);
620
621 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
622 break;
623
624 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
625 rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd),
626 pkt->hdr.cmd);
627
628 len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
629 len += sizeof(u32); /* account for status word */
630 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
631 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
632
633 /* Reclaim a command buffer only if this packet is a response
634 * to a (driver-originated) command.
635 * If the packet (e.g. Rx frame) originated from uCode,
636 * there is no command buffer to reclaim.
637 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
638 * but apparently a few don't get set; catch them here. */
639 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
640 if (reclaim) {
641 int i;
642
643 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
644 if (trans_pcie->no_reclaim_cmds[i] ==
645 pkt->hdr.cmd) {
646 reclaim = false;
647 break;
648 }
649 }
650 }
651
652 sequence = le16_to_cpu(pkt->hdr.sequence);
653 index = SEQ_TO_INDEX(sequence);
654 cmd_index = get_cmd_index(&txq->q, index);
655
656 if (reclaim)
657 cmd = txq->entries[cmd_index].cmd;
658 else
659 cmd = NULL;
660
661 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
662
663 if (reclaim) {
664 kfree(txq->entries[cmd_index].free_buf);
665 txq->entries[cmd_index].free_buf = NULL;
666 }
667
668 /*
669 * After here, we should always check rxcb._page_stolen,
670 * if it is true then one of the handlers took the page.
671 */
672
673 if (reclaim) {
674 /* Invoke any callbacks, transfer the buffer to caller,
675 * and fire off the (possibly) blocking
676 * iwl_trans_send_cmd()
677 * as we reclaim the driver command queue */
678 if (!rxcb._page_stolen)
679 iwl_pcie_hcmd_complete(trans, &rxcb, err);
680 else
681 IWL_WARN(trans, "Claim null rxb?\n");
682 }
683
684 page_stolen |= rxcb._page_stolen;
685 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
686 }
687
688 /* page was stolen from us -- free our reference */
689 if (page_stolen) {
690 __free_pages(rxb->page, trans_pcie->rx_page_order);
691 rxb->page = NULL;
692 }
693
694 /* Reuse the page if possible. For notification packets and
695 * SKBs that fail to Rx correctly, add them back into the
696 * rx_free list for reuse later. */
697 spin_lock_irqsave(&rxq->lock, flags);
698 if (rxb->page != NULL) {
699 rxb->page_dma =
700 dma_map_page(trans->dev, rxb->page, 0,
701 PAGE_SIZE << trans_pcie->rx_page_order,
702 DMA_FROM_DEVICE);
703 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
704 /*
705 * free the page(s) as well to not break
706 * the invariant that the items on the used
707 * list have no page(s)
708 */
709 __free_pages(rxb->page, trans_pcie->rx_page_order);
710 rxb->page = NULL;
711 list_add_tail(&rxb->list, &rxq->rx_used);
712 } else {
713 list_add_tail(&rxb->list, &rxq->rx_free);
714 rxq->free_count++;
715 }
716 } else
717 list_add_tail(&rxb->list, &rxq->rx_used);
718 spin_unlock_irqrestore(&rxq->lock, flags);
719 }
720
721 /*
722 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
723 */
724 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
725 {
726 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
727 struct iwl_rxq *rxq = &trans_pcie->rxq;
728 u32 r, i;
729 u8 fill_rx = 0;
730 u32 count = 8;
731 int total_empty;
732
733 /* uCode's read index (stored in shared DRAM) indicates the last Rx
734 * buffer that the driver may process (last buffer filled by ucode). */
735 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
736 i = rxq->read;
737
738 /* Rx interrupt, but nothing sent from uCode */
739 if (i == r)
740 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
741
742 /* calculate total frames need to be restock after handling RX */
743 total_empty = r - rxq->write_actual;
744 if (total_empty < 0)
745 total_empty += RX_QUEUE_SIZE;
746
747 if (total_empty > (RX_QUEUE_SIZE / 2))
748 fill_rx = 1;
749
750 while (i != r) {
751 struct iwl_rx_mem_buffer *rxb;
752
753 rxb = rxq->queue[i];
754 rxq->queue[i] = NULL;
755
756 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
757 r, i, rxb);
758 iwl_pcie_rx_handle_rb(trans, rxb);
759
760 i = (i + 1) & RX_QUEUE_MASK;
761 /* If there are a lot of unused frames,
762 * restock the Rx queue so ucode wont assert. */
763 if (fill_rx) {
764 count++;
765 if (count >= 8) {
766 rxq->read = i;
767 iwl_pcie_rx_replenish_now(trans);
768 count = 0;
769 }
770 }
771 }
772
773 /* Backtrack one entry */
774 rxq->read = i;
775 if (fill_rx)
776 iwl_pcie_rx_replenish_now(trans);
777 else
778 iwl_pcie_rxq_restock(trans);
779 }
780
781 /*
782 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
783 */
784 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
785 {
786 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
787
788 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
789 if (trans->cfg->internal_wimax_coex &&
790 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
791 APMS_CLK_VAL_MRB_FUNC_MODE) ||
792 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
793 APMG_PS_CTRL_VAL_RESET_REQ))) {
794 clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
795 iwl_op_mode_wimax_active(trans->op_mode);
796 wake_up(&trans_pcie->wait_command_queue);
797 return;
798 }
799
800 iwl_pcie_dump_csr(trans);
801 iwl_dump_fh(trans, NULL);
802
803 /* set the ERROR bit before we wake up the caller */
804 set_bit(STATUS_FW_ERROR, &trans_pcie->status);
805 clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
806 wake_up(&trans_pcie->wait_command_queue);
807
808 local_bh_disable();
809 iwl_nic_error(trans);
810 local_bh_enable();
811 }
812
813 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
814 {
815 struct iwl_trans *trans = dev_id;
816 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
817 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
818 u32 inta = 0;
819 u32 handled = 0;
820 unsigned long flags;
821 u32 i;
822
823 lock_map_acquire(&trans->sync_cmd_lockdep_map);
824
825 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
826
827 /* Ack/clear/reset pending uCode interrupts.
828 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
829 */
830 /* There is a hardware bug in the interrupt mask function that some
831 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
832 * they are disabled in the CSR_INT_MASK register. Furthermore the
833 * ICT interrupt handling mechanism has another bug that might cause
834 * these unmasked interrupts fail to be detected. We workaround the
835 * hardware bugs here by ACKing all the possible interrupts so that
836 * interrupt coalescing can still be achieved.
837 */
838 iwl_write32(trans, CSR_INT,
839 trans_pcie->inta | ~trans_pcie->inta_mask);
840
841 inta = trans_pcie->inta;
842
843 if (iwl_have_debug_level(IWL_DL_ISR))
844 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
845 inta, iwl_read32(trans, CSR_INT_MASK));
846
847 /* saved interrupt in inta variable now we can reset trans_pcie->inta */
848 trans_pcie->inta = 0;
849
850 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
851
852 /* Now service all interrupt bits discovered above. */
853 if (inta & CSR_INT_BIT_HW_ERR) {
854 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
855
856 /* Tell the device to stop sending interrupts */
857 iwl_disable_interrupts(trans);
858
859 isr_stats->hw++;
860 iwl_pcie_irq_handle_error(trans);
861
862 handled |= CSR_INT_BIT_HW_ERR;
863
864 goto out;
865 }
866
867 if (iwl_have_debug_level(IWL_DL_ISR)) {
868 /* NIC fires this, but we don't use it, redundant with WAKEUP */
869 if (inta & CSR_INT_BIT_SCD) {
870 IWL_DEBUG_ISR(trans,
871 "Scheduler finished to transmit the frame/frames.\n");
872 isr_stats->sch++;
873 }
874
875 /* Alive notification via Rx interrupt will do the real work */
876 if (inta & CSR_INT_BIT_ALIVE) {
877 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
878 isr_stats->alive++;
879 }
880 }
881
882 /* Safely ignore these bits for debug checks below */
883 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
884
885 /* HW RF KILL switch toggled */
886 if (inta & CSR_INT_BIT_RF_KILL) {
887 bool hw_rfkill;
888
889 hw_rfkill = iwl_is_rfkill_set(trans);
890 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
891 hw_rfkill ? "disable radio" : "enable radio");
892
893 isr_stats->rfkill++;
894
895 iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
896 if (hw_rfkill) {
897 set_bit(STATUS_RFKILL, &trans_pcie->status);
898 if (test_and_clear_bit(STATUS_HCMD_ACTIVE,
899 &trans_pcie->status))
900 IWL_DEBUG_RF_KILL(trans,
901 "Rfkill while SYNC HCMD in flight\n");
902 wake_up(&trans_pcie->wait_command_queue);
903 } else {
904 clear_bit(STATUS_RFKILL, &trans_pcie->status);
905 }
906
907 handled |= CSR_INT_BIT_RF_KILL;
908 }
909
910 /* Chip got too hot and stopped itself */
911 if (inta & CSR_INT_BIT_CT_KILL) {
912 IWL_ERR(trans, "Microcode CT kill error detected.\n");
913 isr_stats->ctkill++;
914 handled |= CSR_INT_BIT_CT_KILL;
915 }
916
917 /* Error detected by uCode */
918 if (inta & CSR_INT_BIT_SW_ERR) {
919 IWL_ERR(trans, "Microcode SW error detected. "
920 " Restarting 0x%X.\n", inta);
921 isr_stats->sw++;
922 iwl_pcie_irq_handle_error(trans);
923 handled |= CSR_INT_BIT_SW_ERR;
924 }
925
926 /* uCode wakes up after power-down sleep */
927 if (inta & CSR_INT_BIT_WAKEUP) {
928 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
929 iwl_pcie_rxq_inc_wr_ptr(trans, &trans_pcie->rxq);
930 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
931 iwl_pcie_txq_inc_wr_ptr(trans, &trans_pcie->txq[i]);
932
933 isr_stats->wakeup++;
934
935 handled |= CSR_INT_BIT_WAKEUP;
936 }
937
938 /* All uCode command responses, including Tx command responses,
939 * Rx "responses" (frame-received notification), and other
940 * notifications from uCode come through here*/
941 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
942 CSR_INT_BIT_RX_PERIODIC)) {
943 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
944 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
945 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
946 iwl_write32(trans, CSR_FH_INT_STATUS,
947 CSR_FH_INT_RX_MASK);
948 }
949 if (inta & CSR_INT_BIT_RX_PERIODIC) {
950 handled |= CSR_INT_BIT_RX_PERIODIC;
951 iwl_write32(trans,
952 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
953 }
954 /* Sending RX interrupt require many steps to be done in the
955 * the device:
956 * 1- write interrupt to current index in ICT table.
957 * 2- dma RX frame.
958 * 3- update RX shared data to indicate last write index.
959 * 4- send interrupt.
960 * This could lead to RX race, driver could receive RX interrupt
961 * but the shared data changes does not reflect this;
962 * periodic interrupt will detect any dangling Rx activity.
963 */
964
965 /* Disable periodic interrupt; we use it as just a one-shot. */
966 iwl_write8(trans, CSR_INT_PERIODIC_REG,
967 CSR_INT_PERIODIC_DIS);
968
969 iwl_pcie_rx_handle(trans);
970
971 /*
972 * Enable periodic interrupt in 8 msec only if we received
973 * real RX interrupt (instead of just periodic int), to catch
974 * any dangling Rx interrupt. If it was just the periodic
975 * interrupt, there was no dangling Rx activity, and no need
976 * to extend the periodic interrupt; one-shot is enough.
977 */
978 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
979 iwl_write8(trans, CSR_INT_PERIODIC_REG,
980 CSR_INT_PERIODIC_ENA);
981
982 isr_stats->rx++;
983 }
984
985 /* This "Tx" DMA channel is used only for loading uCode */
986 if (inta & CSR_INT_BIT_FH_TX) {
987 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
988 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
989 isr_stats->tx++;
990 handled |= CSR_INT_BIT_FH_TX;
991 /* Wake up uCode load routine, now that load is complete */
992 trans_pcie->ucode_write_complete = true;
993 wake_up(&trans_pcie->ucode_write_waitq);
994 }
995
996 if (inta & ~handled) {
997 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
998 isr_stats->unhandled++;
999 }
1000
1001 if (inta & ~(trans_pcie->inta_mask)) {
1002 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1003 inta & ~trans_pcie->inta_mask);
1004 }
1005
1006 /* Re-enable all interrupts */
1007 /* only Re-enable if disabled by irq */
1008 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status))
1009 iwl_enable_interrupts(trans);
1010 /* Re-enable RF_KILL if it occurred */
1011 else if (handled & CSR_INT_BIT_RF_KILL)
1012 iwl_enable_rfkill_int(trans);
1013
1014 out:
1015 lock_map_release(&trans->sync_cmd_lockdep_map);
1016 return IRQ_HANDLED;
1017 }
1018
1019 /******************************************************************************
1020 *
1021 * ICT functions
1022 *
1023 ******************************************************************************/
1024
1025 /* a device (PCI-E) page is 4096 bytes long */
1026 #define ICT_SHIFT 12
1027 #define ICT_SIZE (1 << ICT_SHIFT)
1028 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1029
1030 /* Free dram table */
1031 void iwl_pcie_free_ict(struct iwl_trans *trans)
1032 {
1033 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1034
1035 if (trans_pcie->ict_tbl) {
1036 dma_free_coherent(trans->dev, ICT_SIZE,
1037 trans_pcie->ict_tbl,
1038 trans_pcie->ict_tbl_dma);
1039 trans_pcie->ict_tbl = NULL;
1040 trans_pcie->ict_tbl_dma = 0;
1041 }
1042 }
1043
1044 /*
1045 * allocate dram shared table, it is an aligned memory
1046 * block of ICT_SIZE.
1047 * also reset all data related to ICT table interrupt.
1048 */
1049 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1050 {
1051 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1052
1053 trans_pcie->ict_tbl =
1054 dma_alloc_coherent(trans->dev, ICT_SIZE,
1055 &trans_pcie->ict_tbl_dma,
1056 GFP_KERNEL);
1057 if (!trans_pcie->ict_tbl)
1058 return -ENOMEM;
1059
1060 /* just an API sanity check ... it is guaranteed to be aligned */
1061 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1062 iwl_pcie_free_ict(trans);
1063 return -EINVAL;
1064 }
1065
1066 IWL_DEBUG_ISR(trans, "ict dma addr %Lx\n",
1067 (unsigned long long)trans_pcie->ict_tbl_dma);
1068
1069 IWL_DEBUG_ISR(trans, "ict vir addr %p\n", trans_pcie->ict_tbl);
1070
1071 /* reset table and index to all 0 */
1072 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1073 trans_pcie->ict_index = 0;
1074
1075 /* add periodic RX interrupt */
1076 trans_pcie->inta_mask |= CSR_INT_BIT_RX_PERIODIC;
1077 return 0;
1078 }
1079
1080 /* Device is going up inform it about using ICT interrupt table,
1081 * also we need to tell the driver to start using ICT interrupt.
1082 */
1083 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1084 {
1085 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086 u32 val;
1087 unsigned long flags;
1088
1089 if (!trans_pcie->ict_tbl)
1090 return;
1091
1092 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
1093 iwl_disable_interrupts(trans);
1094
1095 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1096
1097 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1098
1099 val |= CSR_DRAM_INT_TBL_ENABLE;
1100 val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1101
1102 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1103
1104 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1105 trans_pcie->use_ict = true;
1106 trans_pcie->ict_index = 0;
1107 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1108 iwl_enable_interrupts(trans);
1109 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1110 }
1111
1112 /* Device is going down disable ict interrupt usage */
1113 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1114 {
1115 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1116 unsigned long flags;
1117
1118 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
1119 trans_pcie->use_ict = false;
1120 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1121 }
1122
1123 /* legacy (non-ICT) ISR. Assumes that trans_pcie->irq_lock is held */
1124 static irqreturn_t iwl_pcie_isr(int irq, void *data)
1125 {
1126 struct iwl_trans *trans = data;
1127 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1128 u32 inta, inta_mask;
1129 irqreturn_t ret = IRQ_NONE;
1130
1131 lockdep_assert_held(&trans_pcie->irq_lock);
1132
1133 trace_iwlwifi_dev_irq(trans->dev);
1134
1135 /* Disable (but don't clear!) interrupts here to avoid
1136 * back-to-back ISRs and sporadic interrupts from our NIC.
1137 * If we have something to service, the irq thread will re-enable ints.
1138 * If we *don't* have something, we'll re-enable before leaving here. */
1139 inta_mask = iwl_read32(trans, CSR_INT_MASK);
1140 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1141
1142 /* Discover which interrupts are active/pending */
1143 inta = iwl_read32(trans, CSR_INT);
1144
1145 if (inta & (~inta_mask)) {
1146 IWL_DEBUG_ISR(trans,
1147 "We got a masked interrupt (0x%08x)...Ack and ignore\n",
1148 inta & (~inta_mask));
1149 iwl_write32(trans, CSR_INT, inta & (~inta_mask));
1150 inta &= inta_mask;
1151 }
1152
1153 /* Ignore interrupt if there's nothing in NIC to service.
1154 * This may be due to IRQ shared with another device,
1155 * or due to sporadic interrupts thrown from our NIC. */
1156 if (!inta) {
1157 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1158 goto none;
1159 }
1160
1161 if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1162 /* Hardware disappeared. It might have already raised
1163 * an interrupt */
1164 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1165 return IRQ_HANDLED;
1166 }
1167
1168 if (iwl_have_debug_level(IWL_DL_ISR))
1169 IWL_DEBUG_ISR(trans,
1170 "ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n",
1171 inta, inta_mask,
1172 iwl_read32(trans, CSR_FH_INT_STATUS));
1173
1174 trans_pcie->inta |= inta;
1175 /* the thread will service interrupts and re-enable them */
1176 if (likely(inta))
1177 return IRQ_WAKE_THREAD;
1178
1179 ret = IRQ_HANDLED;
1180
1181 none:
1182 /* re-enable interrupts here since we don't have anything to service. */
1183 /* only Re-enable if disabled by irq and no schedules tasklet. */
1184 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1185 !trans_pcie->inta)
1186 iwl_enable_interrupts(trans);
1187
1188 return ret;
1189 }
1190
1191 /* interrupt handler using ict table, with this interrupt driver will
1192 * stop using INTA register to get device's interrupt, reading this register
1193 * is expensive, device will write interrupts in ICT dram table, increment
1194 * index then will fire interrupt to driver, driver will OR all ICT table
1195 * entries from current index up to table entry with 0 value. the result is
1196 * the interrupt we need to service, driver will set the entries back to 0 and
1197 * set index.
1198 */
1199 irqreturn_t iwl_pcie_isr_ict(int irq, void *data)
1200 {
1201 struct iwl_trans *trans = data;
1202 struct iwl_trans_pcie *trans_pcie;
1203 u32 inta;
1204 u32 val = 0;
1205 u32 read;
1206 unsigned long flags;
1207 irqreturn_t ret = IRQ_NONE;
1208
1209 if (!trans)
1210 return IRQ_NONE;
1211
1212 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1213
1214 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
1215
1216 /* dram interrupt table not set yet,
1217 * use legacy interrupt.
1218 */
1219 if (unlikely(!trans_pcie->use_ict)) {
1220 ret = iwl_pcie_isr(irq, data);
1221 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1222 return ret;
1223 }
1224
1225 trace_iwlwifi_dev_irq(trans->dev);
1226
1227 /* Disable (but don't clear!) interrupts here to avoid
1228 * back-to-back ISRs and sporadic interrupts from our NIC.
1229 * If we have something to service, the tasklet will re-enable ints.
1230 * If we *don't* have something, we'll re-enable before leaving here.
1231 */
1232 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1233
1234 /* Ignore interrupt if there's nothing in NIC to service.
1235 * This may be due to IRQ shared with another device,
1236 * or due to sporadic interrupts thrown from our NIC. */
1237 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1238 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1239 if (!read) {
1240 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1241 goto none;
1242 }
1243
1244 /*
1245 * Collect all entries up to the first 0, starting from ict_index;
1246 * note we already read at ict_index.
1247 */
1248 do {
1249 val |= read;
1250 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1251 trans_pcie->ict_index, read);
1252 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1253 trans_pcie->ict_index =
1254 iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
1255
1256 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1257 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1258 read);
1259 } while (read);
1260
1261 /* We should not get this value, just ignore it. */
1262 if (val == 0xffffffff)
1263 val = 0;
1264
1265 /*
1266 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1267 * (bit 15 before shifting it to 31) to clear when using interrupt
1268 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1269 * so we use them to decide on the real state of the Rx bit.
1270 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1271 */
1272 if (val & 0xC0000)
1273 val |= 0x8000;
1274
1275 inta = (0xff & val) | ((0xff00 & val) << 16);
1276 IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled(sw) 0x%08x ict 0x%08x\n",
1277 inta, trans_pcie->inta_mask, val);
1278 if (iwl_have_debug_level(IWL_DL_ISR))
1279 IWL_DEBUG_ISR(trans, "enabled(hw) 0x%08x\n",
1280 iwl_read32(trans, CSR_INT_MASK));
1281
1282 inta &= trans_pcie->inta_mask;
1283 trans_pcie->inta |= inta;
1284
1285 /* iwl_pcie_tasklet() will service interrupts and re-enable them */
1286 if (likely(inta)) {
1287 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1288 return IRQ_WAKE_THREAD;
1289 }
1290
1291 ret = IRQ_HANDLED;
1292
1293 none:
1294 /* re-enable interrupts here since we don't have anything to service.
1295 * only Re-enable if disabled by irq.
1296 */
1297 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1298 !trans_pcie->inta)
1299 iwl_enable_interrupts(trans);
1300
1301 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1302 return ret;
1303 }