]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/wireless/realtek/rtlwifi/efuse.c
mac80211: don't WARN on bad WMM parameters from buggy APs
[mirror_ubuntu-eoan-kernel.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2012 Realtek Corporation.
4 *
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * Tme full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
16 *
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
21 *
22 * Larry Finger <Larry.Finger@lwfinger.net>
23 *
24 *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 #define START_ADDRESS 0x1000
35 #define REG_MCUFWDL 0x0080
36
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38 {0, 0, 0, 2},
39 {0, 1, 0, 2},
40 {0, 2, 0, 2},
41 {1, 0, 0, 1},
42 {1, 0, 1, 1},
43 {1, 1, 0, 1},
44 {1, 1, 1, 3},
45 {1, 3, 0, 17},
46 {3, 3, 1, 48},
47 {10, 0, 0, 6},
48 {10, 3, 0, 1},
49 {10, 3, 1, 1},
50 {11, 0, 0, 28}
51 };
52
53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
54 u8 *value);
55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
56 u16 *value);
57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
58 u32 *value);
59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
60 u8 value);
61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
62 u16 value);
63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
64 u32 value);
65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
66 u8 data);
67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
69 u8 *data);
70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
71 u8 word_en, u8 *data);
72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
73 u8 *targetdata);
74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
75 u16 efuse_addr, u8 word_en, u8 *data);
76 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
77 static u8 efuse_calculate_word_cnts(u8 word_en);
78
79 void efuse_initialize(struct ieee80211_hw *hw)
80 {
81 struct rtl_priv *rtlpriv = rtl_priv(hw);
82 u8 bytetemp;
83 u8 temp;
84
85 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
86 temp = bytetemp | 0x20;
87 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
88
89 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
90 temp = bytetemp & 0xFE;
91 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
92
93 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
94 temp = bytetemp | 0x80;
95 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
96
97 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
98
99 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
100
101 }
102
103 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
104 {
105 struct rtl_priv *rtlpriv = rtl_priv(hw);
106 u8 data;
107 u8 bytetemp;
108 u8 temp;
109 u32 k = 0;
110 const u32 efuse_len =
111 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
112
113 if (address < efuse_len) {
114 temp = address & 0xFF;
115 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
116 temp);
117 bytetemp = rtl_read_byte(rtlpriv,
118 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
119 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
120 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
121 temp);
122
123 bytetemp = rtl_read_byte(rtlpriv,
124 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
125 temp = bytetemp & 0x7F;
126 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
127 temp);
128
129 bytetemp = rtl_read_byte(rtlpriv,
130 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
131 while (!(bytetemp & 0x80)) {
132 bytetemp = rtl_read_byte(rtlpriv,
133 rtlpriv->cfg->
134 maps[EFUSE_CTRL] + 3);
135 k++;
136 if (k == 1000) {
137 k = 0;
138 break;
139 }
140 }
141 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
142 return data;
143 } else
144 return 0xFF;
145
146 }
147 EXPORT_SYMBOL(efuse_read_1byte);
148
149 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
150 {
151 struct rtl_priv *rtlpriv = rtl_priv(hw);
152 u8 bytetemp;
153 u8 temp;
154 u32 k = 0;
155 const u32 efuse_len =
156 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
157
158 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
159 address, value);
160
161 if (address < efuse_len) {
162 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
163
164 temp = address & 0xFF;
165 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
166 temp);
167 bytetemp = rtl_read_byte(rtlpriv,
168 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
169
170 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
171 rtl_write_byte(rtlpriv,
172 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
173
174 bytetemp = rtl_read_byte(rtlpriv,
175 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
176 temp = bytetemp | 0x80;
177 rtl_write_byte(rtlpriv,
178 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
179
180 bytetemp = rtl_read_byte(rtlpriv,
181 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
182
183 while (bytetemp & 0x80) {
184 bytetemp = rtl_read_byte(rtlpriv,
185 rtlpriv->cfg->
186 maps[EFUSE_CTRL] + 3);
187 k++;
188 if (k == 100) {
189 k = 0;
190 break;
191 }
192 }
193 }
194
195 }
196
197 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
198 {
199 struct rtl_priv *rtlpriv = rtl_priv(hw);
200 u32 value32;
201 u8 readbyte;
202 u16 retry;
203
204 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
205 (_offset & 0xff));
206 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
207 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
208 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
209
210 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
211 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
212 (readbyte & 0x7f));
213
214 retry = 0;
215 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
216 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
217 value32 = rtl_read_dword(rtlpriv,
218 rtlpriv->cfg->maps[EFUSE_CTRL]);
219 retry++;
220 }
221
222 udelay(50);
223 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
224
225 *pbuf = (u8) (value32 & 0xff);
226 }
227 EXPORT_SYMBOL_GPL(read_efuse_byte);
228
229 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
230 {
231 struct rtl_priv *rtlpriv = rtl_priv(hw);
232 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
233 u8 *efuse_tbl;
234 u8 rtemp8[1];
235 u16 efuse_addr = 0;
236 u8 offset, wren;
237 u8 u1temp = 0;
238 u16 i;
239 u16 j;
240 const u16 efuse_max_section =
241 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
242 const u32 efuse_len =
243 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
244 u16 **efuse_word;
245 u16 efuse_utilized = 0;
246 u8 efuse_usage;
247
248 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
249 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
250 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
251 _offset, _size_byte);
252 return;
253 }
254
255 /* allocate memory for efuse_tbl and efuse_word */
256 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
257 sizeof(u8), GFP_ATOMIC);
258 if (!efuse_tbl)
259 return;
260 efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
261 if (!efuse_word)
262 goto out;
263 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
264 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
265 GFP_ATOMIC);
266 if (!efuse_word[i])
267 goto done;
268 }
269
270 for (i = 0; i < efuse_max_section; i++)
271 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
272 efuse_word[j][i] = 0xFFFF;
273
274 read_efuse_byte(hw, efuse_addr, rtemp8);
275 if (*rtemp8 != 0xFF) {
276 efuse_utilized++;
277 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
278 "Addr=%d\n", efuse_addr);
279 efuse_addr++;
280 }
281
282 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
283 /* Check PG header for section num. */
284 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
285 u1temp = ((*rtemp8 & 0xE0) >> 5);
286 read_efuse_byte(hw, efuse_addr, rtemp8);
287
288 if ((*rtemp8 & 0x0F) == 0x0F) {
289 efuse_addr++;
290 read_efuse_byte(hw, efuse_addr, rtemp8);
291
292 if (*rtemp8 != 0xFF &&
293 (efuse_addr < efuse_len)) {
294 efuse_addr++;
295 }
296 continue;
297 } else {
298 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
299 wren = (*rtemp8 & 0x0F);
300 efuse_addr++;
301 }
302 } else {
303 offset = ((*rtemp8 >> 4) & 0x0f);
304 wren = (*rtemp8 & 0x0f);
305 }
306
307 if (offset < efuse_max_section) {
308 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
309 "offset-%d Worden=%x\n", offset, wren);
310
311 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
312 if (!(wren & 0x01)) {
313 RTPRINT(rtlpriv, FEEPROM,
314 EFUSE_READ_ALL,
315 "Addr=%d\n", efuse_addr);
316
317 read_efuse_byte(hw, efuse_addr, rtemp8);
318 efuse_addr++;
319 efuse_utilized++;
320 efuse_word[i][offset] =
321 (*rtemp8 & 0xff);
322
323 if (efuse_addr >= efuse_len)
324 break;
325
326 RTPRINT(rtlpriv, FEEPROM,
327 EFUSE_READ_ALL,
328 "Addr=%d\n", efuse_addr);
329
330 read_efuse_byte(hw, efuse_addr, rtemp8);
331 efuse_addr++;
332 efuse_utilized++;
333 efuse_word[i][offset] |=
334 (((u16)*rtemp8 << 8) & 0xff00);
335
336 if (efuse_addr >= efuse_len)
337 break;
338 }
339
340 wren >>= 1;
341 }
342 }
343
344 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
345 "Addr=%d\n", efuse_addr);
346 read_efuse_byte(hw, efuse_addr, rtemp8);
347 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
348 efuse_utilized++;
349 efuse_addr++;
350 }
351 }
352
353 for (i = 0; i < efuse_max_section; i++) {
354 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
355 efuse_tbl[(i * 8) + (j * 2)] =
356 (efuse_word[j][i] & 0xff);
357 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
358 ((efuse_word[j][i] >> 8) & 0xff);
359 }
360 }
361
362 for (i = 0; i < _size_byte; i++)
363 pbuf[i] = efuse_tbl[_offset + i];
364
365 rtlefuse->efuse_usedbytes = efuse_utilized;
366 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
367 rtlefuse->efuse_usedpercentage = efuse_usage;
368 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
369 (u8 *)&efuse_utilized);
370 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
371 &efuse_usage);
372 done:
373 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
374 kfree(efuse_word[i]);
375 kfree(efuse_word);
376 out:
377 kfree(efuse_tbl);
378 }
379
380 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
381 {
382 struct rtl_priv *rtlpriv = rtl_priv(hw);
383 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
384 u8 section_idx, i, Base;
385 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
386 bool wordchanged, result = true;
387
388 for (section_idx = 0; section_idx < 16; section_idx++) {
389 Base = section_idx * 8;
390 wordchanged = false;
391
392 for (i = 0; i < 8; i = i + 2) {
393 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
394 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
395 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
396 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
397 1])) {
398 words_need++;
399 wordchanged = true;
400 }
401 }
402
403 if (wordchanged)
404 hdr_num++;
405 }
406
407 totalbytes = hdr_num + words_need * 2;
408 efuse_used = rtlefuse->efuse_usedbytes;
409
410 if ((totalbytes + efuse_used) >=
411 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
412 result = false;
413
414 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
415 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
416 totalbytes, hdr_num, words_need, efuse_used);
417
418 return result;
419 }
420
421 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
422 u16 offset, u32 *value)
423 {
424 if (type == 1)
425 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
426 else if (type == 2)
427 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
428 else if (type == 4)
429 efuse_shadow_read_4byte(hw, offset, value);
430
431 }
432 EXPORT_SYMBOL(efuse_shadow_read);
433
434 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
435 u32 value)
436 {
437 if (type == 1)
438 efuse_shadow_write_1byte(hw, offset, (u8) value);
439 else if (type == 2)
440 efuse_shadow_write_2byte(hw, offset, (u16) value);
441 else if (type == 4)
442 efuse_shadow_write_4byte(hw, offset, value);
443
444 }
445
446 bool efuse_shadow_update(struct ieee80211_hw *hw)
447 {
448 struct rtl_priv *rtlpriv = rtl_priv(hw);
449 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
450 u16 i, offset, base;
451 u8 word_en = 0x0F;
452 u8 first_pg = false;
453
454 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
455
456 if (!efuse_shadow_update_chk(hw)) {
457 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
458 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
459 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
460 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
461
462 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
463 "efuse out of capacity!!\n");
464 return false;
465 }
466 efuse_power_switch(hw, true, true);
467
468 for (offset = 0; offset < 16; offset++) {
469
470 word_en = 0x0F;
471 base = offset * 8;
472
473 for (i = 0; i < 8; i++) {
474 if (first_pg) {
475 word_en &= ~(BIT(i / 2));
476
477 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
478 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
479 } else {
480
481 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
482 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
483 word_en &= ~(BIT(i / 2));
484
485 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
486 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
487 }
488 }
489 }
490
491 if (word_en != 0x0F) {
492 u8 tmpdata[8];
493 memcpy(tmpdata,
494 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
495 8);
496 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
497 "U-efuse\n", tmpdata, 8);
498
499 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
500 tmpdata)) {
501 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
502 "PG section(%#x) fail!!\n", offset);
503 break;
504 }
505 }
506
507 }
508
509 efuse_power_switch(hw, true, false);
510 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
511
512 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
513 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
514 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
515
516 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
517 return true;
518 }
519
520 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
521 {
522 struct rtl_priv *rtlpriv = rtl_priv(hw);
523 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
524
525 if (rtlefuse->autoload_failflag)
526 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
527 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
528 else
529 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
530
531 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
532 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
533 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
534
535 }
536 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
537
538 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
539 {
540 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
541
542 efuse_power_switch(hw, true, true);
543
544 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
545
546 efuse_power_switch(hw, true, false);
547
548 }
549
550 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
551 {
552 }
553
554 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
555 u16 offset, u8 *value)
556 {
557 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
558 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
559 }
560
561 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
562 u16 offset, u16 *value)
563 {
564 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
565
566 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
567 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
568
569 }
570
571 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
572 u16 offset, u32 *value)
573 {
574 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
575
576 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
577 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
578 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
579 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
580 }
581
582 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
583 u16 offset, u8 value)
584 {
585 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
586
587 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
588 }
589
590 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
591 u16 offset, u16 value)
592 {
593 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
594
595 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
596 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
597
598 }
599
600 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
601 u16 offset, u32 value)
602 {
603 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
604
605 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
606 (u8) (value & 0x000000FF);
607 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
608 (u8) ((value >> 8) & 0x0000FF);
609 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
610 (u8) ((value >> 16) & 0x00FF);
611 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
612 (u8) ((value >> 24) & 0xFF);
613
614 }
615
616 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
617 {
618 struct rtl_priv *rtlpriv = rtl_priv(hw);
619 u8 tmpidx = 0;
620 int result;
621
622 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
623 (u8) (addr & 0xff));
624 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
625 ((u8) ((addr >> 8) & 0x03)) |
626 (rtl_read_byte(rtlpriv,
627 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
628 0xFC));
629
630 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
631
632 while (!(0x80 & rtl_read_byte(rtlpriv,
633 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
634 && (tmpidx < 100)) {
635 tmpidx++;
636 }
637
638 if (tmpidx < 100) {
639 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
640 result = true;
641 } else {
642 *data = 0xff;
643 result = false;
644 }
645 return result;
646 }
647 EXPORT_SYMBOL(efuse_one_byte_read);
648
649 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
650 {
651 struct rtl_priv *rtlpriv = rtl_priv(hw);
652 u8 tmpidx = 0;
653
654 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
655 "Addr = %x Data=%x\n", addr, data);
656
657 rtl_write_byte(rtlpriv,
658 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
659 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
660 (rtl_read_byte(rtlpriv,
661 rtlpriv->cfg->maps[EFUSE_CTRL] +
662 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
663
664 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
665 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
666
667 while ((0x80 & rtl_read_byte(rtlpriv,
668 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
669 && (tmpidx < 100)) {
670 tmpidx++;
671 }
672
673 if (tmpidx < 100)
674 return true;
675 return false;
676 }
677
678 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
679 {
680 struct rtl_priv *rtlpriv = rtl_priv(hw);
681 efuse_power_switch(hw, false, true);
682 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
683 efuse_power_switch(hw, false, false);
684 }
685
686 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
687 u8 efuse_data, u8 offset, u8 *tmpdata,
688 u8 *readstate)
689 {
690 bool dataempty = true;
691 u8 hoffset;
692 u8 tmpidx;
693 u8 hworden;
694 u8 word_cnts;
695
696 hoffset = (efuse_data >> 4) & 0x0F;
697 hworden = efuse_data & 0x0F;
698 word_cnts = efuse_calculate_word_cnts(hworden);
699
700 if (hoffset == offset) {
701 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
702 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
703 &efuse_data)) {
704 tmpdata[tmpidx] = efuse_data;
705 if (efuse_data != 0xff)
706 dataempty = false;
707 }
708 }
709
710 if (!dataempty) {
711 *readstate = PG_STATE_DATA;
712 } else {
713 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
714 *readstate = PG_STATE_HEADER;
715 }
716
717 } else {
718 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
719 *readstate = PG_STATE_HEADER;
720 }
721 }
722
723 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
724 {
725 u8 readstate = PG_STATE_HEADER;
726
727 bool continual = true;
728
729 u8 efuse_data, word_cnts = 0;
730 u16 efuse_addr = 0;
731 u8 tmpdata[8];
732
733 if (data == NULL)
734 return false;
735 if (offset > 15)
736 return false;
737
738 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
739 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
740
741 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
742 if (readstate & PG_STATE_HEADER) {
743 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
744 && (efuse_data != 0xFF))
745 efuse_read_data_case1(hw, &efuse_addr,
746 efuse_data, offset,
747 tmpdata, &readstate);
748 else
749 continual = false;
750 } else if (readstate & PG_STATE_DATA) {
751 efuse_word_enable_data_read(0, tmpdata, data);
752 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
753 readstate = PG_STATE_HEADER;
754 }
755
756 }
757
758 if ((data[0] == 0xff) && (data[1] == 0xff) &&
759 (data[2] == 0xff) && (data[3] == 0xff) &&
760 (data[4] == 0xff) && (data[5] == 0xff) &&
761 (data[6] == 0xff) && (data[7] == 0xff))
762 return false;
763 else
764 return true;
765
766 }
767
768 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
769 u8 efuse_data, u8 offset,
770 int *continual, u8 *write_state,
771 struct pgpkt_struct *target_pkt,
772 int *repeat_times, int *result, u8 word_en)
773 {
774 struct rtl_priv *rtlpriv = rtl_priv(hw);
775 struct pgpkt_struct tmp_pkt;
776 int dataempty = true;
777 u8 originaldata[8 * sizeof(u8)];
778 u8 badworden = 0x0F;
779 u8 match_word_en, tmp_word_en;
780 u8 tmpindex;
781 u8 tmp_header = efuse_data;
782 u8 tmp_word_cnts;
783
784 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
785 tmp_pkt.word_en = tmp_header & 0x0F;
786 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
787
788 if (tmp_pkt.offset != target_pkt->offset) {
789 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
790 *write_state = PG_STATE_HEADER;
791 } else {
792 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
793 if (efuse_one_byte_read(hw,
794 (*efuse_addr + 1 + tmpindex),
795 &efuse_data) &&
796 (efuse_data != 0xFF))
797 dataempty = false;
798 }
799
800 if (!dataempty) {
801 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
802 *write_state = PG_STATE_HEADER;
803 } else {
804 match_word_en = 0x0F;
805 if (!((target_pkt->word_en & BIT(0)) |
806 (tmp_pkt.word_en & BIT(0))))
807 match_word_en &= (~BIT(0));
808
809 if (!((target_pkt->word_en & BIT(1)) |
810 (tmp_pkt.word_en & BIT(1))))
811 match_word_en &= (~BIT(1));
812
813 if (!((target_pkt->word_en & BIT(2)) |
814 (tmp_pkt.word_en & BIT(2))))
815 match_word_en &= (~BIT(2));
816
817 if (!((target_pkt->word_en & BIT(3)) |
818 (tmp_pkt.word_en & BIT(3))))
819 match_word_en &= (~BIT(3));
820
821 if ((match_word_en & 0x0F) != 0x0F) {
822 badworden =
823 enable_efuse_data_write(hw,
824 *efuse_addr + 1,
825 tmp_pkt.word_en,
826 target_pkt->data);
827
828 if (0x0F != (badworden & 0x0F)) {
829 u8 reorg_offset = offset;
830 u8 reorg_worden = badworden;
831 efuse_pg_packet_write(hw, reorg_offset,
832 reorg_worden,
833 originaldata);
834 }
835
836 tmp_word_en = 0x0F;
837 if ((target_pkt->word_en & BIT(0)) ^
838 (match_word_en & BIT(0)))
839 tmp_word_en &= (~BIT(0));
840
841 if ((target_pkt->word_en & BIT(1)) ^
842 (match_word_en & BIT(1)))
843 tmp_word_en &= (~BIT(1));
844
845 if ((target_pkt->word_en & BIT(2)) ^
846 (match_word_en & BIT(2)))
847 tmp_word_en &= (~BIT(2));
848
849 if ((target_pkt->word_en & BIT(3)) ^
850 (match_word_en & BIT(3)))
851 tmp_word_en &= (~BIT(3));
852
853 if ((tmp_word_en & 0x0F) != 0x0F) {
854 *efuse_addr = efuse_get_current_size(hw);
855 target_pkt->offset = offset;
856 target_pkt->word_en = tmp_word_en;
857 } else {
858 *continual = false;
859 }
860 *write_state = PG_STATE_HEADER;
861 *repeat_times += 1;
862 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
863 *continual = false;
864 *result = false;
865 }
866 } else {
867 *efuse_addr += (2 * tmp_word_cnts) + 1;
868 target_pkt->offset = offset;
869 target_pkt->word_en = word_en;
870 *write_state = PG_STATE_HEADER;
871 }
872 }
873 }
874 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
875 }
876
877 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
878 int *continual, u8 *write_state,
879 struct pgpkt_struct target_pkt,
880 int *repeat_times, int *result)
881 {
882 struct rtl_priv *rtlpriv = rtl_priv(hw);
883 struct pgpkt_struct tmp_pkt;
884 u8 pg_header;
885 u8 tmp_header;
886 u8 originaldata[8 * sizeof(u8)];
887 u8 tmp_word_cnts;
888 u8 badworden = 0x0F;
889
890 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
891 efuse_one_byte_write(hw, *efuse_addr, pg_header);
892 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
893
894 if (tmp_header == pg_header) {
895 *write_state = PG_STATE_DATA;
896 } else if (tmp_header == 0xFF) {
897 *write_state = PG_STATE_HEADER;
898 *repeat_times += 1;
899 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
900 *continual = false;
901 *result = false;
902 }
903 } else {
904 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
905 tmp_pkt.word_en = tmp_header & 0x0F;
906
907 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
908
909 memset(originaldata, 0xff, 8 * sizeof(u8));
910
911 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
912 badworden = enable_efuse_data_write(hw,
913 *efuse_addr + 1,
914 tmp_pkt.word_en,
915 originaldata);
916
917 if (0x0F != (badworden & 0x0F)) {
918 u8 reorg_offset = tmp_pkt.offset;
919 u8 reorg_worden = badworden;
920 efuse_pg_packet_write(hw, reorg_offset,
921 reorg_worden,
922 originaldata);
923 *efuse_addr = efuse_get_current_size(hw);
924 } else {
925 *efuse_addr = *efuse_addr +
926 (tmp_word_cnts * 2) + 1;
927 }
928 } else {
929 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
930 }
931
932 *write_state = PG_STATE_HEADER;
933 *repeat_times += 1;
934 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
935 *continual = false;
936 *result = false;
937 }
938
939 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
940 "efuse PG_STATE_HEADER-2\n");
941 }
942 }
943
944 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
945 u8 offset, u8 word_en, u8 *data)
946 {
947 struct rtl_priv *rtlpriv = rtl_priv(hw);
948 struct pgpkt_struct target_pkt;
949 u8 write_state = PG_STATE_HEADER;
950 int continual = true, dataempty = true, result = true;
951 u16 efuse_addr = 0;
952 u8 efuse_data;
953 u8 target_word_cnts = 0;
954 u8 badworden = 0x0F;
955 static int repeat_times;
956
957 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
958 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
959 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
960 "efuse_pg_packet_write error\n");
961 return false;
962 }
963
964 target_pkt.offset = offset;
965 target_pkt.word_en = word_en;
966
967 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
968
969 efuse_word_enable_data_read(word_en, data, target_pkt.data);
970 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
971
972 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
973
974 while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
975 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
976
977 if (write_state == PG_STATE_HEADER) {
978 dataempty = true;
979 badworden = 0x0F;
980 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
981 "efuse PG_STATE_HEADER\n");
982
983 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
984 (efuse_data != 0xFF))
985 efuse_write_data_case1(hw, &efuse_addr,
986 efuse_data, offset,
987 &continual,
988 &write_state,
989 &target_pkt,
990 &repeat_times, &result,
991 word_en);
992 else
993 efuse_write_data_case2(hw, &efuse_addr,
994 &continual,
995 &write_state,
996 target_pkt,
997 &repeat_times,
998 &result);
999
1000 } else if (write_state == PG_STATE_DATA) {
1001 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1002 "efuse PG_STATE_DATA\n");
1003 badworden = 0x0f;
1004 badworden =
1005 enable_efuse_data_write(hw, efuse_addr + 1,
1006 target_pkt.word_en,
1007 target_pkt.data);
1008
1009 if ((badworden & 0x0F) == 0x0F) {
1010 continual = false;
1011 } else {
1012 efuse_addr =
1013 efuse_addr + (2 * target_word_cnts) + 1;
1014
1015 target_pkt.offset = offset;
1016 target_pkt.word_en = badworden;
1017 target_word_cnts =
1018 efuse_calculate_word_cnts(target_pkt.
1019 word_en);
1020 write_state = PG_STATE_HEADER;
1021 repeat_times++;
1022 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1023 continual = false;
1024 result = false;
1025 }
1026 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1027 "efuse PG_STATE_HEADER-3\n");
1028 }
1029 }
1030 }
1031
1032 if (efuse_addr >= (EFUSE_MAX_SIZE -
1033 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1034 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1035 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1036 }
1037
1038 return true;
1039 }
1040
1041 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1042 u8 *targetdata)
1043 {
1044 if (!(word_en & BIT(0))) {
1045 targetdata[0] = sourdata[0];
1046 targetdata[1] = sourdata[1];
1047 }
1048
1049 if (!(word_en & BIT(1))) {
1050 targetdata[2] = sourdata[2];
1051 targetdata[3] = sourdata[3];
1052 }
1053
1054 if (!(word_en & BIT(2))) {
1055 targetdata[4] = sourdata[4];
1056 targetdata[5] = sourdata[5];
1057 }
1058
1059 if (!(word_en & BIT(3))) {
1060 targetdata[6] = sourdata[6];
1061 targetdata[7] = sourdata[7];
1062 }
1063 }
1064
1065 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1066 u16 efuse_addr, u8 word_en, u8 *data)
1067 {
1068 struct rtl_priv *rtlpriv = rtl_priv(hw);
1069 u16 tmpaddr;
1070 u16 start_addr = efuse_addr;
1071 u8 badworden = 0x0F;
1072 u8 tmpdata[8];
1073
1074 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1075 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1076 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1077
1078 if (!(word_en & BIT(0))) {
1079 tmpaddr = start_addr;
1080 efuse_one_byte_write(hw, start_addr++, data[0]);
1081 efuse_one_byte_write(hw, start_addr++, data[1]);
1082
1083 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1084 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1085 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1086 badworden &= (~BIT(0));
1087 }
1088
1089 if (!(word_en & BIT(1))) {
1090 tmpaddr = start_addr;
1091 efuse_one_byte_write(hw, start_addr++, data[2]);
1092 efuse_one_byte_write(hw, start_addr++, data[3]);
1093
1094 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1095 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1096 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1097 badworden &= (~BIT(1));
1098 }
1099
1100 if (!(word_en & BIT(2))) {
1101 tmpaddr = start_addr;
1102 efuse_one_byte_write(hw, start_addr++, data[4]);
1103 efuse_one_byte_write(hw, start_addr++, data[5]);
1104
1105 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1106 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1107 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1108 badworden &= (~BIT(2));
1109 }
1110
1111 if (!(word_en & BIT(3))) {
1112 tmpaddr = start_addr;
1113 efuse_one_byte_write(hw, start_addr++, data[6]);
1114 efuse_one_byte_write(hw, start_addr++, data[7]);
1115
1116 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1117 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1118 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1119 badworden &= (~BIT(3));
1120 }
1121
1122 return badworden;
1123 }
1124
1125 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1126 {
1127 struct rtl_priv *rtlpriv = rtl_priv(hw);
1128 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1129 u8 tempval;
1130 u16 tmpV16;
1131
1132 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1133
1134 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1135 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1136 rtl_write_byte(rtlpriv,
1137 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1138 } else {
1139 tmpV16 =
1140 rtl_read_word(rtlpriv,
1141 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1142 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1143 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1144 rtl_write_word(rtlpriv,
1145 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1146 tmpV16);
1147 }
1148 }
1149 tmpV16 = rtl_read_word(rtlpriv,
1150 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1151 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1152 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1153 rtl_write_word(rtlpriv,
1154 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1155 }
1156
1157 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1158 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1159 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1160 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1161 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1162 rtl_write_word(rtlpriv,
1163 rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1164 }
1165 }
1166
1167 if (pwrstate) {
1168 if (write) {
1169 tempval = rtl_read_byte(rtlpriv,
1170 rtlpriv->cfg->maps[EFUSE_TEST] +
1171 3);
1172
1173 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1174 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1175 tempval |= (VOLTAGE_V25 << 3);
1176 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1177 tempval &= 0x0F;
1178 tempval |= (VOLTAGE_V25 << 4);
1179 }
1180
1181 rtl_write_byte(rtlpriv,
1182 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1183 (tempval | 0x80));
1184 }
1185
1186 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1187 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1188 0x03);
1189 }
1190 } else {
1191 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1192 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1193 rtl_write_byte(rtlpriv,
1194 rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1195
1196 if (write) {
1197 tempval = rtl_read_byte(rtlpriv,
1198 rtlpriv->cfg->maps[EFUSE_TEST] +
1199 3);
1200 rtl_write_byte(rtlpriv,
1201 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1202 (tempval & 0x7F));
1203 }
1204
1205 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1206 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1207 0x02);
1208 }
1209 }
1210 }
1211 EXPORT_SYMBOL(efuse_power_switch);
1212
1213 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1214 {
1215 int continual = true;
1216 u16 efuse_addr = 0;
1217 u8 hoffset, hworden;
1218 u8 efuse_data, word_cnts;
1219
1220 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1221 (efuse_addr < EFUSE_MAX_SIZE)) {
1222 if (efuse_data != 0xFF) {
1223 hoffset = (efuse_data >> 4) & 0x0F;
1224 hworden = efuse_data & 0x0F;
1225 word_cnts = efuse_calculate_word_cnts(hworden);
1226 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1227 } else {
1228 continual = false;
1229 }
1230 }
1231
1232 return efuse_addr;
1233 }
1234
1235 static u8 efuse_calculate_word_cnts(u8 word_en)
1236 {
1237 u8 word_cnts = 0;
1238 if (!(word_en & BIT(0)))
1239 word_cnts++;
1240 if (!(word_en & BIT(1)))
1241 word_cnts++;
1242 if (!(word_en & BIT(2)))
1243 word_cnts++;
1244 if (!(word_en & BIT(3)))
1245 word_cnts++;
1246 return word_cnts;
1247 }
1248
1249 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1250 int max_size, u8 *hwinfo, int *params)
1251 {
1252 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1253 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1254 struct device *dev = &rtlpcipriv->dev.pdev->dev;
1255 u16 eeprom_id;
1256 u16 i, usvalue;
1257
1258 switch (rtlefuse->epromtype) {
1259 case EEPROM_BOOT_EFUSE:
1260 rtl_efuse_shadow_map_update(hw);
1261 break;
1262
1263 case EEPROM_93C46:
1264 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1265 return 1;
1266
1267 default:
1268 dev_warn(dev, "no efuse data\n");
1269 return 1;
1270 }
1271
1272 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1273
1274 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1275 hwinfo, max_size);
1276
1277 eeprom_id = *((u16 *)&hwinfo[0]);
1278 if (eeprom_id != params[0]) {
1279 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1280 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1281 rtlefuse->autoload_failflag = true;
1282 } else {
1283 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1284 rtlefuse->autoload_failflag = false;
1285 }
1286
1287 if (rtlefuse->autoload_failflag)
1288 return 1;
1289
1290 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1291 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1292 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1293 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1294 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1295 "EEPROMId = 0x%4x\n", eeprom_id);
1296 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1297 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1298 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1299 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1300 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1301 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1302 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1303 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1304
1305 for (i = 0; i < 6; i += 2) {
1306 usvalue = *(u16 *)&hwinfo[params[5] + i];
1307 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1308 }
1309 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1310
1311 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1312 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1313 rtlefuse->txpwr_fromeprom = true;
1314 rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1315
1316 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1317 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1318
1319 /* set channel plan to world wide 13 */
1320 rtlefuse->channel_plan = params[9];
1321
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1325
1326 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1327 {
1328 struct rtl_priv *rtlpriv = rtl_priv(hw);
1329 u8 *pu4byteptr = (u8 *)buffer;
1330 u32 i;
1331
1332 for (i = 0; i < size; i++)
1333 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1334 }
1335 EXPORT_SYMBOL_GPL(rtl_fw_block_write);
1336
1337 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1338 u32 size)
1339 {
1340 struct rtl_priv *rtlpriv = rtl_priv(hw);
1341 u8 value8;
1342 u8 u8page = (u8)(page & 0x07);
1343
1344 value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1345
1346 rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1347 rtl_fw_block_write(hw, buffer, size);
1348 }
1349 EXPORT_SYMBOL_GPL(rtl_fw_page_write);
1350
1351 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1352 {
1353 u32 fwlen = *pfwlen;
1354 u8 remain = (u8)(fwlen % 4);
1355
1356 remain = (remain == 0) ? 0 : (4 - remain);
1357
1358 while (remain > 0) {
1359 pfwbuf[fwlen] = 0;
1360 fwlen++;
1361 remain--;
1362 }
1363
1364 *pfwlen = fwlen;
1365 }
1366 EXPORT_SYMBOL_GPL(rtl_fill_dummy);