]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39
40 /*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
60 {
61 u32 reg;
62
63 mutex_lock(&rt2x00dev->csr_mutex);
64
65 /*
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
68 */
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 }
78
79 mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
84 {
85 u32 reg;
86
87 mutex_lock(&rt2x00dev->csr_mutex);
88
89 /*
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
96 */
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105 WAIT_FOR_BBP(rt2x00dev, &reg);
106 }
107
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110 mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
115 {
116 u32 reg;
117
118 mutex_lock(&rt2x00dev->csr_mutex);
119
120 /*
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
123 */
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
133 }
134
135 mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
142
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
157
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
164
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
178 },
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
185 },
186 .bbp = {
187 .read = rt2400pci_bbp_read,
188 .write = rt2400pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
192 },
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2400pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
199 },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 u32 reg;
206
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
214 {
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
219
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
233 {
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
237
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243 return 0;
244 }
245
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
249 {
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2400pci_brightness_set;
253 led->led_dev.blink_set = rt2400pci_blink_set;
254 led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259 * Configuration handlers.
260 */
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
263 {
264 u32 reg;
265
266 /*
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * since there is no filter for it at this time.
270 */
271 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 !(filter_flags & FIF_FCSFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 !(filter_flags & FIF_PLCPFAIL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 !(filter_flags & FIF_CONTROL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 !(filter_flags & FIF_PROMISC_IN_BSS));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 !rt2x00dev->intf_ap_count);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 struct rt2x00_intf *intf,
289 struct rt2x00intf_conf *conf,
290 const unsigned int flags)
291 {
292 unsigned int bcn_preload;
293 u32 reg;
294
295 if (flags & CONFIG_UPDATE_TYPE) {
296 /*
297 * Enable beacon config
298 */
299 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304 /*
305 * Enable synchronisation.
306 */
307 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312 }
313
314 if (flags & CONFIG_UPDATE_MAC)
315 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316 conf->mac, sizeof(conf->mac));
317
318 if (flags & CONFIG_UPDATE_BSSID)
319 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320 conf->bssid, sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 struct rt2x00lib_erp *erp,
325 u32 changed)
326 {
327 int preamble_mask;
328 u32 reg;
329
330 /*
331 * When short preamble is enabled, we should set bit 0x08
332 */
333 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334 preamble_mask = erp->short_preamble << 3;
335
336 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
337 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
342
343 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
344 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347 GET_DURATION(ACK_SIZE, 10));
348 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
349
350 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
351 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354 GET_DURATION(ACK_SIZE, 20));
355 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
356
357 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
358 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361 GET_DURATION(ACK_SIZE, 55));
362 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
363
364 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
365 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368 GET_DURATION(ACK_SIZE, 110));
369 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370 }
371
372 if (changed & BSS_CHANGED_BASIC_RATES)
373 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374
375 if (changed & BSS_CHANGED_ERP_SLOT) {
376 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
377 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
379
380 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
381 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
384
385 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
386 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
389 }
390
391 if (changed & BSS_CHANGED_BEACON_INT) {
392 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
393 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394 erp->beacon_int * 16);
395 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396 erp->beacon_int * 16);
397 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
398 }
399 }
400
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402 struct antenna_setup *ant)
403 {
404 u8 r1;
405 u8 r4;
406
407 /*
408 * We should never come here because rt2x00lib is supposed
409 * to catch this and send us the correct antenna explicitely.
410 */
411 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412 ant->tx == ANTENNA_SW_DIVERSITY);
413
414 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
415 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
416
417 /*
418 * Configure the TX antenna.
419 */
420 switch (ant->tx) {
421 case ANTENNA_HW_DIVERSITY:
422 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423 break;
424 case ANTENNA_A:
425 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426 break;
427 case ANTENNA_B:
428 default:
429 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430 break;
431 }
432
433 /*
434 * Configure the RX antenna.
435 */
436 switch (ant->rx) {
437 case ANTENNA_HW_DIVERSITY:
438 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439 break;
440 case ANTENNA_A:
441 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442 break;
443 case ANTENNA_B:
444 default:
445 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446 break;
447 }
448
449 rt2400pci_bbp_write(rt2x00dev, 4, r4);
450 rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454 struct rf_channel *rf)
455 {
456 /*
457 * Switch on tuning bits.
458 */
459 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461
462 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466 /*
467 * RF2420 chipset don't need any additional actions.
468 */
469 if (rt2x00_rf(rt2x00dev, RF2420))
470 return;
471
472 /*
473 * For the RT2421 chipsets we need to write an invalid
474 * reference clock rate to activate auto_tune.
475 * After that we set the value back to the correct channel.
476 */
477 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480
481 msleep(1);
482
483 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486
487 msleep(1);
488
489 /*
490 * Switch off tuning bits.
491 */
492 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494
495 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497
498 /*
499 * Clear false CRC during channel switch.
500 */
501 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
502 }
503
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
505 {
506 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 }
508
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
511 {
512 u32 reg;
513
514 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
515 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516 libconf->conf->long_frame_max_tx_count);
517 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518 libconf->conf->short_frame_max_tx_count);
519 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
520 }
521
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523 struct rt2x00lib_conf *libconf)
524 {
525 enum dev_state state =
526 (libconf->conf->flags & IEEE80211_CONF_PS) ?
527 STATE_SLEEP : STATE_AWAKE;
528 u32 reg;
529
530 if (state == STATE_SLEEP) {
531 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
532 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533 (rt2x00dev->beacon_int - 20) * 16);
534 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535 libconf->conf->listen_interval - 1);
536
537 /* We must first disable autowake before it can be enabled */
538 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
540
541 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
543 } else {
544 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
545 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
547 }
548
549 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 }
551
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553 struct rt2x00lib_conf *libconf,
554 const unsigned int flags)
555 {
556 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558 if (flags & IEEE80211_CONF_CHANGE_POWER)
559 rt2400pci_config_txpower(rt2x00dev,
560 libconf->conf->power_level);
561 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562 rt2400pci_config_retry_limit(rt2x00dev, libconf);
563 if (flags & IEEE80211_CONF_CHANGE_PS)
564 rt2400pci_config_ps(rt2x00dev, libconf);
565 }
566
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568 const int cw_min, const int cw_max)
569 {
570 u32 reg;
571
572 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
573 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
576 }
577
578 /*
579 * Link tuning
580 */
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
583 {
584 u32 reg;
585 u8 bbp;
586
587 /*
588 * Update FCS error count from register.
589 */
590 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
591 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592
593 /*
594 * Update False CCA count from register.
595 */
596 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597 qual->false_cca = bbp;
598 }
599
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601 struct link_qual *qual, u8 vgc_level)
602 {
603 if (qual->vgc_level_reg != vgc_level) {
604 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605 qual->vgc_level = vgc_level;
606 qual->vgc_level_reg = vgc_level;
607 }
608 }
609
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611 struct link_qual *qual)
612 {
613 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 }
615
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617 struct link_qual *qual, const u32 count)
618 {
619 /*
620 * The link tuner should not run longer then 60 seconds,
621 * and should run once every 2 seconds.
622 */
623 if (count > 60 || !(count & 1))
624 return;
625
626 /*
627 * Base r13 link tuning on the false cca count.
628 */
629 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 }
634
635 /*
636 * Initialization functions.
637 */
638 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
639 {
640 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641 u32 word;
642
643 if (entry->queue->qid == QID_RX) {
644 rt2x00_desc_read(entry_priv->desc, 0, &word);
645
646 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
647 } else {
648 rt2x00_desc_read(entry_priv->desc, 0, &word);
649
650 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
651 rt2x00_get_field32(word, TXD_W0_VALID));
652 }
653 }
654
655 static void rt2400pci_clear_entry(struct queue_entry *entry)
656 {
657 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
658 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
659 u32 word;
660
661 if (entry->queue->qid == QID_RX) {
662 rt2x00_desc_read(entry_priv->desc, 2, &word);
663 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
664 rt2x00_desc_write(entry_priv->desc, 2, word);
665
666 rt2x00_desc_read(entry_priv->desc, 1, &word);
667 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
668 rt2x00_desc_write(entry_priv->desc, 1, word);
669
670 rt2x00_desc_read(entry_priv->desc, 0, &word);
671 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
672 rt2x00_desc_write(entry_priv->desc, 0, word);
673 } else {
674 rt2x00_desc_read(entry_priv->desc, 0, &word);
675 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
676 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
677 rt2x00_desc_write(entry_priv->desc, 0, word);
678 }
679 }
680
681 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
682 {
683 struct queue_entry_priv_pci *entry_priv;
684 u32 reg;
685
686 /*
687 * Initialize registers.
688 */
689 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
690 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
691 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
692 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
693 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
694 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
695
696 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
697 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
698 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
699 entry_priv->desc_dma);
700 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
701
702 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
703 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
704 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
705 entry_priv->desc_dma);
706 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
707
708 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
709 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
710 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
711 entry_priv->desc_dma);
712 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
713
714 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
715 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
716 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
717 entry_priv->desc_dma);
718 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
719
720 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
721 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
722 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
723 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
724
725 entry_priv = rt2x00dev->rx->entries[0].priv_data;
726 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
727 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
728 entry_priv->desc_dma);
729 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
730
731 return 0;
732 }
733
734 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
735 {
736 u32 reg;
737
738 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
739 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
740 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
741 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
742
743 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
744 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
745 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
746 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
747 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
748
749 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
750 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
751 (rt2x00dev->rx->data_size / 128));
752 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
753
754 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
755 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
756 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
757 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
758 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
759 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
760 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
761 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
762 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
763 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
764
765 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
766
767 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
768 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
769 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
770 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
771 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
772 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
773
774 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
775 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
776 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
777 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
778 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
779 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
780 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
781 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
782
783 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
784
785 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
786 return -EBUSY;
787
788 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
789 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
790
791 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
792 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
793 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
794
795 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
796 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
797 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
798 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
799 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
800 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
801
802 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
803 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
804 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
805 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
806 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
807
808 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
809 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
810 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
811 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
812
813 /*
814 * We must clear the FCS and FIFO error count.
815 * These registers are cleared on read,
816 * so we may pass a useless variable to store the value.
817 */
818 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
819 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
820
821 return 0;
822 }
823
824 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
825 {
826 unsigned int i;
827 u8 value;
828
829 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
830 rt2400pci_bbp_read(rt2x00dev, 0, &value);
831 if ((value != 0xff) && (value != 0x00))
832 return 0;
833 udelay(REGISTER_BUSY_DELAY);
834 }
835
836 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
837 return -EACCES;
838 }
839
840 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
841 {
842 unsigned int i;
843 u16 eeprom;
844 u8 reg_id;
845 u8 value;
846
847 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
848 return -EACCES;
849
850 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
851 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
852 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
853 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
854 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
855 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
856 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
857 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
858 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
859 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
860 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
861 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
862 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
863 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
864
865 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
866 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
867
868 if (eeprom != 0xffff && eeprom != 0x0000) {
869 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
870 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
871 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
872 }
873 }
874
875 return 0;
876 }
877
878 /*
879 * Device state switch handlers.
880 */
881 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
882 enum dev_state state)
883 {
884 u32 reg;
885
886 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
887 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
888 (state == STATE_RADIO_RX_OFF) ||
889 (state == STATE_RADIO_RX_OFF_LINK));
890 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
891 }
892
893 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
894 enum dev_state state)
895 {
896 int mask = (state == STATE_RADIO_IRQ_OFF) ||
897 (state == STATE_RADIO_IRQ_OFF_ISR);
898 u32 reg;
899
900 /*
901 * When interrupts are being enabled, the interrupt registers
902 * should clear the register to assure a clean state.
903 */
904 if (state == STATE_RADIO_IRQ_ON) {
905 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
906 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
907 }
908
909 /*
910 * Only toggle the interrupts bits we are going to use.
911 * Non-checked interrupt bits are disabled by default.
912 */
913 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
914 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
915 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
916 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
917 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
918 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
919 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
920 }
921
922 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
923 {
924 /*
925 * Initialize all registers.
926 */
927 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
928 rt2400pci_init_registers(rt2x00dev) ||
929 rt2400pci_init_bbp(rt2x00dev)))
930 return -EIO;
931
932 return 0;
933 }
934
935 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
936 {
937 /*
938 * Disable power
939 */
940 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
941 }
942
943 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
944 enum dev_state state)
945 {
946 u32 reg, reg2;
947 unsigned int i;
948 char put_to_sleep;
949 char bbp_state;
950 char rf_state;
951
952 put_to_sleep = (state != STATE_AWAKE);
953
954 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
955 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
956 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
957 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
958 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
959 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
960
961 /*
962 * Device is not guaranteed to be in the requested state yet.
963 * We must wait until the register indicates that the
964 * device has entered the correct state.
965 */
966 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
967 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
968 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
969 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
970 if (bbp_state == state && rf_state == state)
971 return 0;
972 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
973 msleep(10);
974 }
975
976 return -EBUSY;
977 }
978
979 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
980 enum dev_state state)
981 {
982 int retval = 0;
983
984 switch (state) {
985 case STATE_RADIO_ON:
986 retval = rt2400pci_enable_radio(rt2x00dev);
987 break;
988 case STATE_RADIO_OFF:
989 rt2400pci_disable_radio(rt2x00dev);
990 break;
991 case STATE_RADIO_RX_ON:
992 case STATE_RADIO_RX_ON_LINK:
993 case STATE_RADIO_RX_OFF:
994 case STATE_RADIO_RX_OFF_LINK:
995 rt2400pci_toggle_rx(rt2x00dev, state);
996 break;
997 case STATE_RADIO_IRQ_ON:
998 case STATE_RADIO_IRQ_ON_ISR:
999 case STATE_RADIO_IRQ_OFF:
1000 case STATE_RADIO_IRQ_OFF_ISR:
1001 rt2400pci_toggle_irq(rt2x00dev, state);
1002 break;
1003 case STATE_DEEP_SLEEP:
1004 case STATE_SLEEP:
1005 case STATE_STANDBY:
1006 case STATE_AWAKE:
1007 retval = rt2400pci_set_state(rt2x00dev, state);
1008 break;
1009 default:
1010 retval = -ENOTSUPP;
1011 break;
1012 }
1013
1014 if (unlikely(retval))
1015 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1016 state, retval);
1017
1018 return retval;
1019 }
1020
1021 /*
1022 * TX descriptor initialization
1023 */
1024 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1025 struct txentry_desc *txdesc)
1026 {
1027 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1028 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1029 __le32 *txd = entry_priv->desc;
1030 u32 word;
1031
1032 /*
1033 * Start writing the descriptor words.
1034 */
1035 rt2x00_desc_read(txd, 1, &word);
1036 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1037 rt2x00_desc_write(txd, 1, word);
1038
1039 rt2x00_desc_read(txd, 2, &word);
1040 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1041 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1042 rt2x00_desc_write(txd, 2, word);
1043
1044 rt2x00_desc_read(txd, 3, &word);
1045 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1046 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1047 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1048 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1049 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1050 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1051 rt2x00_desc_write(txd, 3, word);
1052
1053 rt2x00_desc_read(txd, 4, &word);
1054 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1055 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1056 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1057 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1058 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1059 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1060 rt2x00_desc_write(txd, 4, word);
1061
1062 /*
1063 * Writing TXD word 0 must the last to prevent a race condition with
1064 * the device, whereby the device may take hold of the TXD before we
1065 * finished updating it.
1066 */
1067 rt2x00_desc_read(txd, 0, &word);
1068 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1069 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1070 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1071 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1072 rt2x00_set_field32(&word, TXD_W0_ACK,
1073 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1074 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1075 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1076 rt2x00_set_field32(&word, TXD_W0_RTS,
1077 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1078 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1079 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1080 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1081 rt2x00_desc_write(txd, 0, word);
1082
1083 /*
1084 * Register descriptor details in skb frame descriptor.
1085 */
1086 skbdesc->desc = txd;
1087 skbdesc->desc_len = TXD_DESC_SIZE;
1088 }
1089
1090 /*
1091 * TX data initialization
1092 */
1093 static void rt2400pci_write_beacon(struct queue_entry *entry,
1094 struct txentry_desc *txdesc)
1095 {
1096 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1097 u32 reg;
1098
1099 /*
1100 * Disable beaconing while we are reloading the beacon data,
1101 * otherwise we might be sending out invalid data.
1102 */
1103 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1104 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1105 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1106
1107 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1108
1109 /*
1110 * Write the TX descriptor for the beacon.
1111 */
1112 rt2400pci_write_tx_desc(entry, txdesc);
1113
1114 /*
1115 * Dump beacon to userspace through debugfs.
1116 */
1117 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1118
1119 /*
1120 * Enable beaconing again.
1121 */
1122 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1123 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1124 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1125 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1126 }
1127
1128 static void rt2400pci_kick_tx_queue(struct data_queue *queue)
1129 {
1130 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1131 u32 reg;
1132
1133 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1134 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
1135 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
1136 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1137 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1138 }
1139
1140 static void rt2400pci_kill_tx_queue(struct data_queue *queue)
1141 {
1142 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1143 u32 reg;
1144
1145 if (queue->qid == QID_BEACON) {
1146 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1147 } else {
1148 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1149 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1150 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1151 }
1152 }
1153
1154 /*
1155 * RX control handlers
1156 */
1157 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1158 struct rxdone_entry_desc *rxdesc)
1159 {
1160 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1161 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1162 u32 word0;
1163 u32 word2;
1164 u32 word3;
1165 u32 word4;
1166 u64 tsf;
1167 u32 rx_low;
1168 u32 rx_high;
1169
1170 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1171 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1172 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1173 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1174
1175 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1176 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1177 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1178 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1179
1180 /*
1181 * We only get the lower 32bits from the timestamp,
1182 * to get the full 64bits we must complement it with
1183 * the timestamp from get_tsf().
1184 * Note that when a wraparound of the lower 32bits
1185 * has occurred between the frame arrival and the get_tsf()
1186 * call, we must decrease the higher 32bits with 1 to get
1187 * to correct value.
1188 */
1189 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1190 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1191 rx_high = upper_32_bits(tsf);
1192
1193 if ((u32)tsf <= rx_low)
1194 rx_high--;
1195
1196 /*
1197 * Obtain the status about this packet.
1198 * The signal is the PLCP value, and needs to be stripped
1199 * of the preamble bit (0x08).
1200 */
1201 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1202 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1203 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1204 entry->queue->rt2x00dev->rssi_offset;
1205 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1206
1207 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1208 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1209 rxdesc->dev_flags |= RXDONE_MY_BSS;
1210 }
1211
1212 /*
1213 * Interrupt functions.
1214 */
1215 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1216 const enum data_queue_qid queue_idx)
1217 {
1218 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1219 struct queue_entry_priv_pci *entry_priv;
1220 struct queue_entry *entry;
1221 struct txdone_entry_desc txdesc;
1222 u32 word;
1223
1224 while (!rt2x00queue_empty(queue)) {
1225 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1226 entry_priv = entry->priv_data;
1227 rt2x00_desc_read(entry_priv->desc, 0, &word);
1228
1229 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1230 !rt2x00_get_field32(word, TXD_W0_VALID))
1231 break;
1232
1233 /*
1234 * Obtain the status about this packet.
1235 */
1236 txdesc.flags = 0;
1237 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1238 case 0: /* Success */
1239 case 1: /* Success with retry */
1240 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1241 break;
1242 case 2: /* Failure, excessive retries */
1243 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1244 /* Don't break, this is a failed frame! */
1245 default: /* Failure */
1246 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1247 }
1248 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1249
1250 rt2x00lib_txdone(entry, &txdesc);
1251 }
1252 }
1253
1254 static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1255 {
1256 struct rt2x00_dev *rt2x00dev = dev_instance;
1257 u32 reg = rt2x00dev->irqvalue[0];
1258
1259 /*
1260 * Handle interrupts, walk through all bits
1261 * and run the tasks, the bits are checked in order of
1262 * priority.
1263 */
1264
1265 /*
1266 * 1 - Beacon timer expired interrupt.
1267 */
1268 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1269 rt2x00lib_beacondone(rt2x00dev);
1270
1271 /*
1272 * 2 - Rx ring done interrupt.
1273 */
1274 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1275 rt2x00pci_rxdone(rt2x00dev);
1276
1277 /*
1278 * 3 - Atim ring transmit done interrupt.
1279 */
1280 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1281 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1282
1283 /*
1284 * 4 - Priority ring transmit done interrupt.
1285 */
1286 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1287 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1288
1289 /*
1290 * 5 - Tx ring transmit done interrupt.
1291 */
1292 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1293 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1294
1295 /* Enable interrupts again. */
1296 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1297 STATE_RADIO_IRQ_ON_ISR);
1298 return IRQ_HANDLED;
1299 }
1300
1301 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1302 {
1303 struct rt2x00_dev *rt2x00dev = dev_instance;
1304 u32 reg;
1305
1306 /*
1307 * Get the interrupt sources & saved to local variable.
1308 * Write register value back to clear pending interrupts.
1309 */
1310 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1311 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1312
1313 if (!reg)
1314 return IRQ_NONE;
1315
1316 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1317 return IRQ_HANDLED;
1318
1319 /* Store irqvalues for use in the interrupt thread. */
1320 rt2x00dev->irqvalue[0] = reg;
1321
1322 /* Disable interrupts, will be enabled again in the interrupt thread. */
1323 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1324 STATE_RADIO_IRQ_OFF_ISR);
1325
1326 return IRQ_WAKE_THREAD;
1327 }
1328
1329 /*
1330 * Device probe functions.
1331 */
1332 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1333 {
1334 struct eeprom_93cx6 eeprom;
1335 u32 reg;
1336 u16 word;
1337 u8 *mac;
1338
1339 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1340
1341 eeprom.data = rt2x00dev;
1342 eeprom.register_read = rt2400pci_eepromregister_read;
1343 eeprom.register_write = rt2400pci_eepromregister_write;
1344 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1345 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1346 eeprom.reg_data_in = 0;
1347 eeprom.reg_data_out = 0;
1348 eeprom.reg_data_clock = 0;
1349 eeprom.reg_chip_select = 0;
1350
1351 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1352 EEPROM_SIZE / sizeof(u16));
1353
1354 /*
1355 * Start validation of the data that has been read.
1356 */
1357 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1358 if (!is_valid_ether_addr(mac)) {
1359 random_ether_addr(mac);
1360 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1361 }
1362
1363 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1364 if (word == 0xffff) {
1365 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1366 return -EINVAL;
1367 }
1368
1369 return 0;
1370 }
1371
1372 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1373 {
1374 u32 reg;
1375 u16 value;
1376 u16 eeprom;
1377
1378 /*
1379 * Read EEPROM word for configuration.
1380 */
1381 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1382
1383 /*
1384 * Identify RF chipset.
1385 */
1386 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1387 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1388 rt2x00_set_chip(rt2x00dev, RT2460, value,
1389 rt2x00_get_field32(reg, CSR0_REVISION));
1390
1391 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1392 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1393 return -ENODEV;
1394 }
1395
1396 /*
1397 * Identify default antenna configuration.
1398 */
1399 rt2x00dev->default_ant.tx =
1400 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1401 rt2x00dev->default_ant.rx =
1402 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1403
1404 /*
1405 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1406 * I am not 100% sure about this, but the legacy drivers do not
1407 * indicate antenna swapping in software is required when
1408 * diversity is enabled.
1409 */
1410 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1411 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1412 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1413 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1414
1415 /*
1416 * Store led mode, for correct led behaviour.
1417 */
1418 #ifdef CONFIG_RT2X00_LIB_LEDS
1419 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1420
1421 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1422 if (value == LED_MODE_TXRX_ACTIVITY ||
1423 value == LED_MODE_DEFAULT ||
1424 value == LED_MODE_ASUS)
1425 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1426 LED_TYPE_ACTIVITY);
1427 #endif /* CONFIG_RT2X00_LIB_LEDS */
1428
1429 /*
1430 * Detect if this device has an hardware controlled radio.
1431 */
1432 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1433 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1434
1435 /*
1436 * Check if the BBP tuning should be enabled.
1437 */
1438 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1439 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * RF value list for RF2420 & RF2421
1446 * Supports: 2.4 GHz
1447 */
1448 static const struct rf_channel rf_vals_b[] = {
1449 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1450 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1451 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1452 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1453 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1454 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1455 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1456 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1457 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1458 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1459 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1460 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1461 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1462 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1463 };
1464
1465 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1466 {
1467 struct hw_mode_spec *spec = &rt2x00dev->spec;
1468 struct channel_info *info;
1469 char *tx_power;
1470 unsigned int i;
1471
1472 /*
1473 * Initialize all hw fields.
1474 */
1475 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1476 IEEE80211_HW_SIGNAL_DBM |
1477 IEEE80211_HW_SUPPORTS_PS |
1478 IEEE80211_HW_PS_NULLFUNC_STACK;
1479
1480 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1481 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1482 rt2x00_eeprom_addr(rt2x00dev,
1483 EEPROM_MAC_ADDR_0));
1484
1485 /*
1486 * Initialize hw_mode information.
1487 */
1488 spec->supported_bands = SUPPORT_BAND_2GHZ;
1489 spec->supported_rates = SUPPORT_RATE_CCK;
1490
1491 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1492 spec->channels = rf_vals_b;
1493
1494 /*
1495 * Create channel information array
1496 */
1497 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1498 if (!info)
1499 return -ENOMEM;
1500
1501 spec->channels_info = info;
1502
1503 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1504 for (i = 0; i < 14; i++) {
1505 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1506 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1507 }
1508
1509 return 0;
1510 }
1511
1512 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1513 {
1514 int retval;
1515
1516 /*
1517 * Allocate eeprom data.
1518 */
1519 retval = rt2400pci_validate_eeprom(rt2x00dev);
1520 if (retval)
1521 return retval;
1522
1523 retval = rt2400pci_init_eeprom(rt2x00dev);
1524 if (retval)
1525 return retval;
1526
1527 /*
1528 * Initialize hw specifications.
1529 */
1530 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1531 if (retval)
1532 return retval;
1533
1534 /*
1535 * This device requires the atim queue and DMA-mapped skbs.
1536 */
1537 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1538 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1539
1540 /*
1541 * Set the rssi offset.
1542 */
1543 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1544
1545 return 0;
1546 }
1547
1548 /*
1549 * IEEE80211 stack callback functions.
1550 */
1551 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1552 const struct ieee80211_tx_queue_params *params)
1553 {
1554 struct rt2x00_dev *rt2x00dev = hw->priv;
1555
1556 /*
1557 * We don't support variating cw_min and cw_max variables
1558 * per queue. So by default we only configure the TX queue,
1559 * and ignore all other configurations.
1560 */
1561 if (queue != 0)
1562 return -EINVAL;
1563
1564 if (rt2x00mac_conf_tx(hw, queue, params))
1565 return -EINVAL;
1566
1567 /*
1568 * Write configuration to register.
1569 */
1570 rt2400pci_config_cw(rt2x00dev,
1571 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1572
1573 return 0;
1574 }
1575
1576 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1577 {
1578 struct rt2x00_dev *rt2x00dev = hw->priv;
1579 u64 tsf;
1580 u32 reg;
1581
1582 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1583 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1584 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1585 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1586
1587 return tsf;
1588 }
1589
1590 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1591 {
1592 struct rt2x00_dev *rt2x00dev = hw->priv;
1593 u32 reg;
1594
1595 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1596 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1597 }
1598
1599 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1600 .tx = rt2x00mac_tx,
1601 .start = rt2x00mac_start,
1602 .stop = rt2x00mac_stop,
1603 .add_interface = rt2x00mac_add_interface,
1604 .remove_interface = rt2x00mac_remove_interface,
1605 .config = rt2x00mac_config,
1606 .configure_filter = rt2x00mac_configure_filter,
1607 .sw_scan_start = rt2x00mac_sw_scan_start,
1608 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1609 .get_stats = rt2x00mac_get_stats,
1610 .bss_info_changed = rt2x00mac_bss_info_changed,
1611 .conf_tx = rt2400pci_conf_tx,
1612 .get_tsf = rt2400pci_get_tsf,
1613 .tx_last_beacon = rt2400pci_tx_last_beacon,
1614 .rfkill_poll = rt2x00mac_rfkill_poll,
1615 };
1616
1617 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1618 .irq_handler = rt2400pci_interrupt,
1619 .irq_handler_thread = rt2400pci_interrupt_thread,
1620 .probe_hw = rt2400pci_probe_hw,
1621 .initialize = rt2x00pci_initialize,
1622 .uninitialize = rt2x00pci_uninitialize,
1623 .get_entry_state = rt2400pci_get_entry_state,
1624 .clear_entry = rt2400pci_clear_entry,
1625 .set_device_state = rt2400pci_set_device_state,
1626 .rfkill_poll = rt2400pci_rfkill_poll,
1627 .link_stats = rt2400pci_link_stats,
1628 .reset_tuner = rt2400pci_reset_tuner,
1629 .link_tuner = rt2400pci_link_tuner,
1630 .write_tx_desc = rt2400pci_write_tx_desc,
1631 .write_beacon = rt2400pci_write_beacon,
1632 .kick_tx_queue = rt2400pci_kick_tx_queue,
1633 .kill_tx_queue = rt2400pci_kill_tx_queue,
1634 .fill_rxdone = rt2400pci_fill_rxdone,
1635 .config_filter = rt2400pci_config_filter,
1636 .config_intf = rt2400pci_config_intf,
1637 .config_erp = rt2400pci_config_erp,
1638 .config_ant = rt2400pci_config_ant,
1639 .config = rt2400pci_config,
1640 };
1641
1642 static const struct data_queue_desc rt2400pci_queue_rx = {
1643 .entry_num = RX_ENTRIES,
1644 .data_size = DATA_FRAME_SIZE,
1645 .desc_size = RXD_DESC_SIZE,
1646 .priv_size = sizeof(struct queue_entry_priv_pci),
1647 };
1648
1649 static const struct data_queue_desc rt2400pci_queue_tx = {
1650 .entry_num = TX_ENTRIES,
1651 .data_size = DATA_FRAME_SIZE,
1652 .desc_size = TXD_DESC_SIZE,
1653 .priv_size = sizeof(struct queue_entry_priv_pci),
1654 };
1655
1656 static const struct data_queue_desc rt2400pci_queue_bcn = {
1657 .entry_num = BEACON_ENTRIES,
1658 .data_size = MGMT_FRAME_SIZE,
1659 .desc_size = TXD_DESC_SIZE,
1660 .priv_size = sizeof(struct queue_entry_priv_pci),
1661 };
1662
1663 static const struct data_queue_desc rt2400pci_queue_atim = {
1664 .entry_num = ATIM_ENTRIES,
1665 .data_size = DATA_FRAME_SIZE,
1666 .desc_size = TXD_DESC_SIZE,
1667 .priv_size = sizeof(struct queue_entry_priv_pci),
1668 };
1669
1670 static const struct rt2x00_ops rt2400pci_ops = {
1671 .name = KBUILD_MODNAME,
1672 .max_sta_intf = 1,
1673 .max_ap_intf = 1,
1674 .eeprom_size = EEPROM_SIZE,
1675 .rf_size = RF_SIZE,
1676 .tx_queues = NUM_TX_QUEUES,
1677 .extra_tx_headroom = 0,
1678 .rx = &rt2400pci_queue_rx,
1679 .tx = &rt2400pci_queue_tx,
1680 .bcn = &rt2400pci_queue_bcn,
1681 .atim = &rt2400pci_queue_atim,
1682 .lib = &rt2400pci_rt2x00_ops,
1683 .hw = &rt2400pci_mac80211_ops,
1684 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1685 .debugfs = &rt2400pci_rt2x00debug,
1686 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1687 };
1688
1689 /*
1690 * RT2400pci module information.
1691 */
1692 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1693 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1694 { 0, }
1695 };
1696
1697 MODULE_AUTHOR(DRV_PROJECT);
1698 MODULE_VERSION(DRV_VERSION);
1699 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1700 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1701 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1702 MODULE_LICENSE("GPL");
1703
1704 static struct pci_driver rt2400pci_driver = {
1705 .name = KBUILD_MODNAME,
1706 .id_table = rt2400pci_device_table,
1707 .probe = rt2x00pci_probe,
1708 .remove = __devexit_p(rt2x00pci_remove),
1709 .suspend = rt2x00pci_suspend,
1710 .resume = rt2x00pci_resume,
1711 };
1712
1713 static int __init rt2400pci_init(void)
1714 {
1715 return pci_register_driver(&rt2400pci_driver);
1716 }
1717
1718 static void __exit rt2400pci_exit(void)
1719 {
1720 pci_unregister_driver(&rt2400pci_driver);
1721 }
1722
1723 module_init(rt2400pci_init);
1724 module_exit(rt2400pci_exit);