]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
rt2x00: Move beacon and atim queue defines into rt2x00
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 /*
247 * Configuration handlers.
248 */
249 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_intf *intf,
251 struct rt2x00intf_conf *conf,
252 const unsigned int flags)
253 {
254 unsigned int bcn_preload;
255 u32 reg;
256
257 if (flags & CONFIG_UPDATE_TYPE) {
258 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
259
260 /*
261 * Enable beacon config
262 */
263 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
264 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
265 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
266 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
267
268 /*
269 * Enable synchronisation.
270 */
271 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
272 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
273 rt2x00_set_field32(&reg, CSR14_TBCN,
274 (conf->sync == TSF_SYNC_BEACON));
275 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
276 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
277 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
278 }
279
280 if (flags & CONFIG_UPDATE_MAC)
281 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
282 conf->mac, sizeof(conf->mac));
283
284 if (flags & CONFIG_UPDATE_BSSID)
285 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
286 conf->bssid, sizeof(conf->bssid));
287 }
288
289 static int rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
290 const int short_preamble,
291 const int ack_timeout,
292 const int ack_consume_time)
293 {
294 int preamble_mask;
295 u32 reg;
296
297 /*
298 * When short preamble is enabled, we should set bit 0x08
299 */
300 preamble_mask = short_preamble << 3;
301
302 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
303 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
304 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
305 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
306
307 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
308 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
309 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
310 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
311 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
312
313 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
314 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
315 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
316 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
317 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
318
319 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
320 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
321 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
322 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
323 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
324
325 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
326 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
327 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
328 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
329 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
330
331 return 0;
332 }
333
334 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
335 const int basic_rate_mask)
336 {
337 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
338 }
339
340 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
341 struct rf_channel *rf)
342 {
343 /*
344 * Switch on tuning bits.
345 */
346 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
347 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
348
349 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
350 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
351 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
352
353 /*
354 * RF2420 chipset don't need any additional actions.
355 */
356 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
357 return;
358
359 /*
360 * For the RT2421 chipsets we need to write an invalid
361 * reference clock rate to activate auto_tune.
362 * After that we set the value back to the correct channel.
363 */
364 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
365 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
366 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
367
368 msleep(1);
369
370 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
371 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
372 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
373
374 msleep(1);
375
376 /*
377 * Switch off tuning bits.
378 */
379 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
380 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
381
382 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
383 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
384
385 /*
386 * Clear false CRC during channel switch.
387 */
388 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
389 }
390
391 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
392 {
393 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
394 }
395
396 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
397 struct antenna_setup *ant)
398 {
399 u8 r1;
400 u8 r4;
401
402 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
403 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
404
405 /*
406 * Configure the TX antenna.
407 */
408 switch (ant->tx) {
409 case ANTENNA_HW_DIVERSITY:
410 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
411 break;
412 case ANTENNA_A:
413 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
414 break;
415 case ANTENNA_SW_DIVERSITY:
416 /*
417 * NOTE: We should never come here because rt2x00lib is
418 * supposed to catch this and send us the correct antenna
419 * explicitely. However we are nog going to bug about this.
420 * Instead, just default to antenna B.
421 */
422 case ANTENNA_B:
423 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
424 break;
425 }
426
427 /*
428 * Configure the RX antenna.
429 */
430 switch (ant->rx) {
431 case ANTENNA_HW_DIVERSITY:
432 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
433 break;
434 case ANTENNA_A:
435 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
436 break;
437 case ANTENNA_SW_DIVERSITY:
438 /*
439 * NOTE: We should never come here because rt2x00lib is
440 * supposed to catch this and send us the correct antenna
441 * explicitely. However we are nog going to bug about this.
442 * Instead, just default to antenna B.
443 */
444 case ANTENNA_B:
445 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446 break;
447 }
448
449 rt2400pci_bbp_write(rt2x00dev, 4, r4);
450 rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452
453 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
454 struct rt2x00lib_conf *libconf)
455 {
456 u32 reg;
457
458 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
459 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
460 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
461
462 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
463 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
464 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
465 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
466
467 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
468 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
469 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
470 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
471
472 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
473 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
474 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
475 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
476
477 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
478 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
479 libconf->conf->beacon_int * 16);
480 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
481 libconf->conf->beacon_int * 16);
482 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
483 }
484
485 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
486 struct rt2x00lib_conf *libconf,
487 const unsigned int flags)
488 {
489 if (flags & CONFIG_UPDATE_PHYMODE)
490 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
491 if (flags & CONFIG_UPDATE_CHANNEL)
492 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
493 if (flags & CONFIG_UPDATE_TXPOWER)
494 rt2400pci_config_txpower(rt2x00dev,
495 libconf->conf->power_level);
496 if (flags & CONFIG_UPDATE_ANTENNA)
497 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
498 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
499 rt2400pci_config_duration(rt2x00dev, libconf);
500 }
501
502 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
503 const int cw_min, const int cw_max)
504 {
505 u32 reg;
506
507 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
508 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
509 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
510 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
511 }
512
513 /*
514 * LED functions.
515 */
516 static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
517 {
518 u32 reg;
519
520 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
521
522 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
523 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
524 rt2x00_set_field32(&reg, LEDCSR_LINK,
525 (rt2x00dev->led_mode != LED_MODE_ASUS));
526 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
527 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
528 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
529 }
530
531 static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
532 {
533 u32 reg;
534
535 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
536 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
537 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
538 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
539 }
540
541 /*
542 * Link tuning
543 */
544 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
545 struct link_qual *qual)
546 {
547 u32 reg;
548 u8 bbp;
549
550 /*
551 * Update FCS error count from register.
552 */
553 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
554 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
555
556 /*
557 * Update False CCA count from register.
558 */
559 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
560 qual->false_cca = bbp;
561 }
562
563 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
564 {
565 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
566 rt2x00dev->link.vgc_level = 0x08;
567 }
568
569 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
570 {
571 u8 reg;
572
573 /*
574 * The link tuner should not run longer then 60 seconds,
575 * and should run once every 2 seconds.
576 */
577 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
578 return;
579
580 /*
581 * Base r13 link tuning on the false cca count.
582 */
583 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
584
585 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
586 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
587 rt2x00dev->link.vgc_level = reg;
588 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
589 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
590 rt2x00dev->link.vgc_level = reg;
591 }
592 }
593
594 /*
595 * Initialization functions.
596 */
597 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
598 struct queue_entry *entry)
599 {
600 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
601 u32 word;
602
603 rt2x00_desc_read(priv_rx->desc, 2, &word);
604 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->queue->data_size);
605 rt2x00_desc_write(priv_rx->desc, 2, word);
606
607 rt2x00_desc_read(priv_rx->desc, 1, &word);
608 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
609 rt2x00_desc_write(priv_rx->desc, 1, word);
610
611 rt2x00_desc_read(priv_rx->desc, 0, &word);
612 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
613 rt2x00_desc_write(priv_rx->desc, 0, word);
614 }
615
616 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
617 struct queue_entry *entry)
618 {
619 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
620 u32 word;
621
622 rt2x00_desc_read(priv_tx->desc, 1, &word);
623 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
624 rt2x00_desc_write(priv_tx->desc, 1, word);
625
626 rt2x00_desc_read(priv_tx->desc, 2, &word);
627 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
628 entry->queue->data_size);
629 rt2x00_desc_write(priv_tx->desc, 2, word);
630
631 rt2x00_desc_read(priv_tx->desc, 0, &word);
632 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
633 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
634 rt2x00_desc_write(priv_tx->desc, 0, word);
635 }
636
637 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
638 {
639 struct queue_entry_priv_pci_rx *priv_rx;
640 struct queue_entry_priv_pci_tx *priv_tx;
641 u32 reg;
642
643 /*
644 * Initialize registers.
645 */
646 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
647 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
648 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
649 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
650 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
651 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
652
653 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
654 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
655 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
656 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
657
658 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
659 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
660 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
661 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
662
663 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
664 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
665 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
666 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
667
668 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
669 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
670 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
671 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
672
673 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
674 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
675 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
676 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
677
678 priv_rx = rt2x00dev->rx->entries[0].priv_data;
679 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
680 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
681 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
682
683 return 0;
684 }
685
686 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
687 {
688 u32 reg;
689
690 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
691 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
692 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
693 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
694
695 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
696 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
697 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
698 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
699 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
700
701 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
702 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
703 (rt2x00dev->rx->data_size / 128));
704 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
705
706 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
707
708 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
709 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
710 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
711 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
712 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
713 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
714
715 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
716 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
717 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
718 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
719 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
720 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
721 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
722 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
723
724 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
725
726 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
727 return -EBUSY;
728
729 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
730 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
731
732 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
733 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
734 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
735
736 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
737 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
738 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
739 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
740 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
741 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
742
743 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
744 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
745 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
746 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
747 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
748
749 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
750 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
751 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
752 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
753
754 /*
755 * We must clear the FCS and FIFO error count.
756 * These registers are cleared on read,
757 * so we may pass a useless variable to store the value.
758 */
759 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
760 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
761
762 return 0;
763 }
764
765 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
766 {
767 unsigned int i;
768 u16 eeprom;
769 u8 reg_id;
770 u8 value;
771
772 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
773 rt2400pci_bbp_read(rt2x00dev, 0, &value);
774 if ((value != 0xff) && (value != 0x00))
775 goto continue_csr_init;
776 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
777 udelay(REGISTER_BUSY_DELAY);
778 }
779
780 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
781 return -EACCES;
782
783 continue_csr_init:
784 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
785 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
786 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
787 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
788 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
789 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
790 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
791 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
792 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
793 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
794 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
795 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
796 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
797 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
798
799 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
800 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
801 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
802
803 if (eeprom != 0xffff && eeprom != 0x0000) {
804 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
805 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
806 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
807 reg_id, value);
808 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
809 }
810 }
811 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
812
813 return 0;
814 }
815
816 /*
817 * Device state switch handlers.
818 */
819 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
820 enum dev_state state)
821 {
822 u32 reg;
823
824 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
825 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
826 state == STATE_RADIO_RX_OFF);
827 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
828 }
829
830 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
831 enum dev_state state)
832 {
833 int mask = (state == STATE_RADIO_IRQ_OFF);
834 u32 reg;
835
836 /*
837 * When interrupts are being enabled, the interrupt registers
838 * should clear the register to assure a clean state.
839 */
840 if (state == STATE_RADIO_IRQ_ON) {
841 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
842 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
843 }
844
845 /*
846 * Only toggle the interrupts bits we are going to use.
847 * Non-checked interrupt bits are disabled by default.
848 */
849 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
850 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
851 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
852 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
853 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
854 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
855 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
856 }
857
858 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
859 {
860 /*
861 * Initialize all registers.
862 */
863 if (rt2400pci_init_queues(rt2x00dev) ||
864 rt2400pci_init_registers(rt2x00dev) ||
865 rt2400pci_init_bbp(rt2x00dev)) {
866 ERROR(rt2x00dev, "Register initialization failed.\n");
867 return -EIO;
868 }
869
870 /*
871 * Enable interrupts.
872 */
873 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
874
875 /*
876 * Enable LED
877 */
878 rt2400pci_enable_led(rt2x00dev);
879
880 return 0;
881 }
882
883 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
884 {
885 u32 reg;
886
887 /*
888 * Disable LED
889 */
890 rt2400pci_disable_led(rt2x00dev);
891
892 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
893
894 /*
895 * Disable synchronisation.
896 */
897 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
898
899 /*
900 * Cancel RX and TX.
901 */
902 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
903 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
904 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
905
906 /*
907 * Disable interrupts.
908 */
909 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
910 }
911
912 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
913 enum dev_state state)
914 {
915 u32 reg;
916 unsigned int i;
917 char put_to_sleep;
918 char bbp_state;
919 char rf_state;
920
921 put_to_sleep = (state != STATE_AWAKE);
922
923 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
924 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
925 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
926 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
927 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
928 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
929
930 /*
931 * Device is not guaranteed to be in the requested state yet.
932 * We must wait until the register indicates that the
933 * device has entered the correct state.
934 */
935 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
936 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
937 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
938 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
939 if (bbp_state == state && rf_state == state)
940 return 0;
941 msleep(10);
942 }
943
944 NOTICE(rt2x00dev, "Device failed to enter state %d, "
945 "current device state: bbp %d and rf %d.\n",
946 state, bbp_state, rf_state);
947
948 return -EBUSY;
949 }
950
951 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
952 enum dev_state state)
953 {
954 int retval = 0;
955
956 switch (state) {
957 case STATE_RADIO_ON:
958 retval = rt2400pci_enable_radio(rt2x00dev);
959 break;
960 case STATE_RADIO_OFF:
961 rt2400pci_disable_radio(rt2x00dev);
962 break;
963 case STATE_RADIO_RX_ON:
964 case STATE_RADIO_RX_ON_LINK:
965 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
966 break;
967 case STATE_RADIO_RX_OFF:
968 case STATE_RADIO_RX_OFF_LINK:
969 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
970 break;
971 case STATE_DEEP_SLEEP:
972 case STATE_SLEEP:
973 case STATE_STANDBY:
974 case STATE_AWAKE:
975 retval = rt2400pci_set_state(rt2x00dev, state);
976 break;
977 default:
978 retval = -ENOTSUPP;
979 break;
980 }
981
982 return retval;
983 }
984
985 /*
986 * TX descriptor initialization
987 */
988 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
989 struct sk_buff *skb,
990 struct txentry_desc *txdesc,
991 struct ieee80211_tx_control *control)
992 {
993 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
994 __le32 *txd = skbdesc->desc;
995 u32 word;
996
997 /*
998 * Start writing the descriptor words.
999 */
1000 rt2x00_desc_read(txd, 2, &word);
1001 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
1002 rt2x00_desc_write(txd, 2, word);
1003
1004 rt2x00_desc_read(txd, 3, &word);
1005 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1006 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1007 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1008 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1009 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1010 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1011 rt2x00_desc_write(txd, 3, word);
1012
1013 rt2x00_desc_read(txd, 4, &word);
1014 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1015 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1016 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1017 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1018 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1019 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1020 rt2x00_desc_write(txd, 4, word);
1021
1022 rt2x00_desc_read(txd, 0, &word);
1023 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1024 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1025 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1026 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1027 rt2x00_set_field32(&word, TXD_W0_ACK,
1028 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1029 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1030 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1031 rt2x00_set_field32(&word, TXD_W0_RTS,
1032 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1033 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1034 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1035 !!(control->flags &
1036 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1037 rt2x00_desc_write(txd, 0, word);
1038 }
1039
1040 /*
1041 * TX data initialization
1042 */
1043 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1044 const unsigned int queue)
1045 {
1046 u32 reg;
1047
1048 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1049 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1050 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1051 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1052 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1053 }
1054 return;
1055 }
1056
1057 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1058 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1059 (queue == IEEE80211_TX_QUEUE_DATA0));
1060 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1061 (queue == IEEE80211_TX_QUEUE_DATA1));
1062 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1063 (queue == RT2X00_BCN_QUEUE_ATIM));
1064 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1065 }
1066
1067 /*
1068 * RX control handlers
1069 */
1070 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1071 struct rxdone_entry_desc *rxdesc)
1072 {
1073 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1074 u32 word0;
1075 u32 word2;
1076
1077 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1078 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1079
1080 rxdesc->flags = 0;
1081 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1082 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1083 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1084 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1085
1086 /*
1087 * Obtain the status about this packet.
1088 */
1089 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1090 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1091 entry->queue->rt2x00dev->rssi_offset;
1092 rxdesc->ofdm = 0;
1093 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1094 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1095 }
1096
1097 /*
1098 * Interrupt functions.
1099 */
1100 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1101 const enum ieee80211_tx_queue queue_idx)
1102 {
1103 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1104 struct queue_entry_priv_pci_tx *priv_tx;
1105 struct queue_entry *entry;
1106 struct txdone_entry_desc txdesc;
1107 u32 word;
1108
1109 while (!rt2x00queue_empty(queue)) {
1110 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1111 priv_tx = entry->priv_data;
1112 rt2x00_desc_read(priv_tx->desc, 0, &word);
1113
1114 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1115 !rt2x00_get_field32(word, TXD_W0_VALID))
1116 break;
1117
1118 /*
1119 * Obtain the status about this packet.
1120 */
1121 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1122 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1123
1124 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1125 }
1126 }
1127
1128 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1129 {
1130 struct rt2x00_dev *rt2x00dev = dev_instance;
1131 u32 reg;
1132
1133 /*
1134 * Get the interrupt sources & saved to local variable.
1135 * Write register value back to clear pending interrupts.
1136 */
1137 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1138 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1139
1140 if (!reg)
1141 return IRQ_NONE;
1142
1143 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1144 return IRQ_HANDLED;
1145
1146 /*
1147 * Handle interrupts, walk through all bits
1148 * and run the tasks, the bits are checked in order of
1149 * priority.
1150 */
1151
1152 /*
1153 * 1 - Beacon timer expired interrupt.
1154 */
1155 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1156 rt2x00lib_beacondone(rt2x00dev);
1157
1158 /*
1159 * 2 - Rx ring done interrupt.
1160 */
1161 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1162 rt2x00pci_rxdone(rt2x00dev);
1163
1164 /*
1165 * 3 - Atim ring transmit done interrupt.
1166 */
1167 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1168 rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1169
1170 /*
1171 * 4 - Priority ring transmit done interrupt.
1172 */
1173 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1174 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1175
1176 /*
1177 * 5 - Tx ring transmit done interrupt.
1178 */
1179 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1180 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1181
1182 return IRQ_HANDLED;
1183 }
1184
1185 /*
1186 * Device probe functions.
1187 */
1188 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1189 {
1190 struct eeprom_93cx6 eeprom;
1191 u32 reg;
1192 u16 word;
1193 u8 *mac;
1194
1195 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1196
1197 eeprom.data = rt2x00dev;
1198 eeprom.register_read = rt2400pci_eepromregister_read;
1199 eeprom.register_write = rt2400pci_eepromregister_write;
1200 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1201 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1202 eeprom.reg_data_in = 0;
1203 eeprom.reg_data_out = 0;
1204 eeprom.reg_data_clock = 0;
1205 eeprom.reg_chip_select = 0;
1206
1207 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1208 EEPROM_SIZE / sizeof(u16));
1209
1210 /*
1211 * Start validation of the data that has been read.
1212 */
1213 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1214 if (!is_valid_ether_addr(mac)) {
1215 DECLARE_MAC_BUF(macbuf);
1216
1217 random_ether_addr(mac);
1218 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1219 }
1220
1221 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1222 if (word == 0xffff) {
1223 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1224 return -EINVAL;
1225 }
1226
1227 return 0;
1228 }
1229
1230 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1231 {
1232 u32 reg;
1233 u16 value;
1234 u16 eeprom;
1235
1236 /*
1237 * Read EEPROM word for configuration.
1238 */
1239 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1240
1241 /*
1242 * Identify RF chipset.
1243 */
1244 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1245 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1246 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1247
1248 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1249 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1250 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1251 return -ENODEV;
1252 }
1253
1254 /*
1255 * Identify default antenna configuration.
1256 */
1257 rt2x00dev->default_ant.tx =
1258 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1259 rt2x00dev->default_ant.rx =
1260 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1261
1262 /*
1263 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1264 * I am not 100% sure about this, but the legacy drivers do not
1265 * indicate antenna swapping in software is required when
1266 * diversity is enabled.
1267 */
1268 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1269 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1270 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1271 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1272
1273 /*
1274 * Store led mode, for correct led behaviour.
1275 */
1276 rt2x00dev->led_mode =
1277 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1278
1279 /*
1280 * Detect if this device has an hardware controlled radio.
1281 */
1282 #ifdef CONFIG_RT2400PCI_RFKILL
1283 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1284 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1285 #endif /* CONFIG_RT2400PCI_RFKILL */
1286
1287 /*
1288 * Check if the BBP tuning should be enabled.
1289 */
1290 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1291 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1292
1293 return 0;
1294 }
1295
1296 /*
1297 * RF value list for RF2420 & RF2421
1298 * Supports: 2.4 GHz
1299 */
1300 static const struct rf_channel rf_vals_bg[] = {
1301 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1302 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1303 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1304 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1305 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1306 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1307 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1308 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1309 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1310 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1311 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1312 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1313 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1314 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1315 };
1316
1317 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1318 {
1319 struct hw_mode_spec *spec = &rt2x00dev->spec;
1320 u8 *txpower;
1321 unsigned int i;
1322
1323 /*
1324 * Initialize all hw fields.
1325 */
1326 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1327 rt2x00dev->hw->extra_tx_headroom = 0;
1328 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1329 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1330 rt2x00dev->hw->queues = 2;
1331
1332 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1333 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1334 rt2x00_eeprom_addr(rt2x00dev,
1335 EEPROM_MAC_ADDR_0));
1336
1337 /*
1338 * Convert tx_power array in eeprom.
1339 */
1340 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1341 for (i = 0; i < 14; i++)
1342 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1343
1344 /*
1345 * Initialize hw_mode information.
1346 */
1347 spec->num_modes = 1;
1348 spec->num_rates = 4;
1349 spec->tx_power_a = NULL;
1350 spec->tx_power_bg = txpower;
1351 spec->tx_power_default = DEFAULT_TXPOWER;
1352
1353 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1354 spec->channels = rf_vals_bg;
1355 }
1356
1357 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1358 {
1359 int retval;
1360
1361 /*
1362 * Allocate eeprom data.
1363 */
1364 retval = rt2400pci_validate_eeprom(rt2x00dev);
1365 if (retval)
1366 return retval;
1367
1368 retval = rt2400pci_init_eeprom(rt2x00dev);
1369 if (retval)
1370 return retval;
1371
1372 /*
1373 * Initialize hw specifications.
1374 */
1375 rt2400pci_probe_hw_mode(rt2x00dev);
1376
1377 /*
1378 * This device requires the atim queue
1379 */
1380 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1381
1382 /*
1383 * Set the rssi offset.
1384 */
1385 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1386
1387 return 0;
1388 }
1389
1390 /*
1391 * IEEE80211 stack callback functions.
1392 */
1393 static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1394 unsigned int changed_flags,
1395 unsigned int *total_flags,
1396 int mc_count,
1397 struct dev_addr_list *mc_list)
1398 {
1399 struct rt2x00_dev *rt2x00dev = hw->priv;
1400 u32 reg;
1401
1402 /*
1403 * Mask off any flags we are going to ignore from
1404 * the total_flags field.
1405 */
1406 *total_flags &=
1407 FIF_ALLMULTI |
1408 FIF_FCSFAIL |
1409 FIF_PLCPFAIL |
1410 FIF_CONTROL |
1411 FIF_OTHER_BSS |
1412 FIF_PROMISC_IN_BSS;
1413
1414 /*
1415 * Apply some rules to the filters:
1416 * - Some filters imply different filters to be set.
1417 * - Some things we can't filter out at all.
1418 */
1419 *total_flags |= FIF_ALLMULTI;
1420 if (*total_flags & FIF_OTHER_BSS ||
1421 *total_flags & FIF_PROMISC_IN_BSS)
1422 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1423
1424 /*
1425 * Check if there is any work left for us.
1426 */
1427 if (rt2x00dev->packet_filter == *total_flags)
1428 return;
1429 rt2x00dev->packet_filter = *total_flags;
1430
1431 /*
1432 * Start configuration steps.
1433 * Note that the version error will always be dropped
1434 * since there is no filter for it at this time.
1435 */
1436 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1437 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1438 !(*total_flags & FIF_FCSFAIL));
1439 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1440 !(*total_flags & FIF_PLCPFAIL));
1441 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1442 !(*total_flags & FIF_CONTROL));
1443 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1444 !(*total_flags & FIF_PROMISC_IN_BSS));
1445 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1446 !(*total_flags & FIF_PROMISC_IN_BSS));
1447 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1448 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1449 }
1450
1451 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1452 u32 short_retry, u32 long_retry)
1453 {
1454 struct rt2x00_dev *rt2x00dev = hw->priv;
1455 u32 reg;
1456
1457 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1458 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1459 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1460 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1461
1462 return 0;
1463 }
1464
1465 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1466 int queue,
1467 const struct ieee80211_tx_queue_params *params)
1468 {
1469 struct rt2x00_dev *rt2x00dev = hw->priv;
1470
1471 /*
1472 * We don't support variating cw_min and cw_max variables
1473 * per queue. So by default we only configure the TX queue,
1474 * and ignore all other configurations.
1475 */
1476 if (queue != IEEE80211_TX_QUEUE_DATA0)
1477 return -EINVAL;
1478
1479 if (rt2x00mac_conf_tx(hw, queue, params))
1480 return -EINVAL;
1481
1482 /*
1483 * Write configuration to register.
1484 */
1485 rt2400pci_config_cw(rt2x00dev,
1486 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1487
1488 return 0;
1489 }
1490
1491 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1492 {
1493 struct rt2x00_dev *rt2x00dev = hw->priv;
1494 u64 tsf;
1495 u32 reg;
1496
1497 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1498 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1499 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1500 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1501
1502 return tsf;
1503 }
1504
1505 static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1506 {
1507 struct rt2x00_dev *rt2x00dev = hw->priv;
1508
1509 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1510 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1511 }
1512
1513 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1514 struct ieee80211_tx_control *control)
1515 {
1516 struct rt2x00_dev *rt2x00dev = hw->priv;
1517 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1518 struct queue_entry_priv_pci_tx *priv_tx;
1519 struct skb_frame_desc *skbdesc;
1520
1521 if (unlikely(!intf->beacon))
1522 return -ENOBUFS;
1523
1524 priv_tx = intf->beacon->priv_data;
1525
1526 /*
1527 * Fill in skb descriptor
1528 */
1529 skbdesc = get_skb_frame_desc(skb);
1530 memset(skbdesc, 0, sizeof(*skbdesc));
1531 skbdesc->data = skb->data;
1532 skbdesc->data_len = skb->len;
1533 skbdesc->desc = priv_tx->desc;
1534 skbdesc->desc_len = intf->beacon->queue->desc_size;
1535 skbdesc->entry = intf->beacon;
1536
1537 /*
1538 * mac80211 doesn't provide the control->queue variable
1539 * for beacons. Set our own queue identification so
1540 * it can be used during descriptor initialization.
1541 */
1542 control->queue = RT2X00_BCN_QUEUE_BEACON;
1543 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1544
1545 /*
1546 * Enable beacon generation.
1547 * Write entire beacon with descriptor to register,
1548 * and kick the beacon generator.
1549 */
1550 memcpy(priv_tx->data, skb->data, skb->len);
1551 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1552
1553 return 0;
1554 }
1555
1556 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1557 {
1558 struct rt2x00_dev *rt2x00dev = hw->priv;
1559 u32 reg;
1560
1561 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1562 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1563 }
1564
1565 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1566 .tx = rt2x00mac_tx,
1567 .start = rt2x00mac_start,
1568 .stop = rt2x00mac_stop,
1569 .add_interface = rt2x00mac_add_interface,
1570 .remove_interface = rt2x00mac_remove_interface,
1571 .config = rt2x00mac_config,
1572 .config_interface = rt2x00mac_config_interface,
1573 .configure_filter = rt2400pci_configure_filter,
1574 .get_stats = rt2x00mac_get_stats,
1575 .set_retry_limit = rt2400pci_set_retry_limit,
1576 .bss_info_changed = rt2x00mac_bss_info_changed,
1577 .conf_tx = rt2400pci_conf_tx,
1578 .get_tx_stats = rt2x00mac_get_tx_stats,
1579 .get_tsf = rt2400pci_get_tsf,
1580 .reset_tsf = rt2400pci_reset_tsf,
1581 .beacon_update = rt2400pci_beacon_update,
1582 .tx_last_beacon = rt2400pci_tx_last_beacon,
1583 };
1584
1585 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1586 .irq_handler = rt2400pci_interrupt,
1587 .probe_hw = rt2400pci_probe_hw,
1588 .initialize = rt2x00pci_initialize,
1589 .uninitialize = rt2x00pci_uninitialize,
1590 .init_rxentry = rt2400pci_init_rxentry,
1591 .init_txentry = rt2400pci_init_txentry,
1592 .set_device_state = rt2400pci_set_device_state,
1593 .rfkill_poll = rt2400pci_rfkill_poll,
1594 .link_stats = rt2400pci_link_stats,
1595 .reset_tuner = rt2400pci_reset_tuner,
1596 .link_tuner = rt2400pci_link_tuner,
1597 .write_tx_desc = rt2400pci_write_tx_desc,
1598 .write_tx_data = rt2x00pci_write_tx_data,
1599 .kick_tx_queue = rt2400pci_kick_tx_queue,
1600 .fill_rxdone = rt2400pci_fill_rxdone,
1601 .config_intf = rt2400pci_config_intf,
1602 .config_preamble = rt2400pci_config_preamble,
1603 .config = rt2400pci_config,
1604 };
1605
1606 static const struct data_queue_desc rt2400pci_queue_rx = {
1607 .entry_num = RX_ENTRIES,
1608 .data_size = DATA_FRAME_SIZE,
1609 .desc_size = RXD_DESC_SIZE,
1610 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1611 };
1612
1613 static const struct data_queue_desc rt2400pci_queue_tx = {
1614 .entry_num = TX_ENTRIES,
1615 .data_size = DATA_FRAME_SIZE,
1616 .desc_size = TXD_DESC_SIZE,
1617 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1618 };
1619
1620 static const struct data_queue_desc rt2400pci_queue_bcn = {
1621 .entry_num = BEACON_ENTRIES,
1622 .data_size = MGMT_FRAME_SIZE,
1623 .desc_size = TXD_DESC_SIZE,
1624 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1625 };
1626
1627 static const struct data_queue_desc rt2400pci_queue_atim = {
1628 .entry_num = ATIM_ENTRIES,
1629 .data_size = DATA_FRAME_SIZE,
1630 .desc_size = TXD_DESC_SIZE,
1631 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1632 };
1633
1634 static const struct rt2x00_ops rt2400pci_ops = {
1635 .name = KBUILD_MODNAME,
1636 .max_sta_intf = 1,
1637 .max_ap_intf = 1,
1638 .eeprom_size = EEPROM_SIZE,
1639 .rf_size = RF_SIZE,
1640 .rx = &rt2400pci_queue_rx,
1641 .tx = &rt2400pci_queue_tx,
1642 .bcn = &rt2400pci_queue_bcn,
1643 .atim = &rt2400pci_queue_atim,
1644 .lib = &rt2400pci_rt2x00_ops,
1645 .hw = &rt2400pci_mac80211_ops,
1646 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1647 .debugfs = &rt2400pci_rt2x00debug,
1648 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1649 };
1650
1651 /*
1652 * RT2400pci module information.
1653 */
1654 static struct pci_device_id rt2400pci_device_table[] = {
1655 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1656 { 0, }
1657 };
1658
1659 MODULE_AUTHOR(DRV_PROJECT);
1660 MODULE_VERSION(DRV_VERSION);
1661 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1662 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1663 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1664 MODULE_LICENSE("GPL");
1665
1666 static struct pci_driver rt2400pci_driver = {
1667 .name = KBUILD_MODNAME,
1668 .id_table = rt2400pci_device_table,
1669 .probe = rt2x00pci_probe,
1670 .remove = __devexit_p(rt2x00pci_remove),
1671 .suspend = rt2x00pci_suspend,
1672 .resume = rt2x00pci_resume,
1673 };
1674
1675 static int __init rt2400pci_init(void)
1676 {
1677 return pci_register_driver(&rt2400pci_driver);
1678 }
1679
1680 static void __exit rt2400pci_exit(void)
1681 {
1682 pci_unregister_driver(&rt2400pci_driver);
1683 }
1684
1685 module_init(rt2400pci_init);
1686 module_exit(rt2400pci_exit);