]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
Merge tag 'wireless-drivers-next-for-davem-2016-11-25' of git://git.kernel.org/pub...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 /*
21 Module: rt2x00lib
22 Abstract: rt2x00 generic device routines.
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
92 rt2x00link_start_vcocal(rt2x00dev);
93
94 /*
95 * Start watchdog monitoring.
96 */
97 rt2x00link_start_watchdog(rt2x00dev);
98
99 return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
106
107 /*
108 * Stop watchdog monitoring.
109 */
110 rt2x00link_stop_watchdog(rt2x00dev);
111
112 /*
113 * Stop all queues
114 */
115 rt2x00link_stop_agc(rt2x00dev);
116 if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
121
122 /*
123 * Disable radio.
124 */
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
133 {
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
136
137 /*
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
142 */
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
145
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
147 mutex_lock(&intf->beacon_skb_mutex);
148 rt2x00queue_update_beacon(rt2x00dev, vif);
149 mutex_unlock(&intf->beacon_skb_mutex);
150 }
151 }
152
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155 struct rt2x00_dev *rt2x00dev =
156 container_of(work, struct rt2x00_dev, intf_work);
157
158 /*
159 * Iterate over each interface and perform the
160 * requested configurations.
161 */
162 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163 IEEE80211_IFACE_ITER_RESUME_ALL,
164 rt2x00lib_intf_scheduled_iter,
165 rt2x00dev);
166 }
167
168 static void rt2x00lib_autowakeup(struct work_struct *work)
169 {
170 struct rt2x00_dev *rt2x00dev =
171 container_of(work, struct rt2x00_dev, autowakeup_work.work);
172
173 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
174 return;
175
176 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
177 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
178 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
179 }
180
181 /*
182 * Interrupt context handlers.
183 */
184 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
185 struct ieee80211_vif *vif)
186 {
187 struct ieee80211_tx_control control = {};
188 struct rt2x00_dev *rt2x00dev = data;
189 struct sk_buff *skb;
190
191 /*
192 * Only AP mode interfaces do broad- and multicast buffering
193 */
194 if (vif->type != NL80211_IFTYPE_AP)
195 return;
196
197 /*
198 * Send out buffered broad- and multicast frames
199 */
200 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201 while (skb) {
202 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
203 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
204 }
205 }
206
207 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
208 struct ieee80211_vif *vif)
209 {
210 struct rt2x00_dev *rt2x00dev = data;
211
212 if (vif->type != NL80211_IFTYPE_AP &&
213 vif->type != NL80211_IFTYPE_ADHOC &&
214 vif->type != NL80211_IFTYPE_MESH_POINT &&
215 vif->type != NL80211_IFTYPE_WDS)
216 return;
217
218 /*
219 * Update the beacon without locking. This is safe on PCI devices
220 * as they only update the beacon periodically here. This should
221 * never be called for USB devices.
222 */
223 WARN_ON(rt2x00_is_usb(rt2x00dev));
224 rt2x00queue_update_beacon(rt2x00dev, vif);
225 }
226
227 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
228 {
229 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
230 return;
231
232 /* send buffered bc/mc frames out for every bssid */
233 ieee80211_iterate_active_interfaces_atomic(
234 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
235 rt2x00lib_bc_buffer_iter, rt2x00dev);
236 /*
237 * Devices with pre tbtt interrupt don't need to update the beacon
238 * here as they will fetch the next beacon directly prior to
239 * transmission.
240 */
241 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
242 return;
243
244 /* fetch next beacon */
245 ieee80211_iterate_active_interfaces_atomic(
246 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
247 rt2x00lib_beaconupdate_iter, rt2x00dev);
248 }
249 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
250
251 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
252 {
253 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
254 return;
255
256 /* fetch next beacon */
257 ieee80211_iterate_active_interfaces_atomic(
258 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
259 rt2x00lib_beaconupdate_iter, rt2x00dev);
260 }
261 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
262
263 void rt2x00lib_dmastart(struct queue_entry *entry)
264 {
265 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
266 rt2x00queue_index_inc(entry, Q_INDEX);
267 }
268 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
269
270 void rt2x00lib_dmadone(struct queue_entry *entry)
271 {
272 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
273 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
274 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
275 }
276 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
277
278 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
279 {
280 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
281 struct ieee80211_bar *bar = (void *) entry->skb->data;
282 struct rt2x00_bar_list_entry *bar_entry;
283 int ret;
284
285 if (likely(!ieee80211_is_back_req(bar->frame_control)))
286 return 0;
287
288 /*
289 * Unlike all other frames, the status report for BARs does
290 * not directly come from the hardware as it is incapable of
291 * matching a BA to a previously send BAR. The hardware will
292 * report all BARs as if they weren't acked at all.
293 *
294 * Instead the RX-path will scan for incoming BAs and set the
295 * block_acked flag if it sees one that was likely caused by
296 * a BAR from us.
297 *
298 * Remove remaining BARs here and return their status for
299 * TX done processing.
300 */
301 ret = 0;
302 rcu_read_lock();
303 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
304 if (bar_entry->entry != entry)
305 continue;
306
307 spin_lock_bh(&rt2x00dev->bar_list_lock);
308 /* Return whether this BAR was blockacked or not */
309 ret = bar_entry->block_acked;
310 /* Remove the BAR from our checklist */
311 list_del_rcu(&bar_entry->list);
312 spin_unlock_bh(&rt2x00dev->bar_list_lock);
313 kfree_rcu(bar_entry, head);
314
315 break;
316 }
317 rcu_read_unlock();
318
319 return ret;
320 }
321
322 void rt2x00lib_txdone(struct queue_entry *entry,
323 struct txdone_entry_desc *txdesc)
324 {
325 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
326 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
327 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328 unsigned int header_length, i;
329 u8 rate_idx, rate_flags, retry_rates;
330 u8 skbdesc_flags = skbdesc->flags;
331 bool success;
332
333 /*
334 * Unmap the skb.
335 */
336 rt2x00queue_unmap_skb(entry);
337
338 /*
339 * Remove the extra tx headroom from the skb.
340 */
341 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
342
343 /*
344 * Signal that the TX descriptor is no longer in the skb.
345 */
346 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
347
348 /*
349 * Determine the length of 802.11 header.
350 */
351 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
352
353 /*
354 * Remove L2 padding which was added during
355 */
356 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
357 rt2x00queue_remove_l2pad(entry->skb, header_length);
358
359 /*
360 * If the IV/EIV data was stripped from the frame before it was
361 * passed to the hardware, we should now reinsert it again because
362 * mac80211 will expect the same data to be present it the
363 * frame as it was passed to us.
364 */
365 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
366 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
367
368 /*
369 * Send frame to debugfs immediately, after this call is completed
370 * we are going to overwrite the skb->cb array.
371 */
372 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
373
374 /*
375 * Determine if the frame has been successfully transmitted and
376 * remove BARs from our check list while checking for their
377 * TX status.
378 */
379 success =
380 rt2x00lib_txdone_bar_status(entry) ||
381 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
382 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
383
384 /*
385 * Update TX statistics.
386 */
387 rt2x00dev->link.qual.tx_success += success;
388 rt2x00dev->link.qual.tx_failed += !success;
389
390 rate_idx = skbdesc->tx_rate_idx;
391 rate_flags = skbdesc->tx_rate_flags;
392 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
393 (txdesc->retry + 1) : 1;
394
395 /*
396 * Initialize TX status
397 */
398 memset(&tx_info->status, 0, sizeof(tx_info->status));
399 tx_info->status.ack_signal = 0;
400
401 /*
402 * Frame was send with retries, hardware tried
403 * different rates to send out the frame, at each
404 * retry it lowered the rate 1 step except when the
405 * lowest rate was used.
406 */
407 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
408 tx_info->status.rates[i].idx = rate_idx - i;
409 tx_info->status.rates[i].flags = rate_flags;
410
411 if (rate_idx - i == 0) {
412 /*
413 * The lowest rate (index 0) was used until the
414 * number of max retries was reached.
415 */
416 tx_info->status.rates[i].count = retry_rates - i;
417 i++;
418 break;
419 }
420 tx_info->status.rates[i].count = 1;
421 }
422 if (i < (IEEE80211_TX_MAX_RATES - 1))
423 tx_info->status.rates[i].idx = -1; /* terminate */
424
425 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
426 if (success)
427 tx_info->flags |= IEEE80211_TX_STAT_ACK;
428 else
429 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
430 }
431
432 /*
433 * Every single frame has it's own tx status, hence report
434 * every frame as ampdu of size 1.
435 *
436 * TODO: if we can find out how many frames were aggregated
437 * by the hw we could provide the real ampdu_len to mac80211
438 * which would allow the rc algorithm to better decide on
439 * which rates are suitable.
440 */
441 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
442 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
443 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
444 tx_info->status.ampdu_len = 1;
445 tx_info->status.ampdu_ack_len = success ? 1 : 0;
446
447 if (!success)
448 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
449 }
450
451 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
452 if (success)
453 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
454 else
455 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
456 }
457
458 /*
459 * Only send the status report to mac80211 when it's a frame
460 * that originated in mac80211. If this was a extra frame coming
461 * through a mac80211 library call (RTS/CTS) then we should not
462 * send the status report back.
463 */
464 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
465 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
466 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
467 else
468 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
469 } else
470 dev_kfree_skb_any(entry->skb);
471
472 /*
473 * Make this entry available for reuse.
474 */
475 entry->skb = NULL;
476 entry->flags = 0;
477
478 rt2x00dev->ops->lib->clear_entry(entry);
479
480 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
481
482 /*
483 * If the data queue was below the threshold before the txdone
484 * handler we must make sure the packet queue in the mac80211 stack
485 * is reenabled when the txdone handler has finished. This has to be
486 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
487 * before it was stopped.
488 */
489 spin_lock_bh(&entry->queue->tx_lock);
490 if (!rt2x00queue_threshold(entry->queue))
491 rt2x00queue_unpause_queue(entry->queue);
492 spin_unlock_bh(&entry->queue->tx_lock);
493 }
494 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
495
496 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
497 {
498 struct txdone_entry_desc txdesc;
499
500 txdesc.flags = 0;
501 __set_bit(status, &txdesc.flags);
502 txdesc.retry = 0;
503
504 rt2x00lib_txdone(entry, &txdesc);
505 }
506 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
507
508 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
509 {
510 struct ieee80211_mgmt *mgmt = (void *)data;
511 u8 *pos, *end;
512
513 pos = (u8 *)mgmt->u.beacon.variable;
514 end = data + len;
515 while (pos < end) {
516 if (pos + 2 + pos[1] > end)
517 return NULL;
518
519 if (pos[0] == ie)
520 return pos;
521
522 pos += 2 + pos[1];
523 }
524
525 return NULL;
526 }
527
528 static void rt2x00lib_sleep(struct work_struct *work)
529 {
530 struct rt2x00_dev *rt2x00dev =
531 container_of(work, struct rt2x00_dev, sleep_work);
532
533 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
534 return;
535
536 /*
537 * Check again is powersaving is enabled, to prevent races from delayed
538 * work execution.
539 */
540 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
541 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
542 IEEE80211_CONF_CHANGE_PS);
543 }
544
545 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
546 struct sk_buff *skb,
547 struct rxdone_entry_desc *rxdesc)
548 {
549 struct rt2x00_bar_list_entry *entry;
550 struct ieee80211_bar *ba = (void *)skb->data;
551
552 if (likely(!ieee80211_is_back(ba->frame_control)))
553 return;
554
555 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
556 return;
557
558 rcu_read_lock();
559 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
560
561 if (ba->start_seq_num != entry->start_seq_num)
562 continue;
563
564 #define TID_CHECK(a, b) ( \
565 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
566 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
567
568 if (!TID_CHECK(ba->control, entry->control))
569 continue;
570
571 #undef TID_CHECK
572
573 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
574 continue;
575
576 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
577 continue;
578
579 /* Mark BAR since we received the according BA */
580 spin_lock_bh(&rt2x00dev->bar_list_lock);
581 entry->block_acked = 1;
582 spin_unlock_bh(&rt2x00dev->bar_list_lock);
583 break;
584 }
585 rcu_read_unlock();
586
587 }
588
589 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
590 struct sk_buff *skb,
591 struct rxdone_entry_desc *rxdesc)
592 {
593 struct ieee80211_hdr *hdr = (void *) skb->data;
594 struct ieee80211_tim_ie *tim_ie;
595 u8 *tim;
596 u8 tim_len;
597 bool cam;
598
599 /* If this is not a beacon, or if mac80211 has no powersaving
600 * configured, or if the device is already in powersaving mode
601 * we can exit now. */
602 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
603 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
604 return;
605
606 /* min. beacon length + FCS_LEN */
607 if (skb->len <= 40 + FCS_LEN)
608 return;
609
610 /* and only beacons from the associated BSSID, please */
611 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
612 !rt2x00dev->aid)
613 return;
614
615 rt2x00dev->last_beacon = jiffies;
616
617 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
618 if (!tim)
619 return;
620
621 if (tim[1] < sizeof(*tim_ie))
622 return;
623
624 tim_len = tim[1];
625 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
626
627 /* Check whenever the PHY can be turned off again. */
628
629 /* 1. What about buffered unicast traffic for our AID? */
630 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
631
632 /* 2. Maybe the AP wants to send multicast/broadcast data? */
633 cam |= (tim_ie->bitmap_ctrl & 0x01);
634
635 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
636 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
637 }
638
639 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
640 struct rxdone_entry_desc *rxdesc)
641 {
642 struct ieee80211_supported_band *sband;
643 const struct rt2x00_rate *rate;
644 unsigned int i;
645 int signal = rxdesc->signal;
646 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
647
648 switch (rxdesc->rate_mode) {
649 case RATE_MODE_CCK:
650 case RATE_MODE_OFDM:
651 /*
652 * For non-HT rates the MCS value needs to contain the
653 * actually used rate modulation (CCK or OFDM).
654 */
655 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
656 signal = RATE_MCS(rxdesc->rate_mode, signal);
657
658 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
659 for (i = 0; i < sband->n_bitrates; i++) {
660 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
661 if (((type == RXDONE_SIGNAL_PLCP) &&
662 (rate->plcp == signal)) ||
663 ((type == RXDONE_SIGNAL_BITRATE) &&
664 (rate->bitrate == signal)) ||
665 ((type == RXDONE_SIGNAL_MCS) &&
666 (rate->mcs == signal))) {
667 return i;
668 }
669 }
670 break;
671 case RATE_MODE_HT_MIX:
672 case RATE_MODE_HT_GREENFIELD:
673 if (signal >= 0 && signal <= 76)
674 return signal;
675 break;
676 default:
677 break;
678 }
679
680 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
681 rxdesc->rate_mode, signal, type);
682 return 0;
683 }
684
685 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
686 {
687 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
688 struct rxdone_entry_desc rxdesc;
689 struct sk_buff *skb;
690 struct ieee80211_rx_status *rx_status;
691 unsigned int header_length;
692 int rate_idx;
693
694 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
695 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
696 goto submit_entry;
697
698 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
699 goto submit_entry;
700
701 /*
702 * Allocate a new sk_buffer. If no new buffer available, drop the
703 * received frame and reuse the existing buffer.
704 */
705 skb = rt2x00queue_alloc_rxskb(entry, gfp);
706 if (!skb)
707 goto submit_entry;
708
709 /*
710 * Unmap the skb.
711 */
712 rt2x00queue_unmap_skb(entry);
713
714 /*
715 * Extract the RXD details.
716 */
717 memset(&rxdesc, 0, sizeof(rxdesc));
718 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
719
720 /*
721 * Check for valid size in case we get corrupted descriptor from
722 * hardware.
723 */
724 if (unlikely(rxdesc.size == 0 ||
725 rxdesc.size > entry->queue->data_size)) {
726 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
727 rxdesc.size, entry->queue->data_size);
728 dev_kfree_skb(entry->skb);
729 goto renew_skb;
730 }
731
732 /*
733 * The data behind the ieee80211 header must be
734 * aligned on a 4 byte boundary.
735 */
736 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
737
738 /*
739 * Hardware might have stripped the IV/EIV/ICV data,
740 * in that case it is possible that the data was
741 * provided separately (through hardware descriptor)
742 * in which case we should reinsert the data into the frame.
743 */
744 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
745 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
746 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
747 &rxdesc);
748 else if (header_length &&
749 (rxdesc.size > header_length) &&
750 (rxdesc.dev_flags & RXDONE_L2PAD))
751 rt2x00queue_remove_l2pad(entry->skb, header_length);
752
753 /* Trim buffer to correct size */
754 skb_trim(entry->skb, rxdesc.size);
755
756 /*
757 * Translate the signal to the correct bitrate index.
758 */
759 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
760 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
761 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
762 rxdesc.flags |= RX_FLAG_HT;
763
764 /*
765 * Check if this is a beacon, and more frames have been
766 * buffered while we were in powersaving mode.
767 */
768 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
769
770 /*
771 * Check for incoming BlockAcks to match to the BlockAckReqs
772 * we've send out.
773 */
774 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
775
776 /*
777 * Update extra components
778 */
779 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
780 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
781 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
782
783 /*
784 * Initialize RX status information, and send frame
785 * to mac80211.
786 */
787 rx_status = IEEE80211_SKB_RXCB(entry->skb);
788
789 /* Ensure that all fields of rx_status are initialized
790 * properly. The skb->cb array was used for driver
791 * specific informations, so rx_status might contain
792 * garbage.
793 */
794 memset(rx_status, 0, sizeof(*rx_status));
795
796 rx_status->mactime = rxdesc.timestamp;
797 rx_status->band = rt2x00dev->curr_band;
798 rx_status->freq = rt2x00dev->curr_freq;
799 rx_status->rate_idx = rate_idx;
800 rx_status->signal = rxdesc.rssi;
801 rx_status->flag = rxdesc.flags;
802 rx_status->antenna = rt2x00dev->link.ant.active.rx;
803
804 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
805
806 renew_skb:
807 /*
808 * Replace the skb with the freshly allocated one.
809 */
810 entry->skb = skb;
811
812 submit_entry:
813 entry->flags = 0;
814 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
815 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
816 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
817 rt2x00dev->ops->lib->clear_entry(entry);
818 }
819 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
820
821 /*
822 * Driver initialization handlers.
823 */
824 const struct rt2x00_rate rt2x00_supported_rates[12] = {
825 {
826 .flags = DEV_RATE_CCK,
827 .bitrate = 10,
828 .ratemask = BIT(0),
829 .plcp = 0x00,
830 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
831 },
832 {
833 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
834 .bitrate = 20,
835 .ratemask = BIT(1),
836 .plcp = 0x01,
837 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
838 },
839 {
840 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
841 .bitrate = 55,
842 .ratemask = BIT(2),
843 .plcp = 0x02,
844 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
845 },
846 {
847 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
848 .bitrate = 110,
849 .ratemask = BIT(3),
850 .plcp = 0x03,
851 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
852 },
853 {
854 .flags = DEV_RATE_OFDM,
855 .bitrate = 60,
856 .ratemask = BIT(4),
857 .plcp = 0x0b,
858 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
859 },
860 {
861 .flags = DEV_RATE_OFDM,
862 .bitrate = 90,
863 .ratemask = BIT(5),
864 .plcp = 0x0f,
865 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
866 },
867 {
868 .flags = DEV_RATE_OFDM,
869 .bitrate = 120,
870 .ratemask = BIT(6),
871 .plcp = 0x0a,
872 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
873 },
874 {
875 .flags = DEV_RATE_OFDM,
876 .bitrate = 180,
877 .ratemask = BIT(7),
878 .plcp = 0x0e,
879 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
880 },
881 {
882 .flags = DEV_RATE_OFDM,
883 .bitrate = 240,
884 .ratemask = BIT(8),
885 .plcp = 0x09,
886 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
887 },
888 {
889 .flags = DEV_RATE_OFDM,
890 .bitrate = 360,
891 .ratemask = BIT(9),
892 .plcp = 0x0d,
893 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
894 },
895 {
896 .flags = DEV_RATE_OFDM,
897 .bitrate = 480,
898 .ratemask = BIT(10),
899 .plcp = 0x08,
900 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
901 },
902 {
903 .flags = DEV_RATE_OFDM,
904 .bitrate = 540,
905 .ratemask = BIT(11),
906 .plcp = 0x0c,
907 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
908 },
909 };
910
911 static void rt2x00lib_channel(struct ieee80211_channel *entry,
912 const int channel, const int tx_power,
913 const int value)
914 {
915 /* XXX: this assumption about the band is wrong for 802.11j */
916 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
917 entry->center_freq = ieee80211_channel_to_frequency(channel,
918 entry->band);
919 entry->hw_value = value;
920 entry->max_power = tx_power;
921 entry->max_antenna_gain = 0xff;
922 }
923
924 static void rt2x00lib_rate(struct ieee80211_rate *entry,
925 const u16 index, const struct rt2x00_rate *rate)
926 {
927 entry->flags = 0;
928 entry->bitrate = rate->bitrate;
929 entry->hw_value = index;
930 entry->hw_value_short = index;
931
932 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
933 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
934 }
935
936 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
937 {
938 const char *mac_addr;
939
940 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
941 if (mac_addr)
942 ether_addr_copy(eeprom_mac_addr, mac_addr);
943
944 if (!is_valid_ether_addr(eeprom_mac_addr)) {
945 eth_random_addr(eeprom_mac_addr);
946 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
947 }
948 }
949 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
950
951 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
952 struct hw_mode_spec *spec)
953 {
954 struct ieee80211_hw *hw = rt2x00dev->hw;
955 struct ieee80211_channel *channels;
956 struct ieee80211_rate *rates;
957 unsigned int num_rates;
958 unsigned int i;
959
960 num_rates = 0;
961 if (spec->supported_rates & SUPPORT_RATE_CCK)
962 num_rates += 4;
963 if (spec->supported_rates & SUPPORT_RATE_OFDM)
964 num_rates += 8;
965
966 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
967 if (!channels)
968 return -ENOMEM;
969
970 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
971 if (!rates)
972 goto exit_free_channels;
973
974 /*
975 * Initialize Rate list.
976 */
977 for (i = 0; i < num_rates; i++)
978 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
979
980 /*
981 * Initialize Channel list.
982 */
983 for (i = 0; i < spec->num_channels; i++) {
984 rt2x00lib_channel(&channels[i],
985 spec->channels[i].channel,
986 spec->channels_info[i].max_power, i);
987 }
988
989 /*
990 * Intitialize 802.11b, 802.11g
991 * Rates: CCK, OFDM.
992 * Channels: 2.4 GHz
993 */
994 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
995 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
996 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
997 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
998 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
999 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1000 &rt2x00dev->bands[NL80211_BAND_2GHZ];
1001 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1002 &spec->ht, sizeof(spec->ht));
1003 }
1004
1005 /*
1006 * Intitialize 802.11a
1007 * Rates: OFDM.
1008 * Channels: OFDM, UNII, HiperLAN2.
1009 */
1010 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1011 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1012 spec->num_channels - 14;
1013 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1014 num_rates - 4;
1015 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1016 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1017 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1018 &rt2x00dev->bands[NL80211_BAND_5GHZ];
1019 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1020 &spec->ht, sizeof(spec->ht));
1021 }
1022
1023 return 0;
1024
1025 exit_free_channels:
1026 kfree(channels);
1027 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1028 return -ENOMEM;
1029 }
1030
1031 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1032 {
1033 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1034 ieee80211_unregister_hw(rt2x00dev->hw);
1035
1036 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1037 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1038 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1039 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1040 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1041 }
1042
1043 kfree(rt2x00dev->spec.channels_info);
1044 }
1045
1046 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1047 {
1048 struct hw_mode_spec *spec = &rt2x00dev->spec;
1049 int status;
1050
1051 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1052 return 0;
1053
1054 /*
1055 * Initialize HW modes.
1056 */
1057 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1058 if (status)
1059 return status;
1060
1061 /*
1062 * Initialize HW fields.
1063 */
1064 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1065
1066 /*
1067 * Initialize extra TX headroom required.
1068 */
1069 rt2x00dev->hw->extra_tx_headroom =
1070 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1071 rt2x00dev->extra_tx_headroom);
1072
1073 /*
1074 * Take TX headroom required for alignment into account.
1075 */
1076 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1077 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1078 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1079 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1080
1081 /*
1082 * Tell mac80211 about the size of our private STA structure.
1083 */
1084 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1085
1086 /*
1087 * Allocate tx status FIFO for driver use.
1088 */
1089 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1090 /*
1091 * Allocate the txstatus fifo. In the worst case the tx
1092 * status fifo has to hold the tx status of all entries
1093 * in all tx queues. Hence, calculate the kfifo size as
1094 * tx_queues * entry_num and round up to the nearest
1095 * power of 2.
1096 */
1097 int kfifo_size =
1098 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1099 rt2x00dev->tx->limit *
1100 sizeof(u32));
1101
1102 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1103 GFP_KERNEL);
1104 if (status)
1105 return status;
1106 }
1107
1108 /*
1109 * Initialize tasklets if used by the driver. Tasklets are
1110 * disabled until the interrupts are turned on. The driver
1111 * has to handle that.
1112 */
1113 #define RT2X00_TASKLET_INIT(taskletname) \
1114 if (rt2x00dev->ops->lib->taskletname) { \
1115 tasklet_init(&rt2x00dev->taskletname, \
1116 rt2x00dev->ops->lib->taskletname, \
1117 (unsigned long)rt2x00dev); \
1118 }
1119
1120 RT2X00_TASKLET_INIT(txstatus_tasklet);
1121 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1122 RT2X00_TASKLET_INIT(tbtt_tasklet);
1123 RT2X00_TASKLET_INIT(rxdone_tasklet);
1124 RT2X00_TASKLET_INIT(autowake_tasklet);
1125
1126 #undef RT2X00_TASKLET_INIT
1127
1128 /*
1129 * Register HW.
1130 */
1131 status = ieee80211_register_hw(rt2x00dev->hw);
1132 if (status)
1133 return status;
1134
1135 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1136
1137 return 0;
1138 }
1139
1140 /*
1141 * Initialization/uninitialization handlers.
1142 */
1143 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1144 {
1145 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1146 return;
1147
1148 /*
1149 * Stop rfkill polling.
1150 */
1151 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1152 rt2x00rfkill_unregister(rt2x00dev);
1153
1154 /*
1155 * Allow the HW to uninitialize.
1156 */
1157 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1158
1159 /*
1160 * Free allocated queue entries.
1161 */
1162 rt2x00queue_uninitialize(rt2x00dev);
1163 }
1164
1165 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1166 {
1167 int status;
1168
1169 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1170 return 0;
1171
1172 /*
1173 * Allocate all queue entries.
1174 */
1175 status = rt2x00queue_initialize(rt2x00dev);
1176 if (status)
1177 return status;
1178
1179 /*
1180 * Initialize the device.
1181 */
1182 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1183 if (status) {
1184 rt2x00queue_uninitialize(rt2x00dev);
1185 return status;
1186 }
1187
1188 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1189
1190 /*
1191 * Start rfkill polling.
1192 */
1193 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1194 rt2x00rfkill_register(rt2x00dev);
1195
1196 return 0;
1197 }
1198
1199 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1200 {
1201 int retval;
1202
1203 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1204 return 0;
1205
1206 /*
1207 * If this is the first interface which is added,
1208 * we should load the firmware now.
1209 */
1210 retval = rt2x00lib_load_firmware(rt2x00dev);
1211 if (retval)
1212 return retval;
1213
1214 /*
1215 * Initialize the device.
1216 */
1217 retval = rt2x00lib_initialize(rt2x00dev);
1218 if (retval)
1219 return retval;
1220
1221 rt2x00dev->intf_ap_count = 0;
1222 rt2x00dev->intf_sta_count = 0;
1223 rt2x00dev->intf_associated = 0;
1224
1225 /* Enable the radio */
1226 retval = rt2x00lib_enable_radio(rt2x00dev);
1227 if (retval)
1228 return retval;
1229
1230 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1231
1232 return 0;
1233 }
1234
1235 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1236 {
1237 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1238 return;
1239
1240 /*
1241 * Perhaps we can add something smarter here,
1242 * but for now just disabling the radio should do.
1243 */
1244 rt2x00lib_disable_radio(rt2x00dev);
1245
1246 rt2x00dev->intf_ap_count = 0;
1247 rt2x00dev->intf_sta_count = 0;
1248 rt2x00dev->intf_associated = 0;
1249 }
1250
1251 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1252 {
1253 struct ieee80211_iface_limit *if_limit;
1254 struct ieee80211_iface_combination *if_combination;
1255
1256 if (rt2x00dev->ops->max_ap_intf < 2)
1257 return;
1258
1259 /*
1260 * Build up AP interface limits structure.
1261 */
1262 if_limit = &rt2x00dev->if_limits_ap;
1263 if_limit->max = rt2x00dev->ops->max_ap_intf;
1264 if_limit->types = BIT(NL80211_IFTYPE_AP);
1265 #ifdef CONFIG_MAC80211_MESH
1266 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1267 #endif
1268
1269 /*
1270 * Build up AP interface combinations structure.
1271 */
1272 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1273 if_combination->limits = if_limit;
1274 if_combination->n_limits = 1;
1275 if_combination->max_interfaces = if_limit->max;
1276 if_combination->num_different_channels = 1;
1277
1278 /*
1279 * Finally, specify the possible combinations to mac80211.
1280 */
1281 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1282 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1283 }
1284
1285 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1286 {
1287 if (WARN_ON(!rt2x00dev->tx))
1288 return 0;
1289
1290 if (rt2x00_is_usb(rt2x00dev))
1291 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1292
1293 return rt2x00dev->tx[0].winfo_size;
1294 }
1295
1296 /*
1297 * driver allocation handlers.
1298 */
1299 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1300 {
1301 int retval = -ENOMEM;
1302
1303 /*
1304 * Set possible interface combinations.
1305 */
1306 rt2x00lib_set_if_combinations(rt2x00dev);
1307
1308 /*
1309 * Allocate the driver data memory, if necessary.
1310 */
1311 if (rt2x00dev->ops->drv_data_size > 0) {
1312 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1313 GFP_KERNEL);
1314 if (!rt2x00dev->drv_data) {
1315 retval = -ENOMEM;
1316 goto exit;
1317 }
1318 }
1319
1320 spin_lock_init(&rt2x00dev->irqmask_lock);
1321 mutex_init(&rt2x00dev->csr_mutex);
1322 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1323 spin_lock_init(&rt2x00dev->bar_list_lock);
1324
1325 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1326
1327 /*
1328 * Make room for rt2x00_intf inside the per-interface
1329 * structure ieee80211_vif.
1330 */
1331 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1332
1333 /*
1334 * rt2x00 devices can only use the last n bits of the MAC address
1335 * for virtual interfaces.
1336 */
1337 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1338 (rt2x00dev->ops->max_ap_intf - 1);
1339
1340 /*
1341 * Initialize work.
1342 */
1343 rt2x00dev->workqueue =
1344 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1345 if (!rt2x00dev->workqueue) {
1346 retval = -ENOMEM;
1347 goto exit;
1348 }
1349
1350 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1351 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1352 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1353
1354 /*
1355 * Let the driver probe the device to detect the capabilities.
1356 */
1357 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1358 if (retval) {
1359 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1360 goto exit;
1361 }
1362
1363 /*
1364 * Allocate queue array.
1365 */
1366 retval = rt2x00queue_allocate(rt2x00dev);
1367 if (retval)
1368 goto exit;
1369
1370 /* Cache TX headroom value */
1371 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1372
1373 /*
1374 * Determine which operating modes are supported, all modes
1375 * which require beaconing, depend on the availability of
1376 * beacon entries.
1377 */
1378 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1379 if (rt2x00dev->bcn->limit > 0)
1380 rt2x00dev->hw->wiphy->interface_modes |=
1381 BIT(NL80211_IFTYPE_ADHOC) |
1382 #ifdef CONFIG_MAC80211_MESH
1383 BIT(NL80211_IFTYPE_MESH_POINT) |
1384 #endif
1385 #ifdef CONFIG_WIRELESS_WDS
1386 BIT(NL80211_IFTYPE_WDS) |
1387 #endif
1388 BIT(NL80211_IFTYPE_AP);
1389
1390 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1391
1392 /*
1393 * Initialize ieee80211 structure.
1394 */
1395 retval = rt2x00lib_probe_hw(rt2x00dev);
1396 if (retval) {
1397 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1398 goto exit;
1399 }
1400
1401 /*
1402 * Register extra components.
1403 */
1404 rt2x00link_register(rt2x00dev);
1405 rt2x00leds_register(rt2x00dev);
1406 rt2x00debug_register(rt2x00dev);
1407
1408 /*
1409 * Start rfkill polling.
1410 */
1411 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412 rt2x00rfkill_register(rt2x00dev);
1413
1414 return 0;
1415
1416 exit:
1417 rt2x00lib_remove_dev(rt2x00dev);
1418
1419 return retval;
1420 }
1421 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1422
1423 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1424 {
1425 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1426
1427 /*
1428 * Stop rfkill polling.
1429 */
1430 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1431 rt2x00rfkill_unregister(rt2x00dev);
1432
1433 /*
1434 * Disable radio.
1435 */
1436 rt2x00lib_disable_radio(rt2x00dev);
1437
1438 /*
1439 * Stop all work.
1440 */
1441 cancel_work_sync(&rt2x00dev->intf_work);
1442 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1443 cancel_work_sync(&rt2x00dev->sleep_work);
1444 #if IS_ENABLED(CONFIG_RT2X00_LIB_USB)
1445 if (rt2x00_is_usb(rt2x00dev)) {
1446 usb_kill_anchored_urbs(rt2x00dev->anchor);
1447 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1448 cancel_work_sync(&rt2x00dev->rxdone_work);
1449 cancel_work_sync(&rt2x00dev->txdone_work);
1450 }
1451 #endif
1452 if (rt2x00dev->workqueue)
1453 destroy_workqueue(rt2x00dev->workqueue);
1454
1455 /*
1456 * Free the tx status fifo.
1457 */
1458 kfifo_free(&rt2x00dev->txstatus_fifo);
1459
1460 /*
1461 * Kill the tx status tasklet.
1462 */
1463 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1464 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1465 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1466 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1467 tasklet_kill(&rt2x00dev->autowake_tasklet);
1468
1469 /*
1470 * Uninitialize device.
1471 */
1472 rt2x00lib_uninitialize(rt2x00dev);
1473
1474 /*
1475 * Free extra components
1476 */
1477 rt2x00debug_deregister(rt2x00dev);
1478 rt2x00leds_unregister(rt2x00dev);
1479
1480 /*
1481 * Free ieee80211_hw memory.
1482 */
1483 rt2x00lib_remove_hw(rt2x00dev);
1484
1485 /*
1486 * Free firmware image.
1487 */
1488 rt2x00lib_free_firmware(rt2x00dev);
1489
1490 /*
1491 * Free queue structures.
1492 */
1493 rt2x00queue_free(rt2x00dev);
1494
1495 /*
1496 * Free the driver data.
1497 */
1498 kfree(rt2x00dev->drv_data);
1499 }
1500 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1501
1502 /*
1503 * Device state handlers
1504 */
1505 #ifdef CONFIG_PM
1506 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1507 {
1508 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1509
1510 /*
1511 * Prevent mac80211 from accessing driver while suspended.
1512 */
1513 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1514 return 0;
1515
1516 /*
1517 * Cleanup as much as possible.
1518 */
1519 rt2x00lib_uninitialize(rt2x00dev);
1520
1521 /*
1522 * Suspend/disable extra components.
1523 */
1524 rt2x00leds_suspend(rt2x00dev);
1525 rt2x00debug_deregister(rt2x00dev);
1526
1527 /*
1528 * Set device mode to sleep for power management,
1529 * on some hardware this call seems to consistently fail.
1530 * From the specifications it is hard to tell why it fails,
1531 * and if this is a "bad thing".
1532 * Overall it is safe to just ignore the failure and
1533 * continue suspending. The only downside is that the
1534 * device will not be in optimal power save mode, but with
1535 * the radio and the other components already disabled the
1536 * device is as good as disabled.
1537 */
1538 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1539 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1540
1541 return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1544
1545 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1546 {
1547 rt2x00_dbg(rt2x00dev, "Waking up\n");
1548
1549 /*
1550 * Restore/enable extra components.
1551 */
1552 rt2x00debug_register(rt2x00dev);
1553 rt2x00leds_resume(rt2x00dev);
1554
1555 /*
1556 * We are ready again to receive requests from mac80211.
1557 */
1558 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1559
1560 return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1563 #endif /* CONFIG_PM */
1564
1565 /*
1566 * rt2x00lib module information.
1567 */
1568 MODULE_AUTHOR(DRV_PROJECT);
1569 MODULE_VERSION(DRV_VERSION);
1570 MODULE_DESCRIPTION("rt2x00 library");
1571 MODULE_LICENSE("GPL");