]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 /*
247 * Configuration handlers.
248 */
249 static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
250 __le32 *mac)
251 {
252 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253 (2 * sizeof(__le32)));
254 }
255
256 static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
257 __le32 *bssid)
258 {
259 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260 (2 * sizeof(__le32)));
261 }
262
263 static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
264 const int tsf_sync)
265 {
266 u32 reg;
267
268 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
269
270 /*
271 * Enable beacon config
272 */
273 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
274 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
275 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
276 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
277
278 /*
279 * Enable synchronisation.
280 */
281 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
282 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
283 rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
284 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
285 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
286 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
287 }
288
289 static void rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
290 const int short_preamble,
291 const int ack_timeout,
292 const int ack_consume_time)
293 {
294 int preamble_mask;
295 u32 reg;
296
297 /*
298 * When short preamble is enabled, we should set bit 0x08
299 */
300 preamble_mask = short_preamble << 3;
301
302 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
303 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
304 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
305 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
306
307 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
308 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
309 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
310 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
311 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
312
313 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
314 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
315 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
316 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
317 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
318
319 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
320 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
321 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
322 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
323 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
324
325 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
326 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
327 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
328 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
329 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
330 }
331
332 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
333 const int basic_rate_mask)
334 {
335 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
336 }
337
338 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
339 struct rf_channel *rf)
340 {
341 /*
342 * Switch on tuning bits.
343 */
344 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
345 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
346
347 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
348 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
349 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
350
351 /*
352 * RF2420 chipset don't need any additional actions.
353 */
354 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
355 return;
356
357 /*
358 * For the RT2421 chipsets we need to write an invalid
359 * reference clock rate to activate auto_tune.
360 * After that we set the value back to the correct channel.
361 */
362 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
363 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
364 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
365
366 msleep(1);
367
368 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
369 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
370 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
371
372 msleep(1);
373
374 /*
375 * Switch off tuning bits.
376 */
377 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
378 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
379
380 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
381 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
382
383 /*
384 * Clear false CRC during channel switch.
385 */
386 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
387 }
388
389 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
390 {
391 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
392 }
393
394 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
395 struct antenna_setup *ant)
396 {
397 u8 r1;
398 u8 r4;
399
400 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402
403 /*
404 * Configure the TX antenna.
405 */
406 switch (ant->tx) {
407 case ANTENNA_HW_DIVERSITY:
408 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409 break;
410 case ANTENNA_A:
411 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412 break;
413 case ANTENNA_SW_DIVERSITY:
414 /*
415 * NOTE: We should never come here because rt2x00lib is
416 * supposed to catch this and send us the correct antenna
417 * explicitely. However we are nog going to bug about this.
418 * Instead, just default to antenna B.
419 */
420 case ANTENNA_B:
421 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
422 break;
423 }
424
425 /*
426 * Configure the RX antenna.
427 */
428 switch (ant->rx) {
429 case ANTENNA_HW_DIVERSITY:
430 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
431 break;
432 case ANTENNA_A:
433 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
434 break;
435 case ANTENNA_SW_DIVERSITY:
436 /*
437 * NOTE: We should never come here because rt2x00lib is
438 * supposed to catch this and send us the correct antenna
439 * explicitely. However we are nog going to bug about this.
440 * Instead, just default to antenna B.
441 */
442 case ANTENNA_B:
443 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
444 break;
445 }
446
447 rt2400pci_bbp_write(rt2x00dev, 4, r4);
448 rt2400pci_bbp_write(rt2x00dev, 1, r1);
449 }
450
451 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
452 struct rt2x00lib_conf *libconf)
453 {
454 u32 reg;
455
456 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
457 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
458 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
459
460 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
461 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
462 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
463 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
464
465 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
466 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
467 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
468 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
469
470 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
471 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
472 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
473 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
474
475 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
476 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
477 libconf->conf->beacon_int * 16);
478 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
479 libconf->conf->beacon_int * 16);
480 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
481 }
482
483 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
484 const unsigned int flags,
485 struct rt2x00lib_conf *libconf)
486 {
487 if (flags & CONFIG_UPDATE_PHYMODE)
488 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
489 if (flags & CONFIG_UPDATE_CHANNEL)
490 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
491 if (flags & CONFIG_UPDATE_TXPOWER)
492 rt2400pci_config_txpower(rt2x00dev,
493 libconf->conf->power_level);
494 if (flags & CONFIG_UPDATE_ANTENNA)
495 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
496 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
497 rt2400pci_config_duration(rt2x00dev, libconf);
498 }
499
500 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
501 struct ieee80211_tx_queue_params *params)
502 {
503 u32 reg;
504
505 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
506 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
507 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
508 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
509 }
510
511 /*
512 * LED functions.
513 */
514 static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
515 {
516 u32 reg;
517
518 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
519
520 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
521 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
522 rt2x00_set_field32(&reg, LEDCSR_LINK,
523 (rt2x00dev->led_mode != LED_MODE_ASUS));
524 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
525 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
526 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
527 }
528
529 static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
530 {
531 u32 reg;
532
533 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
534 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
535 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
536 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
537 }
538
539 /*
540 * Link tuning
541 */
542 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
543 struct link_qual *qual)
544 {
545 u32 reg;
546 u8 bbp;
547
548 /*
549 * Update FCS error count from register.
550 */
551 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
552 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
553
554 /*
555 * Update False CCA count from register.
556 */
557 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
558 qual->false_cca = bbp;
559 }
560
561 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
562 {
563 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
564 rt2x00dev->link.vgc_level = 0x08;
565 }
566
567 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
568 {
569 u8 reg;
570
571 /*
572 * The link tuner should not run longer then 60 seconds,
573 * and should run once every 2 seconds.
574 */
575 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
576 return;
577
578 /*
579 * Base r13 link tuning on the false cca count.
580 */
581 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
582
583 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
584 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
585 rt2x00dev->link.vgc_level = reg;
586 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
587 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
588 rt2x00dev->link.vgc_level = reg;
589 }
590 }
591
592 /*
593 * Initialization functions.
594 */
595 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
596 struct data_entry *entry)
597 {
598 __le32 *rxd = entry->priv;
599 u32 word;
600
601 rt2x00_desc_read(rxd, 2, &word);
602 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->ring->data_size);
603 rt2x00_desc_write(rxd, 2, word);
604
605 rt2x00_desc_read(rxd, 1, &word);
606 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry->data_dma);
607 rt2x00_desc_write(rxd, 1, word);
608
609 rt2x00_desc_read(rxd, 0, &word);
610 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
611 rt2x00_desc_write(rxd, 0, word);
612 }
613
614 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
615 struct data_entry *entry)
616 {
617 __le32 *txd = entry->priv;
618 u32 word;
619
620 rt2x00_desc_read(txd, 1, &word);
621 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry->data_dma);
622 rt2x00_desc_write(txd, 1, word);
623
624 rt2x00_desc_read(txd, 2, &word);
625 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, entry->ring->data_size);
626 rt2x00_desc_write(txd, 2, word);
627
628 rt2x00_desc_read(txd, 0, &word);
629 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
630 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
631 rt2x00_desc_write(txd, 0, word);
632 }
633
634 static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
635 {
636 u32 reg;
637
638 /*
639 * Initialize registers.
640 */
641 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
642 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
643 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
644 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
645 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
646 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
647 rt2x00dev->bcn[1].stats.limit);
648 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
649 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
650 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
651
652 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
653 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
654 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
655 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
656
657 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
658 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
659 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
660 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
661
662 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
663 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
664 rt2x00dev->bcn[1].data_dma);
665 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
666
667 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
668 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
669 rt2x00dev->bcn[0].data_dma);
670 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
671
672 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
673 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
674 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
675 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
676
677 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
678 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
679 rt2x00dev->rx->data_dma);
680 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
681
682 return 0;
683 }
684
685 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
686 {
687 u32 reg;
688
689 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
690 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
691 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
692 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
693
694 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
695 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
696 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
697 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
698 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
699
700 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
701 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
702 (rt2x00dev->rx->data_size / 128));
703 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
704
705 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
706
707 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
708 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
709 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
710 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
711 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
712 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
713
714 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
715 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
716 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
717 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
718 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
719 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
720 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
721 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
722
723 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
724
725 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
726 return -EBUSY;
727
728 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
729 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
730
731 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
732 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
733 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
734
735 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
736 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
737 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
738 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
739 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
740 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
741
742 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
743 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
744 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
745 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
746 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
747
748 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
749 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
750 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
751 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
752
753 /*
754 * We must clear the FCS and FIFO error count.
755 * These registers are cleared on read,
756 * so we may pass a useless variable to store the value.
757 */
758 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
759 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
760
761 return 0;
762 }
763
764 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
765 {
766 unsigned int i;
767 u16 eeprom;
768 u8 reg_id;
769 u8 value;
770
771 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
772 rt2400pci_bbp_read(rt2x00dev, 0, &value);
773 if ((value != 0xff) && (value != 0x00))
774 goto continue_csr_init;
775 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
776 udelay(REGISTER_BUSY_DELAY);
777 }
778
779 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
780 return -EACCES;
781
782 continue_csr_init:
783 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
784 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
785 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
786 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
787 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
788 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
789 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
790 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
791 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
792 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
793 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
794 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
795 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
796 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
797
798 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
799 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
800 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
801
802 if (eeprom != 0xffff && eeprom != 0x0000) {
803 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
804 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
805 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
806 reg_id, value);
807 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
808 }
809 }
810 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
811
812 return 0;
813 }
814
815 /*
816 * Device state switch handlers.
817 */
818 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
819 enum dev_state state)
820 {
821 u32 reg;
822
823 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
824 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
825 state == STATE_RADIO_RX_OFF);
826 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
827 }
828
829 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
830 enum dev_state state)
831 {
832 int mask = (state == STATE_RADIO_IRQ_OFF);
833 u32 reg;
834
835 /*
836 * When interrupts are being enabled, the interrupt registers
837 * should clear the register to assure a clean state.
838 */
839 if (state == STATE_RADIO_IRQ_ON) {
840 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
841 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
842 }
843
844 /*
845 * Only toggle the interrupts bits we are going to use.
846 * Non-checked interrupt bits are disabled by default.
847 */
848 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
849 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
850 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
851 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
852 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
853 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
854 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
855 }
856
857 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
858 {
859 /*
860 * Initialize all registers.
861 */
862 if (rt2400pci_init_rings(rt2x00dev) ||
863 rt2400pci_init_registers(rt2x00dev) ||
864 rt2400pci_init_bbp(rt2x00dev)) {
865 ERROR(rt2x00dev, "Register initialization failed.\n");
866 return -EIO;
867 }
868
869 /*
870 * Enable interrupts.
871 */
872 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
873
874 /*
875 * Enable LED
876 */
877 rt2400pci_enable_led(rt2x00dev);
878
879 return 0;
880 }
881
882 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
883 {
884 u32 reg;
885
886 /*
887 * Disable LED
888 */
889 rt2400pci_disable_led(rt2x00dev);
890
891 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
892
893 /*
894 * Disable synchronisation.
895 */
896 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
897
898 /*
899 * Cancel RX and TX.
900 */
901 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
902 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
903 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
904
905 /*
906 * Disable interrupts.
907 */
908 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
909 }
910
911 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
912 enum dev_state state)
913 {
914 u32 reg;
915 unsigned int i;
916 char put_to_sleep;
917 char bbp_state;
918 char rf_state;
919
920 put_to_sleep = (state != STATE_AWAKE);
921
922 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
923 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
924 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
925 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
926 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
927 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
928
929 /*
930 * Device is not guaranteed to be in the requested state yet.
931 * We must wait until the register indicates that the
932 * device has entered the correct state.
933 */
934 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
935 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
936 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
937 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
938 if (bbp_state == state && rf_state == state)
939 return 0;
940 msleep(10);
941 }
942
943 NOTICE(rt2x00dev, "Device failed to enter state %d, "
944 "current device state: bbp %d and rf %d.\n",
945 state, bbp_state, rf_state);
946
947 return -EBUSY;
948 }
949
950 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
951 enum dev_state state)
952 {
953 int retval = 0;
954
955 switch (state) {
956 case STATE_RADIO_ON:
957 retval = rt2400pci_enable_radio(rt2x00dev);
958 break;
959 case STATE_RADIO_OFF:
960 rt2400pci_disable_radio(rt2x00dev);
961 break;
962 case STATE_RADIO_RX_ON:
963 case STATE_RADIO_RX_ON_LINK:
964 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
965 break;
966 case STATE_RADIO_RX_OFF:
967 case STATE_RADIO_RX_OFF_LINK:
968 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
969 break;
970 case STATE_DEEP_SLEEP:
971 case STATE_SLEEP:
972 case STATE_STANDBY:
973 case STATE_AWAKE:
974 retval = rt2400pci_set_state(rt2x00dev, state);
975 break;
976 default:
977 retval = -ENOTSUPP;
978 break;
979 }
980
981 return retval;
982 }
983
984 /*
985 * TX descriptor initialization
986 */
987 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
988 struct sk_buff *skb,
989 struct txdata_entry_desc *desc,
990 struct ieee80211_tx_control *control)
991 {
992 struct skb_desc *skbdesc = get_skb_desc(skb);
993 __le32 *txd = skbdesc->desc;
994 u32 word;
995
996 /*
997 * Start writing the descriptor words.
998 */
999 rt2x00_desc_read(txd, 2, &word);
1000 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
1001 rt2x00_desc_write(txd, 2, word);
1002
1003 rt2x00_desc_read(txd, 3, &word);
1004 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1005 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1006 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1007 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1008 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1009 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1010 rt2x00_desc_write(txd, 3, word);
1011
1012 rt2x00_desc_read(txd, 4, &word);
1013 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, desc->length_low);
1014 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1015 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1016 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, desc->length_high);
1017 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1018 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1019 rt2x00_desc_write(txd, 4, word);
1020
1021 rt2x00_desc_read(txd, 0, &word);
1022 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1023 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1024 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1025 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1026 rt2x00_set_field32(&word, TXD_W0_ACK,
1027 test_bit(ENTRY_TXD_ACK, &desc->flags));
1028 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1029 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1030 rt2x00_set_field32(&word, TXD_W0_RTS,
1031 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1032 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1033 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1034 !!(control->flags &
1035 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1036 rt2x00_desc_write(txd, 0, word);
1037 }
1038
1039 /*
1040 * TX data initialization
1041 */
1042 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1043 unsigned int queue)
1044 {
1045 u32 reg;
1046
1047 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1048 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1049 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1050 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1051 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1052 }
1053 return;
1054 }
1055
1056 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1057 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1058 (queue == IEEE80211_TX_QUEUE_DATA0));
1059 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1060 (queue == IEEE80211_TX_QUEUE_DATA1));
1061 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1062 (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1063 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1064 }
1065
1066 /*
1067 * RX control handlers
1068 */
1069 static void rt2400pci_fill_rxdone(struct data_entry *entry,
1070 struct rxdata_entry_desc *desc)
1071 {
1072 __le32 *rxd = entry->priv;
1073 u32 word0;
1074 u32 word2;
1075
1076 rt2x00_desc_read(rxd, 0, &word0);
1077 rt2x00_desc_read(rxd, 2, &word2);
1078
1079 desc->flags = 0;
1080 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1081 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1082 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1083 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1084
1085 /*
1086 * Obtain the status about this packet.
1087 */
1088 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1089 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1090 entry->ring->rt2x00dev->rssi_offset;
1091 desc->ofdm = 0;
1092 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1093 desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1094 }
1095
1096 /*
1097 * Interrupt functions.
1098 */
1099 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1100 {
1101 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1102 struct data_entry *entry;
1103 __le32 *txd;
1104 u32 word;
1105 int tx_status;
1106 int retry;
1107
1108 while (!rt2x00_ring_empty(ring)) {
1109 entry = rt2x00_get_data_entry_done(ring);
1110 txd = entry->priv;
1111 rt2x00_desc_read(txd, 0, &word);
1112
1113 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1114 !rt2x00_get_field32(word, TXD_W0_VALID))
1115 break;
1116
1117 /*
1118 * Obtain the status about this packet.
1119 */
1120 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1121 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1122
1123 rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1124 }
1125 }
1126
1127 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1128 {
1129 struct rt2x00_dev *rt2x00dev = dev_instance;
1130 u32 reg;
1131
1132 /*
1133 * Get the interrupt sources & saved to local variable.
1134 * Write register value back to clear pending interrupts.
1135 */
1136 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1137 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1138
1139 if (!reg)
1140 return IRQ_NONE;
1141
1142 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1143 return IRQ_HANDLED;
1144
1145 /*
1146 * Handle interrupts, walk through all bits
1147 * and run the tasks, the bits are checked in order of
1148 * priority.
1149 */
1150
1151 /*
1152 * 1 - Beacon timer expired interrupt.
1153 */
1154 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1155 rt2x00lib_beacondone(rt2x00dev);
1156
1157 /*
1158 * 2 - Rx ring done interrupt.
1159 */
1160 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1161 rt2x00pci_rxdone(rt2x00dev);
1162
1163 /*
1164 * 3 - Atim ring transmit done interrupt.
1165 */
1166 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1167 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1168
1169 /*
1170 * 4 - Priority ring transmit done interrupt.
1171 */
1172 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1173 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1174
1175 /*
1176 * 5 - Tx ring transmit done interrupt.
1177 */
1178 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1179 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1180
1181 return IRQ_HANDLED;
1182 }
1183
1184 /*
1185 * Device probe functions.
1186 */
1187 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1188 {
1189 struct eeprom_93cx6 eeprom;
1190 u32 reg;
1191 u16 word;
1192 u8 *mac;
1193
1194 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1195
1196 eeprom.data = rt2x00dev;
1197 eeprom.register_read = rt2400pci_eepromregister_read;
1198 eeprom.register_write = rt2400pci_eepromregister_write;
1199 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1200 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1201 eeprom.reg_data_in = 0;
1202 eeprom.reg_data_out = 0;
1203 eeprom.reg_data_clock = 0;
1204 eeprom.reg_chip_select = 0;
1205
1206 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1207 EEPROM_SIZE / sizeof(u16));
1208
1209 /*
1210 * Start validation of the data that has been read.
1211 */
1212 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1213 if (!is_valid_ether_addr(mac)) {
1214 DECLARE_MAC_BUF(macbuf);
1215
1216 random_ether_addr(mac);
1217 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1218 }
1219
1220 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1221 if (word == 0xffff) {
1222 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1223 return -EINVAL;
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1230 {
1231 u32 reg;
1232 u16 value;
1233 u16 eeprom;
1234
1235 /*
1236 * Read EEPROM word for configuration.
1237 */
1238 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1239
1240 /*
1241 * Identify RF chipset.
1242 */
1243 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1244 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1245 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1246
1247 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1248 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1249 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1250 return -ENODEV;
1251 }
1252
1253 /*
1254 * Identify default antenna configuration.
1255 */
1256 rt2x00dev->default_ant.tx =
1257 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1258 rt2x00dev->default_ant.rx =
1259 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1260
1261 /*
1262 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1263 * I am not 100% sure about this, but the legacy drivers do not
1264 * indicate antenna swapping in software is required when
1265 * diversity is enabled.
1266 */
1267 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1268 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1269 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1270 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1271
1272 /*
1273 * Store led mode, for correct led behaviour.
1274 */
1275 rt2x00dev->led_mode =
1276 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1277
1278 /*
1279 * Detect if this device has an hardware controlled radio.
1280 */
1281 #ifdef CONFIG_RT2400PCI_RFKILL
1282 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1283 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1284 #endif /* CONFIG_RT2400PCI_RFKILL */
1285
1286 /*
1287 * Check if the BBP tuning should be enabled.
1288 */
1289 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1290 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * RF value list for RF2420 & RF2421
1297 * Supports: 2.4 GHz
1298 */
1299 static const struct rf_channel rf_vals_bg[] = {
1300 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1301 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1302 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1303 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1304 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1305 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1306 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1307 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1308 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1309 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1310 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1311 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1312 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1313 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1314 };
1315
1316 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1317 {
1318 struct hw_mode_spec *spec = &rt2x00dev->spec;
1319 u8 *txpower;
1320 unsigned int i;
1321
1322 /*
1323 * Initialize all hw fields.
1324 */
1325 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1326 rt2x00dev->hw->extra_tx_headroom = 0;
1327 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1328 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1329 rt2x00dev->hw->queues = 2;
1330
1331 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1332 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1333 rt2x00_eeprom_addr(rt2x00dev,
1334 EEPROM_MAC_ADDR_0));
1335
1336 /*
1337 * Convert tx_power array in eeprom.
1338 */
1339 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1340 for (i = 0; i < 14; i++)
1341 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1342
1343 /*
1344 * Initialize hw_mode information.
1345 */
1346 spec->num_modes = 1;
1347 spec->num_rates = 4;
1348 spec->tx_power_a = NULL;
1349 spec->tx_power_bg = txpower;
1350 spec->tx_power_default = DEFAULT_TXPOWER;
1351
1352 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1353 spec->channels = rf_vals_bg;
1354 }
1355
1356 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1357 {
1358 int retval;
1359
1360 /*
1361 * Allocate eeprom data.
1362 */
1363 retval = rt2400pci_validate_eeprom(rt2x00dev);
1364 if (retval)
1365 return retval;
1366
1367 retval = rt2400pci_init_eeprom(rt2x00dev);
1368 if (retval)
1369 return retval;
1370
1371 /*
1372 * Initialize hw specifications.
1373 */
1374 rt2400pci_probe_hw_mode(rt2x00dev);
1375
1376 /*
1377 * This device requires the beacon ring
1378 */
1379 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1380
1381 /*
1382 * Set the rssi offset.
1383 */
1384 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1385
1386 return 0;
1387 }
1388
1389 /*
1390 * IEEE80211 stack callback functions.
1391 */
1392 static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1393 unsigned int changed_flags,
1394 unsigned int *total_flags,
1395 int mc_count,
1396 struct dev_addr_list *mc_list)
1397 {
1398 struct rt2x00_dev *rt2x00dev = hw->priv;
1399 u32 reg;
1400
1401 /*
1402 * Mask off any flags we are going to ignore from
1403 * the total_flags field.
1404 */
1405 *total_flags &=
1406 FIF_ALLMULTI |
1407 FIF_FCSFAIL |
1408 FIF_PLCPFAIL |
1409 FIF_CONTROL |
1410 FIF_OTHER_BSS |
1411 FIF_PROMISC_IN_BSS;
1412
1413 /*
1414 * Apply some rules to the filters:
1415 * - Some filters imply different filters to be set.
1416 * - Some things we can't filter out at all.
1417 */
1418 *total_flags |= FIF_ALLMULTI;
1419 if (*total_flags & FIF_OTHER_BSS ||
1420 *total_flags & FIF_PROMISC_IN_BSS)
1421 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1422
1423 /*
1424 * Check if there is any work left for us.
1425 */
1426 if (rt2x00dev->packet_filter == *total_flags)
1427 return;
1428 rt2x00dev->packet_filter = *total_flags;
1429
1430 /*
1431 * Start configuration steps.
1432 * Note that the version error will always be dropped
1433 * since there is no filter for it at this time.
1434 */
1435 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1436 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1437 !(*total_flags & FIF_FCSFAIL));
1438 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1439 !(*total_flags & FIF_PLCPFAIL));
1440 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1441 !(*total_flags & FIF_CONTROL));
1442 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1443 !(*total_flags & FIF_PROMISC_IN_BSS));
1444 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1445 !(*total_flags & FIF_PROMISC_IN_BSS));
1446 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1447 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1448 }
1449
1450 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1451 u32 short_retry, u32 long_retry)
1452 {
1453 struct rt2x00_dev *rt2x00dev = hw->priv;
1454 u32 reg;
1455
1456 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1457 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1458 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1459 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1460
1461 return 0;
1462 }
1463
1464 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1465 int queue,
1466 const struct ieee80211_tx_queue_params *params)
1467 {
1468 struct rt2x00_dev *rt2x00dev = hw->priv;
1469
1470 /*
1471 * We don't support variating cw_min and cw_max variables
1472 * per queue. So by default we only configure the TX queue,
1473 * and ignore all other configurations.
1474 */
1475 if (queue != IEEE80211_TX_QUEUE_DATA0)
1476 return -EINVAL;
1477
1478 if (rt2x00mac_conf_tx(hw, queue, params))
1479 return -EINVAL;
1480
1481 /*
1482 * Write configuration to register.
1483 */
1484 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1485
1486 return 0;
1487 }
1488
1489 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1490 {
1491 struct rt2x00_dev *rt2x00dev = hw->priv;
1492 u64 tsf;
1493 u32 reg;
1494
1495 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1496 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1497 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1498 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1499
1500 return tsf;
1501 }
1502
1503 static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1504 {
1505 struct rt2x00_dev *rt2x00dev = hw->priv;
1506
1507 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1508 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1509 }
1510
1511 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1512 {
1513 struct rt2x00_dev *rt2x00dev = hw->priv;
1514 u32 reg;
1515
1516 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1517 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1518 }
1519
1520 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1521 .tx = rt2x00mac_tx,
1522 .start = rt2x00mac_start,
1523 .stop = rt2x00mac_stop,
1524 .add_interface = rt2x00mac_add_interface,
1525 .remove_interface = rt2x00mac_remove_interface,
1526 .config = rt2x00mac_config,
1527 .config_interface = rt2x00mac_config_interface,
1528 .configure_filter = rt2400pci_configure_filter,
1529 .get_stats = rt2x00mac_get_stats,
1530 .set_retry_limit = rt2400pci_set_retry_limit,
1531 .bss_info_changed = rt2x00mac_bss_info_changed,
1532 .conf_tx = rt2400pci_conf_tx,
1533 .get_tx_stats = rt2x00mac_get_tx_stats,
1534 .get_tsf = rt2400pci_get_tsf,
1535 .reset_tsf = rt2400pci_reset_tsf,
1536 .beacon_update = rt2x00pci_beacon_update,
1537 .tx_last_beacon = rt2400pci_tx_last_beacon,
1538 };
1539
1540 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1541 .irq_handler = rt2400pci_interrupt,
1542 .probe_hw = rt2400pci_probe_hw,
1543 .initialize = rt2x00pci_initialize,
1544 .uninitialize = rt2x00pci_uninitialize,
1545 .init_rxentry = rt2400pci_init_rxentry,
1546 .init_txentry = rt2400pci_init_txentry,
1547 .set_device_state = rt2400pci_set_device_state,
1548 .rfkill_poll = rt2400pci_rfkill_poll,
1549 .link_stats = rt2400pci_link_stats,
1550 .reset_tuner = rt2400pci_reset_tuner,
1551 .link_tuner = rt2400pci_link_tuner,
1552 .write_tx_desc = rt2400pci_write_tx_desc,
1553 .write_tx_data = rt2x00pci_write_tx_data,
1554 .kick_tx_queue = rt2400pci_kick_tx_queue,
1555 .fill_rxdone = rt2400pci_fill_rxdone,
1556 .config_mac_addr = rt2400pci_config_mac_addr,
1557 .config_bssid = rt2400pci_config_bssid,
1558 .config_type = rt2400pci_config_type,
1559 .config_preamble = rt2400pci_config_preamble,
1560 .config = rt2400pci_config,
1561 };
1562
1563 static const struct rt2x00_ops rt2400pci_ops = {
1564 .name = KBUILD_MODNAME,
1565 .rxd_size = RXD_DESC_SIZE,
1566 .txd_size = TXD_DESC_SIZE,
1567 .eeprom_size = EEPROM_SIZE,
1568 .rf_size = RF_SIZE,
1569 .lib = &rt2400pci_rt2x00_ops,
1570 .hw = &rt2400pci_mac80211_ops,
1571 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1572 .debugfs = &rt2400pci_rt2x00debug,
1573 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1574 };
1575
1576 /*
1577 * RT2400pci module information.
1578 */
1579 static struct pci_device_id rt2400pci_device_table[] = {
1580 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1581 { 0, }
1582 };
1583
1584 MODULE_AUTHOR(DRV_PROJECT);
1585 MODULE_VERSION(DRV_VERSION);
1586 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1587 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1588 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1589 MODULE_LICENSE("GPL");
1590
1591 static struct pci_driver rt2400pci_driver = {
1592 .name = KBUILD_MODNAME,
1593 .id_table = rt2400pci_device_table,
1594 .probe = rt2x00pci_probe,
1595 .remove = __devexit_p(rt2x00pci_remove),
1596 .suspend = rt2x00pci_suspend,
1597 .resume = rt2x00pci_resume,
1598 };
1599
1600 static int __init rt2400pci_init(void)
1601 {
1602 return pci_register_driver(&rt2400pci_driver);
1603 }
1604
1605 static void __exit rt2400pci_exit(void)
1606 {
1607 pci_unregister_driver(&rt2400pci_driver);
1608 }
1609
1610 module_init(rt2400pci_init);
1611 module_exit(rt2400pci_exit);