]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
rt2x00: Only disable beaconing just before beacon update
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
249 {
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255 u32 reg;
256
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262 }
263
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2400pci_led_brightness NULL
268 #endif /* CONFIG_RT2400PCI_LEDS */
269
270 /*
271 * Configuration handlers.
272 */
273 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
274 struct rt2x00_intf *intf,
275 struct rt2x00intf_conf *conf,
276 const unsigned int flags)
277 {
278 unsigned int bcn_preload;
279 u32 reg;
280
281 if (flags & CONFIG_UPDATE_TYPE) {
282 /*
283 * Enable beacon config
284 */
285 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
286 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
287 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
288 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
289
290 /*
291 * Enable synchronisation.
292 */
293 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
294 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
295 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296 }
297
298 if (flags & CONFIG_UPDATE_MAC)
299 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
300 conf->mac, sizeof(conf->mac));
301
302 if (flags & CONFIG_UPDATE_BSSID)
303 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
304 conf->bssid, sizeof(conf->bssid));
305 }
306
307 static int rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
308 const int short_preamble,
309 const int ack_timeout,
310 const int ack_consume_time)
311 {
312 int preamble_mask;
313 u32 reg;
314
315 /*
316 * When short preamble is enabled, we should set bit 0x08
317 */
318 preamble_mask = short_preamble << 3;
319
320 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
321 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
322 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
323 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
324
325 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
326 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
327 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
328 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
329 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
330
331 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
332 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
333 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
334 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
335 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
336
337 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
338 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
339 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
340 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
341 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
342
343 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
344 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
345 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
346 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
347 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
348
349 return 0;
350 }
351
352 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
353 const int basic_rate_mask)
354 {
355 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
356 }
357
358 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
359 struct rf_channel *rf)
360 {
361 /*
362 * Switch on tuning bits.
363 */
364 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
365 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
366
367 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
368 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
369 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
370
371 /*
372 * RF2420 chipset don't need any additional actions.
373 */
374 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
375 return;
376
377 /*
378 * For the RT2421 chipsets we need to write an invalid
379 * reference clock rate to activate auto_tune.
380 * After that we set the value back to the correct channel.
381 */
382 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
383 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
384 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
385
386 msleep(1);
387
388 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
389 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
390 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
391
392 msleep(1);
393
394 /*
395 * Switch off tuning bits.
396 */
397 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
398 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
399
400 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
401 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
402
403 /*
404 * Clear false CRC during channel switch.
405 */
406 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
407 }
408
409 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
410 {
411 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
412 }
413
414 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
415 struct antenna_setup *ant)
416 {
417 u8 r1;
418 u8 r4;
419
420 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
421 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
422
423 /*
424 * Configure the TX antenna.
425 */
426 switch (ant->tx) {
427 case ANTENNA_HW_DIVERSITY:
428 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
429 break;
430 case ANTENNA_A:
431 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
432 break;
433 case ANTENNA_SW_DIVERSITY:
434 /*
435 * NOTE: We should never come here because rt2x00lib is
436 * supposed to catch this and send us the correct antenna
437 * explicitely. However we are nog going to bug about this.
438 * Instead, just default to antenna B.
439 */
440 case ANTENNA_B:
441 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
442 break;
443 }
444
445 /*
446 * Configure the RX antenna.
447 */
448 switch (ant->rx) {
449 case ANTENNA_HW_DIVERSITY:
450 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
451 break;
452 case ANTENNA_A:
453 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
454 break;
455 case ANTENNA_SW_DIVERSITY:
456 /*
457 * NOTE: We should never come here because rt2x00lib is
458 * supposed to catch this and send us the correct antenna
459 * explicitely. However we are nog going to bug about this.
460 * Instead, just default to antenna B.
461 */
462 case ANTENNA_B:
463 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
464 break;
465 }
466
467 rt2400pci_bbp_write(rt2x00dev, 4, r4);
468 rt2400pci_bbp_write(rt2x00dev, 1, r1);
469 }
470
471 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
472 struct rt2x00lib_conf *libconf)
473 {
474 u32 reg;
475
476 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
477 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
478 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
479
480 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
481 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
482 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
483 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
484
485 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
486 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
487 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
488 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
489
490 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
491 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
492 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
493 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
494
495 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
496 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
497 libconf->conf->beacon_int * 16);
498 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
499 libconf->conf->beacon_int * 16);
500 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
501 }
502
503 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
504 struct rt2x00lib_conf *libconf,
505 const unsigned int flags)
506 {
507 if (flags & CONFIG_UPDATE_PHYMODE)
508 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
509 if (flags & CONFIG_UPDATE_CHANNEL)
510 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
511 if (flags & CONFIG_UPDATE_TXPOWER)
512 rt2400pci_config_txpower(rt2x00dev,
513 libconf->conf->power_level);
514 if (flags & CONFIG_UPDATE_ANTENNA)
515 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
516 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
517 rt2400pci_config_duration(rt2x00dev, libconf);
518 }
519
520 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
521 const int cw_min, const int cw_max)
522 {
523 u32 reg;
524
525 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
526 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
527 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
528 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
529 }
530
531 /*
532 * Link tuning
533 */
534 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
535 struct link_qual *qual)
536 {
537 u32 reg;
538 u8 bbp;
539
540 /*
541 * Update FCS error count from register.
542 */
543 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
544 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
545
546 /*
547 * Update False CCA count from register.
548 */
549 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
550 qual->false_cca = bbp;
551 }
552
553 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
554 {
555 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
556 rt2x00dev->link.vgc_level = 0x08;
557 }
558
559 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
560 {
561 u8 reg;
562
563 /*
564 * The link tuner should not run longer then 60 seconds,
565 * and should run once every 2 seconds.
566 */
567 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
568 return;
569
570 /*
571 * Base r13 link tuning on the false cca count.
572 */
573 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
574
575 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
576 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
577 rt2x00dev->link.vgc_level = reg;
578 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
579 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
580 rt2x00dev->link.vgc_level = reg;
581 }
582 }
583
584 /*
585 * Initialization functions.
586 */
587 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
588 struct queue_entry *entry)
589 {
590 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
591 u32 word;
592
593 rt2x00_desc_read(priv_rx->desc, 2, &word);
594 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
595 entry->queue->data_size);
596 rt2x00_desc_write(priv_rx->desc, 2, word);
597
598 rt2x00_desc_read(priv_rx->desc, 1, &word);
599 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
600 rt2x00_desc_write(priv_rx->desc, 1, word);
601
602 rt2x00_desc_read(priv_rx->desc, 0, &word);
603 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
604 rt2x00_desc_write(priv_rx->desc, 0, word);
605 }
606
607 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
608 struct queue_entry *entry)
609 {
610 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
611 u32 word;
612
613 rt2x00_desc_read(priv_tx->desc, 1, &word);
614 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
615 rt2x00_desc_write(priv_tx->desc, 1, word);
616
617 rt2x00_desc_read(priv_tx->desc, 2, &word);
618 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
619 entry->queue->data_size);
620 rt2x00_desc_write(priv_tx->desc, 2, word);
621
622 rt2x00_desc_read(priv_tx->desc, 0, &word);
623 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
624 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
625 rt2x00_desc_write(priv_tx->desc, 0, word);
626 }
627
628 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
629 {
630 struct queue_entry_priv_pci_rx *priv_rx;
631 struct queue_entry_priv_pci_tx *priv_tx;
632 u32 reg;
633
634 /*
635 * Initialize registers.
636 */
637 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
638 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
639 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
640 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
641 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
642 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
643
644 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
645 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
646 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
647 priv_tx->desc_dma);
648 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
649
650 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
651 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
652 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
653 priv_tx->desc_dma);
654 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
655
656 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
657 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
658 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
659 priv_tx->desc_dma);
660 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
661
662 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
663 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
664 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
665 priv_tx->desc_dma);
666 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
667
668 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
669 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
670 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
671 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
672
673 priv_rx = rt2x00dev->rx->entries[0].priv_data;
674 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
675 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->desc_dma);
676 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
677
678 return 0;
679 }
680
681 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
682 {
683 u32 reg;
684
685 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
686 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
687 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
688 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
689
690 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
691 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
692 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
693 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
694 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
695
696 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
697 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
698 (rt2x00dev->rx->data_size / 128));
699 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
700
701 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
702 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
703 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
704 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
705
706 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
707
708 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
709 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
710 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
711 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
712 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
713 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
714
715 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
716 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
717 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
718 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
719 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
720 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
721 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
722 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
723
724 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
725
726 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
727 return -EBUSY;
728
729 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
730 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
731
732 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
733 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
734 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
735
736 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
737 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
738 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
739 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
740 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
741 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
742
743 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
744 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
745 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
746 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
747 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
748
749 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
750 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
751 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
752 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
753
754 /*
755 * We must clear the FCS and FIFO error count.
756 * These registers are cleared on read,
757 * so we may pass a useless variable to store the value.
758 */
759 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
760 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
761
762 return 0;
763 }
764
765 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
766 {
767 unsigned int i;
768 u16 eeprom;
769 u8 reg_id;
770 u8 value;
771
772 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
773 rt2400pci_bbp_read(rt2x00dev, 0, &value);
774 if ((value != 0xff) && (value != 0x00))
775 goto continue_csr_init;
776 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
777 udelay(REGISTER_BUSY_DELAY);
778 }
779
780 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
781 return -EACCES;
782
783 continue_csr_init:
784 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
785 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
786 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
787 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
788 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
789 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
790 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
791 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
792 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
793 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
794 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
795 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
796 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
797 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
798
799 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
800 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
801
802 if (eeprom != 0xffff && eeprom != 0x0000) {
803 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
804 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
805 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
806 }
807 }
808
809 return 0;
810 }
811
812 /*
813 * Device state switch handlers.
814 */
815 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
816 enum dev_state state)
817 {
818 u32 reg;
819
820 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
821 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
822 state == STATE_RADIO_RX_OFF);
823 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
824 }
825
826 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
827 enum dev_state state)
828 {
829 int mask = (state == STATE_RADIO_IRQ_OFF);
830 u32 reg;
831
832 /*
833 * When interrupts are being enabled, the interrupt registers
834 * should clear the register to assure a clean state.
835 */
836 if (state == STATE_RADIO_IRQ_ON) {
837 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
838 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
839 }
840
841 /*
842 * Only toggle the interrupts bits we are going to use.
843 * Non-checked interrupt bits are disabled by default.
844 */
845 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
846 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
847 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
848 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
849 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
850 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
851 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
852 }
853
854 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
855 {
856 /*
857 * Initialize all registers.
858 */
859 if (rt2400pci_init_queues(rt2x00dev) ||
860 rt2400pci_init_registers(rt2x00dev) ||
861 rt2400pci_init_bbp(rt2x00dev)) {
862 ERROR(rt2x00dev, "Register initialization failed.\n");
863 return -EIO;
864 }
865
866 /*
867 * Enable interrupts.
868 */
869 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
870
871 return 0;
872 }
873
874 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
875 {
876 u32 reg;
877
878 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
879
880 /*
881 * Disable synchronisation.
882 */
883 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
884
885 /*
886 * Cancel RX and TX.
887 */
888 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
889 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
890 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
891
892 /*
893 * Disable interrupts.
894 */
895 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
896 }
897
898 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
899 enum dev_state state)
900 {
901 u32 reg;
902 unsigned int i;
903 char put_to_sleep;
904 char bbp_state;
905 char rf_state;
906
907 put_to_sleep = (state != STATE_AWAKE);
908
909 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
910 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
911 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
912 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
913 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
914 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
915
916 /*
917 * Device is not guaranteed to be in the requested state yet.
918 * We must wait until the register indicates that the
919 * device has entered the correct state.
920 */
921 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
922 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
923 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
924 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
925 if (bbp_state == state && rf_state == state)
926 return 0;
927 msleep(10);
928 }
929
930 NOTICE(rt2x00dev, "Device failed to enter state %d, "
931 "current device state: bbp %d and rf %d.\n",
932 state, bbp_state, rf_state);
933
934 return -EBUSY;
935 }
936
937 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
938 enum dev_state state)
939 {
940 int retval = 0;
941
942 switch (state) {
943 case STATE_RADIO_ON:
944 retval = rt2400pci_enable_radio(rt2x00dev);
945 break;
946 case STATE_RADIO_OFF:
947 rt2400pci_disable_radio(rt2x00dev);
948 break;
949 case STATE_RADIO_RX_ON:
950 case STATE_RADIO_RX_ON_LINK:
951 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
952 break;
953 case STATE_RADIO_RX_OFF:
954 case STATE_RADIO_RX_OFF_LINK:
955 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
956 break;
957 case STATE_DEEP_SLEEP:
958 case STATE_SLEEP:
959 case STATE_STANDBY:
960 case STATE_AWAKE:
961 retval = rt2400pci_set_state(rt2x00dev, state);
962 break;
963 default:
964 retval = -ENOTSUPP;
965 break;
966 }
967
968 return retval;
969 }
970
971 /*
972 * TX descriptor initialization
973 */
974 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
975 struct sk_buff *skb,
976 struct txentry_desc *txdesc,
977 struct ieee80211_tx_control *control)
978 {
979 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
980 __le32 *txd = skbdesc->desc;
981 u32 word;
982
983 /*
984 * Start writing the descriptor words.
985 */
986 rt2x00_desc_read(txd, 2, &word);
987 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
988 rt2x00_desc_write(txd, 2, word);
989
990 rt2x00_desc_read(txd, 3, &word);
991 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
992 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
993 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
994 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
995 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
996 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
997 rt2x00_desc_write(txd, 3, word);
998
999 rt2x00_desc_read(txd, 4, &word);
1000 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1001 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1002 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1003 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1004 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1005 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1006 rt2x00_desc_write(txd, 4, word);
1007
1008 rt2x00_desc_read(txd, 0, &word);
1009 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1010 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1011 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1012 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1013 rt2x00_set_field32(&word, TXD_W0_ACK,
1014 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1015 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1016 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1017 rt2x00_set_field32(&word, TXD_W0_RTS,
1018 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1019 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1020 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1021 !!(control->flags &
1022 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1023 rt2x00_desc_write(txd, 0, word);
1024 }
1025
1026 /*
1027 * TX data initialization
1028 */
1029 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1030 const unsigned int queue)
1031 {
1032 u32 reg;
1033
1034 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1035 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1036 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1037 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1038 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1039 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1040 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1041 }
1042 return;
1043 }
1044
1045 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1046 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1047 (queue == IEEE80211_TX_QUEUE_DATA0));
1048 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1049 (queue == IEEE80211_TX_QUEUE_DATA1));
1050 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1051 (queue == RT2X00_BCN_QUEUE_ATIM));
1052 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1053 }
1054
1055 /*
1056 * RX control handlers
1057 */
1058 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1059 struct rxdone_entry_desc *rxdesc)
1060 {
1061 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1062 u32 word0;
1063 u32 word2;
1064
1065 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1066 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1067
1068 rxdesc->flags = 0;
1069 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1070 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1071 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1072 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1073
1074 /*
1075 * Obtain the status about this packet.
1076 */
1077 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1078 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1079 entry->queue->rt2x00dev->rssi_offset;
1080 rxdesc->ofdm = 0;
1081 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1082 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1083 }
1084
1085 /*
1086 * Interrupt functions.
1087 */
1088 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1089 const enum ieee80211_tx_queue queue_idx)
1090 {
1091 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1092 struct queue_entry_priv_pci_tx *priv_tx;
1093 struct queue_entry *entry;
1094 struct txdone_entry_desc txdesc;
1095 u32 word;
1096
1097 while (!rt2x00queue_empty(queue)) {
1098 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1099 priv_tx = entry->priv_data;
1100 rt2x00_desc_read(priv_tx->desc, 0, &word);
1101
1102 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1103 !rt2x00_get_field32(word, TXD_W0_VALID))
1104 break;
1105
1106 /*
1107 * Obtain the status about this packet.
1108 */
1109 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1110 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1111
1112 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1113 }
1114 }
1115
1116 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1117 {
1118 struct rt2x00_dev *rt2x00dev = dev_instance;
1119 u32 reg;
1120
1121 /*
1122 * Get the interrupt sources & saved to local variable.
1123 * Write register value back to clear pending interrupts.
1124 */
1125 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1126 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1127
1128 if (!reg)
1129 return IRQ_NONE;
1130
1131 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1132 return IRQ_HANDLED;
1133
1134 /*
1135 * Handle interrupts, walk through all bits
1136 * and run the tasks, the bits are checked in order of
1137 * priority.
1138 */
1139
1140 /*
1141 * 1 - Beacon timer expired interrupt.
1142 */
1143 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1144 rt2x00lib_beacondone(rt2x00dev);
1145
1146 /*
1147 * 2 - Rx ring done interrupt.
1148 */
1149 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1150 rt2x00pci_rxdone(rt2x00dev);
1151
1152 /*
1153 * 3 - Atim ring transmit done interrupt.
1154 */
1155 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1156 rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1157
1158 /*
1159 * 4 - Priority ring transmit done interrupt.
1160 */
1161 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1162 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1163
1164 /*
1165 * 5 - Tx ring transmit done interrupt.
1166 */
1167 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1168 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1169
1170 return IRQ_HANDLED;
1171 }
1172
1173 /*
1174 * Device probe functions.
1175 */
1176 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1177 {
1178 struct eeprom_93cx6 eeprom;
1179 u32 reg;
1180 u16 word;
1181 u8 *mac;
1182
1183 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1184
1185 eeprom.data = rt2x00dev;
1186 eeprom.register_read = rt2400pci_eepromregister_read;
1187 eeprom.register_write = rt2400pci_eepromregister_write;
1188 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1189 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1190 eeprom.reg_data_in = 0;
1191 eeprom.reg_data_out = 0;
1192 eeprom.reg_data_clock = 0;
1193 eeprom.reg_chip_select = 0;
1194
1195 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1196 EEPROM_SIZE / sizeof(u16));
1197
1198 /*
1199 * Start validation of the data that has been read.
1200 */
1201 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1202 if (!is_valid_ether_addr(mac)) {
1203 DECLARE_MAC_BUF(macbuf);
1204
1205 random_ether_addr(mac);
1206 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1207 }
1208
1209 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1210 if (word == 0xffff) {
1211 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1212 return -EINVAL;
1213 }
1214
1215 return 0;
1216 }
1217
1218 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1219 {
1220 u32 reg;
1221 u16 value;
1222 u16 eeprom;
1223
1224 /*
1225 * Read EEPROM word for configuration.
1226 */
1227 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1228
1229 /*
1230 * Identify RF chipset.
1231 */
1232 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1233 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1234 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1235
1236 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1237 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1238 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1239 return -ENODEV;
1240 }
1241
1242 /*
1243 * Identify default antenna configuration.
1244 */
1245 rt2x00dev->default_ant.tx =
1246 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1247 rt2x00dev->default_ant.rx =
1248 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1249
1250 /*
1251 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1252 * I am not 100% sure about this, but the legacy drivers do not
1253 * indicate antenna swapping in software is required when
1254 * diversity is enabled.
1255 */
1256 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1257 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1258 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1259 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1260
1261 /*
1262 * Store led mode, for correct led behaviour.
1263 */
1264 #ifdef CONFIG_RT2400PCI_LEDS
1265 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1266
1267 switch (value) {
1268 case LED_MODE_ASUS:
1269 case LED_MODE_ALPHA:
1270 case LED_MODE_DEFAULT:
1271 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1272 break;
1273 case LED_MODE_TXRX_ACTIVITY:
1274 rt2x00dev->led_flags =
1275 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1276 break;
1277 case LED_MODE_SIGNAL_STRENGTH:
1278 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1279 break;
1280 }
1281 #endif /* CONFIG_RT2400PCI_LEDS */
1282
1283 /*
1284 * Detect if this device has an hardware controlled radio.
1285 */
1286 #ifdef CONFIG_RT2400PCI_RFKILL
1287 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1288 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1289 #endif /* CONFIG_RT2400PCI_RFKILL */
1290
1291 /*
1292 * Check if the BBP tuning should be enabled.
1293 */
1294 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1295 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1296
1297 return 0;
1298 }
1299
1300 /*
1301 * RF value list for RF2420 & RF2421
1302 * Supports: 2.4 GHz
1303 */
1304 static const struct rf_channel rf_vals_bg[] = {
1305 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1306 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1307 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1308 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1309 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1310 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1311 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1312 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1313 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1314 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1315 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1316 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1317 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1318 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1319 };
1320
1321 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1322 {
1323 struct hw_mode_spec *spec = &rt2x00dev->spec;
1324 u8 *txpower;
1325 unsigned int i;
1326
1327 /*
1328 * Initialize all hw fields.
1329 */
1330 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1331 rt2x00dev->hw->extra_tx_headroom = 0;
1332 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1333 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1334 rt2x00dev->hw->queues = 2;
1335
1336 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1337 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1338 rt2x00_eeprom_addr(rt2x00dev,
1339 EEPROM_MAC_ADDR_0));
1340
1341 /*
1342 * Convert tx_power array in eeprom.
1343 */
1344 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1345 for (i = 0; i < 14; i++)
1346 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1347
1348 /*
1349 * Initialize hw_mode information.
1350 */
1351 spec->supported_bands = SUPPORT_BAND_2GHZ;
1352 spec->supported_rates = SUPPORT_RATE_CCK;
1353 spec->tx_power_a = NULL;
1354 spec->tx_power_bg = txpower;
1355 spec->tx_power_default = DEFAULT_TXPOWER;
1356
1357 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1358 spec->channels = rf_vals_bg;
1359 }
1360
1361 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1362 {
1363 int retval;
1364
1365 /*
1366 * Allocate eeprom data.
1367 */
1368 retval = rt2400pci_validate_eeprom(rt2x00dev);
1369 if (retval)
1370 return retval;
1371
1372 retval = rt2400pci_init_eeprom(rt2x00dev);
1373 if (retval)
1374 return retval;
1375
1376 /*
1377 * Initialize hw specifications.
1378 */
1379 rt2400pci_probe_hw_mode(rt2x00dev);
1380
1381 /*
1382 * This device requires the atim queue
1383 */
1384 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1385
1386 /*
1387 * Set the rssi offset.
1388 */
1389 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1390
1391 return 0;
1392 }
1393
1394 /*
1395 * IEEE80211 stack callback functions.
1396 */
1397 static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1398 unsigned int changed_flags,
1399 unsigned int *total_flags,
1400 int mc_count,
1401 struct dev_addr_list *mc_list)
1402 {
1403 struct rt2x00_dev *rt2x00dev = hw->priv;
1404 u32 reg;
1405
1406 /*
1407 * Mask off any flags we are going to ignore from
1408 * the total_flags field.
1409 */
1410 *total_flags &=
1411 FIF_ALLMULTI |
1412 FIF_FCSFAIL |
1413 FIF_PLCPFAIL |
1414 FIF_CONTROL |
1415 FIF_OTHER_BSS |
1416 FIF_PROMISC_IN_BSS;
1417
1418 /*
1419 * Apply some rules to the filters:
1420 * - Some filters imply different filters to be set.
1421 * - Some things we can't filter out at all.
1422 */
1423 *total_flags |= FIF_ALLMULTI;
1424 if (*total_flags & FIF_OTHER_BSS ||
1425 *total_flags & FIF_PROMISC_IN_BSS)
1426 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1427
1428 /*
1429 * Check if there is any work left for us.
1430 */
1431 if (rt2x00dev->packet_filter == *total_flags)
1432 return;
1433 rt2x00dev->packet_filter = *total_flags;
1434
1435 /*
1436 * Start configuration steps.
1437 * Note that the version error will always be dropped
1438 * since there is no filter for it at this time.
1439 */
1440 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1441 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1442 !(*total_flags & FIF_FCSFAIL));
1443 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1444 !(*total_flags & FIF_PLCPFAIL));
1445 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1446 !(*total_flags & FIF_CONTROL));
1447 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1448 !(*total_flags & FIF_PROMISC_IN_BSS));
1449 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1450 !(*total_flags & FIF_PROMISC_IN_BSS));
1451 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1452 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1453 }
1454
1455 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1456 u32 short_retry, u32 long_retry)
1457 {
1458 struct rt2x00_dev *rt2x00dev = hw->priv;
1459 u32 reg;
1460
1461 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1462 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1463 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1464 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1465
1466 return 0;
1467 }
1468
1469 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1470 int queue,
1471 const struct ieee80211_tx_queue_params *params)
1472 {
1473 struct rt2x00_dev *rt2x00dev = hw->priv;
1474
1475 /*
1476 * We don't support variating cw_min and cw_max variables
1477 * per queue. So by default we only configure the TX queue,
1478 * and ignore all other configurations.
1479 */
1480 if (queue != IEEE80211_TX_QUEUE_DATA0)
1481 return -EINVAL;
1482
1483 if (rt2x00mac_conf_tx(hw, queue, params))
1484 return -EINVAL;
1485
1486 /*
1487 * Write configuration to register.
1488 */
1489 rt2400pci_config_cw(rt2x00dev,
1490 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1491
1492 return 0;
1493 }
1494
1495 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1496 {
1497 struct rt2x00_dev *rt2x00dev = hw->priv;
1498 u64 tsf;
1499 u32 reg;
1500
1501 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1502 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1503 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1504 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1505
1506 return tsf;
1507 }
1508
1509 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1510 struct ieee80211_tx_control *control)
1511 {
1512 struct rt2x00_dev *rt2x00dev = hw->priv;
1513 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1514 struct queue_entry_priv_pci_tx *priv_tx;
1515 struct skb_frame_desc *skbdesc;
1516 u32 reg;
1517
1518 if (unlikely(!intf->beacon))
1519 return -ENOBUFS;
1520 priv_tx = intf->beacon->priv_data;
1521
1522 /*
1523 * Fill in skb descriptor
1524 */
1525 skbdesc = get_skb_frame_desc(skb);
1526 memset(skbdesc, 0, sizeof(*skbdesc));
1527 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1528 skbdesc->data = skb->data;
1529 skbdesc->data_len = skb->len;
1530 skbdesc->desc = priv_tx->desc;
1531 skbdesc->desc_len = intf->beacon->queue->desc_size;
1532 skbdesc->entry = intf->beacon;
1533
1534 /*
1535 * Disable beaconing while we are reloading the beacon data,
1536 * otherwise we might be sending out invalid data.
1537 */
1538 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1539 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1540 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1541 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1542 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1543
1544 /*
1545 * mac80211 doesn't provide the control->queue variable
1546 * for beacons. Set our own queue identification so
1547 * it can be used during descriptor initialization.
1548 */
1549 control->queue = RT2X00_BCN_QUEUE_BEACON;
1550 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1551
1552 /*
1553 * Enable beacon generation.
1554 * Write entire beacon with descriptor to register,
1555 * and kick the beacon generator.
1556 */
1557 memcpy(priv_tx->data, skb->data, skb->len);
1558 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1559
1560 return 0;
1561 }
1562
1563 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1564 {
1565 struct rt2x00_dev *rt2x00dev = hw->priv;
1566 u32 reg;
1567
1568 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1569 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1570 }
1571
1572 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1573 .tx = rt2x00mac_tx,
1574 .start = rt2x00mac_start,
1575 .stop = rt2x00mac_stop,
1576 .add_interface = rt2x00mac_add_interface,
1577 .remove_interface = rt2x00mac_remove_interface,
1578 .config = rt2x00mac_config,
1579 .config_interface = rt2x00mac_config_interface,
1580 .configure_filter = rt2400pci_configure_filter,
1581 .get_stats = rt2x00mac_get_stats,
1582 .set_retry_limit = rt2400pci_set_retry_limit,
1583 .bss_info_changed = rt2x00mac_bss_info_changed,
1584 .conf_tx = rt2400pci_conf_tx,
1585 .get_tx_stats = rt2x00mac_get_tx_stats,
1586 .get_tsf = rt2400pci_get_tsf,
1587 .beacon_update = rt2400pci_beacon_update,
1588 .tx_last_beacon = rt2400pci_tx_last_beacon,
1589 };
1590
1591 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1592 .irq_handler = rt2400pci_interrupt,
1593 .probe_hw = rt2400pci_probe_hw,
1594 .initialize = rt2x00pci_initialize,
1595 .uninitialize = rt2x00pci_uninitialize,
1596 .init_rxentry = rt2400pci_init_rxentry,
1597 .init_txentry = rt2400pci_init_txentry,
1598 .set_device_state = rt2400pci_set_device_state,
1599 .rfkill_poll = rt2400pci_rfkill_poll,
1600 .link_stats = rt2400pci_link_stats,
1601 .reset_tuner = rt2400pci_reset_tuner,
1602 .link_tuner = rt2400pci_link_tuner,
1603 .led_brightness = rt2400pci_led_brightness,
1604 .write_tx_desc = rt2400pci_write_tx_desc,
1605 .write_tx_data = rt2x00pci_write_tx_data,
1606 .kick_tx_queue = rt2400pci_kick_tx_queue,
1607 .fill_rxdone = rt2400pci_fill_rxdone,
1608 .config_intf = rt2400pci_config_intf,
1609 .config_preamble = rt2400pci_config_preamble,
1610 .config = rt2400pci_config,
1611 };
1612
1613 static const struct data_queue_desc rt2400pci_queue_rx = {
1614 .entry_num = RX_ENTRIES,
1615 .data_size = DATA_FRAME_SIZE,
1616 .desc_size = RXD_DESC_SIZE,
1617 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1618 };
1619
1620 static const struct data_queue_desc rt2400pci_queue_tx = {
1621 .entry_num = TX_ENTRIES,
1622 .data_size = DATA_FRAME_SIZE,
1623 .desc_size = TXD_DESC_SIZE,
1624 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1625 };
1626
1627 static const struct data_queue_desc rt2400pci_queue_bcn = {
1628 .entry_num = BEACON_ENTRIES,
1629 .data_size = MGMT_FRAME_SIZE,
1630 .desc_size = TXD_DESC_SIZE,
1631 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1632 };
1633
1634 static const struct data_queue_desc rt2400pci_queue_atim = {
1635 .entry_num = ATIM_ENTRIES,
1636 .data_size = DATA_FRAME_SIZE,
1637 .desc_size = TXD_DESC_SIZE,
1638 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1639 };
1640
1641 static const struct rt2x00_ops rt2400pci_ops = {
1642 .name = KBUILD_MODNAME,
1643 .max_sta_intf = 1,
1644 .max_ap_intf = 1,
1645 .eeprom_size = EEPROM_SIZE,
1646 .rf_size = RF_SIZE,
1647 .rx = &rt2400pci_queue_rx,
1648 .tx = &rt2400pci_queue_tx,
1649 .bcn = &rt2400pci_queue_bcn,
1650 .atim = &rt2400pci_queue_atim,
1651 .lib = &rt2400pci_rt2x00_ops,
1652 .hw = &rt2400pci_mac80211_ops,
1653 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1654 .debugfs = &rt2400pci_rt2x00debug,
1655 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1656 };
1657
1658 /*
1659 * RT2400pci module information.
1660 */
1661 static struct pci_device_id rt2400pci_device_table[] = {
1662 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1663 { 0, }
1664 };
1665
1666 MODULE_AUTHOR(DRV_PROJECT);
1667 MODULE_VERSION(DRV_VERSION);
1668 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1669 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1670 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1671 MODULE_LICENSE("GPL");
1672
1673 static struct pci_driver rt2400pci_driver = {
1674 .name = KBUILD_MODNAME,
1675 .id_table = rt2400pci_device_table,
1676 .probe = rt2x00pci_probe,
1677 .remove = __devexit_p(rt2x00pci_remove),
1678 .suspend = rt2x00pci_suspend,
1679 .resume = rt2x00pci_resume,
1680 };
1681
1682 static int __init rt2400pci_init(void)
1683 {
1684 return pci_register_driver(&rt2400pci_driver);
1685 }
1686
1687 static void __exit rt2400pci_exit(void)
1688 {
1689 pci_unregister_driver(&rt2400pci_driver);
1690 }
1691
1692 module_init(rt2400pci_init);
1693 module_exit(rt2400pci_exit);