]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/realtek/rtw88/main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "tx.h"
16 #include "debug.h"
17 #include "bf.h"
18
19 unsigned int rtw_fw_lps_deep_mode;
20 EXPORT_SYMBOL(rtw_fw_lps_deep_mode);
21 bool rtw_bf_support = true;
22 unsigned int rtw_debug_mask;
23 EXPORT_SYMBOL(rtw_debug_mask);
24
25 module_param_named(lps_deep_mode, rtw_fw_lps_deep_mode, uint, 0644);
26 module_param_named(support_bf, rtw_bf_support, bool, 0644);
27 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
28
29 MODULE_PARM_DESC(lps_deep_mode, "Deeper PS mode. If 0, deep PS is disabled");
30 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
31 MODULE_PARM_DESC(debug_mask, "Debugging mask");
32
33 static struct ieee80211_channel rtw_channeltable_2g[] = {
34 {.center_freq = 2412, .hw_value = 1,},
35 {.center_freq = 2417, .hw_value = 2,},
36 {.center_freq = 2422, .hw_value = 3,},
37 {.center_freq = 2427, .hw_value = 4,},
38 {.center_freq = 2432, .hw_value = 5,},
39 {.center_freq = 2437, .hw_value = 6,},
40 {.center_freq = 2442, .hw_value = 7,},
41 {.center_freq = 2447, .hw_value = 8,},
42 {.center_freq = 2452, .hw_value = 9,},
43 {.center_freq = 2457, .hw_value = 10,},
44 {.center_freq = 2462, .hw_value = 11,},
45 {.center_freq = 2467, .hw_value = 12,},
46 {.center_freq = 2472, .hw_value = 13,},
47 {.center_freq = 2484, .hw_value = 14,},
48 };
49
50 static struct ieee80211_channel rtw_channeltable_5g[] = {
51 {.center_freq = 5180, .hw_value = 36,},
52 {.center_freq = 5200, .hw_value = 40,},
53 {.center_freq = 5220, .hw_value = 44,},
54 {.center_freq = 5240, .hw_value = 48,},
55 {.center_freq = 5260, .hw_value = 52,},
56 {.center_freq = 5280, .hw_value = 56,},
57 {.center_freq = 5300, .hw_value = 60,},
58 {.center_freq = 5320, .hw_value = 64,},
59 {.center_freq = 5500, .hw_value = 100,},
60 {.center_freq = 5520, .hw_value = 104,},
61 {.center_freq = 5540, .hw_value = 108,},
62 {.center_freq = 5560, .hw_value = 112,},
63 {.center_freq = 5580, .hw_value = 116,},
64 {.center_freq = 5600, .hw_value = 120,},
65 {.center_freq = 5620, .hw_value = 124,},
66 {.center_freq = 5640, .hw_value = 128,},
67 {.center_freq = 5660, .hw_value = 132,},
68 {.center_freq = 5680, .hw_value = 136,},
69 {.center_freq = 5700, .hw_value = 140,},
70 {.center_freq = 5745, .hw_value = 149,},
71 {.center_freq = 5765, .hw_value = 153,},
72 {.center_freq = 5785, .hw_value = 157,},
73 {.center_freq = 5805, .hw_value = 161,},
74 {.center_freq = 5825, .hw_value = 165,
75 .flags = IEEE80211_CHAN_NO_HT40MINUS},
76 };
77
78 static struct ieee80211_rate rtw_ratetable[] = {
79 {.bitrate = 10, .hw_value = 0x00,},
80 {.bitrate = 20, .hw_value = 0x01,},
81 {.bitrate = 55, .hw_value = 0x02,},
82 {.bitrate = 110, .hw_value = 0x03,},
83 {.bitrate = 60, .hw_value = 0x04,},
84 {.bitrate = 90, .hw_value = 0x05,},
85 {.bitrate = 120, .hw_value = 0x06,},
86 {.bitrate = 180, .hw_value = 0x07,},
87 {.bitrate = 240, .hw_value = 0x08,},
88 {.bitrate = 360, .hw_value = 0x09,},
89 {.bitrate = 480, .hw_value = 0x0a,},
90 {.bitrate = 540, .hw_value = 0x0b,},
91 };
92
93 u16 rtw_desc_to_bitrate(u8 desc_rate)
94 {
95 struct ieee80211_rate rate;
96
97 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
98 return 0;
99
100 rate = rtw_ratetable[desc_rate];
101
102 return rate.bitrate;
103 }
104
105 static struct ieee80211_supported_band rtw_band_2ghz = {
106 .band = NL80211_BAND_2GHZ,
107
108 .channels = rtw_channeltable_2g,
109 .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
110
111 .bitrates = rtw_ratetable,
112 .n_bitrates = ARRAY_SIZE(rtw_ratetable),
113
114 .ht_cap = {0},
115 .vht_cap = {0},
116 };
117
118 static struct ieee80211_supported_band rtw_band_5ghz = {
119 .band = NL80211_BAND_5GHZ,
120
121 .channels = rtw_channeltable_5g,
122 .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
123
124 /* 5G has no CCK rates */
125 .bitrates = rtw_ratetable + 4,
126 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
127
128 .ht_cap = {0},
129 .vht_cap = {0},
130 };
131
132 struct rtw_watch_dog_iter_data {
133 struct rtw_dev *rtwdev;
134 struct rtw_vif *rtwvif;
135 };
136
137 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
138 {
139 struct rtw_bf_info *bf_info = &rtwdev->bf_info;
140 struct rtw_chip_info *chip = rtwdev->chip;
141 u8 fix_rate_enable = 0;
142 u8 new_csi_rate_idx;
143
144 if (rtwvif->bfee.role != RTW_BFEE_SU &&
145 rtwvif->bfee.role != RTW_BFEE_MU)
146 return;
147
148 chip->ops->cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
149 bf_info->cur_csi_rpt_rate,
150 fix_rate_enable, &new_csi_rate_idx);
151
152 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
153 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
154 }
155
156 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
157 struct ieee80211_vif *vif)
158 {
159 struct rtw_watch_dog_iter_data *iter_data = data;
160 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
161
162 if (vif->type == NL80211_IFTYPE_STATION)
163 if (vif->bss_conf.assoc)
164 iter_data->rtwvif = rtwvif;
165
166 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
167
168 rtwvif->stats.tx_unicast = 0;
169 rtwvif->stats.rx_unicast = 0;
170 rtwvif->stats.tx_cnt = 0;
171 rtwvif->stats.rx_cnt = 0;
172 }
173
174 /* process TX/RX statistics periodically for hardware,
175 * the information helps hardware to enhance performance
176 */
177 static void rtw_watch_dog_work(struct work_struct *work)
178 {
179 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
180 watch_dog_work.work);
181 struct rtw_traffic_stats *stats = &rtwdev->stats;
182 struct rtw_watch_dog_iter_data data = {};
183 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
184 bool ps_active;
185
186 mutex_lock(&rtwdev->mutex);
187
188 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
189 goto unlock;
190
191 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
192 RTW_WATCH_DOG_DELAY_TIME);
193
194 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
195 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
196 else
197 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
198
199 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
200 rtw_coex_wl_status_change_notify(rtwdev);
201
202 if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
203 stats->rx_cnt > RTW_LPS_THRESHOLD)
204 ps_active = true;
205 else
206 ps_active = false;
207
208 ewma_tp_add(&stats->tx_ewma_tp,
209 (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
210 ewma_tp_add(&stats->rx_ewma_tp,
211 (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
212 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
213 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
214
215 /* reset tx/rx statictics */
216 stats->tx_unicast = 0;
217 stats->rx_unicast = 0;
218 stats->tx_cnt = 0;
219 stats->rx_cnt = 0;
220
221 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
222 goto unlock;
223
224 /* make sure BB/RF is working for dynamic mech */
225 rtw_leave_lps(rtwdev);
226
227 rtw_phy_dynamic_mechanism(rtwdev);
228
229 data.rtwdev = rtwdev;
230 /* use atomic version to avoid taking local->iflist_mtx mutex */
231 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
232
233 /* fw supports only one station associated to enter lps, if there are
234 * more than two stations associated to the AP, then we can not enter
235 * lps, because fw does not handle the overlapped beacon interval
236 *
237 * mac80211 should iterate vifs and determine if driver can enter
238 * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
239 * get that vif and check if device is having traffic more than the
240 * threshold.
241 */
242 if (rtwdev->ps_enabled && data.rtwvif && !ps_active)
243 rtw_enter_lps(rtwdev, data.rtwvif->port);
244
245 rtwdev->watch_dog_cnt++;
246
247 unlock:
248 mutex_unlock(&rtwdev->mutex);
249 }
250
251 static void rtw_c2h_work(struct work_struct *work)
252 {
253 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
254 struct sk_buff *skb, *tmp;
255
256 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
257 skb_unlink(skb, &rtwdev->c2h_queue);
258 rtw_fw_c2h_cmd_handle(rtwdev, skb);
259 dev_kfree_skb_any(skb);
260 }
261 }
262
263 struct rtw_txq_ba_iter_data {
264 };
265
266 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
267 {
268 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
269 int ret;
270 u8 tid;
271
272 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
273 while (tid != IEEE80211_NUM_TIDS) {
274 clear_bit(tid, si->tid_ba);
275 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
276 if (ret == -EINVAL) {
277 struct ieee80211_txq *txq;
278 struct rtw_txq *rtwtxq;
279
280 txq = sta->txq[tid];
281 rtwtxq = (struct rtw_txq *)txq->drv_priv;
282 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
283 }
284
285 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
286 }
287 }
288
289 static void rtw_txq_ba_work(struct work_struct *work)
290 {
291 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
292 struct rtw_txq_ba_iter_data data;
293
294 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
295 }
296
297 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
298 struct rtw_channel_params *chan_params)
299 {
300 struct ieee80211_channel *channel = chandef->chan;
301 enum nl80211_chan_width width = chandef->width;
302 u8 *cch_by_bw = chan_params->cch_by_bw;
303 u32 primary_freq, center_freq;
304 u8 center_chan;
305 u8 bandwidth = RTW_CHANNEL_WIDTH_20;
306 u8 primary_chan_idx = 0;
307 u8 i;
308
309 center_chan = channel->hw_value;
310 primary_freq = channel->center_freq;
311 center_freq = chandef->center_freq1;
312
313 /* assign the center channel used while 20M bw is selected */
314 cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
315
316 switch (width) {
317 case NL80211_CHAN_WIDTH_20_NOHT:
318 case NL80211_CHAN_WIDTH_20:
319 bandwidth = RTW_CHANNEL_WIDTH_20;
320 primary_chan_idx = 0;
321 break;
322 case NL80211_CHAN_WIDTH_40:
323 bandwidth = RTW_CHANNEL_WIDTH_40;
324 if (primary_freq > center_freq) {
325 primary_chan_idx = 1;
326 center_chan -= 2;
327 } else {
328 primary_chan_idx = 2;
329 center_chan += 2;
330 }
331 break;
332 case NL80211_CHAN_WIDTH_80:
333 bandwidth = RTW_CHANNEL_WIDTH_80;
334 if (primary_freq > center_freq) {
335 if (primary_freq - center_freq == 10) {
336 primary_chan_idx = 1;
337 center_chan -= 2;
338 } else {
339 primary_chan_idx = 3;
340 center_chan -= 6;
341 }
342 /* assign the center channel used
343 * while 40M bw is selected
344 */
345 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
346 } else {
347 if (center_freq - primary_freq == 10) {
348 primary_chan_idx = 2;
349 center_chan += 2;
350 } else {
351 primary_chan_idx = 4;
352 center_chan += 6;
353 }
354 /* assign the center channel used
355 * while 40M bw is selected
356 */
357 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
358 }
359 break;
360 default:
361 center_chan = 0;
362 break;
363 }
364
365 chan_params->center_chan = center_chan;
366 chan_params->bandwidth = bandwidth;
367 chan_params->primary_chan_idx = primary_chan_idx;
368
369 /* assign the center channel used while current bw is selected */
370 cch_by_bw[bandwidth] = center_chan;
371
372 for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
373 cch_by_bw[i] = 0;
374 }
375
376 void rtw_set_channel(struct rtw_dev *rtwdev)
377 {
378 struct ieee80211_hw *hw = rtwdev->hw;
379 struct rtw_hal *hal = &rtwdev->hal;
380 struct rtw_chip_info *chip = rtwdev->chip;
381 struct rtw_channel_params ch_param;
382 u8 center_chan, bandwidth, primary_chan_idx;
383 u8 i;
384
385 rtw_get_channel_params(&hw->conf.chandef, &ch_param);
386 if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
387 return;
388
389 center_chan = ch_param.center_chan;
390 bandwidth = ch_param.bandwidth;
391 primary_chan_idx = ch_param.primary_chan_idx;
392
393 hal->current_band_width = bandwidth;
394 hal->current_channel = center_chan;
395 hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
396
397 for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
398 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
399
400 chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
401
402 if (hal->current_band_type == RTW_BAND_5G) {
403 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
404 } else {
405 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
406 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
407 else
408 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
409 }
410
411 rtw_phy_set_tx_power_level(rtwdev, center_chan);
412 }
413
414 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
415 {
416 int i;
417
418 for (i = 0; i < ETH_ALEN; i++)
419 rtw_write8(rtwdev, start + i, addr[i]);
420 }
421
422 void rtw_vif_port_config(struct rtw_dev *rtwdev,
423 struct rtw_vif *rtwvif,
424 u32 config)
425 {
426 u32 addr, mask;
427
428 if (config & PORT_SET_MAC_ADDR) {
429 addr = rtwvif->conf->mac_addr.addr;
430 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
431 }
432 if (config & PORT_SET_BSSID) {
433 addr = rtwvif->conf->bssid.addr;
434 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
435 }
436 if (config & PORT_SET_NET_TYPE) {
437 addr = rtwvif->conf->net_type.addr;
438 mask = rtwvif->conf->net_type.mask;
439 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
440 }
441 if (config & PORT_SET_AID) {
442 addr = rtwvif->conf->aid.addr;
443 mask = rtwvif->conf->aid.mask;
444 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
445 }
446 if (config & PORT_SET_BCN_CTRL) {
447 addr = rtwvif->conf->bcn_ctrl.addr;
448 mask = rtwvif->conf->bcn_ctrl.mask;
449 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
450 }
451 }
452
453 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
454 {
455 u8 bw = 0;
456
457 switch (bw_cap) {
458 case EFUSE_HW_CAP_IGNORE:
459 case EFUSE_HW_CAP_SUPP_BW80:
460 bw |= BIT(RTW_CHANNEL_WIDTH_80);
461 /* fall through */
462 case EFUSE_HW_CAP_SUPP_BW40:
463 bw |= BIT(RTW_CHANNEL_WIDTH_40);
464 /* fall through */
465 default:
466 bw |= BIT(RTW_CHANNEL_WIDTH_20);
467 break;
468 }
469
470 return bw;
471 }
472
473 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
474 {
475 struct rtw_hal *hal = &rtwdev->hal;
476
477 if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
478 hw_ant_num >= hal->rf_path_num)
479 return;
480
481 switch (hw_ant_num) {
482 case 1:
483 hal->rf_type = RF_1T1R;
484 hal->rf_path_num = 1;
485 hal->antenna_tx = BB_PATH_A;
486 hal->antenna_rx = BB_PATH_A;
487 break;
488 default:
489 WARN(1, "invalid hw configuration from efuse\n");
490 break;
491 }
492 }
493
494 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
495 {
496 u64 ra_mask = 0;
497 u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
498 u8 vht_mcs_cap;
499 int i, nss;
500
501 /* 4SS, every two bits for MCS7/8/9 */
502 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
503 vht_mcs_cap = mcs_map & 0x3;
504 switch (vht_mcs_cap) {
505 case 2: /* MCS9 */
506 ra_mask |= 0x3ffULL << nss;
507 break;
508 case 1: /* MCS8 */
509 ra_mask |= 0x1ffULL << nss;
510 break;
511 case 0: /* MCS7 */
512 ra_mask |= 0x0ffULL << nss;
513 break;
514 default:
515 break;
516 }
517 }
518
519 return ra_mask;
520 }
521
522 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
523 {
524 u8 rate_id = 0;
525
526 switch (wireless_set) {
527 case WIRELESS_CCK:
528 rate_id = RTW_RATEID_B_20M;
529 break;
530 case WIRELESS_OFDM:
531 rate_id = RTW_RATEID_G;
532 break;
533 case WIRELESS_CCK | WIRELESS_OFDM:
534 rate_id = RTW_RATEID_BG;
535 break;
536 case WIRELESS_OFDM | WIRELESS_HT:
537 if (tx_num == 1)
538 rate_id = RTW_RATEID_GN_N1SS;
539 else if (tx_num == 2)
540 rate_id = RTW_RATEID_GN_N2SS;
541 else if (tx_num == 3)
542 rate_id = RTW_RATEID_ARFR5_N_3SS;
543 break;
544 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
545 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
546 if (tx_num == 1)
547 rate_id = RTW_RATEID_BGN_40M_1SS;
548 else if (tx_num == 2)
549 rate_id = RTW_RATEID_BGN_40M_2SS;
550 else if (tx_num == 3)
551 rate_id = RTW_RATEID_ARFR5_N_3SS;
552 else if (tx_num == 4)
553 rate_id = RTW_RATEID_ARFR7_N_4SS;
554 } else {
555 if (tx_num == 1)
556 rate_id = RTW_RATEID_BGN_20M_1SS;
557 else if (tx_num == 2)
558 rate_id = RTW_RATEID_BGN_20M_2SS;
559 else if (tx_num == 3)
560 rate_id = RTW_RATEID_ARFR5_N_3SS;
561 else if (tx_num == 4)
562 rate_id = RTW_RATEID_ARFR7_N_4SS;
563 }
564 break;
565 case WIRELESS_OFDM | WIRELESS_VHT:
566 if (tx_num == 1)
567 rate_id = RTW_RATEID_ARFR1_AC_1SS;
568 else if (tx_num == 2)
569 rate_id = RTW_RATEID_ARFR0_AC_2SS;
570 else if (tx_num == 3)
571 rate_id = RTW_RATEID_ARFR4_AC_3SS;
572 else if (tx_num == 4)
573 rate_id = RTW_RATEID_ARFR6_AC_4SS;
574 break;
575 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
576 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
577 if (tx_num == 1)
578 rate_id = RTW_RATEID_ARFR1_AC_1SS;
579 else if (tx_num == 2)
580 rate_id = RTW_RATEID_ARFR0_AC_2SS;
581 else if (tx_num == 3)
582 rate_id = RTW_RATEID_ARFR4_AC_3SS;
583 else if (tx_num == 4)
584 rate_id = RTW_RATEID_ARFR6_AC_4SS;
585 } else {
586 if (tx_num == 1)
587 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
588 else if (tx_num == 2)
589 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
590 else if (tx_num == 3)
591 rate_id = RTW_RATEID_ARFR4_AC_3SS;
592 else if (tx_num == 4)
593 rate_id = RTW_RATEID_ARFR6_AC_4SS;
594 }
595 break;
596 default:
597 break;
598 }
599
600 return rate_id;
601 }
602
603 #define RA_MASK_CCK_RATES 0x0000f
604 #define RA_MASK_OFDM_RATES 0x00ff0
605 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
606 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
607 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
608 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
609 RA_MASK_HT_RATES_2SS | \
610 RA_MASK_HT_RATES_3SS)
611 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
612 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
613 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
614 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
615 RA_MASK_VHT_RATES_2SS | \
616 RA_MASK_VHT_RATES_3SS)
617 #define RA_MASK_CCK_IN_HT 0x00005
618 #define RA_MASK_CCK_IN_VHT 0x00005
619 #define RA_MASK_OFDM_IN_VHT 0x00010
620 #define RA_MASK_OFDM_IN_HT_2G 0x00010
621 #define RA_MASK_OFDM_IN_HT_5G 0x00030
622
623 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
624 struct rtw_sta_info *si,
625 u64 ra_mask, bool is_vht_enable,
626 u8 wireless_set)
627 {
628 struct rtw_hal *hal = &rtwdev->hal;
629 const struct cfg80211_bitrate_mask *mask = si->mask;
630 u64 cfg_mask = GENMASK_ULL(63, 0);
631 u8 rssi_level, band;
632
633 if (wireless_set != WIRELESS_CCK) {
634 rssi_level = si->rssi_level;
635 if (rssi_level == 0)
636 ra_mask &= 0xffffffffffffffffULL;
637 else if (rssi_level == 1)
638 ra_mask &= 0xfffffffffffffff0ULL;
639 else if (rssi_level == 2)
640 ra_mask &= 0xffffffffffffefe0ULL;
641 else if (rssi_level == 3)
642 ra_mask &= 0xffffffffffffcfc0ULL;
643 else if (rssi_level == 4)
644 ra_mask &= 0xffffffffffff8f80ULL;
645 else if (rssi_level >= 5)
646 ra_mask &= 0xffffffffffff0f00ULL;
647 }
648
649 if (!si->use_cfg_mask)
650 return ra_mask;
651
652 band = hal->current_band_type;
653 if (band == RTW_BAND_2G) {
654 band = NL80211_BAND_2GHZ;
655 cfg_mask = mask->control[band].legacy;
656 } else if (band == RTW_BAND_5G) {
657 band = NL80211_BAND_5GHZ;
658 cfg_mask = u64_encode_bits(mask->control[band].legacy,
659 RA_MASK_OFDM_RATES);
660 }
661
662 if (!is_vht_enable) {
663 if (ra_mask & RA_MASK_HT_RATES_1SS)
664 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
665 RA_MASK_HT_RATES_1SS);
666 if (ra_mask & RA_MASK_HT_RATES_2SS)
667 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
668 RA_MASK_HT_RATES_2SS);
669 } else {
670 if (ra_mask & RA_MASK_VHT_RATES_1SS)
671 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
672 RA_MASK_VHT_RATES_1SS);
673 if (ra_mask & RA_MASK_VHT_RATES_2SS)
674 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
675 RA_MASK_VHT_RATES_2SS);
676 }
677
678 ra_mask &= cfg_mask;
679
680 return ra_mask;
681 }
682
683 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
684 {
685 struct ieee80211_sta *sta = si->sta;
686 struct rtw_efuse *efuse = &rtwdev->efuse;
687 struct rtw_hal *hal = &rtwdev->hal;
688 u8 wireless_set;
689 u8 bw_mode;
690 u8 rate_id;
691 u8 rf_type = RF_1T1R;
692 u8 stbc_en = 0;
693 u8 ldpc_en = 0;
694 u8 tx_num = 1;
695 u64 ra_mask = 0;
696 bool is_vht_enable = false;
697 bool is_support_sgi = false;
698
699 if (sta->vht_cap.vht_supported) {
700 is_vht_enable = true;
701 ra_mask |= get_vht_ra_mask(sta);
702 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
703 stbc_en = VHT_STBC_EN;
704 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
705 ldpc_en = VHT_LDPC_EN;
706 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
707 is_support_sgi = true;
708 } else if (sta->ht_cap.ht_supported) {
709 ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) |
710 (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12);
711 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
712 stbc_en = HT_STBC_EN;
713 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
714 ldpc_en = HT_LDPC_EN;
715 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
716 sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
717 is_support_sgi = true;
718 }
719
720 if (hal->current_band_type == RTW_BAND_5G) {
721 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
722 if (sta->vht_cap.vht_supported) {
723 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
724 wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
725 } else if (sta->ht_cap.ht_supported) {
726 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
727 wireless_set = WIRELESS_OFDM | WIRELESS_HT;
728 } else {
729 wireless_set = WIRELESS_OFDM;
730 }
731 } else if (hal->current_band_type == RTW_BAND_2G) {
732 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
733 if (sta->vht_cap.vht_supported) {
734 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
735 RA_MASK_OFDM_IN_VHT;
736 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
737 WIRELESS_HT | WIRELESS_VHT;
738 } else if (sta->ht_cap.ht_supported) {
739 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
740 RA_MASK_OFDM_IN_HT_2G;
741 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
742 WIRELESS_HT;
743 } else if (sta->supp_rates[0] <= 0xf) {
744 wireless_set = WIRELESS_CCK;
745 } else {
746 wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
747 }
748 } else {
749 rtw_err(rtwdev, "Unknown band type\n");
750 wireless_set = 0;
751 }
752
753 if (efuse->hw_cap.nss == 1) {
754 ra_mask &= RA_MASK_VHT_RATES_1SS;
755 ra_mask &= RA_MASK_HT_RATES_1SS;
756 }
757
758 switch (sta->bandwidth) {
759 case IEEE80211_STA_RX_BW_80:
760 bw_mode = RTW_CHANNEL_WIDTH_80;
761 break;
762 case IEEE80211_STA_RX_BW_40:
763 bw_mode = RTW_CHANNEL_WIDTH_40;
764 break;
765 default:
766 bw_mode = RTW_CHANNEL_WIDTH_20;
767 break;
768 }
769
770 if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
771 tx_num = 2;
772 rf_type = RF_2T2R;
773 } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
774 tx_num = 2;
775 rf_type = RF_2T2R;
776 }
777
778 rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
779
780 ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
781 wireless_set);
782
783 si->bw_mode = bw_mode;
784 si->stbc_en = stbc_en;
785 si->ldpc_en = ldpc_en;
786 si->rf_type = rf_type;
787 si->wireless_set = wireless_set;
788 si->sgi_enable = is_support_sgi;
789 si->vht_enable = is_vht_enable;
790 si->ra_mask = ra_mask;
791 si->rate_id = rate_id;
792
793 rtw_fw_send_ra_info(rtwdev, si);
794 }
795
796 static int rtw_power_on(struct rtw_dev *rtwdev)
797 {
798 struct rtw_chip_info *chip = rtwdev->chip;
799 struct rtw_fw_state *fw = &rtwdev->fw;
800 bool wifi_only;
801 int ret;
802
803 ret = rtw_hci_setup(rtwdev);
804 if (ret) {
805 rtw_err(rtwdev, "failed to setup hci\n");
806 goto err;
807 }
808
809 /* power on MAC before firmware downloaded */
810 ret = rtw_mac_power_on(rtwdev);
811 if (ret) {
812 rtw_err(rtwdev, "failed to power on mac\n");
813 goto err;
814 }
815
816 wait_for_completion(&fw->completion);
817 if (!fw->firmware) {
818 ret = -EINVAL;
819 rtw_err(rtwdev, "failed to load firmware\n");
820 goto err;
821 }
822
823 ret = rtw_download_firmware(rtwdev, fw);
824 if (ret) {
825 rtw_err(rtwdev, "failed to download firmware\n");
826 goto err_off;
827 }
828
829 /* config mac after firmware downloaded */
830 ret = rtw_mac_init(rtwdev);
831 if (ret) {
832 rtw_err(rtwdev, "failed to configure mac\n");
833 goto err_off;
834 }
835
836 chip->ops->phy_set_param(rtwdev);
837
838 ret = rtw_hci_start(rtwdev);
839 if (ret) {
840 rtw_err(rtwdev, "failed to start hci\n");
841 goto err_off;
842 }
843
844 /* send H2C after HCI has started */
845 rtw_fw_send_general_info(rtwdev);
846 rtw_fw_send_phydm_info(rtwdev);
847
848 wifi_only = !rtwdev->efuse.btcoex;
849 rtw_coex_power_on_setting(rtwdev);
850 rtw_coex_init_hw_config(rtwdev, wifi_only);
851
852 return 0;
853
854 err_off:
855 rtw_mac_power_off(rtwdev);
856
857 err:
858 return ret;
859 }
860
861 int rtw_core_start(struct rtw_dev *rtwdev)
862 {
863 int ret;
864
865 ret = rtw_power_on(rtwdev);
866 if (ret)
867 return ret;
868
869 rtw_sec_enable_sec_engine(rtwdev);
870
871 /* rcr reset after powered on */
872 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
873
874 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
875 RTW_WATCH_DOG_DELAY_TIME);
876
877 set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
878
879 return 0;
880 }
881
882 static void rtw_power_off(struct rtw_dev *rtwdev)
883 {
884 rtwdev->hci.ops->stop(rtwdev);
885 rtw_mac_power_off(rtwdev);
886 }
887
888 void rtw_core_stop(struct rtw_dev *rtwdev)
889 {
890 struct rtw_coex *coex = &rtwdev->coex;
891
892 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
893 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
894
895 cancel_delayed_work_sync(&rtwdev->watch_dog_work);
896 cancel_delayed_work_sync(&coex->bt_relink_work);
897 cancel_delayed_work_sync(&coex->bt_reenable_work);
898 cancel_delayed_work_sync(&coex->defreeze_work);
899
900 rtw_power_off(rtwdev);
901 }
902
903 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
904 struct ieee80211_sta_ht_cap *ht_cap)
905 {
906 struct rtw_efuse *efuse = &rtwdev->efuse;
907
908 ht_cap->ht_supported = true;
909 ht_cap->cap = 0;
910 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
911 IEEE80211_HT_CAP_MAX_AMSDU |
912 IEEE80211_HT_CAP_LDPC_CODING |
913 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
914 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
915 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
916 IEEE80211_HT_CAP_DSSSCCK40 |
917 IEEE80211_HT_CAP_SGI_40;
918 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
919 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
920 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
921 if (efuse->hw_cap.nss > 1) {
922 ht_cap->mcs.rx_mask[0] = 0xFF;
923 ht_cap->mcs.rx_mask[1] = 0xFF;
924 ht_cap->mcs.rx_mask[4] = 0x01;
925 ht_cap->mcs.rx_highest = cpu_to_le16(300);
926 } else {
927 ht_cap->mcs.rx_mask[0] = 0xFF;
928 ht_cap->mcs.rx_mask[1] = 0x00;
929 ht_cap->mcs.rx_mask[4] = 0x01;
930 ht_cap->mcs.rx_highest = cpu_to_le16(150);
931 }
932 }
933
934 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
935 struct ieee80211_sta_vht_cap *vht_cap)
936 {
937 struct rtw_efuse *efuse = &rtwdev->efuse;
938 u16 mcs_map;
939 __le16 highest;
940
941 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
942 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
943 return;
944
945 vht_cap->vht_supported = true;
946 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
947 IEEE80211_VHT_CAP_RXLDPC |
948 IEEE80211_VHT_CAP_SHORT_GI_80 |
949 IEEE80211_VHT_CAP_TXSTBC |
950 IEEE80211_VHT_CAP_RXSTBC_1 |
951 IEEE80211_VHT_CAP_HTC_VHT |
952 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
953 0;
954
955 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
956 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
957 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
958 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
959
960 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
961 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
962 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
963 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
964 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
965 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
966 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
967 if (efuse->hw_cap.nss > 1) {
968 highest = cpu_to_le16(780);
969 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
970 } else {
971 highest = cpu_to_le16(390);
972 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
973 }
974
975 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
976 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
977 vht_cap->vht_mcs.rx_highest = highest;
978 vht_cap->vht_mcs.tx_highest = highest;
979 }
980
981 static void rtw_set_supported_band(struct ieee80211_hw *hw,
982 struct rtw_chip_info *chip)
983 {
984 struct rtw_dev *rtwdev = hw->priv;
985 struct ieee80211_supported_band *sband;
986
987 if (chip->band & RTW_BAND_2G) {
988 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
989 if (!sband)
990 goto err_out;
991 if (chip->ht_supported)
992 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
993 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
994 }
995
996 if (chip->band & RTW_BAND_5G) {
997 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
998 if (!sband)
999 goto err_out;
1000 if (chip->ht_supported)
1001 rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1002 if (chip->vht_supported)
1003 rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1004 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1005 }
1006
1007 return;
1008
1009 err_out:
1010 rtw_err(rtwdev, "failed to set supported band\n");
1011 kfree(sband);
1012 }
1013
1014 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1015 struct rtw_chip_info *chip)
1016 {
1017 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1018 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1019 }
1020
1021 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1022 {
1023 struct rtw_dev *rtwdev = context;
1024 struct rtw_fw_state *fw = &rtwdev->fw;
1025 const struct rtw_fw_hdr *fw_hdr;
1026
1027 if (!firmware || !firmware->data) {
1028 rtw_err(rtwdev, "failed to request firmware\n");
1029 complete_all(&fw->completion);
1030 return;
1031 }
1032
1033 fw_hdr = (const struct rtw_fw_hdr *)firmware->data;
1034 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1035 fw->version = le16_to_cpu(fw_hdr->version);
1036 fw->sub_version = fw_hdr->subversion;
1037 fw->sub_index = fw_hdr->subindex;
1038
1039 fw->firmware = firmware;
1040 complete_all(&fw->completion);
1041
1042 rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1043 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1044 }
1045
1046 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
1047 {
1048 struct rtw_fw_state *fw = &rtwdev->fw;
1049 int ret;
1050
1051 init_completion(&fw->completion);
1052
1053 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1054 GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
1055 if (ret) {
1056 rtw_err(rtwdev, "async firmware request failed\n");
1057 return ret;
1058 }
1059
1060 return 0;
1061 }
1062
1063 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1064 {
1065 struct rtw_chip_info *chip = rtwdev->chip;
1066 struct rtw_hal *hal = &rtwdev->hal;
1067 struct rtw_efuse *efuse = &rtwdev->efuse;
1068 int ret = 0;
1069
1070 switch (rtw_hci_type(rtwdev)) {
1071 case RTW_HCI_TYPE_PCIE:
1072 rtwdev->hci.rpwm_addr = 0x03d9;
1073 rtwdev->hci.cpwm_addr = 0x03da;
1074 break;
1075 default:
1076 rtw_err(rtwdev, "unsupported hci type\n");
1077 return -EINVAL;
1078 }
1079
1080 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1081 hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
1082 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1083 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1084 if (hal->chip_version & BIT_RF_TYPE_ID) {
1085 hal->rf_type = RF_2T2R;
1086 hal->rf_path_num = 2;
1087 hal->antenna_tx = BB_PATH_AB;
1088 hal->antenna_rx = BB_PATH_AB;
1089 } else {
1090 hal->rf_type = RF_1T1R;
1091 hal->rf_path_num = 1;
1092 hal->antenna_tx = BB_PATH_A;
1093 hal->antenna_rx = BB_PATH_A;
1094 }
1095
1096 if (hal->fab_version == 2)
1097 hal->fab_version = 1;
1098 else if (hal->fab_version == 1)
1099 hal->fab_version = 2;
1100
1101 efuse->physical_size = chip->phy_efuse_size;
1102 efuse->logical_size = chip->log_efuse_size;
1103 efuse->protect_size = chip->ptct_efuse_size;
1104
1105 /* default use ack */
1106 rtwdev->hal.rcr |= BIT_VHT_DACK;
1107
1108 hal->bfee_sts_cap = 3;
1109
1110 return ret;
1111 }
1112
1113 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1114 {
1115 struct rtw_fw_state *fw = &rtwdev->fw;
1116 int ret;
1117
1118 ret = rtw_hci_setup(rtwdev);
1119 if (ret) {
1120 rtw_err(rtwdev, "failed to setup hci\n");
1121 goto err;
1122 }
1123
1124 ret = rtw_mac_power_on(rtwdev);
1125 if (ret) {
1126 rtw_err(rtwdev, "failed to power on mac\n");
1127 goto err;
1128 }
1129
1130 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1131
1132 wait_for_completion(&fw->completion);
1133 if (!fw->firmware) {
1134 ret = -EINVAL;
1135 rtw_err(rtwdev, "failed to load firmware\n");
1136 goto err;
1137 }
1138
1139 ret = rtw_download_firmware(rtwdev, fw);
1140 if (ret) {
1141 rtw_err(rtwdev, "failed to download firmware\n");
1142 goto err_off;
1143 }
1144
1145 return 0;
1146
1147 err_off:
1148 rtw_mac_power_off(rtwdev);
1149
1150 err:
1151 return ret;
1152 }
1153
1154 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1155 {
1156 struct rtw_efuse *efuse = &rtwdev->efuse;
1157 u8 hw_feature[HW_FEATURE_LEN];
1158 u8 id;
1159 u8 bw;
1160 int i;
1161
1162 id = rtw_read8(rtwdev, REG_C2HEVT);
1163 if (id != C2H_HW_FEATURE_REPORT) {
1164 rtw_err(rtwdev, "failed to read hw feature report\n");
1165 return -EBUSY;
1166 }
1167
1168 for (i = 0; i < HW_FEATURE_LEN; i++)
1169 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1170
1171 rtw_write8(rtwdev, REG_C2HEVT, 0);
1172
1173 bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1174 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1175 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1176 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1177 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1178 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1179
1180 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1181
1182 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1183 efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1184 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1185
1186 rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1187 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1188 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1189 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1190
1191 return 0;
1192 }
1193
1194 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1195 {
1196 rtw_hci_stop(rtwdev);
1197 rtw_mac_power_off(rtwdev);
1198 }
1199
1200 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1201 {
1202 struct rtw_efuse *efuse = &rtwdev->efuse;
1203 int ret;
1204
1205 mutex_lock(&rtwdev->mutex);
1206
1207 /* power on mac to read efuse */
1208 ret = rtw_chip_efuse_enable(rtwdev);
1209 if (ret)
1210 goto out_unlock;
1211
1212 ret = rtw_parse_efuse_map(rtwdev);
1213 if (ret)
1214 goto out_disable;
1215
1216 ret = rtw_dump_hw_feature(rtwdev);
1217 if (ret)
1218 goto out_disable;
1219
1220 ret = rtw_check_supported_rfe(rtwdev);
1221 if (ret)
1222 goto out_disable;
1223
1224 if (efuse->crystal_cap == 0xff)
1225 efuse->crystal_cap = 0;
1226 if (efuse->pa_type_2g == 0xff)
1227 efuse->pa_type_2g = 0;
1228 if (efuse->pa_type_5g == 0xff)
1229 efuse->pa_type_5g = 0;
1230 if (efuse->lna_type_2g == 0xff)
1231 efuse->lna_type_2g = 0;
1232 if (efuse->lna_type_5g == 0xff)
1233 efuse->lna_type_5g = 0;
1234 if (efuse->channel_plan == 0xff)
1235 efuse->channel_plan = 0x7f;
1236 if (efuse->rf_board_option == 0xff)
1237 efuse->rf_board_option = 0;
1238 if (efuse->bt_setting & BIT(0))
1239 efuse->share_ant = true;
1240 if (efuse->regd == 0xff)
1241 efuse->regd = 0;
1242
1243 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1244 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1245 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1246 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1247 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1248
1249 out_disable:
1250 rtw_chip_efuse_disable(rtwdev);
1251
1252 out_unlock:
1253 mutex_unlock(&rtwdev->mutex);
1254 return ret;
1255 }
1256
1257 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1258 {
1259 struct rtw_hal *hal = &rtwdev->hal;
1260 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1261
1262 if (!rfe_def)
1263 return -ENODEV;
1264
1265 rtw_phy_setup_phy_cond(rtwdev, 0);
1266
1267 rtw_phy_init_tx_power(rtwdev);
1268 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1269 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1270 rtw_phy_tx_power_by_rate_config(hal);
1271 rtw_phy_tx_power_limit_config(hal);
1272
1273 return 0;
1274 }
1275
1276 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1277 {
1278 int ret;
1279
1280 ret = rtw_chip_parameter_setup(rtwdev);
1281 if (ret) {
1282 rtw_err(rtwdev, "failed to setup chip parameters\n");
1283 goto err_out;
1284 }
1285
1286 ret = rtw_chip_efuse_info_setup(rtwdev);
1287 if (ret) {
1288 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1289 goto err_out;
1290 }
1291
1292 ret = rtw_chip_board_info_setup(rtwdev);
1293 if (ret) {
1294 rtw_err(rtwdev, "failed to setup chip board info\n");
1295 goto err_out;
1296 }
1297
1298 return 0;
1299
1300 err_out:
1301 return ret;
1302 }
1303 EXPORT_SYMBOL(rtw_chip_info_setup);
1304
1305 static void rtw_stats_init(struct rtw_dev *rtwdev)
1306 {
1307 struct rtw_traffic_stats *stats = &rtwdev->stats;
1308 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1309 int i;
1310
1311 ewma_tp_init(&stats->tx_ewma_tp);
1312 ewma_tp_init(&stats->rx_ewma_tp);
1313
1314 for (i = 0; i < RTW_EVM_NUM; i++)
1315 ewma_evm_init(&dm_info->ewma_evm[i]);
1316 for (i = 0; i < RTW_SNR_NUM; i++)
1317 ewma_snr_init(&dm_info->ewma_snr[i]);
1318 }
1319
1320 int rtw_core_init(struct rtw_dev *rtwdev)
1321 {
1322 struct rtw_chip_info *chip = rtwdev->chip;
1323 struct rtw_coex *coex = &rtwdev->coex;
1324 int ret;
1325
1326 INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1327 INIT_LIST_HEAD(&rtwdev->txqs);
1328
1329 timer_setup(&rtwdev->tx_report.purge_timer,
1330 rtw_tx_report_purge_timer, 0);
1331 tasklet_init(&rtwdev->tx_tasklet, rtw_tx_tasklet,
1332 (unsigned long)rtwdev);
1333
1334 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1335 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1336 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1337 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1338 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1339 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1340 skb_queue_head_init(&rtwdev->c2h_queue);
1341 skb_queue_head_init(&rtwdev->coex.queue);
1342 skb_queue_head_init(&rtwdev->tx_report.queue);
1343
1344 spin_lock_init(&rtwdev->dm_lock);
1345 spin_lock_init(&rtwdev->rf_lock);
1346 spin_lock_init(&rtwdev->h2c.lock);
1347 spin_lock_init(&rtwdev->txq_lock);
1348 spin_lock_init(&rtwdev->tx_report.q_lock);
1349
1350 mutex_init(&rtwdev->mutex);
1351 mutex_init(&rtwdev->coex.mutex);
1352 mutex_init(&rtwdev->hal.tx_power_mutex);
1353
1354 init_waitqueue_head(&rtwdev->coex.wait);
1355
1356 rtwdev->sec.total_cam_num = 32;
1357 rtwdev->hal.current_channel = 1;
1358 set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1359 if (!(BIT(rtw_fw_lps_deep_mode) & chip->lps_deep_mode_supported))
1360 rtwdev->lps_conf.deep_mode = LPS_DEEP_MODE_NONE;
1361 else
1362 rtwdev->lps_conf.deep_mode = rtw_fw_lps_deep_mode;
1363
1364 mutex_lock(&rtwdev->mutex);
1365 rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1366 mutex_unlock(&rtwdev->mutex);
1367
1368 rtw_stats_init(rtwdev);
1369
1370 /* default rx filter setting */
1371 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1372 BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1373 BIT_AB | BIT_AM | BIT_APM;
1374
1375 ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1376 if (ret) {
1377 rtw_warn(rtwdev, "no firmware loaded\n");
1378 return ret;
1379 }
1380
1381 return 0;
1382 }
1383 EXPORT_SYMBOL(rtw_core_init);
1384
1385 void rtw_core_deinit(struct rtw_dev *rtwdev)
1386 {
1387 struct rtw_fw_state *fw = &rtwdev->fw;
1388 struct rtw_rsvd_page *rsvd_pkt, *tmp;
1389 unsigned long flags;
1390
1391 if (fw->firmware)
1392 release_firmware(fw->firmware);
1393
1394 tasklet_kill(&rtwdev->tx_tasklet);
1395 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1396 skb_queue_purge(&rtwdev->tx_report.queue);
1397 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1398
1399 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1400 list_del(&rsvd_pkt->list);
1401 kfree(rsvd_pkt);
1402 }
1403
1404 mutex_destroy(&rtwdev->mutex);
1405 mutex_destroy(&rtwdev->coex.mutex);
1406 mutex_destroy(&rtwdev->hal.tx_power_mutex);
1407 }
1408 EXPORT_SYMBOL(rtw_core_deinit);
1409
1410 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1411 {
1412 int max_tx_headroom = 0;
1413 int ret;
1414
1415 /* TODO: USB & SDIO may need extra room? */
1416 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1417
1418 hw->extra_tx_headroom = max_tx_headroom;
1419 hw->queues = IEEE80211_NUM_ACS;
1420 hw->txq_data_size = sizeof(struct rtw_txq);
1421 hw->sta_data_size = sizeof(struct rtw_sta_info);
1422 hw->vif_data_size = sizeof(struct rtw_vif);
1423
1424 ieee80211_hw_set(hw, SIGNAL_DBM);
1425 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1426 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1427 ieee80211_hw_set(hw, MFP_CAPABLE);
1428 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1429 ieee80211_hw_set(hw, SUPPORTS_PS);
1430 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1431 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1432 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1433 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
1434 ieee80211_hw_set(hw, TX_AMSDU);
1435
1436 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1437 BIT(NL80211_IFTYPE_AP) |
1438 BIT(NL80211_IFTYPE_ADHOC) |
1439 BIT(NL80211_IFTYPE_MESH_POINT);
1440
1441 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1442 WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1443
1444 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1445
1446 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
1447
1448 rtw_set_supported_band(hw, rtwdev->chip);
1449 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1450
1451 rtw_regd_init(rtwdev, rtw_regd_notifier);
1452
1453 ret = ieee80211_register_hw(hw);
1454 if (ret) {
1455 rtw_err(rtwdev, "failed to register hw\n");
1456 return ret;
1457 }
1458
1459 if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1460 rtw_err(rtwdev, "regulatory_hint fail\n");
1461
1462 rtw_debugfs_init(rtwdev);
1463
1464 rtwdev->bf_info.bfer_mu_cnt = 0;
1465 rtwdev->bf_info.bfer_su_cnt = 0;
1466
1467 return 0;
1468 }
1469 EXPORT_SYMBOL(rtw_register_hw);
1470
1471 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1472 {
1473 struct rtw_chip_info *chip = rtwdev->chip;
1474
1475 ieee80211_unregister_hw(hw);
1476 rtw_unset_supported_band(hw, chip);
1477 }
1478 EXPORT_SYMBOL(rtw_unregister_hw);
1479
1480 MODULE_AUTHOR("Realtek Corporation");
1481 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1482 MODULE_LICENSE("Dual BSD/GPL");