]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge branches 'release', 'acpica', 'bugzilla-10224', 'bugzilla-9772', 'bugzilla...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2400pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2400pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2400pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2400pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2400pci_read_csr,
209 .write = rt2400pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2400pci_bbp_read,
221 .write = rt2400pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2400pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
245
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
249 {
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 u32 reg;
254
255 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259 else if (led->type == LED_TYPE_ACTIVITY)
260 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
266 unsigned long *delay_on,
267 unsigned long *delay_off)
268 {
269 struct rt2x00_led *led =
270 container_of(led_cdev, struct rt2x00_led, led_dev);
271 u32 reg;
272
273 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278 return 0;
279 }
280 #endif /* CONFIG_RT2400PCI_LEDS */
281
282 /*
283 * Configuration handlers.
284 */
285 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
286 const unsigned int filter_flags)
287 {
288 u32 reg;
289
290 /*
291 * Start configuration steps.
292 * Note that the version error will always be dropped
293 * since there is no filter for it at this time.
294 */
295 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
296 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
297 !(filter_flags & FIF_FCSFAIL));
298 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
299 !(filter_flags & FIF_PLCPFAIL));
300 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
301 !(filter_flags & FIF_CONTROL));
302 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
303 !(filter_flags & FIF_PROMISC_IN_BSS));
304 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
305 !(filter_flags & FIF_PROMISC_IN_BSS) &&
306 !rt2x00dev->intf_ap_count);
307 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
308 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
309 }
310
311 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
312 struct rt2x00_intf *intf,
313 struct rt2x00intf_conf *conf,
314 const unsigned int flags)
315 {
316 unsigned int bcn_preload;
317 u32 reg;
318
319 if (flags & CONFIG_UPDATE_TYPE) {
320 /*
321 * Enable beacon config
322 */
323 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
324 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
325 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
326 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
327
328 /*
329 * Enable synchronisation.
330 */
331 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
332 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
333 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
334 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
335 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
336 }
337
338 if (flags & CONFIG_UPDATE_MAC)
339 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
340 conf->mac, sizeof(conf->mac));
341
342 if (flags & CONFIG_UPDATE_BSSID)
343 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
344 conf->bssid, sizeof(conf->bssid));
345 }
346
347 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
348 struct rt2x00lib_erp *erp)
349 {
350 int preamble_mask;
351 u32 reg;
352
353 /*
354 * When short preamble is enabled, we should set bit 0x08
355 */
356 preamble_mask = erp->short_preamble << 3;
357
358 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
359 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
360 erp->ack_timeout);
361 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
362 erp->ack_consume_time);
363 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
364
365 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
366 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
367 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
368 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
369 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
370
371 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
372 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
373 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
374 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
375 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
376
377 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
378 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
379 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
380 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
381 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
382
383 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
384 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
385 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
386 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
387 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
388 }
389
390 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
391 const int basic_rate_mask)
392 {
393 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
394 }
395
396 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
397 struct rf_channel *rf)
398 {
399 /*
400 * Switch on tuning bits.
401 */
402 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
403 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
404
405 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
406 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
407 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
408
409 /*
410 * RF2420 chipset don't need any additional actions.
411 */
412 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
413 return;
414
415 /*
416 * For the RT2421 chipsets we need to write an invalid
417 * reference clock rate to activate auto_tune.
418 * After that we set the value back to the correct channel.
419 */
420 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
421 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
422 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
423
424 msleep(1);
425
426 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
427 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
428 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
429
430 msleep(1);
431
432 /*
433 * Switch off tuning bits.
434 */
435 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
436 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
437
438 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
439 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
440
441 /*
442 * Clear false CRC during channel switch.
443 */
444 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
445 }
446
447 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
448 {
449 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
450 }
451
452 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
453 struct antenna_setup *ant)
454 {
455 u8 r1;
456 u8 r4;
457
458 /*
459 * We should never come here because rt2x00lib is supposed
460 * to catch this and send us the correct antenna explicitely.
461 */
462 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
463 ant->tx == ANTENNA_SW_DIVERSITY);
464
465 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
466 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
467
468 /*
469 * Configure the TX antenna.
470 */
471 switch (ant->tx) {
472 case ANTENNA_HW_DIVERSITY:
473 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
474 break;
475 case ANTENNA_A:
476 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
477 break;
478 case ANTENNA_B:
479 default:
480 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
481 break;
482 }
483
484 /*
485 * Configure the RX antenna.
486 */
487 switch (ant->rx) {
488 case ANTENNA_HW_DIVERSITY:
489 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
490 break;
491 case ANTENNA_A:
492 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
493 break;
494 case ANTENNA_B:
495 default:
496 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
497 break;
498 }
499
500 rt2400pci_bbp_write(rt2x00dev, 4, r4);
501 rt2400pci_bbp_write(rt2x00dev, 1, r1);
502 }
503
504 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
505 struct rt2x00lib_conf *libconf)
506 {
507 u32 reg;
508
509 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
510 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
511 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
512
513 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
514 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
515 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
516 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
517
518 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
519 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
520 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
521 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
522
523 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
524 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
525 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
526 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
527
528 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
529 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
530 libconf->conf->beacon_int * 16);
531 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
532 libconf->conf->beacon_int * 16);
533 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
534 }
535
536 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
537 struct rt2x00lib_conf *libconf,
538 const unsigned int flags)
539 {
540 if (flags & CONFIG_UPDATE_PHYMODE)
541 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
542 if (flags & CONFIG_UPDATE_CHANNEL)
543 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544 if (flags & CONFIG_UPDATE_TXPOWER)
545 rt2400pci_config_txpower(rt2x00dev,
546 libconf->conf->power_level);
547 if (flags & CONFIG_UPDATE_ANTENNA)
548 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
549 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
550 rt2400pci_config_duration(rt2x00dev, libconf);
551 }
552
553 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554 const int cw_min, const int cw_max)
555 {
556 u32 reg;
557
558 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562 }
563
564 /*
565 * Link tuning
566 */
567 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568 struct link_qual *qual)
569 {
570 u32 reg;
571 u8 bbp;
572
573 /*
574 * Update FCS error count from register.
575 */
576 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579 /*
580 * Update False CCA count from register.
581 */
582 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583 qual->false_cca = bbp;
584 }
585
586 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
587 {
588 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
589 rt2x00dev->link.vgc_level = 0x08;
590 }
591
592 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
593 {
594 u8 reg;
595
596 /*
597 * The link tuner should not run longer then 60 seconds,
598 * and should run once every 2 seconds.
599 */
600 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
601 return;
602
603 /*
604 * Base r13 link tuning on the false cca count.
605 */
606 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
607
608 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
609 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
610 rt2x00dev->link.vgc_level = reg;
611 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
612 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
613 rt2x00dev->link.vgc_level = reg;
614 }
615 }
616
617 /*
618 * Initialization functions.
619 */
620 static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
621 struct queue_entry *entry)
622 {
623 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
624 u32 word;
625
626 rt2x00_desc_read(priv_rx->desc, 2, &word);
627 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
628 entry->queue->data_size);
629 rt2x00_desc_write(priv_rx->desc, 2, word);
630
631 rt2x00_desc_read(priv_rx->desc, 1, &word);
632 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
633 rt2x00_desc_write(priv_rx->desc, 1, word);
634
635 rt2x00_desc_read(priv_rx->desc, 0, &word);
636 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
637 rt2x00_desc_write(priv_rx->desc, 0, word);
638 }
639
640 static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
641 struct queue_entry *entry)
642 {
643 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
644 u32 word;
645
646 rt2x00_desc_read(priv_tx->desc, 1, &word);
647 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
648 rt2x00_desc_write(priv_tx->desc, 1, word);
649
650 rt2x00_desc_read(priv_tx->desc, 2, &word);
651 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
652 entry->queue->data_size);
653 rt2x00_desc_write(priv_tx->desc, 2, word);
654
655 rt2x00_desc_read(priv_tx->desc, 0, &word);
656 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
657 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
658 rt2x00_desc_write(priv_tx->desc, 0, word);
659 }
660
661 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
662 {
663 struct queue_entry_priv_pci_rx *priv_rx;
664 struct queue_entry_priv_pci_tx *priv_tx;
665 u32 reg;
666
667 /*
668 * Initialize registers.
669 */
670 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
671 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
672 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
673 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
674 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
675 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
676
677 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
678 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
679 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
680 priv_tx->desc_dma);
681 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
682
683 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
684 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
685 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
686 priv_tx->desc_dma);
687 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
688
689 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
690 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
691 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
692 priv_tx->desc_dma);
693 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
694
695 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
696 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
697 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
698 priv_tx->desc_dma);
699 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
700
701 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
702 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
703 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
704 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
705
706 priv_rx = rt2x00dev->rx->entries[0].priv_data;
707 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
708 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
709 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
710
711 return 0;
712 }
713
714 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
715 {
716 u32 reg;
717
718 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
719 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
720 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
721 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
722
723 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
724 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
725 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
726 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
727 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
728
729 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
730 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
731 (rt2x00dev->rx->data_size / 128));
732 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
733
734 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
735
736 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
737 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
738 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
739 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
740 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
741 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
742
743 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
744 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
745 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
746 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
747 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
748 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
749 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
750 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
751
752 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
753
754 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
755 return -EBUSY;
756
757 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
758 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
759
760 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
761 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
762 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
763
764 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
765 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
766 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
767 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
768 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
769 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
770
771 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
772 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
773 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
774 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
775 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
776
777 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
778 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
779 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
780 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
781
782 /*
783 * We must clear the FCS and FIFO error count.
784 * These registers are cleared on read,
785 * so we may pass a useless variable to store the value.
786 */
787 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
788 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
789
790 return 0;
791 }
792
793 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
794 {
795 unsigned int i;
796 u16 eeprom;
797 u8 reg_id;
798 u8 value;
799
800 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
801 rt2400pci_bbp_read(rt2x00dev, 0, &value);
802 if ((value != 0xff) && (value != 0x00))
803 goto continue_csr_init;
804 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
805 udelay(REGISTER_BUSY_DELAY);
806 }
807
808 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
809 return -EACCES;
810
811 continue_csr_init:
812 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
813 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
814 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
815 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
816 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
817 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
818 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
819 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
820 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
821 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
822 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
823 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
824 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
825 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
826
827 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
828 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
829
830 if (eeprom != 0xffff && eeprom != 0x0000) {
831 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
832 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
833 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
834 }
835 }
836
837 return 0;
838 }
839
840 /*
841 * Device state switch handlers.
842 */
843 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
844 enum dev_state state)
845 {
846 u32 reg;
847
848 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
849 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
850 state == STATE_RADIO_RX_OFF);
851 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
852 }
853
854 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
855 enum dev_state state)
856 {
857 int mask = (state == STATE_RADIO_IRQ_OFF);
858 u32 reg;
859
860 /*
861 * When interrupts are being enabled, the interrupt registers
862 * should clear the register to assure a clean state.
863 */
864 if (state == STATE_RADIO_IRQ_ON) {
865 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
866 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
867 }
868
869 /*
870 * Only toggle the interrupts bits we are going to use.
871 * Non-checked interrupt bits are disabled by default.
872 */
873 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
874 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
875 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
876 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
877 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
878 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
879 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
880 }
881
882 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
883 {
884 /*
885 * Initialize all registers.
886 */
887 if (rt2400pci_init_queues(rt2x00dev) ||
888 rt2400pci_init_registers(rt2x00dev) ||
889 rt2400pci_init_bbp(rt2x00dev)) {
890 ERROR(rt2x00dev, "Register initialization failed.\n");
891 return -EIO;
892 }
893
894 /*
895 * Enable interrupts.
896 */
897 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
898
899 return 0;
900 }
901
902 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
903 {
904 u32 reg;
905
906 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
907
908 /*
909 * Disable synchronisation.
910 */
911 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
912
913 /*
914 * Cancel RX and TX.
915 */
916 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
917 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
918 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
919
920 /*
921 * Disable interrupts.
922 */
923 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
924 }
925
926 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
927 enum dev_state state)
928 {
929 u32 reg;
930 unsigned int i;
931 char put_to_sleep;
932 char bbp_state;
933 char rf_state;
934
935 put_to_sleep = (state != STATE_AWAKE);
936
937 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
938 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
939 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
940 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
941 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
942 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
943
944 /*
945 * Device is not guaranteed to be in the requested state yet.
946 * We must wait until the register indicates that the
947 * device has entered the correct state.
948 */
949 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
950 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
951 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
952 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
953 if (bbp_state == state && rf_state == state)
954 return 0;
955 msleep(10);
956 }
957
958 NOTICE(rt2x00dev, "Device failed to enter state %d, "
959 "current device state: bbp %d and rf %d.\n",
960 state, bbp_state, rf_state);
961
962 return -EBUSY;
963 }
964
965 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
966 enum dev_state state)
967 {
968 int retval = 0;
969
970 switch (state) {
971 case STATE_RADIO_ON:
972 retval = rt2400pci_enable_radio(rt2x00dev);
973 break;
974 case STATE_RADIO_OFF:
975 rt2400pci_disable_radio(rt2x00dev);
976 break;
977 case STATE_RADIO_RX_ON:
978 case STATE_RADIO_RX_ON_LINK:
979 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
980 break;
981 case STATE_RADIO_RX_OFF:
982 case STATE_RADIO_RX_OFF_LINK:
983 rt2400pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
984 break;
985 case STATE_DEEP_SLEEP:
986 case STATE_SLEEP:
987 case STATE_STANDBY:
988 case STATE_AWAKE:
989 retval = rt2400pci_set_state(rt2x00dev, state);
990 break;
991 default:
992 retval = -ENOTSUPP;
993 break;
994 }
995
996 return retval;
997 }
998
999 /*
1000 * TX descriptor initialization
1001 */
1002 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1003 struct sk_buff *skb,
1004 struct txentry_desc *txdesc,
1005 struct ieee80211_tx_control *control)
1006 {
1007 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1008 __le32 *txd = skbdesc->desc;
1009 u32 word;
1010
1011 /*
1012 * Start writing the descriptor words.
1013 */
1014 rt2x00_desc_read(txd, 2, &word);
1015 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skbdesc->data_len);
1016 rt2x00_desc_write(txd, 2, word);
1017
1018 rt2x00_desc_read(txd, 3, &word);
1019 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1020 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1021 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1022 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1023 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1024 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1025 rt2x00_desc_write(txd, 3, word);
1026
1027 rt2x00_desc_read(txd, 4, &word);
1028 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1029 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1030 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1031 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1032 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1033 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1034 rt2x00_desc_write(txd, 4, word);
1035
1036 rt2x00_desc_read(txd, 0, &word);
1037 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1038 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1039 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1040 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1041 rt2x00_set_field32(&word, TXD_W0_ACK,
1042 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1043 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1044 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1045 rt2x00_set_field32(&word, TXD_W0_RTS,
1046 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1047 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1048 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1049 !!(control->flags &
1050 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1051 rt2x00_desc_write(txd, 0, word);
1052 }
1053
1054 /*
1055 * TX data initialization
1056 */
1057 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1058 const unsigned int queue)
1059 {
1060 u32 reg;
1061
1062 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1063 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1064 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1065 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1066 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1067 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1068 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1069 }
1070 return;
1071 }
1072
1073 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1074 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1075 (queue == IEEE80211_TX_QUEUE_DATA0));
1076 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1077 (queue == IEEE80211_TX_QUEUE_DATA1));
1078 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1079 (queue == RT2X00_BCN_QUEUE_ATIM));
1080 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1081 }
1082
1083 /*
1084 * RX control handlers
1085 */
1086 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1087 struct rxdone_entry_desc *rxdesc)
1088 {
1089 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1090 u32 word0;
1091 u32 word2;
1092 u32 word3;
1093
1094 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1095 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1096 rt2x00_desc_read(priv_rx->desc, 3, &word3);
1097
1098 rxdesc->flags = 0;
1099 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1100 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1101 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1102 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1103
1104 /*
1105 * Obtain the status about this packet.
1106 * The signal is the PLCP value, and needs to be stripped
1107 * of the preamble bit (0x08).
1108 */
1109 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1110 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1111 entry->queue->rt2x00dev->rssi_offset;
1112 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1113
1114 rxdesc->dev_flags = RXDONE_SIGNAL_PLCP;
1115 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1116 rxdesc->dev_flags |= RXDONE_MY_BSS;
1117 }
1118
1119 /*
1120 * Interrupt functions.
1121 */
1122 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1123 const enum ieee80211_tx_queue queue_idx)
1124 {
1125 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1126 struct queue_entry_priv_pci_tx *priv_tx;
1127 struct queue_entry *entry;
1128 struct txdone_entry_desc txdesc;
1129 u32 word;
1130
1131 while (!rt2x00queue_empty(queue)) {
1132 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1133 priv_tx = entry->priv_data;
1134 rt2x00_desc_read(priv_tx->desc, 0, &word);
1135
1136 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1137 !rt2x00_get_field32(word, TXD_W0_VALID))
1138 break;
1139
1140 /*
1141 * Obtain the status about this packet.
1142 */
1143 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1144 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1145
1146 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1147 }
1148 }
1149
1150 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1151 {
1152 struct rt2x00_dev *rt2x00dev = dev_instance;
1153 u32 reg;
1154
1155 /*
1156 * Get the interrupt sources & saved to local variable.
1157 * Write register value back to clear pending interrupts.
1158 */
1159 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1160 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1161
1162 if (!reg)
1163 return IRQ_NONE;
1164
1165 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1166 return IRQ_HANDLED;
1167
1168 /*
1169 * Handle interrupts, walk through all bits
1170 * and run the tasks, the bits are checked in order of
1171 * priority.
1172 */
1173
1174 /*
1175 * 1 - Beacon timer expired interrupt.
1176 */
1177 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1178 rt2x00lib_beacondone(rt2x00dev);
1179
1180 /*
1181 * 2 - Rx ring done interrupt.
1182 */
1183 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1184 rt2x00pci_rxdone(rt2x00dev);
1185
1186 /*
1187 * 3 - Atim ring transmit done interrupt.
1188 */
1189 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1190 rt2400pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1191
1192 /*
1193 * 4 - Priority ring transmit done interrupt.
1194 */
1195 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1196 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1197
1198 /*
1199 * 5 - Tx ring transmit done interrupt.
1200 */
1201 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1202 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1203
1204 return IRQ_HANDLED;
1205 }
1206
1207 /*
1208 * Device probe functions.
1209 */
1210 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1211 {
1212 struct eeprom_93cx6 eeprom;
1213 u32 reg;
1214 u16 word;
1215 u8 *mac;
1216
1217 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1218
1219 eeprom.data = rt2x00dev;
1220 eeprom.register_read = rt2400pci_eepromregister_read;
1221 eeprom.register_write = rt2400pci_eepromregister_write;
1222 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1223 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1224 eeprom.reg_data_in = 0;
1225 eeprom.reg_data_out = 0;
1226 eeprom.reg_data_clock = 0;
1227 eeprom.reg_chip_select = 0;
1228
1229 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1230 EEPROM_SIZE / sizeof(u16));
1231
1232 /*
1233 * Start validation of the data that has been read.
1234 */
1235 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1236 if (!is_valid_ether_addr(mac)) {
1237 DECLARE_MAC_BUF(macbuf);
1238
1239 random_ether_addr(mac);
1240 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1241 }
1242
1243 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1244 if (word == 0xffff) {
1245 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1246 return -EINVAL;
1247 }
1248
1249 return 0;
1250 }
1251
1252 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1253 {
1254 u32 reg;
1255 u16 value;
1256 u16 eeprom;
1257
1258 /*
1259 * Read EEPROM word for configuration.
1260 */
1261 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1262
1263 /*
1264 * Identify RF chipset.
1265 */
1266 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1267 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1268 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1269
1270 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1271 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1272 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1273 return -ENODEV;
1274 }
1275
1276 /*
1277 * Identify default antenna configuration.
1278 */
1279 rt2x00dev->default_ant.tx =
1280 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1281 rt2x00dev->default_ant.rx =
1282 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1283
1284 /*
1285 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1286 * I am not 100% sure about this, but the legacy drivers do not
1287 * indicate antenna swapping in software is required when
1288 * diversity is enabled.
1289 */
1290 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1291 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1292 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1293 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1294
1295 /*
1296 * Store led mode, for correct led behaviour.
1297 */
1298 #ifdef CONFIG_RT2400PCI_LEDS
1299 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1300
1301 rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1302 rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1303 rt2x00dev->led_radio.led_dev.brightness_set =
1304 rt2400pci_brightness_set;
1305 rt2x00dev->led_radio.led_dev.blink_set =
1306 rt2400pci_blink_set;
1307 rt2x00dev->led_radio.flags = LED_INITIALIZED;
1308
1309 if (value == LED_MODE_TXRX_ACTIVITY) {
1310 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1311 rt2x00dev->led_radio.type = LED_TYPE_ACTIVITY;
1312 rt2x00dev->led_qual.led_dev.brightness_set =
1313 rt2400pci_brightness_set;
1314 rt2x00dev->led_qual.led_dev.blink_set =
1315 rt2400pci_blink_set;
1316 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1317 }
1318 #endif /* CONFIG_RT2400PCI_LEDS */
1319
1320 /*
1321 * Detect if this device has an hardware controlled radio.
1322 */
1323 #ifdef CONFIG_RT2400PCI_RFKILL
1324 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1325 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1326 #endif /* CONFIG_RT2400PCI_RFKILL */
1327
1328 /*
1329 * Check if the BBP tuning should be enabled.
1330 */
1331 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1332 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1333
1334 return 0;
1335 }
1336
1337 /*
1338 * RF value list for RF2420 & RF2421
1339 * Supports: 2.4 GHz
1340 */
1341 static const struct rf_channel rf_vals_bg[] = {
1342 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1343 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1344 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1345 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1346 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1347 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1348 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1349 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1350 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1351 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1352 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1353 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1354 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1355 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1356 };
1357
1358 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1359 {
1360 struct hw_mode_spec *spec = &rt2x00dev->spec;
1361 u8 *txpower;
1362 unsigned int i;
1363
1364 /*
1365 * Initialize all hw fields.
1366 */
1367 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1368 rt2x00dev->hw->extra_tx_headroom = 0;
1369 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1370 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1371 rt2x00dev->hw->queues = 2;
1372
1373 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1374 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1375 rt2x00_eeprom_addr(rt2x00dev,
1376 EEPROM_MAC_ADDR_0));
1377
1378 /*
1379 * Convert tx_power array in eeprom.
1380 */
1381 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1382 for (i = 0; i < 14; i++)
1383 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1384
1385 /*
1386 * Initialize hw_mode information.
1387 */
1388 spec->supported_bands = SUPPORT_BAND_2GHZ;
1389 spec->supported_rates = SUPPORT_RATE_CCK;
1390 spec->tx_power_a = NULL;
1391 spec->tx_power_bg = txpower;
1392 spec->tx_power_default = DEFAULT_TXPOWER;
1393
1394 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1395 spec->channels = rf_vals_bg;
1396 }
1397
1398 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1399 {
1400 int retval;
1401
1402 /*
1403 * Allocate eeprom data.
1404 */
1405 retval = rt2400pci_validate_eeprom(rt2x00dev);
1406 if (retval)
1407 return retval;
1408
1409 retval = rt2400pci_init_eeprom(rt2x00dev);
1410 if (retval)
1411 return retval;
1412
1413 /*
1414 * Initialize hw specifications.
1415 */
1416 rt2400pci_probe_hw_mode(rt2x00dev);
1417
1418 /*
1419 * This device requires the atim queue
1420 */
1421 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1422
1423 /*
1424 * Set the rssi offset.
1425 */
1426 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1427
1428 return 0;
1429 }
1430
1431 /*
1432 * IEEE80211 stack callback functions.
1433 */
1434 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1435 u32 short_retry, u32 long_retry)
1436 {
1437 struct rt2x00_dev *rt2x00dev = hw->priv;
1438 u32 reg;
1439
1440 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1441 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1442 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1443 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1444
1445 return 0;
1446 }
1447
1448 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1449 int queue,
1450 const struct ieee80211_tx_queue_params *params)
1451 {
1452 struct rt2x00_dev *rt2x00dev = hw->priv;
1453
1454 /*
1455 * We don't support variating cw_min and cw_max variables
1456 * per queue. So by default we only configure the TX queue,
1457 * and ignore all other configurations.
1458 */
1459 if (queue != IEEE80211_TX_QUEUE_DATA0)
1460 return -EINVAL;
1461
1462 if (rt2x00mac_conf_tx(hw, queue, params))
1463 return -EINVAL;
1464
1465 /*
1466 * Write configuration to register.
1467 */
1468 rt2400pci_config_cw(rt2x00dev,
1469 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1470
1471 return 0;
1472 }
1473
1474 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1475 {
1476 struct rt2x00_dev *rt2x00dev = hw->priv;
1477 u64 tsf;
1478 u32 reg;
1479
1480 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1481 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1482 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1483 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1484
1485 return tsf;
1486 }
1487
1488 static int rt2400pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1489 struct ieee80211_tx_control *control)
1490 {
1491 struct rt2x00_dev *rt2x00dev = hw->priv;
1492 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1493 struct queue_entry_priv_pci_tx *priv_tx;
1494 struct skb_frame_desc *skbdesc;
1495 u32 reg;
1496
1497 if (unlikely(!intf->beacon))
1498 return -ENOBUFS;
1499 priv_tx = intf->beacon->priv_data;
1500
1501 /*
1502 * Fill in skb descriptor
1503 */
1504 skbdesc = get_skb_frame_desc(skb);
1505 memset(skbdesc, 0, sizeof(*skbdesc));
1506 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1507 skbdesc->data = skb->data;
1508 skbdesc->data_len = skb->len;
1509 skbdesc->desc = priv_tx->desc;
1510 skbdesc->desc_len = intf->beacon->queue->desc_size;
1511 skbdesc->entry = intf->beacon;
1512
1513 /*
1514 * Disable beaconing while we are reloading the beacon data,
1515 * otherwise we might be sending out invalid data.
1516 */
1517 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1518 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1519 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1520 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1521 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1522
1523 /*
1524 * mac80211 doesn't provide the control->queue variable
1525 * for beacons. Set our own queue identification so
1526 * it can be used during descriptor initialization.
1527 */
1528 control->queue = RT2X00_BCN_QUEUE_BEACON;
1529 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1530
1531 /*
1532 * Enable beacon generation.
1533 * Write entire beacon with descriptor to register,
1534 * and kick the beacon generator.
1535 */
1536 memcpy(priv_tx->data, skb->data, skb->len);
1537 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1538
1539 return 0;
1540 }
1541
1542 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1543 {
1544 struct rt2x00_dev *rt2x00dev = hw->priv;
1545 u32 reg;
1546
1547 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1548 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1549 }
1550
1551 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1552 .tx = rt2x00mac_tx,
1553 .start = rt2x00mac_start,
1554 .stop = rt2x00mac_stop,
1555 .add_interface = rt2x00mac_add_interface,
1556 .remove_interface = rt2x00mac_remove_interface,
1557 .config = rt2x00mac_config,
1558 .config_interface = rt2x00mac_config_interface,
1559 .configure_filter = rt2x00mac_configure_filter,
1560 .get_stats = rt2x00mac_get_stats,
1561 .set_retry_limit = rt2400pci_set_retry_limit,
1562 .bss_info_changed = rt2x00mac_bss_info_changed,
1563 .conf_tx = rt2400pci_conf_tx,
1564 .get_tx_stats = rt2x00mac_get_tx_stats,
1565 .get_tsf = rt2400pci_get_tsf,
1566 .beacon_update = rt2400pci_beacon_update,
1567 .tx_last_beacon = rt2400pci_tx_last_beacon,
1568 };
1569
1570 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1571 .irq_handler = rt2400pci_interrupt,
1572 .probe_hw = rt2400pci_probe_hw,
1573 .initialize = rt2x00pci_initialize,
1574 .uninitialize = rt2x00pci_uninitialize,
1575 .init_rxentry = rt2400pci_init_rxentry,
1576 .init_txentry = rt2400pci_init_txentry,
1577 .set_device_state = rt2400pci_set_device_state,
1578 .rfkill_poll = rt2400pci_rfkill_poll,
1579 .link_stats = rt2400pci_link_stats,
1580 .reset_tuner = rt2400pci_reset_tuner,
1581 .link_tuner = rt2400pci_link_tuner,
1582 .write_tx_desc = rt2400pci_write_tx_desc,
1583 .write_tx_data = rt2x00pci_write_tx_data,
1584 .kick_tx_queue = rt2400pci_kick_tx_queue,
1585 .fill_rxdone = rt2400pci_fill_rxdone,
1586 .config_filter = rt2400pci_config_filter,
1587 .config_intf = rt2400pci_config_intf,
1588 .config_erp = rt2400pci_config_erp,
1589 .config = rt2400pci_config,
1590 };
1591
1592 static const struct data_queue_desc rt2400pci_queue_rx = {
1593 .entry_num = RX_ENTRIES,
1594 .data_size = DATA_FRAME_SIZE,
1595 .desc_size = RXD_DESC_SIZE,
1596 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1597 };
1598
1599 static const struct data_queue_desc rt2400pci_queue_tx = {
1600 .entry_num = TX_ENTRIES,
1601 .data_size = DATA_FRAME_SIZE,
1602 .desc_size = TXD_DESC_SIZE,
1603 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1604 };
1605
1606 static const struct data_queue_desc rt2400pci_queue_bcn = {
1607 .entry_num = BEACON_ENTRIES,
1608 .data_size = MGMT_FRAME_SIZE,
1609 .desc_size = TXD_DESC_SIZE,
1610 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1611 };
1612
1613 static const struct data_queue_desc rt2400pci_queue_atim = {
1614 .entry_num = ATIM_ENTRIES,
1615 .data_size = DATA_FRAME_SIZE,
1616 .desc_size = TXD_DESC_SIZE,
1617 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1618 };
1619
1620 static const struct rt2x00_ops rt2400pci_ops = {
1621 .name = KBUILD_MODNAME,
1622 .max_sta_intf = 1,
1623 .max_ap_intf = 1,
1624 .eeprom_size = EEPROM_SIZE,
1625 .rf_size = RF_SIZE,
1626 .rx = &rt2400pci_queue_rx,
1627 .tx = &rt2400pci_queue_tx,
1628 .bcn = &rt2400pci_queue_bcn,
1629 .atim = &rt2400pci_queue_atim,
1630 .lib = &rt2400pci_rt2x00_ops,
1631 .hw = &rt2400pci_mac80211_ops,
1632 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1633 .debugfs = &rt2400pci_rt2x00debug,
1634 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1635 };
1636
1637 /*
1638 * RT2400pci module information.
1639 */
1640 static struct pci_device_id rt2400pci_device_table[] = {
1641 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1642 { 0, }
1643 };
1644
1645 MODULE_AUTHOR(DRV_PROJECT);
1646 MODULE_VERSION(DRV_VERSION);
1647 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1648 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1649 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1650 MODULE_LICENSE("GPL");
1651
1652 static struct pci_driver rt2400pci_driver = {
1653 .name = KBUILD_MODNAME,
1654 .id_table = rt2400pci_device_table,
1655 .probe = rt2x00pci_probe,
1656 .remove = __devexit_p(rt2x00pci_remove),
1657 .suspend = rt2x00pci_suspend,
1658 .resume = rt2x00pci_resume,
1659 };
1660
1661 static int __init rt2400pci_init(void)
1662 {
1663 return pci_register_driver(&rt2400pci_driver);
1664 }
1665
1666 static void __exit rt2400pci_exit(void)
1667 {
1668 pci_unregister_driver(&rt2400pci_driver);
1669 }
1670
1671 module_init(rt2400pci_init);
1672 module_exit(rt2400pci_exit);