]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
rt2x00: Add dev_flags to rx descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
249 {
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255 u32 reg;
256
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262 }
263
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2400pci_led_brightness NULL
268 #endif /* CONFIG_RT2400PCI_LEDS */
269
270 /*
271 * Configuration handlers.
272 */
273 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
274 struct rt2x00_intf *intf,
275 struct rt2x00intf_conf *conf,
276 const unsigned int flags)
277 {
278 unsigned int bcn_preload;
279 u32 reg;
280
281 if (flags & CONFIG_UPDATE_TYPE) {
282 /*
283 * Enable beacon config
284 */
285 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
286 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
287 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
288 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
289
290 /*
291 * Enable synchronisation.
292 */
293 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
294 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
295 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
296 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
297 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
298 }
299
300 if (flags & CONFIG_UPDATE_MAC)
301 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
302 conf->mac, sizeof(conf->mac));
303
304 if (flags & CONFIG_UPDATE_BSSID)
305 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
306 conf->bssid, sizeof(conf->bssid));
307 }
308
309 static int rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
310 struct rt2x00lib_erp *erp)
311 {
312 int preamble_mask;
313 u32 reg;
314
315 /*
316 * When short preamble is enabled, we should set bit 0x08
317 */
318 preamble_mask = erp->short_preamble << 3;
319
320 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
321 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
322 erp->ack_timeout);
323 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
324 erp->ack_consume_time);
325 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
326
327 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
328 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
329 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
330 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
331 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
332
333 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
334 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
335 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
336 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
337 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
338
339 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
340 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
341 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
342 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
343 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
344
345 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
346 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
347 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
348 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
349 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
350
351 return 0;
352 }
353
354 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
355 const int basic_rate_mask)
356 {
357 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
358 }
359
360 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
361 struct rf_channel *rf)
362 {
363 /*
364 * Switch on tuning bits.
365 */
366 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
367 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
368
369 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
370 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
371 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
372
373 /*
374 * RF2420 chipset don't need any additional actions.
375 */
376 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
377 return;
378
379 /*
380 * For the RT2421 chipsets we need to write an invalid
381 * reference clock rate to activate auto_tune.
382 * After that we set the value back to the correct channel.
383 */
384 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
385 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
386 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
387
388 msleep(1);
389
390 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
391 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
392 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
393
394 msleep(1);
395
396 /*
397 * Switch off tuning bits.
398 */
399 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
400 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
401
402 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
403 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
404
405 /*
406 * Clear false CRC during channel switch.
407 */
408 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
409 }
410
411 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
412 {
413 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
414 }
415
416 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
417 struct antenna_setup *ant)
418 {
419 u8 r1;
420 u8 r4;
421
422 /*
423 * We should never come here because rt2x00lib is supposed
424 * to catch this and send us the correct antenna explicitely.
425 */
426 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
427 ant->tx == ANTENNA_SW_DIVERSITY);
428
429 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
430 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
431
432 /*
433 * Configure the TX antenna.
434 */
435 switch (ant->tx) {
436 case ANTENNA_HW_DIVERSITY:
437 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
438 break;
439 case ANTENNA_A:
440 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
441 break;
442 case ANTENNA_B:
443 default:
444 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
445 break;
446 }
447
448 /*
449 * Configure the RX antenna.
450 */
451 switch (ant->rx) {
452 case ANTENNA_HW_DIVERSITY:
453 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
454 break;
455 case ANTENNA_A:
456 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
457 break;
458 case ANTENNA_B:
459 default:
460 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
461 break;
462 }
463
464 rt2400pci_bbp_write(rt2x00dev, 4, r4);
465 rt2400pci_bbp_write(rt2x00dev, 1, r1);
466 }
467
468 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
469 struct rt2x00lib_conf *libconf)
470 {
471 u32 reg;
472
473 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
474 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
475 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
476
477 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
478 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
479 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
480 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
481
482 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
483 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
484 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
485 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
486
487 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
488 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
489 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
490 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
491
492 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
493 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
494 libconf->conf->beacon_int * 16);
495 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
496 libconf->conf->beacon_int * 16);
497 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
498 }
499
500 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00lib_conf *libconf,
502 const unsigned int flags)
503 {
504 if (flags & CONFIG_UPDATE_PHYMODE)
505 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
506 if (flags & CONFIG_UPDATE_CHANNEL)
507 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
508 if (flags & CONFIG_UPDATE_TXPOWER)
509 rt2400pci_config_txpower(rt2x00dev,
510 libconf->conf->power_level);
511 if (flags & CONFIG_UPDATE_ANTENNA)
512 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
513 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
514 rt2400pci_config_duration(rt2x00dev, libconf);
515 }
516
517 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
518 const int cw_min, const int cw_max)
519 {
520 u32 reg;
521
522 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
523 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
524 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
525 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
526 }
527
528 /*
529 * Link tuning
530 */
531 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
532 struct link_qual *qual)
533 {
534 u32 reg;
535 u8 bbp;
536
537 /*
538 * Update FCS error count from register.
539 */
540 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
541 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
542
543 /*
544 * Update False CCA count from register.
545 */
546 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
547 qual->false_cca = bbp;
548 }
549
550 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
551 {
552 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
553 rt2x00dev->link.vgc_level = 0x08;
554 }
555
556 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
557 {
558 u8 reg;
559
560 /*
561 * The link tuner should not run longer then 60 seconds,
562 * and should run once every 2 seconds.
563 */
564 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
565 return;
566
567 /*
568 * Base r13 link tuning on the false cca count.
569 */
570 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
571
572 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
573 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
574 rt2x00dev->link.vgc_level = reg;
575 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
576 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
577 rt2x00dev->link.vgc_level = reg;
578 }
579 }
580
581 /*
582 * Initialization functions.
583 */
584 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
585 struct queue_entry *entry)
586 {
587 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
588 u32 word;
589
590 rt2x00_desc_read(priv_rx->desc, 2, &word);
591 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
592 entry->queue->data_size);
593 rt2x00_desc_write(priv_rx->desc, 2, word);
594
595 rt2x00_desc_read(priv_rx->desc, 1, &word);
596 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
597 rt2x00_desc_write(priv_rx->desc, 1, word);
598
599 rt2x00_desc_read(priv_rx->desc, 0, &word);
600 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
601 rt2x00_desc_write(priv_rx->desc, 0, word);
602 }
603
604 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
605 struct queue_entry *entry)
606 {
607 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
608 u32 word;
609
610 rt2x00_desc_read(priv_tx->desc, 1, &word);
611 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
612 rt2x00_desc_write(priv_tx->desc, 1, word);
613
614 rt2x00_desc_read(priv_tx->desc, 2, &word);
615 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
616 entry->queue->data_size);
617 rt2x00_desc_write(priv_tx->desc, 2, word);
618
619 rt2x00_desc_read(priv_tx->desc, 0, &word);
620 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
621 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
622 rt2x00_desc_write(priv_tx->desc, 0, word);
623 }
624
625 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
626 {
627 struct queue_entry_priv_pci_rx *priv_rx;
628 struct queue_entry_priv_pci_tx *priv_tx;
629 u32 reg;
630
631 /*
632 * Initialize registers.
633 */
634 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
635 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
636 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
637 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
638 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
639 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
640
641 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
642 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
643 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
644 priv_tx->desc_dma);
645 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
646
647 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
648 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
649 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
650 priv_tx->desc_dma);
651 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
652
653 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
654 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
655 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
656 priv_tx->desc_dma);
657 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
658
659 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
660 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
661 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
662 priv_tx->desc_dma);
663 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
664
665 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
666 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
667 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
668 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
669
670 priv_rx = rt2x00dev->rx->entries[0].priv_data;
671 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
672 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
673 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
674
675 return 0;
676 }
677
678 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
679 {
680 u32 reg;
681
682 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
683 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
684 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
685 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
686
687 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
688 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
689 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
690 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
691 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
692
693 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
694 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
695 (rt2x00dev->rx->data_size / 128));
696 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
697
698 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
699 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
700 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
701 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
702
703 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
704
705 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
706 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
707 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
708 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
709 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
710 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
711
712 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
713 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
714 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
715 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
716 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
717 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
718 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
719 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
720
721 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
722
723 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
724 return -EBUSY;
725
726 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
727 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
728
729 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
730 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
731 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
732
733 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
734 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
735 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
736 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
737 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
738 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
739
740 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
741 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
742 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
743 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
744 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
745
746 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
747 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
748 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
749 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
750
751 /*
752 * We must clear the FCS and FIFO error count.
753 * These registers are cleared on read,
754 * so we may pass a useless variable to store the value.
755 */
756 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
757 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
758
759 return 0;
760 }
761
762 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
763 {
764 unsigned int i;
765 u16 eeprom;
766 u8 reg_id;
767 u8 value;
768
769 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
770 rt2400pci_bbp_read(rt2x00dev, 0, &value);
771 if ((value != 0xff) && (value != 0x00))
772 goto continue_csr_init;
773 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
774 udelay(REGISTER_BUSY_DELAY);
775 }
776
777 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
778 return -EACCES;
779
780 continue_csr_init:
781 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
782 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
783 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
784 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
785 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
786 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
787 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
788 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
789 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
790 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
791 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
792 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
793 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
794 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
795
796 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
797 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
798
799 if (eeprom != 0xffff && eeprom != 0x0000) {
800 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
801 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
802 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
803 }
804 }
805
806 return 0;
807 }
808
809 /*
810 * Device state switch handlers.
811 */
812 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
813 enum dev_state state)
814 {
815 u32 reg;
816
817 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
818 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
819 state == STATE_RADIO_RX_OFF);
820 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
821 }
822
823 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
824 enum dev_state state)
825 {
826 int mask = (state == STATE_RADIO_IRQ_OFF);
827 u32 reg;
828
829 /*
830 * When interrupts are being enabled, the interrupt registers
831 * should clear the register to assure a clean state.
832 */
833 if (state == STATE_RADIO_IRQ_ON) {
834 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
835 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
836 }
837
838 /*
839 * Only toggle the interrupts bits we are going to use.
840 * Non-checked interrupt bits are disabled by default.
841 */
842 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
843 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
844 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
845 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
846 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
847 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
848 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
849 }
850
851 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
852 {
853 /*
854 * Initialize all registers.
855 */
856 if (rt2400pci_init_queues(rt2x00dev) ||
857 rt2400pci_init_registers(rt2x00dev) ||
858 rt2400pci_init_bbp(rt2x00dev)) {
859 ERROR(rt2x00dev, "Register initialization failed.\n");
860 return -EIO;
861 }
862
863 /*
864 * Enable interrupts.
865 */
866 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
867
868 return 0;
869 }
870
871 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
872 {
873 u32 reg;
874
875 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
876
877 /*
878 * Disable synchronisation.
879 */
880 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
881
882 /*
883 * Cancel RX and TX.
884 */
885 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
886 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
887 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
888
889 /*
890 * Disable interrupts.
891 */
892 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
893 }
894
895 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
896 enum dev_state state)
897 {
898 u32 reg;
899 unsigned int i;
900 char put_to_sleep;
901 char bbp_state;
902 char rf_state;
903
904 put_to_sleep = (state != STATE_AWAKE);
905
906 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
907 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
908 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
909 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
910 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
911 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
912
913 /*
914 * Device is not guaranteed to be in the requested state yet.
915 * We must wait until the register indicates that the
916 * device has entered the correct state.
917 */
918 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
919 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
920 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
921 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
922 if (bbp_state == state && rf_state == state)
923 return 0;
924 msleep(10);
925 }
926
927 NOTICE(rt2x00dev, "Device failed to enter state %d, "
928 "current device state: bbp %d and rf %d.\n",
929 state, bbp_state, rf_state);
930
931 return -EBUSY;
932 }
933
934 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
935 enum dev_state state)
936 {
937 int retval = 0;
938
939 switch (state) {
940 case STATE_RADIO_ON:
941 retval = rt2400pci_enable_radio(rt2x00dev);
942 break;
943 case STATE_RADIO_OFF:
944 rt2400pci_disable_radio(rt2x00dev);
945 break;
946 case STATE_RADIO_RX_ON:
947 case STATE_RADIO_RX_ON_LINK:
948 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
949 break;
950 case STATE_RADIO_RX_OFF:
951 case STATE_RADIO_RX_OFF_LINK:
952 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
953 break;
954 case STATE_DEEP_SLEEP:
955 case STATE_SLEEP:
956 case STATE_STANDBY:
957 case STATE_AWAKE:
958 retval = rt2400pci_set_state(rt2x00dev, state);
959 break;
960 default:
961 retval = -ENOTSUPP;
962 break;
963 }
964
965 return retval;
966 }
967
968 /*
969 * TX descriptor initialization
970 */
971 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
972 struct sk_buff *skb,
973 struct txentry_desc *txdesc,
974 struct ieee80211_tx_control *control)
975 {
976 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
977 __le32 *txd = skbdesc->desc;
978 u32 word;
979
980 /*
981 * Start writing the descriptor words.
982 */
983 rt2x00_desc_read(txd, 2, &word);
984 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
985 rt2x00_desc_write(txd, 2, word);
986
987 rt2x00_desc_read(txd, 3, &word);
988 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
989 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
990 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
991 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
992 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
993 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
994 rt2x00_desc_write(txd, 3, word);
995
996 rt2x00_desc_read(txd, 4, &word);
997 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
998 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
999 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1000 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1001 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1002 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1003 rt2x00_desc_write(txd, 4, word);
1004
1005 rt2x00_desc_read(txd, 0, &word);
1006 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1007 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1008 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1009 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1010 rt2x00_set_field32(&word, TXD_W0_ACK,
1011 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1012 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1013 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1014 rt2x00_set_field32(&word, TXD_W0_RTS,
1015 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1016 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1017 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1018 !!(control->flags &
1019 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1020 rt2x00_desc_write(txd, 0, word);
1021 }
1022
1023 /*
1024 * TX data initialization
1025 */
1026 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1027 const unsigned int queue)
1028 {
1029 u32 reg;
1030
1031 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1032 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1033 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1034 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1035 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1036 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1037 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1038 }
1039 return;
1040 }
1041
1042 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1043 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1044 (queue == IEEE80211_TX_QUEUE_DATA0));
1045 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1046 (queue == IEEE80211_TX_QUEUE_DATA1));
1047 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1048 (queue == RT2X00_BCN_QUEUE_ATIM));
1049 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1050 }
1051
1052 /*
1053 * RX control handlers
1054 */
1055 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1056 struct rxdone_entry_desc *rxdesc)
1057 {
1058 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1059 u32 word0;
1060 u32 word2;
1061 u32 word3;
1062
1063 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1064 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1065 rt2x00_desc_read(priv_rx->desc, 3, &word3);
1066
1067 rxdesc->flags = 0;
1068 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1069 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1070 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1071 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1072
1073 /*
1074 * Obtain the status about this packet.
1075 * The signal is the PLCP value, and needs to be stripped
1076 * of the preamble bit (0x08).
1077 */
1078 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1079 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1080 entry->queue->rt2x00dev->rssi_offset;
1081 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1082
1083 rxdesc->dev_flags = RXDONE_SIGNAL_PLCP;
1084 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1085 rxdesc->dev_flags |= RXDONE_MY_BSS;
1086 }
1087
1088 /*
1089 * Interrupt functions.
1090 */
1091 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1092 const enum ieee80211_tx_queue queue_idx)
1093 {
1094 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1095 struct queue_entry_priv_pci_tx *priv_tx;
1096 struct queue_entry *entry;
1097 struct txdone_entry_desc txdesc;
1098 u32 word;
1099
1100 while (!rt2x00queue_empty(queue)) {
1101 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1102 priv_tx = entry->priv_data;
1103 rt2x00_desc_read(priv_tx->desc, 0, &word);
1104
1105 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1106 !rt2x00_get_field32(word, TXD_W0_VALID))
1107 break;
1108
1109 /*
1110 * Obtain the status about this packet.
1111 */
1112 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1113 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1114
1115 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1116 }
1117 }
1118
1119 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1120 {
1121 struct rt2x00_dev *rt2x00dev = dev_instance;
1122 u32 reg;
1123
1124 /*
1125 * Get the interrupt sources & saved to local variable.
1126 * Write register value back to clear pending interrupts.
1127 */
1128 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1129 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1130
1131 if (!reg)
1132 return IRQ_NONE;
1133
1134 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1135 return IRQ_HANDLED;
1136
1137 /*
1138 * Handle interrupts, walk through all bits
1139 * and run the tasks, the bits are checked in order of
1140 * priority.
1141 */
1142
1143 /*
1144 * 1 - Beacon timer expired interrupt.
1145 */
1146 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1147 rt2x00lib_beacondone(rt2x00dev);
1148
1149 /*
1150 * 2 - Rx ring done interrupt.
1151 */
1152 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1153 rt2x00pci_rxdone(rt2x00dev);
1154
1155 /*
1156 * 3 - Atim ring transmit done interrupt.
1157 */
1158 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1159 rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1160
1161 /*
1162 * 4 - Priority ring transmit done interrupt.
1163 */
1164 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1165 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1166
1167 /*
1168 * 5 - Tx ring transmit done interrupt.
1169 */
1170 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1171 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1172
1173 return IRQ_HANDLED;
1174 }
1175
1176 /*
1177 * Device probe functions.
1178 */
1179 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1180 {
1181 struct eeprom_93cx6 eeprom;
1182 u32 reg;
1183 u16 word;
1184 u8 *mac;
1185
1186 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1187
1188 eeprom.data = rt2x00dev;
1189 eeprom.register_read = rt2400pci_eepromregister_read;
1190 eeprom.register_write = rt2400pci_eepromregister_write;
1191 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1192 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1193 eeprom.reg_data_in = 0;
1194 eeprom.reg_data_out = 0;
1195 eeprom.reg_data_clock = 0;
1196 eeprom.reg_chip_select = 0;
1197
1198 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1199 EEPROM_SIZE / sizeof(u16));
1200
1201 /*
1202 * Start validation of the data that has been read.
1203 */
1204 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1205 if (!is_valid_ether_addr(mac)) {
1206 DECLARE_MAC_BUF(macbuf);
1207
1208 random_ether_addr(mac);
1209 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1210 }
1211
1212 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1213 if (word == 0xffff) {
1214 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1215 return -EINVAL;
1216 }
1217
1218 return 0;
1219 }
1220
1221 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1222 {
1223 u32 reg;
1224 u16 value;
1225 u16 eeprom;
1226
1227 /*
1228 * Read EEPROM word for configuration.
1229 */
1230 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1231
1232 /*
1233 * Identify RF chipset.
1234 */
1235 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1236 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1237 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1238
1239 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1240 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1241 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1242 return -ENODEV;
1243 }
1244
1245 /*
1246 * Identify default antenna configuration.
1247 */
1248 rt2x00dev->default_ant.tx =
1249 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1250 rt2x00dev->default_ant.rx =
1251 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1252
1253 /*
1254 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1255 * I am not 100% sure about this, but the legacy drivers do not
1256 * indicate antenna swapping in software is required when
1257 * diversity is enabled.
1258 */
1259 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1260 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1261 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1262 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1263
1264 /*
1265 * Store led mode, for correct led behaviour.
1266 */
1267 #ifdef CONFIG_RT2400PCI_LEDS
1268 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1269
1270 switch (value) {
1271 case LED_MODE_ASUS:
1272 case LED_MODE_ALPHA:
1273 case LED_MODE_DEFAULT:
1274 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1275 break;
1276 case LED_MODE_TXRX_ACTIVITY:
1277 rt2x00dev->led_flags =
1278 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1279 break;
1280 case LED_MODE_SIGNAL_STRENGTH:
1281 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1282 break;
1283 }
1284 #endif /* CONFIG_RT2400PCI_LEDS */
1285
1286 /*
1287 * Detect if this device has an hardware controlled radio.
1288 */
1289 #ifdef CONFIG_RT2400PCI_RFKILL
1290 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1291 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1292 #endif /* CONFIG_RT2400PCI_RFKILL */
1293
1294 /*
1295 * Check if the BBP tuning should be enabled.
1296 */
1297 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1298 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * RF value list for RF2420 & RF2421
1305 * Supports: 2.4 GHz
1306 */
1307 static const struct rf_channel rf_vals_bg[] = {
1308 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1309 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1310 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1311 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1312 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1313 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1314 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1315 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1316 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1317 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1318 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1319 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1320 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1321 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1322 };
1323
1324 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1325 {
1326 struct hw_mode_spec *spec = &rt2x00dev->spec;
1327 u8 *txpower;
1328 unsigned int i;
1329
1330 /*
1331 * Initialize all hw fields.
1332 */
1333 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1334 rt2x00dev->hw->extra_tx_headroom = 0;
1335 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1336 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1337 rt2x00dev->hw->queues = 2;
1338
1339 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1340 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1341 rt2x00_eeprom_addr(rt2x00dev,
1342 EEPROM_MAC_ADDR_0));
1343
1344 /*
1345 * Convert tx_power array in eeprom.
1346 */
1347 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1348 for (i = 0; i < 14; i++)
1349 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1350
1351 /*
1352 * Initialize hw_mode information.
1353 */
1354 spec->supported_bands = SUPPORT_BAND_2GHZ;
1355 spec->supported_rates = SUPPORT_RATE_CCK;
1356 spec->tx_power_a = NULL;
1357 spec->tx_power_bg = txpower;
1358 spec->tx_power_default = DEFAULT_TXPOWER;
1359
1360 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1361 spec->channels = rf_vals_bg;
1362 }
1363
1364 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1365 {
1366 int retval;
1367
1368 /*
1369 * Allocate eeprom data.
1370 */
1371 retval = rt2400pci_validate_eeprom(rt2x00dev);
1372 if (retval)
1373 return retval;
1374
1375 retval = rt2400pci_init_eeprom(rt2x00dev);
1376 if (retval)
1377 return retval;
1378
1379 /*
1380 * Initialize hw specifications.
1381 */
1382 rt2400pci_probe_hw_mode(rt2x00dev);
1383
1384 /*
1385 * This device requires the atim queue
1386 */
1387 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1388
1389 /*
1390 * Set the rssi offset.
1391 */
1392 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1393
1394 return 0;
1395 }
1396
1397 /*
1398 * IEEE80211 stack callback functions.
1399 */
1400 static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1401 unsigned int changed_flags,
1402 unsigned int *total_flags,
1403 int mc_count,
1404 struct dev_addr_list *mc_list)
1405 {
1406 struct rt2x00_dev *rt2x00dev = hw->priv;
1407 u32 reg;
1408
1409 /*
1410 * Mask off any flags we are going to ignore from
1411 * the total_flags field.
1412 */
1413 *total_flags &=
1414 FIF_ALLMULTI |
1415 FIF_FCSFAIL |
1416 FIF_PLCPFAIL |
1417 FIF_CONTROL |
1418 FIF_OTHER_BSS |
1419 FIF_PROMISC_IN_BSS;
1420
1421 /*
1422 * Apply some rules to the filters:
1423 * - Some filters imply different filters to be set.
1424 * - Some things we can't filter out at all.
1425 */
1426 *total_flags |= FIF_ALLMULTI;
1427 if (*total_flags & FIF_OTHER_BSS ||
1428 *total_flags & FIF_PROMISC_IN_BSS)
1429 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1430
1431 /*
1432 * Check if there is any work left for us.
1433 */
1434 if (rt2x00dev->packet_filter == *total_flags)
1435 return;
1436 rt2x00dev->packet_filter = *total_flags;
1437
1438 /*
1439 * Start configuration steps.
1440 * Note that the version error will always be dropped
1441 * since there is no filter for it at this time.
1442 */
1443 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1444 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1445 !(*total_flags & FIF_FCSFAIL));
1446 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1447 !(*total_flags & FIF_PLCPFAIL));
1448 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1449 !(*total_flags & FIF_CONTROL));
1450 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1451 !(*total_flags & FIF_PROMISC_IN_BSS));
1452 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1453 !(*total_flags & FIF_PROMISC_IN_BSS));
1454 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1455 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1456 }
1457
1458 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1459 u32 short_retry, u32 long_retry)
1460 {
1461 struct rt2x00_dev *rt2x00dev = hw->priv;
1462 u32 reg;
1463
1464 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1465 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1466 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1467 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1468
1469 return 0;
1470 }
1471
1472 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1473 int queue,
1474 const struct ieee80211_tx_queue_params *params)
1475 {
1476 struct rt2x00_dev *rt2x00dev = hw->priv;
1477
1478 /*
1479 * We don't support variating cw_min and cw_max variables
1480 * per queue. So by default we only configure the TX queue,
1481 * and ignore all other configurations.
1482 */
1483 if (queue != IEEE80211_TX_QUEUE_DATA0)
1484 return -EINVAL;
1485
1486 if (rt2x00mac_conf_tx(hw, queue, params))
1487 return -EINVAL;
1488
1489 /*
1490 * Write configuration to register.
1491 */
1492 rt2400pci_config_cw(rt2x00dev,
1493 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1494
1495 return 0;
1496 }
1497
1498 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1499 {
1500 struct rt2x00_dev *rt2x00dev = hw->priv;
1501 u64 tsf;
1502 u32 reg;
1503
1504 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1505 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1506 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1507 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1508
1509 return tsf;
1510 }
1511
1512 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1513 struct ieee80211_tx_control *control)
1514 {
1515 struct rt2x00_dev *rt2x00dev = hw->priv;
1516 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1517 struct queue_entry_priv_pci_tx *priv_tx;
1518 struct skb_frame_desc *skbdesc;
1519 u32 reg;
1520
1521 if (unlikely(!intf->beacon))
1522 return -ENOBUFS;
1523 priv_tx = intf->beacon->priv_data;
1524
1525 /*
1526 * Fill in skb descriptor
1527 */
1528 skbdesc = get_skb_frame_desc(skb);
1529 memset(skbdesc, 0, sizeof(*skbdesc));
1530 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1531 skbdesc->data = skb->data;
1532 skbdesc->data_len = skb->len;
1533 skbdesc->desc = priv_tx->desc;
1534 skbdesc->desc_len = intf->beacon->queue->desc_size;
1535 skbdesc->entry = intf->beacon;
1536
1537 /*
1538 * Disable beaconing while we are reloading the beacon data,
1539 * otherwise we might be sending out invalid data.
1540 */
1541 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1542 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1543 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1544 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1545 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1546
1547 /*
1548 * mac80211 doesn't provide the control->queue variable
1549 * for beacons. Set our own queue identification so
1550 * it can be used during descriptor initialization.
1551 */
1552 control->queue = RT2X00_BCN_QUEUE_BEACON;
1553 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1554
1555 /*
1556 * Enable beacon generation.
1557 * Write entire beacon with descriptor to register,
1558 * and kick the beacon generator.
1559 */
1560 memcpy(priv_tx->data, skb->data, skb->len);
1561 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1562
1563 return 0;
1564 }
1565
1566 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1567 {
1568 struct rt2x00_dev *rt2x00dev = hw->priv;
1569 u32 reg;
1570
1571 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1572 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1573 }
1574
1575 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1576 .tx = rt2x00mac_tx,
1577 .start = rt2x00mac_start,
1578 .stop = rt2x00mac_stop,
1579 .add_interface = rt2x00mac_add_interface,
1580 .remove_interface = rt2x00mac_remove_interface,
1581 .config = rt2x00mac_config,
1582 .config_interface = rt2x00mac_config_interface,
1583 .configure_filter = rt2400pci_configure_filter,
1584 .get_stats = rt2x00mac_get_stats,
1585 .set_retry_limit = rt2400pci_set_retry_limit,
1586 .bss_info_changed = rt2x00mac_bss_info_changed,
1587 .conf_tx = rt2400pci_conf_tx,
1588 .get_tx_stats = rt2x00mac_get_tx_stats,
1589 .get_tsf = rt2400pci_get_tsf,
1590 .beacon_update = rt2400pci_beacon_update,
1591 .tx_last_beacon = rt2400pci_tx_last_beacon,
1592 };
1593
1594 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1595 .irq_handler = rt2400pci_interrupt,
1596 .probe_hw = rt2400pci_probe_hw,
1597 .initialize = rt2x00pci_initialize,
1598 .uninitialize = rt2x00pci_uninitialize,
1599 .init_rxentry = rt2400pci_init_rxentry,
1600 .init_txentry = rt2400pci_init_txentry,
1601 .set_device_state = rt2400pci_set_device_state,
1602 .rfkill_poll = rt2400pci_rfkill_poll,
1603 .link_stats = rt2400pci_link_stats,
1604 .reset_tuner = rt2400pci_reset_tuner,
1605 .link_tuner = rt2400pci_link_tuner,
1606 .led_brightness = rt2400pci_led_brightness,
1607 .write_tx_desc = rt2400pci_write_tx_desc,
1608 .write_tx_data = rt2x00pci_write_tx_data,
1609 .kick_tx_queue = rt2400pci_kick_tx_queue,
1610 .fill_rxdone = rt2400pci_fill_rxdone,
1611 .config_intf = rt2400pci_config_intf,
1612 .config_erp = rt2400pci_config_erp,
1613 .config = rt2400pci_config,
1614 };
1615
1616 static const struct data_queue_desc rt2400pci_queue_rx = {
1617 .entry_num = RX_ENTRIES,
1618 .data_size = DATA_FRAME_SIZE,
1619 .desc_size = RXD_DESC_SIZE,
1620 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1621 };
1622
1623 static const struct data_queue_desc rt2400pci_queue_tx = {
1624 .entry_num = TX_ENTRIES,
1625 .data_size = DATA_FRAME_SIZE,
1626 .desc_size = TXD_DESC_SIZE,
1627 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1628 };
1629
1630 static const struct data_queue_desc rt2400pci_queue_bcn = {
1631 .entry_num = BEACON_ENTRIES,
1632 .data_size = MGMT_FRAME_SIZE,
1633 .desc_size = TXD_DESC_SIZE,
1634 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1635 };
1636
1637 static const struct data_queue_desc rt2400pci_queue_atim = {
1638 .entry_num = ATIM_ENTRIES,
1639 .data_size = DATA_FRAME_SIZE,
1640 .desc_size = TXD_DESC_SIZE,
1641 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1642 };
1643
1644 static const struct rt2x00_ops rt2400pci_ops = {
1645 .name = KBUILD_MODNAME,
1646 .max_sta_intf = 1,
1647 .max_ap_intf = 1,
1648 .eeprom_size = EEPROM_SIZE,
1649 .rf_size = RF_SIZE,
1650 .rx = &rt2400pci_queue_rx,
1651 .tx = &rt2400pci_queue_tx,
1652 .bcn = &rt2400pci_queue_bcn,
1653 .atim = &rt2400pci_queue_atim,
1654 .lib = &rt2400pci_rt2x00_ops,
1655 .hw = &rt2400pci_mac80211_ops,
1656 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1657 .debugfs = &rt2400pci_rt2x00debug,
1658 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1659 };
1660
1661 /*
1662 * RT2400pci module information.
1663 */
1664 static struct pci_device_id rt2400pci_device_table[] = {
1665 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1666 { 0, }
1667 };
1668
1669 MODULE_AUTHOR(DRV_PROJECT);
1670 MODULE_VERSION(DRV_VERSION);
1671 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1672 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1673 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1674 MODULE_LICENSE("GPL");
1675
1676 static struct pci_driver rt2400pci_driver = {
1677 .name = KBUILD_MODNAME,
1678 .id_table = rt2400pci_device_table,
1679 .probe = rt2x00pci_probe,
1680 .remove = __devexit_p(rt2x00pci_remove),
1681 .suspend = rt2x00pci_suspend,
1682 .resume = rt2x00pci_resume,
1683 };
1684
1685 static int __init rt2400pci_init(void)
1686 {
1687 return pci_register_driver(&rt2400pci_driver);
1688 }
1689
1690 static void __exit rt2400pci_exit(void)
1691 {
1692 pci_unregister_driver(&rt2400pci_driver);
1693 }
1694
1695 module_init(rt2400pci_init);
1696 module_exit(rt2400pci_exit);