]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
249 {
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 u32 reg;
254
255 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259 else if (led->type == LED_TYPE_ACTIVITY)
260 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
266 unsigned long *delay_on,
267 unsigned long *delay_off)
268 {
269 struct rt2x00_led *led =
270 container_of(led_cdev, struct rt2x00_led, led_dev);
271 u32 reg;
272
273 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278 return 0;
279 }
280
281 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
282 struct rt2x00_led *led,
283 enum led_type type)
284 {
285 led->rt2x00dev = rt2x00dev;
286 led->type = type;
287 led->led_dev.brightness_set = rt2400pci_brightness_set;
288 led->led_dev.blink_set = rt2400pci_blink_set;
289 led->flags = LED_INITIALIZED;
290 }
291 #endif /* CONFIG_RT2400PCI_LEDS */
292
293 /*
294 * Configuration handlers.
295 */
296 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
297 const unsigned int filter_flags)
298 {
299 u32 reg;
300
301 /*
302 * Start configuration steps.
303 * Note that the version error will always be dropped
304 * since there is no filter for it at this time.
305 */
306 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
307 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
308 !(filter_flags & FIF_FCSFAIL));
309 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
310 !(filter_flags & FIF_PLCPFAIL));
311 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
312 !(filter_flags & FIF_CONTROL));
313 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
314 !(filter_flags & FIF_PROMISC_IN_BSS));
315 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
316 !(filter_flags & FIF_PROMISC_IN_BSS) &&
317 !rt2x00dev->intf_ap_count);
318 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
319 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
320 }
321
322 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00_intf *intf,
324 struct rt2x00intf_conf *conf,
325 const unsigned int flags)
326 {
327 unsigned int bcn_preload;
328 u32 reg;
329
330 if (flags & CONFIG_UPDATE_TYPE) {
331 /*
332 * Enable beacon config
333 */
334 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
335 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
336 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
337 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
338
339 /*
340 * Enable synchronisation.
341 */
342 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
343 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
344 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
345 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
346 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
347 }
348
349 if (flags & CONFIG_UPDATE_MAC)
350 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
351 conf->mac, sizeof(conf->mac));
352
353 if (flags & CONFIG_UPDATE_BSSID)
354 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
355 conf->bssid, sizeof(conf->bssid));
356 }
357
358 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
359 struct rt2x00lib_erp *erp)
360 {
361 int preamble_mask;
362 u32 reg;
363
364 /*
365 * When short preamble is enabled, we should set bit 0x08
366 */
367 preamble_mask = erp->short_preamble << 3;
368
369 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
370 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
371 erp->ack_timeout);
372 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
373 erp->ack_consume_time);
374 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
375
376 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
377 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
378 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
379 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
380 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
381
382 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
383 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
384 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
385 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
386 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
387
388 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
389 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
390 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
391 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
392 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
393
394 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
395 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
396 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
397 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
398 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
399 }
400
401 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
402 const int basic_rate_mask)
403 {
404 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
405 }
406
407 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
408 struct rf_channel *rf)
409 {
410 /*
411 * Switch on tuning bits.
412 */
413 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
414 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
415
416 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
417 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
418 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
419
420 /*
421 * RF2420 chipset don't need any additional actions.
422 */
423 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
424 return;
425
426 /*
427 * For the RT2421 chipsets we need to write an invalid
428 * reference clock rate to activate auto_tune.
429 * After that we set the value back to the correct channel.
430 */
431 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
432 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
433 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
434
435 msleep(1);
436
437 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
438 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
439 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
440
441 msleep(1);
442
443 /*
444 * Switch off tuning bits.
445 */
446 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
447 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
448
449 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451
452 /*
453 * Clear false CRC during channel switch.
454 */
455 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
456 }
457
458 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
459 {
460 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
461 }
462
463 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
464 struct antenna_setup *ant)
465 {
466 u8 r1;
467 u8 r4;
468
469 /*
470 * We should never come here because rt2x00lib is supposed
471 * to catch this and send us the correct antenna explicitely.
472 */
473 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
474 ant->tx == ANTENNA_SW_DIVERSITY);
475
476 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
477 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
478
479 /*
480 * Configure the TX antenna.
481 */
482 switch (ant->tx) {
483 case ANTENNA_HW_DIVERSITY:
484 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
485 break;
486 case ANTENNA_A:
487 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
488 break;
489 case ANTENNA_B:
490 default:
491 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
492 break;
493 }
494
495 /*
496 * Configure the RX antenna.
497 */
498 switch (ant->rx) {
499 case ANTENNA_HW_DIVERSITY:
500 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
501 break;
502 case ANTENNA_A:
503 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
504 break;
505 case ANTENNA_B:
506 default:
507 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
508 break;
509 }
510
511 rt2400pci_bbp_write(rt2x00dev, 4, r4);
512 rt2400pci_bbp_write(rt2x00dev, 1, r1);
513 }
514
515 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
516 struct rt2x00lib_conf *libconf)
517 {
518 u32 reg;
519
520 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
521 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
522 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
523
524 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
525 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
526 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
527 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
528
529 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
530 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
531 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
532 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
533
534 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
535 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
536 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
537 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
538
539 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
540 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
541 libconf->conf->beacon_int * 16);
542 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
543 libconf->conf->beacon_int * 16);
544 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
545 }
546
547 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00lib_conf *libconf,
549 const unsigned int flags)
550 {
551 if (flags & CONFIG_UPDATE_PHYMODE)
552 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
553 if (flags & CONFIG_UPDATE_CHANNEL)
554 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
555 if (flags & CONFIG_UPDATE_TXPOWER)
556 rt2400pci_config_txpower(rt2x00dev,
557 libconf->conf->power_level);
558 if (flags & CONFIG_UPDATE_ANTENNA)
559 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
560 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
561 rt2400pci_config_duration(rt2x00dev, libconf);
562 }
563
564 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
565 const int cw_min, const int cw_max)
566 {
567 u32 reg;
568
569 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
570 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
571 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
572 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
573 }
574
575 /*
576 * Link tuning
577 */
578 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
579 struct link_qual *qual)
580 {
581 u32 reg;
582 u8 bbp;
583
584 /*
585 * Update FCS error count from register.
586 */
587 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
588 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
589
590 /*
591 * Update False CCA count from register.
592 */
593 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
594 qual->false_cca = bbp;
595 }
596
597 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
598 {
599 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
600 rt2x00dev->link.vgc_level = 0x08;
601 }
602
603 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
604 {
605 u8 reg;
606
607 /*
608 * The link tuner should not run longer then 60 seconds,
609 * and should run once every 2 seconds.
610 */
611 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
612 return;
613
614 /*
615 * Base r13 link tuning on the false cca count.
616 */
617 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
618
619 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
620 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
621 rt2x00dev->link.vgc_level = reg;
622 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
623 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
624 rt2x00dev->link.vgc_level = reg;
625 }
626 }
627
628 /*
629 * Initialization functions.
630 */
631 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
632 struct queue_entry *entry)
633 {
634 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
635 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
636 u32 word;
637
638 rt2x00_desc_read(entry_priv->desc, 2, &word);
639 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
640 rt2x00_desc_write(entry_priv->desc, 2, word);
641
642 rt2x00_desc_read(entry_priv->desc, 1, &word);
643 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
644 rt2x00_desc_write(entry_priv->desc, 1, word);
645
646 rt2x00_desc_read(entry_priv->desc, 0, &word);
647 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
648 rt2x00_desc_write(entry_priv->desc, 0, word);
649 }
650
651 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
652 struct queue_entry *entry)
653 {
654 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
655 u32 word;
656
657 rt2x00_desc_read(entry_priv->desc, 0, &word);
658 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
659 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
660 rt2x00_desc_write(entry_priv->desc, 0, word);
661 }
662
663 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
664 {
665 struct queue_entry_priv_pci *entry_priv;
666 u32 reg;
667
668 /*
669 * Initialize registers.
670 */
671 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
672 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
673 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
674 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
675 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
676 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
677
678 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
679 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
680 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
681 entry_priv->desc_dma);
682 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
683
684 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
685 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
686 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
687 entry_priv->desc_dma);
688 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
689
690 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
691 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
692 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
693 entry_priv->desc_dma);
694 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
695
696 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
697 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
698 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
699 entry_priv->desc_dma);
700 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
701
702 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
703 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
704 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
705 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
706
707 entry_priv = rt2x00dev->rx->entries[0].priv_data;
708 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
709 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
710 entry_priv->desc_dma);
711 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
712
713 return 0;
714 }
715
716 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
717 {
718 u32 reg;
719
720 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
721 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
722 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
723 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
724
725 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
726 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
727 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
728 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
729 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
730
731 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
732 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
733 (rt2x00dev->rx->data_size / 128));
734 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
735
736 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
737 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
738 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
739 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
740 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
741 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
742 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
743 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
744 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
745 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
746
747 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
748
749 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
750 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
751 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
752 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
753 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
754 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
755
756 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
757 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
758 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
759 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
760 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
761 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
762 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
763 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
764
765 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
766
767 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
768 return -EBUSY;
769
770 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
771 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
772
773 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
774 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
775 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
776
777 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
778 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
779 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
780 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
781 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
782 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
783
784 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
785 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
786 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
787 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
788 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
789
790 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
791 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
792 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
793 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
794
795 /*
796 * We must clear the FCS and FIFO error count.
797 * These registers are cleared on read,
798 * so we may pass a useless variable to store the value.
799 */
800 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
801 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
802
803 return 0;
804 }
805
806 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
807 {
808 unsigned int i;
809 u8 value;
810
811 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
812 rt2400pci_bbp_read(rt2x00dev, 0, &value);
813 if ((value != 0xff) && (value != 0x00))
814 return 0;
815 udelay(REGISTER_BUSY_DELAY);
816 }
817
818 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
819 return -EACCES;
820 }
821
822 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
823 {
824 unsigned int i;
825 u16 eeprom;
826 u8 reg_id;
827 u8 value;
828
829 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
830 return -EACCES;
831
832 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
833 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
834 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
835 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
836 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
837 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
838 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
839 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
840 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
841 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
842 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
843 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
844 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
845 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
846
847 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
848 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
849
850 if (eeprom != 0xffff && eeprom != 0x0000) {
851 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
852 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
853 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
854 }
855 }
856
857 return 0;
858 }
859
860 /*
861 * Device state switch handlers.
862 */
863 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
864 enum dev_state state)
865 {
866 u32 reg;
867
868 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
869 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
870 (state == STATE_RADIO_RX_OFF) ||
871 (state == STATE_RADIO_RX_OFF_LINK));
872 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
873 }
874
875 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
876 enum dev_state state)
877 {
878 int mask = (state == STATE_RADIO_IRQ_OFF);
879 u32 reg;
880
881 /*
882 * When interrupts are being enabled, the interrupt registers
883 * should clear the register to assure a clean state.
884 */
885 if (state == STATE_RADIO_IRQ_ON) {
886 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
887 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
888 }
889
890 /*
891 * Only toggle the interrupts bits we are going to use.
892 * Non-checked interrupt bits are disabled by default.
893 */
894 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
895 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
896 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
897 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
898 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
899 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
900 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
901 }
902
903 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
904 {
905 /*
906 * Initialize all registers.
907 */
908 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
909 rt2400pci_init_registers(rt2x00dev) ||
910 rt2400pci_init_bbp(rt2x00dev)))
911 return -EIO;
912
913 return 0;
914 }
915
916 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
917 {
918 u32 reg;
919
920 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
921
922 /*
923 * Disable synchronisation.
924 */
925 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
926
927 /*
928 * Cancel RX and TX.
929 */
930 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
931 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
932 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
933 }
934
935 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
936 enum dev_state state)
937 {
938 u32 reg;
939 unsigned int i;
940 char put_to_sleep;
941 char bbp_state;
942 char rf_state;
943
944 put_to_sleep = (state != STATE_AWAKE);
945
946 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
947 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
948 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
949 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
950 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
951 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
952
953 /*
954 * Device is not guaranteed to be in the requested state yet.
955 * We must wait until the register indicates that the
956 * device has entered the correct state.
957 */
958 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
959 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
960 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
961 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
962 if (bbp_state == state && rf_state == state)
963 return 0;
964 msleep(10);
965 }
966
967 return -EBUSY;
968 }
969
970 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
971 enum dev_state state)
972 {
973 int retval = 0;
974
975 switch (state) {
976 case STATE_RADIO_ON:
977 retval = rt2400pci_enable_radio(rt2x00dev);
978 break;
979 case STATE_RADIO_OFF:
980 rt2400pci_disable_radio(rt2x00dev);
981 break;
982 case STATE_RADIO_RX_ON:
983 case STATE_RADIO_RX_ON_LINK:
984 case STATE_RADIO_RX_OFF:
985 case STATE_RADIO_RX_OFF_LINK:
986 rt2400pci_toggle_rx(rt2x00dev, state);
987 break;
988 case STATE_RADIO_IRQ_ON:
989 case STATE_RADIO_IRQ_OFF:
990 rt2400pci_toggle_irq(rt2x00dev, state);
991 break;
992 case STATE_DEEP_SLEEP:
993 case STATE_SLEEP:
994 case STATE_STANDBY:
995 case STATE_AWAKE:
996 retval = rt2400pci_set_state(rt2x00dev, state);
997 break;
998 default:
999 retval = -ENOTSUPP;
1000 break;
1001 }
1002
1003 if (unlikely(retval))
1004 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1005 state, retval);
1006
1007 return retval;
1008 }
1009
1010 /*
1011 * TX descriptor initialization
1012 */
1013 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1014 struct sk_buff *skb,
1015 struct txentry_desc *txdesc)
1016 {
1017 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1018 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1019 __le32 *txd = skbdesc->desc;
1020 u32 word;
1021
1022 /*
1023 * Start writing the descriptor words.
1024 */
1025 rt2x00_desc_read(entry_priv->desc, 1, &word);
1026 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1027 rt2x00_desc_write(entry_priv->desc, 1, word);
1028
1029 rt2x00_desc_read(txd, 2, &word);
1030 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1031 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1032 rt2x00_desc_write(txd, 2, word);
1033
1034 rt2x00_desc_read(txd, 3, &word);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1036 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1037 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1038 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1039 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1040 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1041 rt2x00_desc_write(txd, 3, word);
1042
1043 rt2x00_desc_read(txd, 4, &word);
1044 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1045 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1046 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1047 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1048 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1049 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1050 rt2x00_desc_write(txd, 4, word);
1051
1052 rt2x00_desc_read(txd, 0, &word);
1053 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1054 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1055 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1056 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1057 rt2x00_set_field32(&word, TXD_W0_ACK,
1058 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1059 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1060 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1061 rt2x00_set_field32(&word, TXD_W0_RTS,
1062 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1063 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1064 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1065 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1066 rt2x00_desc_write(txd, 0, word);
1067 }
1068
1069 /*
1070 * TX data initialization
1071 */
1072 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1073 const enum data_queue_qid queue)
1074 {
1075 u32 reg;
1076
1077 if (queue == QID_BEACON) {
1078 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1079 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1080 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1081 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1082 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1083 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1084 }
1085 return;
1086 }
1087
1088 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1089 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1090 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1091 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1092 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1093 }
1094
1095 /*
1096 * RX control handlers
1097 */
1098 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1099 struct rxdone_entry_desc *rxdesc)
1100 {
1101 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1102 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1103 u32 word0;
1104 u32 word2;
1105 u32 word3;
1106 u32 word4;
1107 u64 tsf;
1108 u32 rx_low;
1109 u32 rx_high;
1110
1111 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1112 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1113 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1114 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1115
1116 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1117 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1118 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1119 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1120
1121 /*
1122 * We only get the lower 32bits from the timestamp,
1123 * to get the full 64bits we must complement it with
1124 * the timestamp from get_tsf().
1125 * Note that when a wraparound of the lower 32bits
1126 * has occurred between the frame arrival and the get_tsf()
1127 * call, we must decrease the higher 32bits with 1 to get
1128 * to correct value.
1129 */
1130 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1131 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1132 rx_high = upper_32_bits(tsf);
1133
1134 if ((u32)tsf <= rx_low)
1135 rx_high--;
1136
1137 /*
1138 * Obtain the status about this packet.
1139 * The signal is the PLCP value, and needs to be stripped
1140 * of the preamble bit (0x08).
1141 */
1142 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1143 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1144 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1145 entry->queue->rt2x00dev->rssi_offset;
1146 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1147
1148 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1149 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1150 rxdesc->dev_flags |= RXDONE_MY_BSS;
1151 }
1152
1153 /*
1154 * Interrupt functions.
1155 */
1156 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1157 const enum data_queue_qid queue_idx)
1158 {
1159 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1160 struct queue_entry_priv_pci *entry_priv;
1161 struct queue_entry *entry;
1162 struct txdone_entry_desc txdesc;
1163 u32 word;
1164
1165 while (!rt2x00queue_empty(queue)) {
1166 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1167 entry_priv = entry->priv_data;
1168 rt2x00_desc_read(entry_priv->desc, 0, &word);
1169
1170 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1171 !rt2x00_get_field32(word, TXD_W0_VALID))
1172 break;
1173
1174 /*
1175 * Obtain the status about this packet.
1176 */
1177 txdesc.flags = 0;
1178 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1179 case 0: /* Success */
1180 case 1: /* Success with retry */
1181 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1182 break;
1183 case 2: /* Failure, excessive retries */
1184 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1185 /* Don't break, this is a failed frame! */
1186 default: /* Failure */
1187 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1188 }
1189 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1190
1191 rt2x00lib_txdone(entry, &txdesc);
1192 }
1193 }
1194
1195 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1196 {
1197 struct rt2x00_dev *rt2x00dev = dev_instance;
1198 u32 reg;
1199
1200 /*
1201 * Get the interrupt sources & saved to local variable.
1202 * Write register value back to clear pending interrupts.
1203 */
1204 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1205 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1206
1207 if (!reg)
1208 return IRQ_NONE;
1209
1210 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1211 return IRQ_HANDLED;
1212
1213 /*
1214 * Handle interrupts, walk through all bits
1215 * and run the tasks, the bits are checked in order of
1216 * priority.
1217 */
1218
1219 /*
1220 * 1 - Beacon timer expired interrupt.
1221 */
1222 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1223 rt2x00lib_beacondone(rt2x00dev);
1224
1225 /*
1226 * 2 - Rx ring done interrupt.
1227 */
1228 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1229 rt2x00pci_rxdone(rt2x00dev);
1230
1231 /*
1232 * 3 - Atim ring transmit done interrupt.
1233 */
1234 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1235 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1236
1237 /*
1238 * 4 - Priority ring transmit done interrupt.
1239 */
1240 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1241 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1242
1243 /*
1244 * 5 - Tx ring transmit done interrupt.
1245 */
1246 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1247 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1248
1249 return IRQ_HANDLED;
1250 }
1251
1252 /*
1253 * Device probe functions.
1254 */
1255 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1256 {
1257 struct eeprom_93cx6 eeprom;
1258 u32 reg;
1259 u16 word;
1260 u8 *mac;
1261
1262 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1263
1264 eeprom.data = rt2x00dev;
1265 eeprom.register_read = rt2400pci_eepromregister_read;
1266 eeprom.register_write = rt2400pci_eepromregister_write;
1267 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1268 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1269 eeprom.reg_data_in = 0;
1270 eeprom.reg_data_out = 0;
1271 eeprom.reg_data_clock = 0;
1272 eeprom.reg_chip_select = 0;
1273
1274 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1275 EEPROM_SIZE / sizeof(u16));
1276
1277 /*
1278 * Start validation of the data that has been read.
1279 */
1280 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1281 if (!is_valid_ether_addr(mac)) {
1282 DECLARE_MAC_BUF(macbuf);
1283
1284 random_ether_addr(mac);
1285 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1286 }
1287
1288 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1289 if (word == 0xffff) {
1290 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1291 return -EINVAL;
1292 }
1293
1294 return 0;
1295 }
1296
1297 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1298 {
1299 u32 reg;
1300 u16 value;
1301 u16 eeprom;
1302
1303 /*
1304 * Read EEPROM word for configuration.
1305 */
1306 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1307
1308 /*
1309 * Identify RF chipset.
1310 */
1311 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1312 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1313 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1314
1315 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1316 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1317 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1318 return -ENODEV;
1319 }
1320
1321 /*
1322 * Identify default antenna configuration.
1323 */
1324 rt2x00dev->default_ant.tx =
1325 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1326 rt2x00dev->default_ant.rx =
1327 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1328
1329 /*
1330 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1331 * I am not 100% sure about this, but the legacy drivers do not
1332 * indicate antenna swapping in software is required when
1333 * diversity is enabled.
1334 */
1335 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1336 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1337 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1338 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1339
1340 /*
1341 * Store led mode, for correct led behaviour.
1342 */
1343 #ifdef CONFIG_RT2400PCI_LEDS
1344 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1345
1346 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1347 if (value == LED_MODE_TXRX_ACTIVITY)
1348 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1349 LED_TYPE_ACTIVITY);
1350 #endif /* CONFIG_RT2400PCI_LEDS */
1351
1352 /*
1353 * Detect if this device has an hardware controlled radio.
1354 */
1355 #ifdef CONFIG_RT2400PCI_RFKILL
1356 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1357 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1358 #endif /* CONFIG_RT2400PCI_RFKILL */
1359
1360 /*
1361 * Check if the BBP tuning should be enabled.
1362 */
1363 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1364 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1365
1366 return 0;
1367 }
1368
1369 /*
1370 * RF value list for RF2420 & RF2421
1371 * Supports: 2.4 GHz
1372 */
1373 static const struct rf_channel rf_vals_bg[] = {
1374 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1375 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1376 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1377 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1378 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1379 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1380 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1381 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1382 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1383 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1384 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1385 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1386 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1387 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1388 };
1389
1390 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1391 {
1392 struct hw_mode_spec *spec = &rt2x00dev->spec;
1393 u8 *txpower;
1394 unsigned int i;
1395
1396 /*
1397 * Initialize all hw fields.
1398 */
1399 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1400 IEEE80211_HW_SIGNAL_DBM;
1401 rt2x00dev->hw->extra_tx_headroom = 0;
1402
1403 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1404 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1405 rt2x00_eeprom_addr(rt2x00dev,
1406 EEPROM_MAC_ADDR_0));
1407
1408 /*
1409 * Convert tx_power array in eeprom.
1410 */
1411 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1412 for (i = 0; i < 14; i++)
1413 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1414
1415 /*
1416 * Initialize hw_mode information.
1417 */
1418 spec->supported_bands = SUPPORT_BAND_2GHZ;
1419 spec->supported_rates = SUPPORT_RATE_CCK;
1420 spec->tx_power_a = NULL;
1421 spec->tx_power_bg = txpower;
1422 spec->tx_power_default = DEFAULT_TXPOWER;
1423
1424 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1425 spec->channels = rf_vals_bg;
1426 }
1427
1428 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1429 {
1430 int retval;
1431
1432 /*
1433 * Allocate eeprom data.
1434 */
1435 retval = rt2400pci_validate_eeprom(rt2x00dev);
1436 if (retval)
1437 return retval;
1438
1439 retval = rt2400pci_init_eeprom(rt2x00dev);
1440 if (retval)
1441 return retval;
1442
1443 /*
1444 * Initialize hw specifications.
1445 */
1446 rt2400pci_probe_hw_mode(rt2x00dev);
1447
1448 /*
1449 * This device requires the atim queue and DMA-mapped skbs.
1450 */
1451 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1452 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1453
1454 /*
1455 * Set the rssi offset.
1456 */
1457 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1458
1459 return 0;
1460 }
1461
1462 /*
1463 * IEEE80211 stack callback functions.
1464 */
1465 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1466 u32 short_retry, u32 long_retry)
1467 {
1468 struct rt2x00_dev *rt2x00dev = hw->priv;
1469 u32 reg;
1470
1471 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1472 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1473 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1474 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1475
1476 return 0;
1477 }
1478
1479 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1480 const struct ieee80211_tx_queue_params *params)
1481 {
1482 struct rt2x00_dev *rt2x00dev = hw->priv;
1483
1484 /*
1485 * We don't support variating cw_min and cw_max variables
1486 * per queue. So by default we only configure the TX queue,
1487 * and ignore all other configurations.
1488 */
1489 if (queue != 0)
1490 return -EINVAL;
1491
1492 if (rt2x00mac_conf_tx(hw, queue, params))
1493 return -EINVAL;
1494
1495 /*
1496 * Write configuration to register.
1497 */
1498 rt2400pci_config_cw(rt2x00dev,
1499 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1500
1501 return 0;
1502 }
1503
1504 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1505 {
1506 struct rt2x00_dev *rt2x00dev = hw->priv;
1507 u64 tsf;
1508 u32 reg;
1509
1510 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1511 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1512 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1513 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1514
1515 return tsf;
1516 }
1517
1518 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
1519 {
1520 struct rt2x00_dev *rt2x00dev = hw->priv;
1521 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1522 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
1523 struct queue_entry_priv_pci *entry_priv;
1524 struct skb_frame_desc *skbdesc;
1525 struct txentry_desc txdesc;
1526 u32 reg;
1527
1528 if (unlikely(!intf->beacon))
1529 return -ENOBUFS;
1530 entry_priv = intf->beacon->priv_data;
1531
1532 /*
1533 * Copy all TX descriptor information into txdesc,
1534 * after that we are free to use the skb->cb array
1535 * for our information.
1536 */
1537 intf->beacon->skb = skb;
1538 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
1539
1540 /*
1541 * Fill in skb descriptor
1542 */
1543 skbdesc = get_skb_frame_desc(skb);
1544 memset(skbdesc, 0, sizeof(*skbdesc));
1545 skbdesc->desc = entry_priv->desc;
1546 skbdesc->desc_len = intf->beacon->queue->desc_size;
1547 skbdesc->entry = intf->beacon;
1548
1549 /*
1550 * Disable beaconing while we are reloading the beacon data,
1551 * otherwise we might be sending out invalid data.
1552 */
1553 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1554 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1555 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1556 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1557 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1558
1559 /*
1560 * Enable beacon generation.
1561 * Write entire beacon with descriptor to register,
1562 * and kick the beacon generator.
1563 */
1564 rt2x00queue_map_txskb(rt2x00dev, intf->beacon->skb);
1565 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
1566 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
1567
1568 return 0;
1569 }
1570
1571 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1572 {
1573 struct rt2x00_dev *rt2x00dev = hw->priv;
1574 u32 reg;
1575
1576 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1577 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1578 }
1579
1580 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1581 .tx = rt2x00mac_tx,
1582 .start = rt2x00mac_start,
1583 .stop = rt2x00mac_stop,
1584 .add_interface = rt2x00mac_add_interface,
1585 .remove_interface = rt2x00mac_remove_interface,
1586 .config = rt2x00mac_config,
1587 .config_interface = rt2x00mac_config_interface,
1588 .configure_filter = rt2x00mac_configure_filter,
1589 .get_stats = rt2x00mac_get_stats,
1590 .set_retry_limit = rt2400pci_set_retry_limit,
1591 .bss_info_changed = rt2x00mac_bss_info_changed,
1592 .conf_tx = rt2400pci_conf_tx,
1593 .get_tx_stats = rt2x00mac_get_tx_stats,
1594 .get_tsf = rt2400pci_get_tsf,
1595 .beacon_update = rt2400pci_beacon_update,
1596 .tx_last_beacon = rt2400pci_tx_last_beacon,
1597 };
1598
1599 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1600 .irq_handler = rt2400pci_interrupt,
1601 .probe_hw = rt2400pci_probe_hw,
1602 .initialize = rt2x00pci_initialize,
1603 .uninitialize = rt2x00pci_uninitialize,
1604 .init_rxentry = rt2400pci_init_rxentry,
1605 .init_txentry = rt2400pci_init_txentry,
1606 .set_device_state = rt2400pci_set_device_state,
1607 .rfkill_poll = rt2400pci_rfkill_poll,
1608 .link_stats = rt2400pci_link_stats,
1609 .reset_tuner = rt2400pci_reset_tuner,
1610 .link_tuner = rt2400pci_link_tuner,
1611 .write_tx_desc = rt2400pci_write_tx_desc,
1612 .write_tx_data = rt2x00pci_write_tx_data,
1613 .kick_tx_queue = rt2400pci_kick_tx_queue,
1614 .fill_rxdone = rt2400pci_fill_rxdone,
1615 .config_filter = rt2400pci_config_filter,
1616 .config_intf = rt2400pci_config_intf,
1617 .config_erp = rt2400pci_config_erp,
1618 .config = rt2400pci_config,
1619 };
1620
1621 static const struct data_queue_desc rt2400pci_queue_rx = {
1622 .entry_num = RX_ENTRIES,
1623 .data_size = DATA_FRAME_SIZE,
1624 .desc_size = RXD_DESC_SIZE,
1625 .priv_size = sizeof(struct queue_entry_priv_pci),
1626 };
1627
1628 static const struct data_queue_desc rt2400pci_queue_tx = {
1629 .entry_num = TX_ENTRIES,
1630 .data_size = DATA_FRAME_SIZE,
1631 .desc_size = TXD_DESC_SIZE,
1632 .priv_size = sizeof(struct queue_entry_priv_pci),
1633 };
1634
1635 static const struct data_queue_desc rt2400pci_queue_bcn = {
1636 .entry_num = BEACON_ENTRIES,
1637 .data_size = MGMT_FRAME_SIZE,
1638 .desc_size = TXD_DESC_SIZE,
1639 .priv_size = sizeof(struct queue_entry_priv_pci),
1640 };
1641
1642 static const struct data_queue_desc rt2400pci_queue_atim = {
1643 .entry_num = ATIM_ENTRIES,
1644 .data_size = DATA_FRAME_SIZE,
1645 .desc_size = TXD_DESC_SIZE,
1646 .priv_size = sizeof(struct queue_entry_priv_pci),
1647 };
1648
1649 static const struct rt2x00_ops rt2400pci_ops = {
1650 .name = KBUILD_MODNAME,
1651 .max_sta_intf = 1,
1652 .max_ap_intf = 1,
1653 .eeprom_size = EEPROM_SIZE,
1654 .rf_size = RF_SIZE,
1655 .tx_queues = NUM_TX_QUEUES,
1656 .rx = &rt2400pci_queue_rx,
1657 .tx = &rt2400pci_queue_tx,
1658 .bcn = &rt2400pci_queue_bcn,
1659 .atim = &rt2400pci_queue_atim,
1660 .lib = &rt2400pci_rt2x00_ops,
1661 .hw = &rt2400pci_mac80211_ops,
1662 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1663 .debugfs = &rt2400pci_rt2x00debug,
1664 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1665 };
1666
1667 /*
1668 * RT2400pci module information.
1669 */
1670 static struct pci_device_id rt2400pci_device_table[] = {
1671 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1672 { 0, }
1673 };
1674
1675 MODULE_AUTHOR(DRV_PROJECT);
1676 MODULE_VERSION(DRV_VERSION);
1677 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1678 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1679 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1680 MODULE_LICENSE("GPL");
1681
1682 static struct pci_driver rt2400pci_driver = {
1683 .name = KBUILD_MODNAME,
1684 .id_table = rt2400pci_device_table,
1685 .probe = rt2x00pci_probe,
1686 .remove = __devexit_p(rt2x00pci_remove),
1687 .suspend = rt2x00pci_suspend,
1688 .resume = rt2x00pci_resume,
1689 };
1690
1691 static int __init rt2400pci_init(void)
1692 {
1693 return pci_register_driver(&rt2400pci_driver);
1694 }
1695
1696 static void __exit rt2400pci_exit(void)
1697 {
1698 pci_unregister_driver(&rt2400pci_driver);
1699 }
1700
1701 module_init(rt2400pci_init);
1702 module_exit(rt2400pci_exit);