]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
249 {
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255 u32 reg;
256
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262 }
263
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2400pci_led_brightness NULL
268 #endif /* CONFIG_RT2400PCI_LEDS */
269
270 /*
271 * Configuration handlers.
272 */
273 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
274 const unsigned int filter_flags)
275 {
276 u32 reg;
277
278 /*
279 * Start configuration steps.
280 * Note that the version error will always be dropped
281 * since there is no filter for it at this time.
282 */
283 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
285 !(filter_flags & FIF_FCSFAIL));
286 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
287 !(filter_flags & FIF_PLCPFAIL));
288 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
289 !(filter_flags & FIF_CONTROL));
290 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
291 !(filter_flags & FIF_PROMISC_IN_BSS));
292 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
293 !(filter_flags & FIF_PROMISC_IN_BSS));
294 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
295 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
296 }
297
298 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
299 struct rt2x00_intf *intf,
300 struct rt2x00intf_conf *conf,
301 const unsigned int flags)
302 {
303 unsigned int bcn_preload;
304 u32 reg;
305
306 if (flags & CONFIG_UPDATE_TYPE) {
307 /*
308 * Enable beacon config
309 */
310 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
311 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
312 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
313 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
314
315 /*
316 * Enable synchronisation.
317 */
318 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
319 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
320 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
321 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
322 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
323 }
324
325 if (flags & CONFIG_UPDATE_MAC)
326 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
327 conf->mac, sizeof(conf->mac));
328
329 if (flags & CONFIG_UPDATE_BSSID)
330 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
331 conf->bssid, sizeof(conf->bssid));
332 }
333
334 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
335 struct rt2x00lib_erp *erp)
336 {
337 int preamble_mask;
338 u32 reg;
339
340 /*
341 * When short preamble is enabled, we should set bit 0x08
342 */
343 preamble_mask = erp->short_preamble << 3;
344
345 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
346 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
347 erp->ack_timeout);
348 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
349 erp->ack_consume_time);
350 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
351
352 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
353 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
356 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
357
358 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
359 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
360 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
361 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
362 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
363
364 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
365 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
366 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
367 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
368 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
369
370 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
371 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
372 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
373 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
374 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
375 }
376
377 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
378 const int basic_rate_mask)
379 {
380 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
381 }
382
383 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
384 struct rf_channel *rf)
385 {
386 /*
387 * Switch on tuning bits.
388 */
389 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
390 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
391
392 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
393 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
394 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
395
396 /*
397 * RF2420 chipset don't need any additional actions.
398 */
399 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
400 return;
401
402 /*
403 * For the RT2421 chipsets we need to write an invalid
404 * reference clock rate to activate auto_tune.
405 * After that we set the value back to the correct channel.
406 */
407 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
408 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
409 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
410
411 msleep(1);
412
413 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
414 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
415 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
416
417 msleep(1);
418
419 /*
420 * Switch off tuning bits.
421 */
422 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
423 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
424
425 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
426 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
427
428 /*
429 * Clear false CRC during channel switch.
430 */
431 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
432 }
433
434 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
435 {
436 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
437 }
438
439 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
440 struct antenna_setup *ant)
441 {
442 u8 r1;
443 u8 r4;
444
445 /*
446 * We should never come here because rt2x00lib is supposed
447 * to catch this and send us the correct antenna explicitely.
448 */
449 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
450 ant->tx == ANTENNA_SW_DIVERSITY);
451
452 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
453 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
454
455 /*
456 * Configure the TX antenna.
457 */
458 switch (ant->tx) {
459 case ANTENNA_HW_DIVERSITY:
460 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
461 break;
462 case ANTENNA_A:
463 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
464 break;
465 case ANTENNA_B:
466 default:
467 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
468 break;
469 }
470
471 /*
472 * Configure the RX antenna.
473 */
474 switch (ant->rx) {
475 case ANTENNA_HW_DIVERSITY:
476 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
477 break;
478 case ANTENNA_A:
479 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
480 break;
481 case ANTENNA_B:
482 default:
483 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
484 break;
485 }
486
487 rt2400pci_bbp_write(rt2x00dev, 4, r4);
488 rt2400pci_bbp_write(rt2x00dev, 1, r1);
489 }
490
491 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
492 struct rt2x00lib_conf *libconf)
493 {
494 u32 reg;
495
496 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
497 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
498 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
499
500 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
501 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
502 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
503 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
504
505 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
506 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
507 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
508 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
509
510 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
511 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
512 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
513 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
514
515 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
516 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
517 libconf->conf->beacon_int * 16);
518 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
519 libconf->conf->beacon_int * 16);
520 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
521 }
522
523 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
524 struct rt2x00lib_conf *libconf,
525 const unsigned int flags)
526 {
527 if (flags & CONFIG_UPDATE_PHYMODE)
528 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
529 if (flags & CONFIG_UPDATE_CHANNEL)
530 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
531 if (flags & CONFIG_UPDATE_TXPOWER)
532 rt2400pci_config_txpower(rt2x00dev,
533 libconf->conf->power_level);
534 if (flags & CONFIG_UPDATE_ANTENNA)
535 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
536 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
537 rt2400pci_config_duration(rt2x00dev, libconf);
538 }
539
540 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
541 const int cw_min, const int cw_max)
542 {
543 u32 reg;
544
545 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
546 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
547 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
548 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
549 }
550
551 /*
552 * Link tuning
553 */
554 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
555 struct link_qual *qual)
556 {
557 u32 reg;
558 u8 bbp;
559
560 /*
561 * Update FCS error count from register.
562 */
563 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
564 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
565
566 /*
567 * Update False CCA count from register.
568 */
569 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
570 qual->false_cca = bbp;
571 }
572
573 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
574 {
575 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
576 rt2x00dev->link.vgc_level = 0x08;
577 }
578
579 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
580 {
581 u8 reg;
582
583 /*
584 * The link tuner should not run longer then 60 seconds,
585 * and should run once every 2 seconds.
586 */
587 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
588 return;
589
590 /*
591 * Base r13 link tuning on the false cca count.
592 */
593 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
594
595 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
596 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
597 rt2x00dev->link.vgc_level = reg;
598 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
599 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
600 rt2x00dev->link.vgc_level = reg;
601 }
602 }
603
604 /*
605 * Initialization functions.
606 */
607 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
608 struct queue_entry *entry)
609 {
610 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
611 u32 word;
612
613 rt2x00_desc_read(priv_rx->desc, 2, &word);
614 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
615 entry->queue->data_size);
616 rt2x00_desc_write(priv_rx->desc, 2, word);
617
618 rt2x00_desc_read(priv_rx->desc, 1, &word);
619 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
620 rt2x00_desc_write(priv_rx->desc, 1, word);
621
622 rt2x00_desc_read(priv_rx->desc, 0, &word);
623 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
624 rt2x00_desc_write(priv_rx->desc, 0, word);
625 }
626
627 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
628 struct queue_entry *entry)
629 {
630 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
631 u32 word;
632
633 rt2x00_desc_read(priv_tx->desc, 1, &word);
634 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
635 rt2x00_desc_write(priv_tx->desc, 1, word);
636
637 rt2x00_desc_read(priv_tx->desc, 2, &word);
638 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
639 entry->queue->data_size);
640 rt2x00_desc_write(priv_tx->desc, 2, word);
641
642 rt2x00_desc_read(priv_tx->desc, 0, &word);
643 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
644 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
645 rt2x00_desc_write(priv_tx->desc, 0, word);
646 }
647
648 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
649 {
650 struct queue_entry_priv_pci_rx *priv_rx;
651 struct queue_entry_priv_pci_tx *priv_tx;
652 u32 reg;
653
654 /*
655 * Initialize registers.
656 */
657 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
658 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
659 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
660 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
661 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
662 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
663
664 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
665 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
666 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
667 priv_tx->desc_dma);
668 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
669
670 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
671 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
672 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
673 priv_tx->desc_dma);
674 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
675
676 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
677 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
678 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
679 priv_tx->desc_dma);
680 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
681
682 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
683 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
684 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
685 priv_tx->desc_dma);
686 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
687
688 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
689 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
690 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
691 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
692
693 priv_rx = rt2x00dev->rx->entries[0].priv_data;
694 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
695 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
696 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
697
698 return 0;
699 }
700
701 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
702 {
703 u32 reg;
704
705 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
706 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
707 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
708 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
709
710 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
711 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
712 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
713 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
714 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
715
716 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
717 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
718 (rt2x00dev->rx->data_size / 128));
719 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
720
721 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
722 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
723 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
724 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
725
726 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
727
728 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
729 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
730 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
731 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
732 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
733 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
734
735 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
736 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
737 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
738 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
739 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
740 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
741 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
742 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
743
744 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
745
746 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
747 return -EBUSY;
748
749 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
750 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
751
752 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
753 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
754 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
755
756 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
757 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
758 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
759 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
760 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
761 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
762
763 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
764 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
765 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
766 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
767 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
768
769 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
770 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
771 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
772 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
773
774 /*
775 * We must clear the FCS and FIFO error count.
776 * These registers are cleared on read,
777 * so we may pass a useless variable to store the value.
778 */
779 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
780 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
781
782 return 0;
783 }
784
785 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
786 {
787 unsigned int i;
788 u16 eeprom;
789 u8 reg_id;
790 u8 value;
791
792 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
793 rt2400pci_bbp_read(rt2x00dev, 0, &value);
794 if ((value != 0xff) && (value != 0x00))
795 goto continue_csr_init;
796 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
797 udelay(REGISTER_BUSY_DELAY);
798 }
799
800 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
801 return -EACCES;
802
803 continue_csr_init:
804 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
805 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
806 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
807 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
808 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
809 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
810 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
811 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
812 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
813 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
814 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
815 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
816 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
817 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
818
819 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
820 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
821
822 if (eeprom != 0xffff && eeprom != 0x0000) {
823 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
824 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
825 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
826 }
827 }
828
829 return 0;
830 }
831
832 /*
833 * Device state switch handlers.
834 */
835 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
836 enum dev_state state)
837 {
838 u32 reg;
839
840 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
841 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
842 state == STATE_RADIO_RX_OFF);
843 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
844 }
845
846 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
847 enum dev_state state)
848 {
849 int mask = (state == STATE_RADIO_IRQ_OFF);
850 u32 reg;
851
852 /*
853 * When interrupts are being enabled, the interrupt registers
854 * should clear the register to assure a clean state.
855 */
856 if (state == STATE_RADIO_IRQ_ON) {
857 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
858 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
859 }
860
861 /*
862 * Only toggle the interrupts bits we are going to use.
863 * Non-checked interrupt bits are disabled by default.
864 */
865 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
866 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
867 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
868 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
869 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
870 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
871 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
872 }
873
874 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
875 {
876 /*
877 * Initialize all registers.
878 */
879 if (rt2400pci_init_queues(rt2x00dev) ||
880 rt2400pci_init_registers(rt2x00dev) ||
881 rt2400pci_init_bbp(rt2x00dev)) {
882 ERROR(rt2x00dev, "Register initialization failed.\n");
883 return -EIO;
884 }
885
886 /*
887 * Enable interrupts.
888 */
889 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
890
891 return 0;
892 }
893
894 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
895 {
896 u32 reg;
897
898 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
899
900 /*
901 * Disable synchronisation.
902 */
903 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
904
905 /*
906 * Cancel RX and TX.
907 */
908 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
909 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
910 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
911
912 /*
913 * Disable interrupts.
914 */
915 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
916 }
917
918 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
919 enum dev_state state)
920 {
921 u32 reg;
922 unsigned int i;
923 char put_to_sleep;
924 char bbp_state;
925 char rf_state;
926
927 put_to_sleep = (state != STATE_AWAKE);
928
929 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
930 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
931 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
932 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
933 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
934 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
935
936 /*
937 * Device is not guaranteed to be in the requested state yet.
938 * We must wait until the register indicates that the
939 * device has entered the correct state.
940 */
941 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
942 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
943 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
944 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
945 if (bbp_state == state && rf_state == state)
946 return 0;
947 msleep(10);
948 }
949
950 NOTICE(rt2x00dev, "Device failed to enter state %d, "
951 "current device state: bbp %d and rf %d.\n",
952 state, bbp_state, rf_state);
953
954 return -EBUSY;
955 }
956
957 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
958 enum dev_state state)
959 {
960 int retval = 0;
961
962 switch (state) {
963 case STATE_RADIO_ON:
964 retval = rt2400pci_enable_radio(rt2x00dev);
965 break;
966 case STATE_RADIO_OFF:
967 rt2400pci_disable_radio(rt2x00dev);
968 break;
969 case STATE_RADIO_RX_ON:
970 case STATE_RADIO_RX_ON_LINK:
971 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
972 break;
973 case STATE_RADIO_RX_OFF:
974 case STATE_RADIO_RX_OFF_LINK:
975 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
976 break;
977 case STATE_DEEP_SLEEP:
978 case STATE_SLEEP:
979 case STATE_STANDBY:
980 case STATE_AWAKE:
981 retval = rt2400pci_set_state(rt2x00dev, state);
982 break;
983 default:
984 retval = -ENOTSUPP;
985 break;
986 }
987
988 return retval;
989 }
990
991 /*
992 * TX descriptor initialization
993 */
994 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
995 struct sk_buff *skb,
996 struct txentry_desc *txdesc,
997 struct ieee80211_tx_control *control)
998 {
999 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1000 __le32 *txd = skbdesc->desc;
1001 u32 word;
1002
1003 /*
1004 * Start writing the descriptor words.
1005 */
1006 rt2x00_desc_read(txd, 2, &word);
1007 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
1008 rt2x00_desc_write(txd, 2, word);
1009
1010 rt2x00_desc_read(txd, 3, &word);
1011 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1012 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1013 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1014 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1015 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1016 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1017 rt2x00_desc_write(txd, 3, word);
1018
1019 rt2x00_desc_read(txd, 4, &word);
1020 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1021 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1022 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1023 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1024 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1025 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1026 rt2x00_desc_write(txd, 4, word);
1027
1028 rt2x00_desc_read(txd, 0, &word);
1029 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1030 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1031 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1032 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1033 rt2x00_set_field32(&word, TXD_W0_ACK,
1034 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1035 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1036 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1037 rt2x00_set_field32(&word, TXD_W0_RTS,
1038 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1039 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1040 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1041 !!(control->flags &
1042 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1043 rt2x00_desc_write(txd, 0, word);
1044 }
1045
1046 /*
1047 * TX data initialization
1048 */
1049 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1050 const unsigned int queue)
1051 {
1052 u32 reg;
1053
1054 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1055 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1056 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1057 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1058 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1059 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1060 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1061 }
1062 return;
1063 }
1064
1065 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1066 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1067 (queue == IEEE80211_TX_QUEUE_DATA0));
1068 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1069 (queue == IEEE80211_TX_QUEUE_DATA1));
1070 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1071 (queue == RT2X00_BCN_QUEUE_ATIM));
1072 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1073 }
1074
1075 /*
1076 * RX control handlers
1077 */
1078 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1079 struct rxdone_entry_desc *rxdesc)
1080 {
1081 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1082 u32 word0;
1083 u32 word2;
1084 u32 word3;
1085
1086 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1087 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1088 rt2x00_desc_read(priv_rx->desc, 3, &word3);
1089
1090 rxdesc->flags = 0;
1091 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1092 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1093 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1094 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1095
1096 /*
1097 * Obtain the status about this packet.
1098 * The signal is the PLCP value, and needs to be stripped
1099 * of the preamble bit (0x08).
1100 */
1101 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1102 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1103 entry->queue->rt2x00dev->rssi_offset;
1104 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1105
1106 rxdesc->dev_flags = RXDONE_SIGNAL_PLCP;
1107 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1108 rxdesc->dev_flags |= RXDONE_MY_BSS;
1109 }
1110
1111 /*
1112 * Interrupt functions.
1113 */
1114 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1115 const enum ieee80211_tx_queue queue_idx)
1116 {
1117 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1118 struct queue_entry_priv_pci_tx *priv_tx;
1119 struct queue_entry *entry;
1120 struct txdone_entry_desc txdesc;
1121 u32 word;
1122
1123 while (!rt2x00queue_empty(queue)) {
1124 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1125 priv_tx = entry->priv_data;
1126 rt2x00_desc_read(priv_tx->desc, 0, &word);
1127
1128 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1129 !rt2x00_get_field32(word, TXD_W0_VALID))
1130 break;
1131
1132 /*
1133 * Obtain the status about this packet.
1134 */
1135 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1136 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1137
1138 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1139 }
1140 }
1141
1142 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1143 {
1144 struct rt2x00_dev *rt2x00dev = dev_instance;
1145 u32 reg;
1146
1147 /*
1148 * Get the interrupt sources & saved to local variable.
1149 * Write register value back to clear pending interrupts.
1150 */
1151 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1152 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1153
1154 if (!reg)
1155 return IRQ_NONE;
1156
1157 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1158 return IRQ_HANDLED;
1159
1160 /*
1161 * Handle interrupts, walk through all bits
1162 * and run the tasks, the bits are checked in order of
1163 * priority.
1164 */
1165
1166 /*
1167 * 1 - Beacon timer expired interrupt.
1168 */
1169 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1170 rt2x00lib_beacondone(rt2x00dev);
1171
1172 /*
1173 * 2 - Rx ring done interrupt.
1174 */
1175 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1176 rt2x00pci_rxdone(rt2x00dev);
1177
1178 /*
1179 * 3 - Atim ring transmit done interrupt.
1180 */
1181 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1182 rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1183
1184 /*
1185 * 4 - Priority ring transmit done interrupt.
1186 */
1187 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1188 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1189
1190 /*
1191 * 5 - Tx ring transmit done interrupt.
1192 */
1193 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1194 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1195
1196 return IRQ_HANDLED;
1197 }
1198
1199 /*
1200 * Device probe functions.
1201 */
1202 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1203 {
1204 struct eeprom_93cx6 eeprom;
1205 u32 reg;
1206 u16 word;
1207 u8 *mac;
1208
1209 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1210
1211 eeprom.data = rt2x00dev;
1212 eeprom.register_read = rt2400pci_eepromregister_read;
1213 eeprom.register_write = rt2400pci_eepromregister_write;
1214 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1215 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1216 eeprom.reg_data_in = 0;
1217 eeprom.reg_data_out = 0;
1218 eeprom.reg_data_clock = 0;
1219 eeprom.reg_chip_select = 0;
1220
1221 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1222 EEPROM_SIZE / sizeof(u16));
1223
1224 /*
1225 * Start validation of the data that has been read.
1226 */
1227 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1228 if (!is_valid_ether_addr(mac)) {
1229 DECLARE_MAC_BUF(macbuf);
1230
1231 random_ether_addr(mac);
1232 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1233 }
1234
1235 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1236 if (word == 0xffff) {
1237 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1238 return -EINVAL;
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1245 {
1246 u32 reg;
1247 u16 value;
1248 u16 eeprom;
1249
1250 /*
1251 * Read EEPROM word for configuration.
1252 */
1253 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1254
1255 /*
1256 * Identify RF chipset.
1257 */
1258 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1259 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1260 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1261
1262 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1263 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1264 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1265 return -ENODEV;
1266 }
1267
1268 /*
1269 * Identify default antenna configuration.
1270 */
1271 rt2x00dev->default_ant.tx =
1272 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1273 rt2x00dev->default_ant.rx =
1274 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1275
1276 /*
1277 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1278 * I am not 100% sure about this, but the legacy drivers do not
1279 * indicate antenna swapping in software is required when
1280 * diversity is enabled.
1281 */
1282 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1283 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1284 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1285 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1286
1287 /*
1288 * Store led mode, for correct led behaviour.
1289 */
1290 #ifdef CONFIG_RT2400PCI_LEDS
1291 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1292
1293 switch (value) {
1294 case LED_MODE_ASUS:
1295 case LED_MODE_ALPHA:
1296 case LED_MODE_DEFAULT:
1297 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1298 break;
1299 case LED_MODE_TXRX_ACTIVITY:
1300 rt2x00dev->led_flags =
1301 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1302 break;
1303 case LED_MODE_SIGNAL_STRENGTH:
1304 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1305 break;
1306 }
1307 #endif /* CONFIG_RT2400PCI_LEDS */
1308
1309 /*
1310 * Detect if this device has an hardware controlled radio.
1311 */
1312 #ifdef CONFIG_RT2400PCI_RFKILL
1313 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1314 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1315 #endif /* CONFIG_RT2400PCI_RFKILL */
1316
1317 /*
1318 * Check if the BBP tuning should be enabled.
1319 */
1320 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1321 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1322
1323 return 0;
1324 }
1325
1326 /*
1327 * RF value list for RF2420 & RF2421
1328 * Supports: 2.4 GHz
1329 */
1330 static const struct rf_channel rf_vals_bg[] = {
1331 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1332 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1333 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1334 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1335 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1336 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1337 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1338 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1339 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1340 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1341 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1342 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1343 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1344 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1345 };
1346
1347 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1348 {
1349 struct hw_mode_spec *spec = &rt2x00dev->spec;
1350 u8 *txpower;
1351 unsigned int i;
1352
1353 /*
1354 * Initialize all hw fields.
1355 */
1356 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1357 rt2x00dev->hw->extra_tx_headroom = 0;
1358 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1359 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1360 rt2x00dev->hw->queues = 2;
1361
1362 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1363 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1364 rt2x00_eeprom_addr(rt2x00dev,
1365 EEPROM_MAC_ADDR_0));
1366
1367 /*
1368 * Convert tx_power array in eeprom.
1369 */
1370 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1371 for (i = 0; i < 14; i++)
1372 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1373
1374 /*
1375 * Initialize hw_mode information.
1376 */
1377 spec->supported_bands = SUPPORT_BAND_2GHZ;
1378 spec->supported_rates = SUPPORT_RATE_CCK;
1379 spec->tx_power_a = NULL;
1380 spec->tx_power_bg = txpower;
1381 spec->tx_power_default = DEFAULT_TXPOWER;
1382
1383 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1384 spec->channels = rf_vals_bg;
1385 }
1386
1387 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1388 {
1389 int retval;
1390
1391 /*
1392 * Allocate eeprom data.
1393 */
1394 retval = rt2400pci_validate_eeprom(rt2x00dev);
1395 if (retval)
1396 return retval;
1397
1398 retval = rt2400pci_init_eeprom(rt2x00dev);
1399 if (retval)
1400 return retval;
1401
1402 /*
1403 * Initialize hw specifications.
1404 */
1405 rt2400pci_probe_hw_mode(rt2x00dev);
1406
1407 /*
1408 * This device requires the atim queue
1409 */
1410 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1411
1412 /*
1413 * Set the rssi offset.
1414 */
1415 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1416
1417 return 0;
1418 }
1419
1420 /*
1421 * IEEE80211 stack callback functions.
1422 */
1423 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1424 u32 short_retry, u32 long_retry)
1425 {
1426 struct rt2x00_dev *rt2x00dev = hw->priv;
1427 u32 reg;
1428
1429 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1430 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1431 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1432 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1433
1434 return 0;
1435 }
1436
1437 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1438 int queue,
1439 const struct ieee80211_tx_queue_params *params)
1440 {
1441 struct rt2x00_dev *rt2x00dev = hw->priv;
1442
1443 /*
1444 * We don't support variating cw_min and cw_max variables
1445 * per queue. So by default we only configure the TX queue,
1446 * and ignore all other configurations.
1447 */
1448 if (queue != IEEE80211_TX_QUEUE_DATA0)
1449 return -EINVAL;
1450
1451 if (rt2x00mac_conf_tx(hw, queue, params))
1452 return -EINVAL;
1453
1454 /*
1455 * Write configuration to register.
1456 */
1457 rt2400pci_config_cw(rt2x00dev,
1458 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1459
1460 return 0;
1461 }
1462
1463 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1464 {
1465 struct rt2x00_dev *rt2x00dev = hw->priv;
1466 u64 tsf;
1467 u32 reg;
1468
1469 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1470 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1471 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1472 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1473
1474 return tsf;
1475 }
1476
1477 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1478 struct ieee80211_tx_control *control)
1479 {
1480 struct rt2x00_dev *rt2x00dev = hw->priv;
1481 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1482 struct queue_entry_priv_pci_tx *priv_tx;
1483 struct skb_frame_desc *skbdesc;
1484 u32 reg;
1485
1486 if (unlikely(!intf->beacon))
1487 return -ENOBUFS;
1488 priv_tx = intf->beacon->priv_data;
1489
1490 /*
1491 * Fill in skb descriptor
1492 */
1493 skbdesc = get_skb_frame_desc(skb);
1494 memset(skbdesc, 0, sizeof(*skbdesc));
1495 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1496 skbdesc->data = skb->data;
1497 skbdesc->data_len = skb->len;
1498 skbdesc->desc = priv_tx->desc;
1499 skbdesc->desc_len = intf->beacon->queue->desc_size;
1500 skbdesc->entry = intf->beacon;
1501
1502 /*
1503 * Disable beaconing while we are reloading the beacon data,
1504 * otherwise we might be sending out invalid data.
1505 */
1506 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1507 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1508 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1509 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1510 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1511
1512 /*
1513 * mac80211 doesn't provide the control->queue variable
1514 * for beacons. Set our own queue identification so
1515 * it can be used during descriptor initialization.
1516 */
1517 control->queue = RT2X00_BCN_QUEUE_BEACON;
1518 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1519
1520 /*
1521 * Enable beacon generation.
1522 * Write entire beacon with descriptor to register,
1523 * and kick the beacon generator.
1524 */
1525 memcpy(priv_tx->data, skb->data, skb->len);
1526 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1527
1528 return 0;
1529 }
1530
1531 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1532 {
1533 struct rt2x00_dev *rt2x00dev = hw->priv;
1534 u32 reg;
1535
1536 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1537 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1538 }
1539
1540 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1541 .tx = rt2x00mac_tx,
1542 .start = rt2x00mac_start,
1543 .stop = rt2x00mac_stop,
1544 .add_interface = rt2x00mac_add_interface,
1545 .remove_interface = rt2x00mac_remove_interface,
1546 .config = rt2x00mac_config,
1547 .config_interface = rt2x00mac_config_interface,
1548 .configure_filter = rt2x00mac_configure_filter,
1549 .get_stats = rt2x00mac_get_stats,
1550 .set_retry_limit = rt2400pci_set_retry_limit,
1551 .bss_info_changed = rt2x00mac_bss_info_changed,
1552 .conf_tx = rt2400pci_conf_tx,
1553 .get_tx_stats = rt2x00mac_get_tx_stats,
1554 .get_tsf = rt2400pci_get_tsf,
1555 .beacon_update = rt2400pci_beacon_update,
1556 .tx_last_beacon = rt2400pci_tx_last_beacon,
1557 };
1558
1559 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1560 .irq_handler = rt2400pci_interrupt,
1561 .probe_hw = rt2400pci_probe_hw,
1562 .initialize = rt2x00pci_initialize,
1563 .uninitialize = rt2x00pci_uninitialize,
1564 .init_rxentry = rt2400pci_init_rxentry,
1565 .init_txentry = rt2400pci_init_txentry,
1566 .set_device_state = rt2400pci_set_device_state,
1567 .rfkill_poll = rt2400pci_rfkill_poll,
1568 .link_stats = rt2400pci_link_stats,
1569 .reset_tuner = rt2400pci_reset_tuner,
1570 .link_tuner = rt2400pci_link_tuner,
1571 .led_brightness = rt2400pci_led_brightness,
1572 .write_tx_desc = rt2400pci_write_tx_desc,
1573 .write_tx_data = rt2x00pci_write_tx_data,
1574 .kick_tx_queue = rt2400pci_kick_tx_queue,
1575 .fill_rxdone = rt2400pci_fill_rxdone,
1576 .config_filter = rt2400pci_config_filter,
1577 .config_intf = rt2400pci_config_intf,
1578 .config_erp = rt2400pci_config_erp,
1579 .config = rt2400pci_config,
1580 };
1581
1582 static const struct data_queue_desc rt2400pci_queue_rx = {
1583 .entry_num = RX_ENTRIES,
1584 .data_size = DATA_FRAME_SIZE,
1585 .desc_size = RXD_DESC_SIZE,
1586 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1587 };
1588
1589 static const struct data_queue_desc rt2400pci_queue_tx = {
1590 .entry_num = TX_ENTRIES,
1591 .data_size = DATA_FRAME_SIZE,
1592 .desc_size = TXD_DESC_SIZE,
1593 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1594 };
1595
1596 static const struct data_queue_desc rt2400pci_queue_bcn = {
1597 .entry_num = BEACON_ENTRIES,
1598 .data_size = MGMT_FRAME_SIZE,
1599 .desc_size = TXD_DESC_SIZE,
1600 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1601 };
1602
1603 static const struct data_queue_desc rt2400pci_queue_atim = {
1604 .entry_num = ATIM_ENTRIES,
1605 .data_size = DATA_FRAME_SIZE,
1606 .desc_size = TXD_DESC_SIZE,
1607 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1608 };
1609
1610 static const struct rt2x00_ops rt2400pci_ops = {
1611 .name = KBUILD_MODNAME,
1612 .max_sta_intf = 1,
1613 .max_ap_intf = 1,
1614 .eeprom_size = EEPROM_SIZE,
1615 .rf_size = RF_SIZE,
1616 .rx = &rt2400pci_queue_rx,
1617 .tx = &rt2400pci_queue_tx,
1618 .bcn = &rt2400pci_queue_bcn,
1619 .atim = &rt2400pci_queue_atim,
1620 .lib = &rt2400pci_rt2x00_ops,
1621 .hw = &rt2400pci_mac80211_ops,
1622 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1623 .debugfs = &rt2400pci_rt2x00debug,
1624 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1625 };
1626
1627 /*
1628 * RT2400pci module information.
1629 */
1630 static struct pci_device_id rt2400pci_device_table[] = {
1631 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1632 { 0, }
1633 };
1634
1635 MODULE_AUTHOR(DRV_PROJECT);
1636 MODULE_VERSION(DRV_VERSION);
1637 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1638 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1639 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1640 MODULE_LICENSE("GPL");
1641
1642 static struct pci_driver rt2400pci_driver = {
1643 .name = KBUILD_MODNAME,
1644 .id_table = rt2400pci_device_table,
1645 .probe = rt2x00pci_probe,
1646 .remove = __devexit_p(rt2x00pci_remove),
1647 .suspend = rt2x00pci_suspend,
1648 .resume = rt2x00pci_resume,
1649 };
1650
1651 static int __init rt2400pci_init(void)
1652 {
1653 return pci_register_driver(&rt2400pci_driver);
1654 }
1655
1656 static void __exit rt2400pci_exit(void)
1657 {
1658 pci_unregister_driver(&rt2400pci_driver);
1659 }
1660
1661 module_init(rt2400pci_init);
1662 module_exit(rt2400pci_exit);