]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/realtek/rtw88/phy.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / realtek / rtw88 / phy.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/bcd.h>
6
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12
13 struct phy_cfg_pair {
14 u32 addr;
15 u32 data;
16 };
17
18 union phy_table_tile {
19 struct rtw_phy_cond cond;
20 struct phy_cfg_pair cfg;
21 };
22
23 static const u32 db_invert_table[12][8] = {
24 {10, 13, 16, 20,
25 25, 32, 40, 50},
26 {64, 80, 101, 128,
27 160, 201, 256, 318},
28 {401, 505, 635, 800,
29 1007, 1268, 1596, 2010},
30 {316, 398, 501, 631,
31 794, 1000, 1259, 1585},
32 {1995, 2512, 3162, 3981,
33 5012, 6310, 7943, 10000},
34 {12589, 15849, 19953, 25119,
35 31623, 39811, 50119, 63098},
36 {79433, 100000, 125893, 158489,
37 199526, 251189, 316228, 398107},
38 {501187, 630957, 794328, 1000000,
39 1258925, 1584893, 1995262, 2511886},
40 {3162278, 3981072, 5011872, 6309573,
41 7943282, 1000000, 12589254, 15848932},
42 {19952623, 25118864, 31622777, 39810717,
43 50118723, 63095734, 79432823, 100000000},
44 {125892541, 158489319, 199526232, 251188643,
45 316227766, 398107171, 501187234, 630957345},
46 {794328235, 1000000000, 1258925412, 1584893192,
47 1995262315, 2511886432U, 3162277660U, 3981071706U}
48 };
49
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
53 DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
63 DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 rtw_cck_rates, rtw_ofdm_rates,
82 rtw_ht_1s_rates, rtw_ht_2s_rates,
83 rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
86 ARRAY_SIZE(rtw_cck_rates),
87 ARRAY_SIZE(rtw_ofdm_rates),
88 ARRAY_SIZE(rtw_ht_1s_rates),
89 ARRAY_SIZE(rtw_ht_2s_rates),
90 ARRAY_SIZE(rtw_vht_1s_rates),
91 ARRAY_SIZE(rtw_vht_2s_rates)
92 };
93 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
94 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
95 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
96 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
97 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
98 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
99
100 enum rtw_phy_band_type {
101 PHY_BAND_2G = 0,
102 PHY_BAND_5G = 1,
103 };
104
105 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
106 {
107 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
108 u8 i, j;
109
110 for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
111 for (j = 0; j < RTW_RF_PATH_MAX; j++)
112 dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
113 }
114
115 dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
116 }
117
118 void rtw_phy_init(struct rtw_dev *rtwdev)
119 {
120 struct rtw_chip_info *chip = rtwdev->chip;
121 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
122 u32 addr, mask;
123
124 dm_info->fa_history[3] = 0;
125 dm_info->fa_history[2] = 0;
126 dm_info->fa_history[1] = 0;
127 dm_info->fa_history[0] = 0;
128 dm_info->igi_bitmap = 0;
129 dm_info->igi_history[3] = 0;
130 dm_info->igi_history[2] = 0;
131 dm_info->igi_history[1] = 0;
132
133 addr = chip->dig[0].addr;
134 mask = chip->dig[0].mask;
135 dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
136 rtw_phy_cck_pd_init(rtwdev);
137 }
138
139 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
140 {
141 struct rtw_chip_info *chip = rtwdev->chip;
142 struct rtw_hal *hal = &rtwdev->hal;
143 u32 addr, mask;
144 u8 path;
145
146 for (path = 0; path < hal->rf_path_num; path++) {
147 addr = chip->dig[path].addr;
148 mask = chip->dig[path].mask;
149 rtw_write32_mask(rtwdev, addr, mask, igi);
150 }
151 }
152
153 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
154 {
155 struct rtw_chip_info *chip = rtwdev->chip;
156
157 chip->ops->false_alarm_statistics(rtwdev);
158 }
159
160 #define RA_FLOOR_TABLE_SIZE 7
161 #define RA_FLOOR_UP_GAP 3
162
163 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
164 {
165 u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
166 u8 new_level = 0;
167 int i;
168
169 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
170 if (i >= old_level)
171 table[i] += RA_FLOOR_UP_GAP;
172
173 for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
174 if (rssi < table[i]) {
175 new_level = i;
176 break;
177 }
178 }
179
180 return new_level;
181 }
182
183 struct rtw_phy_stat_iter_data {
184 struct rtw_dev *rtwdev;
185 u8 min_rssi;
186 };
187
188 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
189 {
190 struct rtw_phy_stat_iter_data *iter_data = data;
191 struct rtw_dev *rtwdev = iter_data->rtwdev;
192 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
193 u8 rssi;
194
195 rssi = ewma_rssi_read(&si->avg_rssi);
196 si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
197
198 rtw_fw_send_rssi_info(rtwdev, si);
199
200 iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
201 }
202
203 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
204 {
205 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
206 struct rtw_phy_stat_iter_data data = {};
207
208 data.rtwdev = rtwdev;
209 data.min_rssi = U8_MAX;
210 rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
211
212 dm_info->pre_min_rssi = dm_info->min_rssi;
213 dm_info->min_rssi = data.min_rssi;
214 }
215
216 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
217 {
218 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
219
220 dm_info->last_pkt_count = dm_info->cur_pkt_count;
221 memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
222 }
223
224 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
225 {
226 rtw_phy_stat_rssi(rtwdev);
227 rtw_phy_stat_false_alarm(rtwdev);
228 rtw_phy_stat_rate_cnt(rtwdev);
229 }
230
231 #define DIG_PERF_FA_TH_LOW 250
232 #define DIG_PERF_FA_TH_HIGH 500
233 #define DIG_PERF_FA_TH_EXTRA_HIGH 750
234 #define DIG_PERF_MAX 0x5a
235 #define DIG_PERF_MID 0x40
236 #define DIG_CVRG_FA_TH_LOW 2000
237 #define DIG_CVRG_FA_TH_HIGH 4000
238 #define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
239 #define DIG_CVRG_MAX 0x2a
240 #define DIG_CVRG_MID 0x26
241 #define DIG_CVRG_MIN 0x1c
242 #define DIG_RSSI_GAIN_OFFSET 15
243
244 static bool
245 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
246 {
247 u16 fa_lo = DIG_PERF_FA_TH_LOW;
248 u16 fa_hi = DIG_PERF_FA_TH_HIGH;
249 u16 *fa_history;
250 u8 *igi_history;
251 u8 damping_rssi;
252 u8 min_rssi;
253 u8 diff;
254 u8 igi_bitmap;
255 bool damping = false;
256
257 min_rssi = dm_info->min_rssi;
258 if (dm_info->damping) {
259 damping_rssi = dm_info->damping_rssi;
260 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
261 damping_rssi - min_rssi;
262 if (diff > 3 || dm_info->damping_cnt++ > 20) {
263 dm_info->damping = false;
264 return false;
265 }
266
267 return true;
268 }
269
270 igi_history = dm_info->igi_history;
271 fa_history = dm_info->fa_history;
272 igi_bitmap = dm_info->igi_bitmap & 0xf;
273 switch (igi_bitmap) {
274 case 5:
275 /* down -> up -> down -> up */
276 if (igi_history[0] > igi_history[1] &&
277 igi_history[2] > igi_history[3] &&
278 igi_history[0] - igi_history[1] >= 2 &&
279 igi_history[2] - igi_history[3] >= 2 &&
280 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
281 fa_history[2] > fa_hi && fa_history[3] < fa_lo)
282 damping = true;
283 break;
284 case 9:
285 /* up -> down -> down -> up */
286 if (igi_history[0] > igi_history[1] &&
287 igi_history[3] > igi_history[2] &&
288 igi_history[0] - igi_history[1] >= 4 &&
289 igi_history[3] - igi_history[2] >= 2 &&
290 fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
291 fa_history[2] < fa_lo && fa_history[3] > fa_hi)
292 damping = true;
293 break;
294 default:
295 return false;
296 }
297
298 if (damping) {
299 dm_info->damping = true;
300 dm_info->damping_cnt = 0;
301 dm_info->damping_rssi = min_rssi;
302 }
303
304 return damping;
305 }
306
307 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
308 u8 *upper, u8 *lower, bool linked)
309 {
310 u8 dig_max, dig_min, dig_mid;
311 u8 min_rssi;
312
313 if (linked) {
314 dig_max = DIG_PERF_MAX;
315 dig_mid = DIG_PERF_MID;
316 /* 22B=0x1c, 22C=0x20 */
317 dig_min = 0x1c;
318 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
319 } else {
320 dig_max = DIG_CVRG_MAX;
321 dig_mid = DIG_CVRG_MID;
322 dig_min = DIG_CVRG_MIN;
323 min_rssi = dig_min;
324 }
325
326 /* DIG MAX should be bounded by minimum RSSI with offset +15 */
327 dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
328
329 *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
330 *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
331 }
332
333 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
334 u16 *fa_th, u8 *step, bool linked)
335 {
336 u8 min_rssi, pre_min_rssi;
337
338 min_rssi = dm_info->min_rssi;
339 pre_min_rssi = dm_info->pre_min_rssi;
340 step[0] = 4;
341 step[1] = 3;
342 step[2] = 2;
343
344 if (linked) {
345 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
346 fa_th[1] = DIG_PERF_FA_TH_HIGH;
347 fa_th[2] = DIG_PERF_FA_TH_LOW;
348 if (pre_min_rssi > min_rssi) {
349 step[0] = 6;
350 step[1] = 4;
351 step[2] = 2;
352 }
353 } else {
354 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
355 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
356 fa_th[2] = DIG_CVRG_FA_TH_LOW;
357 }
358 }
359
360 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
361 {
362 u8 *igi_history;
363 u16 *fa_history;
364 u8 igi_bitmap;
365 bool up;
366
367 igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
368 igi_history = dm_info->igi_history;
369 fa_history = dm_info->fa_history;
370
371 up = igi > igi_history[0];
372 igi_bitmap |= up;
373
374 igi_history[3] = igi_history[2];
375 igi_history[2] = igi_history[1];
376 igi_history[1] = igi_history[0];
377 igi_history[0] = igi;
378
379 fa_history[3] = fa_history[2];
380 fa_history[2] = fa_history[1];
381 fa_history[1] = fa_history[0];
382 fa_history[0] = fa;
383
384 dm_info->igi_bitmap = igi_bitmap;
385 }
386
387 static void rtw_phy_dig(struct rtw_dev *rtwdev)
388 {
389 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
390 u8 upper_bound, lower_bound;
391 u8 pre_igi, cur_igi;
392 u16 fa_th[3], fa_cnt;
393 u8 level;
394 u8 step[3];
395 bool linked;
396
397 if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
398 return;
399
400 if (rtw_phy_dig_check_damping(dm_info))
401 return;
402
403 linked = !!rtwdev->sta_cnt;
404
405 fa_cnt = dm_info->total_fa_cnt;
406 pre_igi = dm_info->igi_history[0];
407
408 rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
409
410 /* test the false alarm count from the highest threshold level first,
411 * and increase it by corresponding step size
412 *
413 * note that the step size is offset by -2, compensate it afterall
414 */
415 cur_igi = pre_igi;
416 for (level = 0; level < 3; level++) {
417 if (fa_cnt > fa_th[level]) {
418 cur_igi += step[level];
419 break;
420 }
421 }
422 cur_igi -= 2;
423
424 /* calculate the upper/lower bound by the minimum rssi we have among
425 * the peers connected with us, meanwhile make sure the igi value does
426 * not beyond the hardware limitation
427 */
428 rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
429 cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
430
431 /* record current igi value and false alarm statistics for further
432 * damping checks, and record the trend of igi values
433 */
434 rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
435
436 if (cur_igi != pre_igi)
437 rtw_phy_dig_write(rtwdev, cur_igi);
438 }
439
440 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
441 {
442 struct rtw_dev *rtwdev = data;
443 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
444
445 rtw_update_sta_info(rtwdev, si);
446 }
447
448 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
449 {
450 if (rtwdev->watch_dog_cnt & 0x3)
451 return;
452
453 rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
454 }
455
456 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
457 {
458 struct rtw_chip_info *chip = rtwdev->chip;
459
460 if (chip->ops->dpk_track)
461 chip->ops->dpk_track(rtwdev);
462 }
463
464 #define CCK_PD_FA_LV1_MIN 1000
465 #define CCK_PD_FA_LV0_MAX 500
466
467 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
468 {
469 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
470 u32 cck_fa_avg = dm_info->cck_fa_avg;
471
472 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
473 return CCK_PD_LV1;
474
475 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
476 return CCK_PD_LV0;
477
478 return CCK_PD_LV_MAX;
479 }
480
481 #define CCK_PD_IGI_LV4_VAL 0x38
482 #define CCK_PD_IGI_LV3_VAL 0x2a
483 #define CCK_PD_IGI_LV2_VAL 0x24
484 #define CCK_PD_RSSI_LV4_VAL 32
485 #define CCK_PD_RSSI_LV3_VAL 32
486 #define CCK_PD_RSSI_LV2_VAL 24
487
488 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
489 {
490 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
491 u8 igi = dm_info->igi_history[0];
492 u8 rssi = dm_info->min_rssi;
493 u32 cck_fa_avg = dm_info->cck_fa_avg;
494
495 if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
496 return CCK_PD_LV4;
497 if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
498 return CCK_PD_LV3;
499 if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
500 return CCK_PD_LV2;
501 if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
502 return CCK_PD_LV1;
503 if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
504 return CCK_PD_LV0;
505
506 return CCK_PD_LV_MAX;
507 }
508
509 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
510 {
511 if (!rtw_is_assoc(rtwdev))
512 return rtw_phy_cck_pd_lv_unlink(rtwdev);
513 else
514 return rtw_phy_cck_pd_lv_link(rtwdev);
515 }
516
517 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
518 {
519 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
520 struct rtw_chip_info *chip = rtwdev->chip;
521 u32 cck_fa = dm_info->cck_fa_cnt;
522 u8 level;
523
524 if (rtwdev->hal.current_band_type != RTW_BAND_2G)
525 return;
526
527 if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
528 dm_info->cck_fa_avg = cck_fa;
529 else
530 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
531
532 level = rtw_phy_cck_pd_lv(rtwdev);
533
534 if (level >= CCK_PD_LV_MAX)
535 return;
536
537 if (chip->ops->cck_pd_set)
538 chip->ops->cck_pd_set(rtwdev, level);
539 }
540
541 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
542 {
543 rtwdev->chip->ops->pwr_track(rtwdev);
544 }
545
546 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
547 {
548 /* for further calculation */
549 rtw_phy_statistics(rtwdev);
550 rtw_phy_dig(rtwdev);
551 rtw_phy_cck_pd(rtwdev);
552 rtw_phy_ra_info_update(rtwdev);
553 rtw_phy_dpk_track(rtwdev);
554 rtw_phy_pwr_track(rtwdev);
555 }
556
557 #define FRAC_BITS 3
558
559 static u8 rtw_phy_power_2_db(s8 power)
560 {
561 if (power <= -100 || power >= 20)
562 return 0;
563 else if (power >= 0)
564 return 100;
565 else
566 return 100 + power;
567 }
568
569 static u64 rtw_phy_db_2_linear(u8 power_db)
570 {
571 u8 i, j;
572 u64 linear;
573
574 if (power_db > 96)
575 power_db = 96;
576 else if (power_db < 1)
577 return 1;
578
579 /* 1dB ~ 96dB */
580 i = (power_db - 1) >> 3;
581 j = (power_db - 1) - (i << 3);
582
583 linear = db_invert_table[i][j];
584 linear = i > 2 ? linear << FRAC_BITS : linear;
585
586 return linear;
587 }
588
589 static u8 rtw_phy_linear_2_db(u64 linear)
590 {
591 u8 i;
592 u8 j;
593 u32 dB;
594
595 if (linear >= db_invert_table[11][7])
596 return 96; /* maximum 96 dB */
597
598 for (i = 0; i < 12; i++) {
599 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
600 break;
601 else if (i > 2 && linear <= db_invert_table[i][7])
602 break;
603 }
604
605 for (j = 0; j < 8; j++) {
606 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
607 break;
608 else if (i > 2 && linear <= db_invert_table[i][j])
609 break;
610 }
611
612 if (j == 0 && i == 0)
613 goto end;
614
615 if (j == 0) {
616 if (i != 3) {
617 if (db_invert_table[i][0] - linear >
618 linear - db_invert_table[i - 1][7]) {
619 i = i - 1;
620 j = 7;
621 }
622 } else {
623 if (db_invert_table[3][0] - linear >
624 linear - db_invert_table[2][7]) {
625 i = 2;
626 j = 7;
627 }
628 }
629 } else {
630 if (db_invert_table[i][j] - linear >
631 linear - db_invert_table[i][j - 1]) {
632 j = j - 1;
633 }
634 }
635 end:
636 dB = (i << 3) + j + 1;
637
638 return dB;
639 }
640
641 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
642 {
643 s8 power;
644 u8 power_db;
645 u64 linear;
646 u64 sum = 0;
647 u8 path;
648
649 for (path = 0; path < path_num; path++) {
650 power = rf_power[path];
651 power_db = rtw_phy_power_2_db(power);
652 linear = rtw_phy_db_2_linear(power_db);
653 sum += linear;
654 }
655
656 sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
657 switch (path_num) {
658 case 2:
659 sum >>= 1;
660 break;
661 case 3:
662 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
663 break;
664 case 4:
665 sum >>= 2;
666 break;
667 default:
668 break;
669 }
670
671 return rtw_phy_linear_2_db(sum);
672 }
673
674 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
675 u32 addr, u32 mask)
676 {
677 struct rtw_hal *hal = &rtwdev->hal;
678 struct rtw_chip_info *chip = rtwdev->chip;
679 const u32 *base_addr = chip->rf_base_addr;
680 u32 val, direct_addr;
681
682 if (rf_path >= hal->rf_path_num) {
683 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
684 return INV_RF_DATA;
685 }
686
687 addr &= 0xff;
688 direct_addr = base_addr[rf_path] + (addr << 2);
689 mask &= RFREG_MASK;
690
691 val = rtw_read32_mask(rtwdev, direct_addr, mask);
692
693 return val;
694 }
695
696 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
697 u32 addr, u32 mask, u32 data)
698 {
699 struct rtw_hal *hal = &rtwdev->hal;
700 struct rtw_chip_info *chip = rtwdev->chip;
701 u32 *sipi_addr = chip->rf_sipi_addr;
702 u32 data_and_addr;
703 u32 old_data = 0;
704 u32 shift;
705
706 if (rf_path >= hal->rf_path_num) {
707 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
708 return false;
709 }
710
711 addr &= 0xff;
712 mask &= RFREG_MASK;
713
714 if (mask != RFREG_MASK) {
715 old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
716
717 if (old_data == INV_RF_DATA) {
718 rtw_err(rtwdev, "Write fail, rf is disabled\n");
719 return false;
720 }
721
722 shift = __ffs(mask);
723 data = ((old_data) & (~mask)) | (data << shift);
724 }
725
726 data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
727
728 rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
729
730 udelay(13);
731
732 return true;
733 }
734
735 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
736 u32 addr, u32 mask, u32 data)
737 {
738 struct rtw_hal *hal = &rtwdev->hal;
739 struct rtw_chip_info *chip = rtwdev->chip;
740 const u32 *base_addr = chip->rf_base_addr;
741 u32 direct_addr;
742
743 if (rf_path >= hal->rf_path_num) {
744 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
745 return false;
746 }
747
748 addr &= 0xff;
749 direct_addr = base_addr[rf_path] + (addr << 2);
750 mask &= RFREG_MASK;
751
752 if (addr == RF_CFGCH) {
753 rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
754 rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
755 }
756
757 rtw_write32_mask(rtwdev, direct_addr, mask, data);
758
759 udelay(1);
760
761 if (addr == RF_CFGCH) {
762 rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
763 rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
764 }
765
766 return true;
767 }
768
769 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
770 u32 addr, u32 mask, u32 data)
771 {
772 if (addr != 0x00)
773 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
774
775 return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
776 }
777
778 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
779 {
780 struct rtw_hal *hal = &rtwdev->hal;
781 struct rtw_efuse *efuse = &rtwdev->efuse;
782 struct rtw_phy_cond cond = {0};
783
784 cond.cut = hal->cut_version ? hal->cut_version : 15;
785 cond.pkg = pkg ? pkg : 15;
786 cond.plat = 0x04;
787 cond.rfe = efuse->rfe_option;
788
789 switch (rtw_hci_type(rtwdev)) {
790 case RTW_HCI_TYPE_USB:
791 cond.intf = INTF_USB;
792 break;
793 case RTW_HCI_TYPE_SDIO:
794 cond.intf = INTF_SDIO;
795 break;
796 case RTW_HCI_TYPE_PCIE:
797 default:
798 cond.intf = INTF_PCIE;
799 break;
800 }
801
802 hal->phy_cond = cond;
803
804 rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
805 }
806
807 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
808 {
809 struct rtw_hal *hal = &rtwdev->hal;
810 struct rtw_phy_cond drv_cond = hal->phy_cond;
811
812 if (cond.cut && cond.cut != drv_cond.cut)
813 return false;
814
815 if (cond.pkg && cond.pkg != drv_cond.pkg)
816 return false;
817
818 if (cond.intf && cond.intf != drv_cond.intf)
819 return false;
820
821 if (cond.rfe != drv_cond.rfe)
822 return false;
823
824 return true;
825 }
826
827 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
828 {
829 const union phy_table_tile *p = tbl->data;
830 const union phy_table_tile *end = p + tbl->size / 2;
831 struct rtw_phy_cond pos_cond = {0};
832 bool is_matched = true, is_skipped = false;
833
834 BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
835
836 for (; p < end; p++) {
837 if (p->cond.pos) {
838 switch (p->cond.branch) {
839 case BRANCH_ENDIF:
840 is_matched = true;
841 is_skipped = false;
842 break;
843 case BRANCH_ELSE:
844 is_matched = is_skipped ? false : true;
845 break;
846 case BRANCH_IF:
847 case BRANCH_ELIF:
848 default:
849 pos_cond = p->cond;
850 break;
851 }
852 } else if (p->cond.neg) {
853 if (!is_skipped) {
854 if (check_positive(rtwdev, pos_cond)) {
855 is_matched = true;
856 is_skipped = true;
857 } else {
858 is_matched = false;
859 is_skipped = false;
860 }
861 } else {
862 is_matched = false;
863 }
864 } else if (is_matched) {
865 (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
866 }
867 }
868 }
869
870 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
871
872 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
873 {
874 if (rtwdev->chip->is_pwr_by_rate_dec)
875 return bcd_to_dec_pwr_by_rate(hex, i);
876
877 return (hex >> (i * 8)) & 0xFF;
878 }
879
880 static void
881 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
882 u32 addr, u32 mask, u32 val, u8 *rate,
883 u8 *pwr_by_rate, u8 *rate_num)
884 {
885 int i;
886
887 switch (addr) {
888 case 0xE00:
889 case 0x830:
890 rate[0] = DESC_RATE6M;
891 rate[1] = DESC_RATE9M;
892 rate[2] = DESC_RATE12M;
893 rate[3] = DESC_RATE18M;
894 for (i = 0; i < 4; ++i)
895 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
896 *rate_num = 4;
897 break;
898 case 0xE04:
899 case 0x834:
900 rate[0] = DESC_RATE24M;
901 rate[1] = DESC_RATE36M;
902 rate[2] = DESC_RATE48M;
903 rate[3] = DESC_RATE54M;
904 for (i = 0; i < 4; ++i)
905 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
906 *rate_num = 4;
907 break;
908 case 0xE08:
909 rate[0] = DESC_RATE1M;
910 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
911 *rate_num = 1;
912 break;
913 case 0x86C:
914 if (mask == 0xffffff00) {
915 rate[0] = DESC_RATE2M;
916 rate[1] = DESC_RATE5_5M;
917 rate[2] = DESC_RATE11M;
918 for (i = 1; i < 4; ++i)
919 pwr_by_rate[i - 1] =
920 tbl_to_dec_pwr_by_rate(rtwdev, val, i);
921 *rate_num = 3;
922 } else if (mask == 0x000000ff) {
923 rate[0] = DESC_RATE11M;
924 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
925 *rate_num = 1;
926 }
927 break;
928 case 0xE10:
929 case 0x83C:
930 rate[0] = DESC_RATEMCS0;
931 rate[1] = DESC_RATEMCS1;
932 rate[2] = DESC_RATEMCS2;
933 rate[3] = DESC_RATEMCS3;
934 for (i = 0; i < 4; ++i)
935 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
936 *rate_num = 4;
937 break;
938 case 0xE14:
939 case 0x848:
940 rate[0] = DESC_RATEMCS4;
941 rate[1] = DESC_RATEMCS5;
942 rate[2] = DESC_RATEMCS6;
943 rate[3] = DESC_RATEMCS7;
944 for (i = 0; i < 4; ++i)
945 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
946 *rate_num = 4;
947 break;
948 case 0xE18:
949 case 0x84C:
950 rate[0] = DESC_RATEMCS8;
951 rate[1] = DESC_RATEMCS9;
952 rate[2] = DESC_RATEMCS10;
953 rate[3] = DESC_RATEMCS11;
954 for (i = 0; i < 4; ++i)
955 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
956 *rate_num = 4;
957 break;
958 case 0xE1C:
959 case 0x868:
960 rate[0] = DESC_RATEMCS12;
961 rate[1] = DESC_RATEMCS13;
962 rate[2] = DESC_RATEMCS14;
963 rate[3] = DESC_RATEMCS15;
964 for (i = 0; i < 4; ++i)
965 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
966 *rate_num = 4;
967 break;
968 case 0x838:
969 rate[0] = DESC_RATE1M;
970 rate[1] = DESC_RATE2M;
971 rate[2] = DESC_RATE5_5M;
972 for (i = 1; i < 4; ++i)
973 pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
974 val, i);
975 *rate_num = 3;
976 break;
977 case 0xC20:
978 case 0xE20:
979 case 0x1820:
980 case 0x1A20:
981 rate[0] = DESC_RATE1M;
982 rate[1] = DESC_RATE2M;
983 rate[2] = DESC_RATE5_5M;
984 rate[3] = DESC_RATE11M;
985 for (i = 0; i < 4; ++i)
986 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
987 *rate_num = 4;
988 break;
989 case 0xC24:
990 case 0xE24:
991 case 0x1824:
992 case 0x1A24:
993 rate[0] = DESC_RATE6M;
994 rate[1] = DESC_RATE9M;
995 rate[2] = DESC_RATE12M;
996 rate[3] = DESC_RATE18M;
997 for (i = 0; i < 4; ++i)
998 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
999 *rate_num = 4;
1000 break;
1001 case 0xC28:
1002 case 0xE28:
1003 case 0x1828:
1004 case 0x1A28:
1005 rate[0] = DESC_RATE24M;
1006 rate[1] = DESC_RATE36M;
1007 rate[2] = DESC_RATE48M;
1008 rate[3] = DESC_RATE54M;
1009 for (i = 0; i < 4; ++i)
1010 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1011 *rate_num = 4;
1012 break;
1013 case 0xC2C:
1014 case 0xE2C:
1015 case 0x182C:
1016 case 0x1A2C:
1017 rate[0] = DESC_RATEMCS0;
1018 rate[1] = DESC_RATEMCS1;
1019 rate[2] = DESC_RATEMCS2;
1020 rate[3] = DESC_RATEMCS3;
1021 for (i = 0; i < 4; ++i)
1022 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1023 *rate_num = 4;
1024 break;
1025 case 0xC30:
1026 case 0xE30:
1027 case 0x1830:
1028 case 0x1A30:
1029 rate[0] = DESC_RATEMCS4;
1030 rate[1] = DESC_RATEMCS5;
1031 rate[2] = DESC_RATEMCS6;
1032 rate[3] = DESC_RATEMCS7;
1033 for (i = 0; i < 4; ++i)
1034 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1035 *rate_num = 4;
1036 break;
1037 case 0xC34:
1038 case 0xE34:
1039 case 0x1834:
1040 case 0x1A34:
1041 rate[0] = DESC_RATEMCS8;
1042 rate[1] = DESC_RATEMCS9;
1043 rate[2] = DESC_RATEMCS10;
1044 rate[3] = DESC_RATEMCS11;
1045 for (i = 0; i < 4; ++i)
1046 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1047 *rate_num = 4;
1048 break;
1049 case 0xC38:
1050 case 0xE38:
1051 case 0x1838:
1052 case 0x1A38:
1053 rate[0] = DESC_RATEMCS12;
1054 rate[1] = DESC_RATEMCS13;
1055 rate[2] = DESC_RATEMCS14;
1056 rate[3] = DESC_RATEMCS15;
1057 for (i = 0; i < 4; ++i)
1058 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1059 *rate_num = 4;
1060 break;
1061 case 0xC3C:
1062 case 0xE3C:
1063 case 0x183C:
1064 case 0x1A3C:
1065 rate[0] = DESC_RATEVHT1SS_MCS0;
1066 rate[1] = DESC_RATEVHT1SS_MCS1;
1067 rate[2] = DESC_RATEVHT1SS_MCS2;
1068 rate[3] = DESC_RATEVHT1SS_MCS3;
1069 for (i = 0; i < 4; ++i)
1070 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1071 *rate_num = 4;
1072 break;
1073 case 0xC40:
1074 case 0xE40:
1075 case 0x1840:
1076 case 0x1A40:
1077 rate[0] = DESC_RATEVHT1SS_MCS4;
1078 rate[1] = DESC_RATEVHT1SS_MCS5;
1079 rate[2] = DESC_RATEVHT1SS_MCS6;
1080 rate[3] = DESC_RATEVHT1SS_MCS7;
1081 for (i = 0; i < 4; ++i)
1082 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1083 *rate_num = 4;
1084 break;
1085 case 0xC44:
1086 case 0xE44:
1087 case 0x1844:
1088 case 0x1A44:
1089 rate[0] = DESC_RATEVHT1SS_MCS8;
1090 rate[1] = DESC_RATEVHT1SS_MCS9;
1091 rate[2] = DESC_RATEVHT2SS_MCS0;
1092 rate[3] = DESC_RATEVHT2SS_MCS1;
1093 for (i = 0; i < 4; ++i)
1094 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1095 *rate_num = 4;
1096 break;
1097 case 0xC48:
1098 case 0xE48:
1099 case 0x1848:
1100 case 0x1A48:
1101 rate[0] = DESC_RATEVHT2SS_MCS2;
1102 rate[1] = DESC_RATEVHT2SS_MCS3;
1103 rate[2] = DESC_RATEVHT2SS_MCS4;
1104 rate[3] = DESC_RATEVHT2SS_MCS5;
1105 for (i = 0; i < 4; ++i)
1106 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1107 *rate_num = 4;
1108 break;
1109 case 0xC4C:
1110 case 0xE4C:
1111 case 0x184C:
1112 case 0x1A4C:
1113 rate[0] = DESC_RATEVHT2SS_MCS6;
1114 rate[1] = DESC_RATEVHT2SS_MCS7;
1115 rate[2] = DESC_RATEVHT2SS_MCS8;
1116 rate[3] = DESC_RATEVHT2SS_MCS9;
1117 for (i = 0; i < 4; ++i)
1118 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1119 *rate_num = 4;
1120 break;
1121 case 0xCD8:
1122 case 0xED8:
1123 case 0x18D8:
1124 case 0x1AD8:
1125 rate[0] = DESC_RATEMCS16;
1126 rate[1] = DESC_RATEMCS17;
1127 rate[2] = DESC_RATEMCS18;
1128 rate[3] = DESC_RATEMCS19;
1129 for (i = 0; i < 4; ++i)
1130 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1131 *rate_num = 4;
1132 break;
1133 case 0xCDC:
1134 case 0xEDC:
1135 case 0x18DC:
1136 case 0x1ADC:
1137 rate[0] = DESC_RATEMCS20;
1138 rate[1] = DESC_RATEMCS21;
1139 rate[2] = DESC_RATEMCS22;
1140 rate[3] = DESC_RATEMCS23;
1141 for (i = 0; i < 4; ++i)
1142 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1143 *rate_num = 4;
1144 break;
1145 case 0xCE0:
1146 case 0xEE0:
1147 case 0x18E0:
1148 case 0x1AE0:
1149 rate[0] = DESC_RATEVHT3SS_MCS0;
1150 rate[1] = DESC_RATEVHT3SS_MCS1;
1151 rate[2] = DESC_RATEVHT3SS_MCS2;
1152 rate[3] = DESC_RATEVHT3SS_MCS3;
1153 for (i = 0; i < 4; ++i)
1154 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1155 *rate_num = 4;
1156 break;
1157 case 0xCE4:
1158 case 0xEE4:
1159 case 0x18E4:
1160 case 0x1AE4:
1161 rate[0] = DESC_RATEVHT3SS_MCS4;
1162 rate[1] = DESC_RATEVHT3SS_MCS5;
1163 rate[2] = DESC_RATEVHT3SS_MCS6;
1164 rate[3] = DESC_RATEVHT3SS_MCS7;
1165 for (i = 0; i < 4; ++i)
1166 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1167 *rate_num = 4;
1168 break;
1169 case 0xCE8:
1170 case 0xEE8:
1171 case 0x18E8:
1172 case 0x1AE8:
1173 rate[0] = DESC_RATEVHT3SS_MCS8;
1174 rate[1] = DESC_RATEVHT3SS_MCS9;
1175 for (i = 0; i < 2; ++i)
1176 pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1177 *rate_num = 2;
1178 break;
1179 default:
1180 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1181 break;
1182 }
1183 }
1184
1185 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1186 u32 band, u32 rfpath, u32 txnum,
1187 u32 regaddr, u32 bitmask, u32 data)
1188 {
1189 struct rtw_hal *hal = &rtwdev->hal;
1190 u8 rate_num = 0;
1191 u8 rate;
1192 u8 rates[RTW_RF_PATH_MAX] = {0};
1193 s8 offset;
1194 s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1195 int i;
1196
1197 rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1198 rates, pwr_by_rate, &rate_num);
1199
1200 if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1201 (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1202 rate_num > RTW_RF_PATH_MAX))
1203 return;
1204
1205 for (i = 0; i < rate_num; i++) {
1206 offset = pwr_by_rate[i];
1207 rate = rates[i];
1208 if (band == PHY_BAND_2G)
1209 hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1210 else if (band == PHY_BAND_5G)
1211 hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1212 else
1213 continue;
1214 }
1215 }
1216
1217 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1218 {
1219 const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1220 const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1221
1222 for (; p < end; p++) {
1223 if (p->addr == 0xfe || p->addr == 0xffe) {
1224 msleep(50);
1225 continue;
1226 }
1227 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1228 p->tx_num, p->addr, p->bitmask,
1229 p->data);
1230 }
1231 }
1232
1233 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1234 36, 38, 40, 42, 44, 46, 48, /* Band 1 */
1235 52, 54, 56, 58, 60, 62, 64, /* Band 2 */
1236 100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1237 116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1238 132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1239 149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1240 165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1241
1242 static int rtw_channel_to_idx(u8 band, u8 channel)
1243 {
1244 int ch_idx;
1245 u8 n_channel;
1246
1247 if (band == PHY_BAND_2G) {
1248 ch_idx = channel - 1;
1249 n_channel = RTW_MAX_CHANNEL_NUM_2G;
1250 } else if (band == PHY_BAND_5G) {
1251 n_channel = RTW_MAX_CHANNEL_NUM_5G;
1252 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1253 if (rtw_channel_idx_5g[ch_idx] == channel)
1254 break;
1255 } else {
1256 return -1;
1257 }
1258
1259 if (ch_idx >= n_channel)
1260 return -1;
1261
1262 return ch_idx;
1263 }
1264
1265 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1266 u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1267 {
1268 struct rtw_hal *hal = &rtwdev->hal;
1269 u8 max_power_index = rtwdev->chip->max_power_index;
1270 s8 ww;
1271 int ch_idx;
1272
1273 pwr_limit = clamp_t(s8, pwr_limit,
1274 -max_power_index, max_power_index);
1275 ch_idx = rtw_channel_to_idx(band, ch);
1276
1277 if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1278 rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1279 WARN(1,
1280 "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1281 regd, band, bw, rs, ch_idx, pwr_limit);
1282 return;
1283 }
1284
1285 if (band == PHY_BAND_2G) {
1286 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1287 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1288 ww = min_t(s8, ww, pwr_limit);
1289 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1290 } else if (band == PHY_BAND_5G) {
1291 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1292 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1293 ww = min_t(s8, ww, pwr_limit);
1294 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1295 }
1296 }
1297
1298 /* cross-reference 5G power limits if values are not assigned */
1299 static void
1300 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1301 u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1302 {
1303 struct rtw_hal *hal = &rtwdev->hal;
1304 u8 max_power_index = rtwdev->chip->max_power_index;
1305 s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1306 s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1307
1308 if (lmt_ht == lmt_vht)
1309 return;
1310
1311 if (lmt_ht == max_power_index)
1312 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1313
1314 else if (lmt_vht == max_power_index)
1315 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1316 }
1317
1318 /* cross-reference power limits for ht and vht */
1319 static void
1320 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1321 {
1322 u8 rs_idx, rs_ht, rs_vht;
1323 u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1324 {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1325
1326 for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1327 rs_ht = rs_cmp[rs_idx][0];
1328 rs_vht = rs_cmp[rs_idx][1];
1329
1330 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1331 }
1332 }
1333
1334 /* cross-reference power limits for 5G channels */
1335 static void
1336 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1337 {
1338 u8 ch_idx;
1339
1340 for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1341 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1342 }
1343
1344 /* cross-reference power limits for 20/40M bandwidth */
1345 static void
1346 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1347 {
1348 u8 bw;
1349
1350 for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1351 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1352 }
1353
1354 /* cross-reference power limits */
1355 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1356 {
1357 u8 regd;
1358
1359 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1360 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1361 }
1362
1363 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1364 const struct rtw_table *tbl)
1365 {
1366 const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1367 const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1368
1369 for (; p < end; p++) {
1370 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1371 p->bw, p->rs, p->ch, p->txpwr_lmt);
1372 }
1373
1374 rtw_xref_txpwr_lmt(rtwdev);
1375 }
1376
1377 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1378 u32 addr, u32 data)
1379 {
1380 rtw_write8(rtwdev, addr, data);
1381 }
1382
1383 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1384 u32 addr, u32 data)
1385 {
1386 rtw_write32(rtwdev, addr, data);
1387 }
1388
1389 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1390 u32 addr, u32 data)
1391 {
1392 if (addr == 0xfe)
1393 msleep(50);
1394 else if (addr == 0xfd)
1395 mdelay(5);
1396 else if (addr == 0xfc)
1397 mdelay(1);
1398 else if (addr == 0xfb)
1399 usleep_range(50, 60);
1400 else if (addr == 0xfa)
1401 udelay(5);
1402 else if (addr == 0xf9)
1403 udelay(1);
1404 else
1405 rtw_write32(rtwdev, addr, data);
1406 }
1407
1408 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1409 u32 addr, u32 data)
1410 {
1411 if (addr == 0xffe) {
1412 msleep(50);
1413 } else if (addr == 0xfe) {
1414 usleep_range(100, 110);
1415 } else {
1416 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1417 udelay(1);
1418 }
1419 }
1420
1421 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1422 {
1423 struct rtw_chip_info *chip = rtwdev->chip;
1424 struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1425
1426 if (!chip->rfk_init_tbl)
1427 return;
1428
1429 rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1430 rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1431 rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1432 rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1433 rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1434
1435 rtw_load_table(rtwdev, chip->rfk_init_tbl);
1436
1437 dpk_info->is_dpk_pwr_on = 1;
1438 }
1439
1440 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1441 {
1442 struct rtw_chip_info *chip = rtwdev->chip;
1443 u8 rf_path;
1444
1445 rtw_load_table(rtwdev, chip->mac_tbl);
1446 rtw_load_table(rtwdev, chip->bb_tbl);
1447 rtw_load_table(rtwdev, chip->agc_tbl);
1448 rtw_load_rfk_table(rtwdev);
1449
1450 for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1451 const struct rtw_table *tbl;
1452
1453 tbl = chip->rf_tbl[rf_path];
1454 rtw_load_table(rtwdev, tbl);
1455 }
1456 }
1457
1458 static u8 rtw_get_channel_group(u8 channel)
1459 {
1460 switch (channel) {
1461 default:
1462 WARN_ON(1);
1463 /* fall through */
1464 case 1:
1465 case 2:
1466 case 36:
1467 case 38:
1468 case 40:
1469 case 42:
1470 return 0;
1471 case 3:
1472 case 4:
1473 case 5:
1474 case 44:
1475 case 46:
1476 case 48:
1477 case 50:
1478 return 1;
1479 case 6:
1480 case 7:
1481 case 8:
1482 case 52:
1483 case 54:
1484 case 56:
1485 case 58:
1486 return 2;
1487 case 9:
1488 case 10:
1489 case 11:
1490 case 60:
1491 case 62:
1492 case 64:
1493 return 3;
1494 case 12:
1495 case 13:
1496 case 100:
1497 case 102:
1498 case 104:
1499 case 106:
1500 return 4;
1501 case 14:
1502 case 108:
1503 case 110:
1504 case 112:
1505 case 114:
1506 return 5;
1507 case 116:
1508 case 118:
1509 case 120:
1510 case 122:
1511 return 6;
1512 case 124:
1513 case 126:
1514 case 128:
1515 case 130:
1516 return 7;
1517 case 132:
1518 case 134:
1519 case 136:
1520 case 138:
1521 return 8;
1522 case 140:
1523 case 142:
1524 case 144:
1525 return 9;
1526 case 149:
1527 case 151:
1528 case 153:
1529 case 155:
1530 return 10;
1531 case 157:
1532 case 159:
1533 case 161:
1534 return 11;
1535 case 165:
1536 case 167:
1537 case 169:
1538 case 171:
1539 return 12;
1540 case 173:
1541 case 175:
1542 case 177:
1543 return 13;
1544 }
1545 }
1546
1547 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1548 {
1549 struct rtw_chip_info *chip = rtwdev->chip;
1550 s8 dpd_diff = 0;
1551
1552 if (!chip->en_dis_dpd)
1553 return 0;
1554
1555 #define RTW_DPD_RATE_CHECK(_rate) \
1556 case DESC_RATE ## _rate: \
1557 if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
1558 dpd_diff = -6 * chip->txgi_factor; \
1559 break
1560
1561 switch (rate) {
1562 RTW_DPD_RATE_CHECK(6M);
1563 RTW_DPD_RATE_CHECK(9M);
1564 RTW_DPD_RATE_CHECK(MCS0);
1565 RTW_DPD_RATE_CHECK(MCS1);
1566 RTW_DPD_RATE_CHECK(MCS8);
1567 RTW_DPD_RATE_CHECK(MCS9);
1568 RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1569 RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1570 RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1571 RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1572 }
1573 #undef RTW_DPD_RATE_CHECK
1574
1575 return dpd_diff;
1576 }
1577
1578 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1579 struct rtw_2g_txpwr_idx *pwr_idx_2g,
1580 enum rtw_bandwidth bandwidth,
1581 u8 rate, u8 group)
1582 {
1583 struct rtw_chip_info *chip = rtwdev->chip;
1584 u8 tx_power;
1585 bool mcs_rate;
1586 bool above_2ss;
1587 u8 factor = chip->txgi_factor;
1588
1589 if (rate <= DESC_RATE11M)
1590 tx_power = pwr_idx_2g->cck_base[group];
1591 else
1592 tx_power = pwr_idx_2g->bw40_base[group];
1593
1594 if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1595 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1596
1597 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1598 (rate >= DESC_RATEVHT1SS_MCS0 &&
1599 rate <= DESC_RATEVHT2SS_MCS9);
1600 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1601 (rate >= DESC_RATEVHT2SS_MCS0);
1602
1603 if (!mcs_rate)
1604 return tx_power;
1605
1606 switch (bandwidth) {
1607 default:
1608 WARN_ON(1);
1609 /* fall through */
1610 case RTW_CHANNEL_WIDTH_20:
1611 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1612 if (above_2ss)
1613 tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1614 break;
1615 case RTW_CHANNEL_WIDTH_40:
1616 /* bw40 is the base power */
1617 if (above_2ss)
1618 tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1619 break;
1620 }
1621
1622 return tx_power;
1623 }
1624
1625 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1626 struct rtw_5g_txpwr_idx *pwr_idx_5g,
1627 enum rtw_bandwidth bandwidth,
1628 u8 rate, u8 group)
1629 {
1630 struct rtw_chip_info *chip = rtwdev->chip;
1631 u8 tx_power;
1632 u8 upper, lower;
1633 bool mcs_rate;
1634 bool above_2ss;
1635 u8 factor = chip->txgi_factor;
1636
1637 tx_power = pwr_idx_5g->bw40_base[group];
1638
1639 mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1640 (rate >= DESC_RATEVHT1SS_MCS0 &&
1641 rate <= DESC_RATEVHT2SS_MCS9);
1642 above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1643 (rate >= DESC_RATEVHT2SS_MCS0);
1644
1645 if (!mcs_rate) {
1646 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1647 return tx_power;
1648 }
1649
1650 switch (bandwidth) {
1651 default:
1652 WARN_ON(1);
1653 /* fall through */
1654 case RTW_CHANNEL_WIDTH_20:
1655 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1656 if (above_2ss)
1657 tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1658 break;
1659 case RTW_CHANNEL_WIDTH_40:
1660 /* bw40 is the base power */
1661 if (above_2ss)
1662 tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1663 break;
1664 case RTW_CHANNEL_WIDTH_80:
1665 /* the base idx of bw80 is the average of bw40+/bw40- */
1666 lower = pwr_idx_5g->bw40_base[group];
1667 upper = pwr_idx_5g->bw40_base[group + 1];
1668
1669 tx_power = (lower + upper) / 2;
1670 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1671 if (above_2ss)
1672 tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1673 break;
1674 }
1675
1676 return tx_power;
1677 }
1678
1679 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1680 enum rtw_bandwidth bw, u8 rf_path,
1681 u8 rate, u8 channel, u8 regd)
1682 {
1683 struct rtw_hal *hal = &rtwdev->hal;
1684 u8 *cch_by_bw = hal->cch_by_bw;
1685 s8 power_limit = (s8)rtwdev->chip->max_power_index;
1686 u8 rs;
1687 int ch_idx;
1688 u8 cur_bw, cur_ch;
1689 s8 cur_lmt;
1690
1691 if (regd > RTW_REGD_WW)
1692 return power_limit;
1693
1694 if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1695 rs = RTW_RATE_SECTION_CCK;
1696 else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1697 rs = RTW_RATE_SECTION_OFDM;
1698 else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1699 rs = RTW_RATE_SECTION_HT_1S;
1700 else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1701 rs = RTW_RATE_SECTION_HT_2S;
1702 else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1703 rs = RTW_RATE_SECTION_VHT_1S;
1704 else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1705 rs = RTW_RATE_SECTION_VHT_2S;
1706 else
1707 goto err;
1708
1709 /* only 20M BW with cck and ofdm */
1710 if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1711 bw = RTW_CHANNEL_WIDTH_20;
1712
1713 /* only 20/40M BW with ht */
1714 if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1715 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1716
1717 /* select min power limit among [20M BW ~ current BW] */
1718 for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1719 cur_ch = cch_by_bw[cur_bw];
1720
1721 ch_idx = rtw_channel_to_idx(band, cur_ch);
1722 if (ch_idx < 0)
1723 goto err;
1724
1725 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1726 hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1727 hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1728
1729 power_limit = min_t(s8, cur_lmt, power_limit);
1730 }
1731
1732 return power_limit;
1733
1734 err:
1735 WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1736 band, bw, rf_path, rate, channel);
1737 return (s8)rtwdev->chip->max_power_index;
1738 }
1739
1740 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1741 u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1742 {
1743 struct rtw_hal *hal = &rtwdev->hal;
1744 struct rtw_txpwr_idx *pwr_idx;
1745 u8 group, band;
1746 u8 *base = &pwr_param->pwr_base;
1747 s8 *offset = &pwr_param->pwr_offset;
1748 s8 *limit = &pwr_param->pwr_limit;
1749
1750 pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1751 group = rtw_get_channel_group(ch);
1752
1753 /* base power index for 2.4G/5G */
1754 if (IS_CH_2G_BAND(ch)) {
1755 band = PHY_BAND_2G;
1756 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
1757 &pwr_idx->pwr_idx_2g,
1758 bw, rate, group);
1759 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1760 } else {
1761 band = PHY_BAND_5G;
1762 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
1763 &pwr_idx->pwr_idx_5g,
1764 bw, rate, group);
1765 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1766 }
1767
1768 *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1769 rate, ch, regd);
1770 }
1771
1772 u8
1773 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1774 enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1775 {
1776 struct rtw_power_params pwr_param = {0};
1777 u8 tx_power;
1778 s8 offset;
1779
1780 rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1781 channel, regd, &pwr_param);
1782
1783 tx_power = pwr_param.pwr_base;
1784 offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1785
1786 if (rtwdev->chip->en_dis_dpd)
1787 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1788
1789 tx_power += offset;
1790
1791 if (tx_power > rtwdev->chip->max_power_index)
1792 tx_power = rtwdev->chip->max_power_index;
1793
1794 return tx_power;
1795 }
1796
1797 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1798 u8 ch, u8 path, u8 rs)
1799 {
1800 struct rtw_hal *hal = &rtwdev->hal;
1801 u8 regd = rtwdev->regd.txpwr_regd;
1802 u8 *rates;
1803 u8 size;
1804 u8 rate;
1805 u8 pwr_idx;
1806 u8 bw;
1807 int i;
1808
1809 if (rs >= RTW_RATE_SECTION_MAX)
1810 return;
1811
1812 rates = rtw_rate_section[rs];
1813 size = rtw_rate_size[rs];
1814 bw = hal->current_band_width;
1815 for (i = 0; i < size; i++) {
1816 rate = rates[i];
1817 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1818 bw, ch, regd);
1819 hal->tx_pwr_tbl[path][rate] = pwr_idx;
1820 }
1821 }
1822
1823 /* set tx power level by path for each rates, note that the order of the rates
1824 * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1825 * power index into a four-byte power index register, and calls set_tx_agc to
1826 * write these values into hardware
1827 */
1828 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1829 u8 ch, u8 path)
1830 {
1831 struct rtw_hal *hal = &rtwdev->hal;
1832 u8 rs;
1833
1834 /* do not need cck rates if we are not in 2.4G */
1835 if (hal->current_band_type == RTW_BAND_2G)
1836 rs = RTW_RATE_SECTION_CCK;
1837 else
1838 rs = RTW_RATE_SECTION_OFDM;
1839
1840 for (; rs < RTW_RATE_SECTION_MAX; rs++)
1841 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1842 }
1843
1844 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1845 {
1846 struct rtw_chip_info *chip = rtwdev->chip;
1847 struct rtw_hal *hal = &rtwdev->hal;
1848 u8 path;
1849
1850 mutex_lock(&hal->tx_power_mutex);
1851
1852 for (path = 0; path < hal->rf_path_num; path++)
1853 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1854
1855 chip->ops->set_tx_power_index(rtwdev);
1856 mutex_unlock(&hal->tx_power_mutex);
1857 }
1858
1859 static void
1860 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1861 u8 rs, u8 size, u8 *rates)
1862 {
1863 u8 rate;
1864 u8 base_idx, rate_idx;
1865 s8 base_2g, base_5g;
1866
1867 if (rs >= RTW_RATE_SECTION_VHT_1S)
1868 base_idx = rates[size - 3];
1869 else
1870 base_idx = rates[size - 1];
1871 base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1872 base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1873 hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1874 hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1875 for (rate = 0; rate < size; rate++) {
1876 rate_idx = rates[rate];
1877 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1878 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1879 }
1880 }
1881
1882 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1883 {
1884 u8 path;
1885
1886 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1887 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1888 RTW_RATE_SECTION_CCK,
1889 rtw_cck_size, rtw_cck_rates);
1890 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1891 RTW_RATE_SECTION_OFDM,
1892 rtw_ofdm_size, rtw_ofdm_rates);
1893 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1894 RTW_RATE_SECTION_HT_1S,
1895 rtw_ht_1s_size, rtw_ht_1s_rates);
1896 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1897 RTW_RATE_SECTION_HT_2S,
1898 rtw_ht_2s_size, rtw_ht_2s_rates);
1899 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1900 RTW_RATE_SECTION_VHT_1S,
1901 rtw_vht_1s_size, rtw_vht_1s_rates);
1902 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
1903 RTW_RATE_SECTION_VHT_2S,
1904 rtw_vht_2s_size, rtw_vht_2s_rates);
1905 }
1906 }
1907
1908 static void
1909 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1910 {
1911 s8 base;
1912 u8 ch;
1913
1914 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1915 base = hal->tx_pwr_by_rate_base_2g[0][rs];
1916 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1917 }
1918
1919 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1920 base = hal->tx_pwr_by_rate_base_5g[0][rs];
1921 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1922 }
1923 }
1924
1925 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1926 {
1927 u8 regd, bw, rs;
1928
1929 /* default at channel 1 */
1930 hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
1931
1932 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1933 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1934 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1935 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
1936 }
1937
1938 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
1939 u8 regd, u8 bw, u8 rs)
1940 {
1941 struct rtw_hal *hal = &rtwdev->hal;
1942 s8 max_power_index = (s8)rtwdev->chip->max_power_index;
1943 u8 ch;
1944
1945 /* 2.4G channels */
1946 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1947 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
1948
1949 /* 5G channels */
1950 for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1951 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
1952 }
1953
1954 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
1955 {
1956 struct rtw_hal *hal = &rtwdev->hal;
1957 u8 regd, path, rate, rs, bw;
1958
1959 /* init tx power by rate offset */
1960 for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1961 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1962 hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1963 hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1964 }
1965 }
1966
1967 /* init tx power limit */
1968 for (regd = 0; regd < RTW_REGD_MAX; regd++)
1969 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1970 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1971 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
1972 rs);
1973 }
1974
1975 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
1976 struct rtw_swing_table *swing_table)
1977 {
1978 const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
1979 u8 channel = rtwdev->hal.current_channel;
1980
1981 if (IS_CH_2G_BAND(channel)) {
1982 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
1983 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
1984 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
1985 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
1986 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
1987 } else {
1988 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
1989 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
1990 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
1991 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
1992 }
1993 } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
1994 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
1995 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
1996 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
1997 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
1998 } else if (IS_CH_5G_BAND_3(channel)) {
1999 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2000 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2001 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2002 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2003 } else if (IS_CH_5G_BAND_4(channel)) {
2004 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2005 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2006 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2007 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2008 } else {
2009 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2010 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2011 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2012 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2013 }
2014 }
2015
2016 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2017 {
2018 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2019
2020 ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2021 dm_info->thermal_avg[path] =
2022 ewma_thermal_read(&dm_info->avg_thermal[path]);
2023 }
2024
2025 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2026 u8 path)
2027 {
2028 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2029 u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2030
2031 if (avg == thermal)
2032 return false;
2033
2034 return true;
2035 }
2036
2037 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2038 {
2039 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2040 u8 therm_avg, therm_efuse, therm_delta;
2041
2042 therm_avg = dm_info->thermal_avg[path];
2043 therm_efuse = rtwdev->efuse.thermal_meter[path];
2044 therm_delta = abs(therm_avg - therm_efuse);
2045
2046 return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2047 }
2048
2049 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2050 struct rtw_swing_table *swing_table,
2051 u8 tbl_path, u8 therm_path, u8 delta)
2052 {
2053 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2054 const u8 *delta_swing_table_idx_pos;
2055 const u8 *delta_swing_table_idx_neg;
2056
2057 if (delta >= RTW_PWR_TRK_TBL_SZ) {
2058 rtw_warn(rtwdev, "power track table overflow\n");
2059 return 0;
2060 }
2061
2062 if (!swing_table) {
2063 rtw_warn(rtwdev, "swing table not configured\n");
2064 return 0;
2065 }
2066
2067 delta_swing_table_idx_pos = swing_table->p[tbl_path];
2068 delta_swing_table_idx_neg = swing_table->n[tbl_path];
2069
2070 if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2071 rtw_warn(rtwdev, "invalid swing table index\n");
2072 return 0;
2073 }
2074
2075 if (dm_info->thermal_avg[therm_path] >
2076 rtwdev->efuse.thermal_meter[therm_path])
2077 return delta_swing_table_idx_pos[delta];
2078 else
2079 return -delta_swing_table_idx_neg[delta];
2080 }
2081
2082 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2083 {
2084 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2085 u8 delta_iqk;
2086
2087 delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2088 if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2089 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2090 return true;
2091 }
2092 return false;
2093 }