]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/rt2x00/rt2500pci.c
rt2x00: Determine MY_BSS from descriptor
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
95 {
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
132 {
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
195 {
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
201 {
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 /*
247 * Configuration handlers.
248 */
249 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
250 __le32 *mac)
251 {
252 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253 (2 * sizeof(__le32)));
254 }
255
256 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
257 __le32 *bssid)
258 {
259 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260 (2 * sizeof(__le32)));
261 }
262
263 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
264 const int tsf_sync)
265 {
266 u32 reg;
267
268 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
269
270 /*
271 * Enable beacon config
272 */
273 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
274 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
275 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
276 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
277 rt2x00lib_get_ring(rt2x00dev,
278 IEEE80211_TX_QUEUE_BEACON)
279 ->tx_params.cw_min);
280 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
281
282 /*
283 * Enable synchronisation.
284 */
285 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
286 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
287 rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
288 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
289 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
290 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
291 }
292
293 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
294 const int short_preamble,
295 const int ack_timeout,
296 const int ack_consume_time)
297 {
298 int preamble_mask;
299 u32 reg;
300
301 /*
302 * When short preamble is enabled, we should set bit 0x08
303 */
304 preamble_mask = short_preamble << 3;
305
306 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
307 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
308 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
309 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
310
311 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
312 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
313 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
314 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
315 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
316
317 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
318 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
319 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
320 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
321 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
322
323 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
324 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
325 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
326 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
327 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
328
329 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
330 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
331 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
332 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
333 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
334 }
335
336 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
337 const int basic_rate_mask)
338 {
339 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
340 }
341
342 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
343 struct rf_channel *rf, const int txpower)
344 {
345 u8 r70;
346
347 /*
348 * Set TXpower.
349 */
350 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
351
352 /*
353 * Switch on tuning bits.
354 * For RT2523 devices we do not need to update the R1 register.
355 */
356 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
357 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
358 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
359
360 /*
361 * For RT2525 we should first set the channel to half band higher.
362 */
363 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
364 static const u32 vals[] = {
365 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
366 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
367 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
368 0x00080d2e, 0x00080d3a
369 };
370
371 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
372 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
373 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
374 if (rf->rf4)
375 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
376 }
377
378 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
379 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
380 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
381 if (rf->rf4)
382 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
383
384 /*
385 * Channel 14 requires the Japan filter bit to be set.
386 */
387 r70 = 0x46;
388 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
389 rt2500pci_bbp_write(rt2x00dev, 70, r70);
390
391 msleep(1);
392
393 /*
394 * Switch off tuning bits.
395 * For RT2523 devices we do not need to update the R1 register.
396 */
397 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
398 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
399 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
400 }
401
402 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
403 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
404
405 /*
406 * Clear false CRC during channel switch.
407 */
408 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
409 }
410
411 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
412 const int txpower)
413 {
414 u32 rf3;
415
416 rt2x00_rf_read(rt2x00dev, 3, &rf3);
417 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
418 rt2500pci_rf_write(rt2x00dev, 3, rf3);
419 }
420
421 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
422 struct antenna_setup *ant)
423 {
424 u32 reg;
425 u8 r14;
426 u8 r2;
427
428 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
429 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
430 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
431
432 /*
433 * Configure the TX antenna.
434 */
435 switch (ant->tx) {
436 case ANTENNA_A:
437 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
438 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
439 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
440 break;
441 case ANTENNA_HW_DIVERSITY:
442 case ANTENNA_SW_DIVERSITY:
443 /*
444 * NOTE: We should never come here because rt2x00lib is
445 * supposed to catch this and send us the correct antenna
446 * explicitely. However we are nog going to bug about this.
447 * Instead, just default to antenna B.
448 */
449 case ANTENNA_B:
450 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
451 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
452 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
453 break;
454 }
455
456 /*
457 * Configure the RX antenna.
458 */
459 switch (ant->rx) {
460 case ANTENNA_A:
461 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
462 break;
463 case ANTENNA_HW_DIVERSITY:
464 case ANTENNA_SW_DIVERSITY:
465 /*
466 * NOTE: We should never come here because rt2x00lib is
467 * supposed to catch this and send us the correct antenna
468 * explicitely. However we are nog going to bug about this.
469 * Instead, just default to antenna B.
470 */
471 case ANTENNA_B:
472 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
473 break;
474 }
475
476 /*
477 * RT2525E and RT5222 need to flip TX I/Q
478 */
479 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
480 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
481 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
482 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
483 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
484
485 /*
486 * RT2525E does not need RX I/Q Flip.
487 */
488 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
489 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
490 } else {
491 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
492 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
493 }
494
495 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
496 rt2500pci_bbp_write(rt2x00dev, 14, r14);
497 rt2500pci_bbp_write(rt2x00dev, 2, r2);
498 }
499
500 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00lib_conf *libconf)
502 {
503 u32 reg;
504
505 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
506 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
507 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
508
509 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
510 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
511 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
512 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
513
514 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
515 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
516 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
517 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
518
519 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
520 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
521 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
522 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
523
524 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
525 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
526 libconf->conf->beacon_int * 16);
527 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
528 libconf->conf->beacon_int * 16);
529 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
530 }
531
532 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
533 const unsigned int flags,
534 struct rt2x00lib_conf *libconf)
535 {
536 if (flags & CONFIG_UPDATE_PHYMODE)
537 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
538 if (flags & CONFIG_UPDATE_CHANNEL)
539 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
540 libconf->conf->power_level);
541 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
542 rt2500pci_config_txpower(rt2x00dev,
543 libconf->conf->power_level);
544 if (flags & CONFIG_UPDATE_ANTENNA)
545 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
546 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
547 rt2500pci_config_duration(rt2x00dev, libconf);
548 }
549
550 /*
551 * LED functions.
552 */
553 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
554 {
555 u32 reg;
556
557 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
558
559 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
560 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
561 rt2x00_set_field32(&reg, LEDCSR_LINK,
562 (rt2x00dev->led_mode != LED_MODE_ASUS));
563 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
564 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
565 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
566 }
567
568 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
569 {
570 u32 reg;
571
572 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
573 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
574 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
575 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
576 }
577
578 /*
579 * Link tuning
580 */
581 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
583 {
584 u32 reg;
585
586 /*
587 * Update FCS error count from register.
588 */
589 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
590 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
591
592 /*
593 * Update False CCA count from register.
594 */
595 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
596 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
597 }
598
599 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
600 {
601 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
602 rt2x00dev->link.vgc_level = 0x48;
603 }
604
605 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
606 {
607 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
608 u8 r17;
609
610 /*
611 * To prevent collisions with MAC ASIC on chipsets
612 * up to version C the link tuning should halt after 20
613 * seconds.
614 */
615 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
616 rt2x00dev->link.count > 20)
617 return;
618
619 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
620
621 /*
622 * Chipset versions C and lower should directly continue
623 * to the dynamic CCA tuning.
624 */
625 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
626 goto dynamic_cca_tune;
627
628 /*
629 * A too low RSSI will cause too much false CCA which will
630 * then corrupt the R17 tuning. To remidy this the tuning should
631 * be stopped (While making sure the R17 value will not exceed limits)
632 */
633 if (rssi < -80 && rt2x00dev->link.count > 20) {
634 if (r17 >= 0x41) {
635 r17 = rt2x00dev->link.vgc_level;
636 rt2500pci_bbp_write(rt2x00dev, 17, r17);
637 }
638 return;
639 }
640
641 /*
642 * Special big-R17 for short distance
643 */
644 if (rssi >= -58) {
645 if (r17 != 0x50)
646 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
647 return;
648 }
649
650 /*
651 * Special mid-R17 for middle distance
652 */
653 if (rssi >= -74) {
654 if (r17 != 0x41)
655 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
656 return;
657 }
658
659 /*
660 * Leave short or middle distance condition, restore r17
661 * to the dynamic tuning range.
662 */
663 if (r17 >= 0x41) {
664 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
665 return;
666 }
667
668 dynamic_cca_tune:
669
670 /*
671 * R17 is inside the dynamic tuning range,
672 * start tuning the link based on the false cca counter.
673 */
674 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
675 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
676 rt2x00dev->link.vgc_level = r17;
677 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
678 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
679 rt2x00dev->link.vgc_level = r17;
680 }
681 }
682
683 /*
684 * Initialization functions.
685 */
686 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
687 {
688 struct data_ring *ring = rt2x00dev->rx;
689 __le32 *rxd;
690 unsigned int i;
691 u32 word;
692
693 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
694
695 for (i = 0; i < ring->stats.limit; i++) {
696 rxd = ring->entry[i].priv;
697
698 rt2x00_desc_read(rxd, 1, &word);
699 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
700 ring->entry[i].data_dma);
701 rt2x00_desc_write(rxd, 1, word);
702
703 rt2x00_desc_read(rxd, 0, &word);
704 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
705 rt2x00_desc_write(rxd, 0, word);
706 }
707
708 rt2x00_ring_index_clear(rt2x00dev->rx);
709 }
710
711 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
712 {
713 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
714 __le32 *txd;
715 unsigned int i;
716 u32 word;
717
718 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
719
720 for (i = 0; i < ring->stats.limit; i++) {
721 txd = ring->entry[i].priv;
722
723 rt2x00_desc_read(txd, 1, &word);
724 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
725 ring->entry[i].data_dma);
726 rt2x00_desc_write(txd, 1, word);
727
728 rt2x00_desc_read(txd, 0, &word);
729 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
730 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
731 rt2x00_desc_write(txd, 0, word);
732 }
733
734 rt2x00_ring_index_clear(ring);
735 }
736
737 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
738 {
739 u32 reg;
740
741 /*
742 * Initialize rings.
743 */
744 rt2500pci_init_rxring(rt2x00dev);
745 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
746 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
747 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
748 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
749
750 /*
751 * Initialize registers.
752 */
753 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
754 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
755 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
756 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
757 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
758 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
759 rt2x00dev->bcn[1].stats.limit);
760 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
761 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
762 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
763
764 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
765 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
766 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
767 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
768
769 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
770 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
771 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
772 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
773
774 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
775 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
776 rt2x00dev->bcn[1].data_dma);
777 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
778
779 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
780 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
781 rt2x00dev->bcn[0].data_dma);
782 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
783
784 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
785 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
786 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
787 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
788
789 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
790 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
791 rt2x00dev->rx->data_dma);
792 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
793
794 return 0;
795 }
796
797 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
798 {
799 u32 reg;
800
801 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
802 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
803 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
804 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
805
806 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
807 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
808 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
809 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
810 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
811
812 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
813 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
814 rt2x00dev->rx->data_size / 128);
815 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
816
817 /*
818 * Always use CWmin and CWmax set in descriptor.
819 */
820 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
821 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
822 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
823
824 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
825
826 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
827 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
828 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
829 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
830 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
831 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
832 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
833 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
834 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
835 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
836
837 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
838 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
839 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
840 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
841 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
842 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
843
844 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
845 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
846 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
847 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
848 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
849 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
850
851 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
852 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
853 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
854 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
855 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
856 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
857
858 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
859 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
860 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
861 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
862 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
863 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
864 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
865 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
866 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
867 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
868
869 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
870 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
871 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
872 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
873 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
874 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
875 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
876 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
877 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
878
879 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
880
881 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
882 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
883
884 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
885 return -EBUSY;
886
887 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
888 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
889
890 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
891 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
892 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
893
894 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
895 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
896 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
897 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
898 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
899 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
900 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
901 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
902
903 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
904
905 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
906
907 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
908 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
909 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
910 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
911 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
912
913 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
914 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
915 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
916 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
917
918 /*
919 * We must clear the FCS and FIFO error count.
920 * These registers are cleared on read,
921 * so we may pass a useless variable to store the value.
922 */
923 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
924 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
925
926 return 0;
927 }
928
929 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
930 {
931 unsigned int i;
932 u16 eeprom;
933 u8 reg_id;
934 u8 value;
935
936 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
937 rt2500pci_bbp_read(rt2x00dev, 0, &value);
938 if ((value != 0xff) && (value != 0x00))
939 goto continue_csr_init;
940 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
941 udelay(REGISTER_BUSY_DELAY);
942 }
943
944 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
945 return -EACCES;
946
947 continue_csr_init:
948 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
949 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
950 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
951 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
952 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
953 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
954 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
955 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
956 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
957 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
958 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
959 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
960 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
961 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
962 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
963 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
964 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
965 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
966 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
967 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
968 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
969 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
970 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
971 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
972 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
973 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
974 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
975 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
976 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
977 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
978
979 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
980 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
981 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
982
983 if (eeprom != 0xffff && eeprom != 0x0000) {
984 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
985 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
986 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
987 reg_id, value);
988 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
989 }
990 }
991 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
992
993 return 0;
994 }
995
996 /*
997 * Device state switch handlers.
998 */
999 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1000 enum dev_state state)
1001 {
1002 u32 reg;
1003
1004 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1005 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1006 state == STATE_RADIO_RX_OFF);
1007 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1008 }
1009
1010 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1011 enum dev_state state)
1012 {
1013 int mask = (state == STATE_RADIO_IRQ_OFF);
1014 u32 reg;
1015
1016 /*
1017 * When interrupts are being enabled, the interrupt registers
1018 * should clear the register to assure a clean state.
1019 */
1020 if (state == STATE_RADIO_IRQ_ON) {
1021 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1022 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1023 }
1024
1025 /*
1026 * Only toggle the interrupts bits we are going to use.
1027 * Non-checked interrupt bits are disabled by default.
1028 */
1029 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1030 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1031 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1032 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1033 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1034 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1035 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1036 }
1037
1038 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1039 {
1040 /*
1041 * Initialize all registers.
1042 */
1043 if (rt2500pci_init_rings(rt2x00dev) ||
1044 rt2500pci_init_registers(rt2x00dev) ||
1045 rt2500pci_init_bbp(rt2x00dev)) {
1046 ERROR(rt2x00dev, "Register initialization failed.\n");
1047 return -EIO;
1048 }
1049
1050 /*
1051 * Enable interrupts.
1052 */
1053 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1054
1055 /*
1056 * Enable LED
1057 */
1058 rt2500pci_enable_led(rt2x00dev);
1059
1060 return 0;
1061 }
1062
1063 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1064 {
1065 u32 reg;
1066
1067 /*
1068 * Disable LED
1069 */
1070 rt2500pci_disable_led(rt2x00dev);
1071
1072 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1073
1074 /*
1075 * Disable synchronisation.
1076 */
1077 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1078
1079 /*
1080 * Cancel RX and TX.
1081 */
1082 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1083 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1084 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1085
1086 /*
1087 * Disable interrupts.
1088 */
1089 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1090 }
1091
1092 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1093 enum dev_state state)
1094 {
1095 u32 reg;
1096 unsigned int i;
1097 char put_to_sleep;
1098 char bbp_state;
1099 char rf_state;
1100
1101 put_to_sleep = (state != STATE_AWAKE);
1102
1103 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1104 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1105 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1106 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1107 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1108 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1109
1110 /*
1111 * Device is not guaranteed to be in the requested state yet.
1112 * We must wait until the register indicates that the
1113 * device has entered the correct state.
1114 */
1115 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1116 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1117 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1118 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1119 if (bbp_state == state && rf_state == state)
1120 return 0;
1121 msleep(10);
1122 }
1123
1124 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1125 "current device state: bbp %d and rf %d.\n",
1126 state, bbp_state, rf_state);
1127
1128 return -EBUSY;
1129 }
1130
1131 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1132 enum dev_state state)
1133 {
1134 int retval = 0;
1135
1136 switch (state) {
1137 case STATE_RADIO_ON:
1138 retval = rt2500pci_enable_radio(rt2x00dev);
1139 break;
1140 case STATE_RADIO_OFF:
1141 rt2500pci_disable_radio(rt2x00dev);
1142 break;
1143 case STATE_RADIO_RX_ON:
1144 case STATE_RADIO_RX_OFF:
1145 rt2500pci_toggle_rx(rt2x00dev, state);
1146 break;
1147 case STATE_DEEP_SLEEP:
1148 case STATE_SLEEP:
1149 case STATE_STANDBY:
1150 case STATE_AWAKE:
1151 retval = rt2500pci_set_state(rt2x00dev, state);
1152 break;
1153 default:
1154 retval = -ENOTSUPP;
1155 break;
1156 }
1157
1158 return retval;
1159 }
1160
1161 /*
1162 * TX descriptor initialization
1163 */
1164 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1165 struct sk_buff *skb,
1166 struct txdata_entry_desc *desc,
1167 struct ieee80211_tx_control *control)
1168 {
1169 struct skb_desc *skbdesc = get_skb_desc(skb);
1170 __le32 *txd = skbdesc->desc;
1171 u32 word;
1172
1173 /*
1174 * Start writing the descriptor words.
1175 */
1176 rt2x00_desc_read(txd, 2, &word);
1177 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1178 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1179 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1180 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1181 rt2x00_desc_write(txd, 2, word);
1182
1183 rt2x00_desc_read(txd, 3, &word);
1184 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1185 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1186 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1187 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1188 rt2x00_desc_write(txd, 3, word);
1189
1190 rt2x00_desc_read(txd, 10, &word);
1191 rt2x00_set_field32(&word, TXD_W10_RTS,
1192 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1193 rt2x00_desc_write(txd, 10, word);
1194
1195 rt2x00_desc_read(txd, 0, &word);
1196 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1197 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1198 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1199 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1200 rt2x00_set_field32(&word, TXD_W0_ACK,
1201 test_bit(ENTRY_TXD_ACK, &desc->flags));
1202 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1203 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1204 rt2x00_set_field32(&word, TXD_W0_OFDM,
1205 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1206 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1207 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1208 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1209 !!(control->flags &
1210 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1211 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1212 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1213 rt2x00_desc_write(txd, 0, word);
1214 }
1215
1216 /*
1217 * TX data initialization
1218 */
1219 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1220 unsigned int queue)
1221 {
1222 u32 reg;
1223
1224 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1225 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1226 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1227 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1228 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1229 }
1230 return;
1231 }
1232
1233 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1234 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1235 (queue == IEEE80211_TX_QUEUE_DATA0));
1236 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1237 (queue == IEEE80211_TX_QUEUE_DATA1));
1238 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1239 (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1240 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1241 }
1242
1243 /*
1244 * RX control handlers
1245 */
1246 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1247 struct rxdata_entry_desc *desc)
1248 {
1249 __le32 *rxd = entry->priv;
1250 u32 word0;
1251 u32 word2;
1252
1253 rt2x00_desc_read(rxd, 0, &word0);
1254 rt2x00_desc_read(rxd, 2, &word2);
1255
1256 desc->flags = 0;
1257 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1258 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1259 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1260 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1261
1262 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1263 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1264 entry->ring->rt2x00dev->rssi_offset;
1265 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1266 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267 desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1268 }
1269
1270 /*
1271 * Interrupt functions.
1272 */
1273 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1274 {
1275 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1276 struct data_entry *entry;
1277 __le32 *txd;
1278 u32 word;
1279 int tx_status;
1280 int retry;
1281
1282 while (!rt2x00_ring_empty(ring)) {
1283 entry = rt2x00_get_data_entry_done(ring);
1284 txd = entry->priv;
1285 rt2x00_desc_read(txd, 0, &word);
1286
1287 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1288 !rt2x00_get_field32(word, TXD_W0_VALID))
1289 break;
1290
1291 /*
1292 * Obtain the status about this packet.
1293 */
1294 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1295 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1296
1297 rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1298 }
1299 }
1300
1301 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1302 {
1303 struct rt2x00_dev *rt2x00dev = dev_instance;
1304 u32 reg;
1305
1306 /*
1307 * Get the interrupt sources & saved to local variable.
1308 * Write register value back to clear pending interrupts.
1309 */
1310 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1311 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1312
1313 if (!reg)
1314 return IRQ_NONE;
1315
1316 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1317 return IRQ_HANDLED;
1318
1319 /*
1320 * Handle interrupts, walk through all bits
1321 * and run the tasks, the bits are checked in order of
1322 * priority.
1323 */
1324
1325 /*
1326 * 1 - Beacon timer expired interrupt.
1327 */
1328 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1329 rt2x00lib_beacondone(rt2x00dev);
1330
1331 /*
1332 * 2 - Rx ring done interrupt.
1333 */
1334 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1335 rt2x00pci_rxdone(rt2x00dev);
1336
1337 /*
1338 * 3 - Atim ring transmit done interrupt.
1339 */
1340 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1341 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1342
1343 /*
1344 * 4 - Priority ring transmit done interrupt.
1345 */
1346 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1347 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1348
1349 /*
1350 * 5 - Tx ring transmit done interrupt.
1351 */
1352 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1353 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1354
1355 return IRQ_HANDLED;
1356 }
1357
1358 /*
1359 * Device probe functions.
1360 */
1361 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1362 {
1363 struct eeprom_93cx6 eeprom;
1364 u32 reg;
1365 u16 word;
1366 u8 *mac;
1367
1368 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1369
1370 eeprom.data = rt2x00dev;
1371 eeprom.register_read = rt2500pci_eepromregister_read;
1372 eeprom.register_write = rt2500pci_eepromregister_write;
1373 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1374 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1375 eeprom.reg_data_in = 0;
1376 eeprom.reg_data_out = 0;
1377 eeprom.reg_data_clock = 0;
1378 eeprom.reg_chip_select = 0;
1379
1380 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1381 EEPROM_SIZE / sizeof(u16));
1382
1383 /*
1384 * Start validation of the data that has been read.
1385 */
1386 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1387 if (!is_valid_ether_addr(mac)) {
1388 DECLARE_MAC_BUF(macbuf);
1389
1390 random_ether_addr(mac);
1391 EEPROM(rt2x00dev, "MAC: %s\n",
1392 print_mac(macbuf, mac));
1393 }
1394
1395 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1396 if (word == 0xffff) {
1397 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1398 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1399 ANTENNA_SW_DIVERSITY);
1400 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1401 ANTENNA_SW_DIVERSITY);
1402 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1403 LED_MODE_DEFAULT);
1404 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1405 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1406 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1407 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1408 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1409 }
1410
1411 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1412 if (word == 0xffff) {
1413 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1414 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1415 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1416 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1417 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1418 }
1419
1420 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1421 if (word == 0xffff) {
1422 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1423 DEFAULT_RSSI_OFFSET);
1424 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1425 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1432 {
1433 u32 reg;
1434 u16 value;
1435 u16 eeprom;
1436
1437 /*
1438 * Read EEPROM word for configuration.
1439 */
1440 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1441
1442 /*
1443 * Identify RF chipset.
1444 */
1445 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1446 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1447 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1448
1449 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1450 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1451 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1452 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1453 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1454 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1455 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1456 return -ENODEV;
1457 }
1458
1459 /*
1460 * Identify default antenna configuration.
1461 */
1462 rt2x00dev->default_ant.tx =
1463 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1464 rt2x00dev->default_ant.rx =
1465 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1466
1467 /*
1468 * Store led mode, for correct led behaviour.
1469 */
1470 rt2x00dev->led_mode =
1471 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1472
1473 /*
1474 * Detect if this device has an hardware controlled radio.
1475 */
1476 #ifdef CONFIG_RT2500PCI_RFKILL
1477 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1478 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1479 #endif /* CONFIG_RT2500PCI_RFKILL */
1480
1481 /*
1482 * Check if the BBP tuning should be enabled.
1483 */
1484 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1485
1486 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1487 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1488
1489 /*
1490 * Read the RSSI <-> dBm offset information.
1491 */
1492 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1493 rt2x00dev->rssi_offset =
1494 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1495
1496 return 0;
1497 }
1498
1499 /*
1500 * RF value list for RF2522
1501 * Supports: 2.4 GHz
1502 */
1503 static const struct rf_channel rf_vals_bg_2522[] = {
1504 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1505 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1506 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1507 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1508 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1509 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1510 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1511 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1512 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1513 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1514 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1515 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1516 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1517 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1518 };
1519
1520 /*
1521 * RF value list for RF2523
1522 * Supports: 2.4 GHz
1523 */
1524 static const struct rf_channel rf_vals_bg_2523[] = {
1525 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1526 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1527 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1528 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1529 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1530 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1531 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1532 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1533 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1534 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1535 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1536 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1537 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1538 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1539 };
1540
1541 /*
1542 * RF value list for RF2524
1543 * Supports: 2.4 GHz
1544 */
1545 static const struct rf_channel rf_vals_bg_2524[] = {
1546 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1547 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1548 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1549 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1550 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1551 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1552 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1553 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1554 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1555 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1556 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1557 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1558 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1559 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1560 };
1561
1562 /*
1563 * RF value list for RF2525
1564 * Supports: 2.4 GHz
1565 */
1566 static const struct rf_channel rf_vals_bg_2525[] = {
1567 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1568 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1569 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1570 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1571 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1572 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1573 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1574 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1575 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1576 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1577 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1578 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1579 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1580 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1581 };
1582
1583 /*
1584 * RF value list for RF2525e
1585 * Supports: 2.4 GHz
1586 */
1587 static const struct rf_channel rf_vals_bg_2525e[] = {
1588 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1589 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1590 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1591 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1592 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1593 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1594 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1595 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1596 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1597 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1598 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1599 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1600 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1601 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1602 };
1603
1604 /*
1605 * RF value list for RF5222
1606 * Supports: 2.4 GHz & 5.2 GHz
1607 */
1608 static const struct rf_channel rf_vals_5222[] = {
1609 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1610 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1611 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1612 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1613 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1614 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1615 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1616 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1617 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1618 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1619 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1620 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1621 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1622 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1623
1624 /* 802.11 UNI / HyperLan 2 */
1625 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1626 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1627 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1628 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1629 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1630 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1631 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1632 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1633
1634 /* 802.11 HyperLan 2 */
1635 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1636 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1637 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1638 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1639 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1640 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1641 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1642 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1643 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1644 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1645
1646 /* 802.11 UNII */
1647 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1648 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1649 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1650 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1651 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1652 };
1653
1654 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1655 {
1656 struct hw_mode_spec *spec = &rt2x00dev->spec;
1657 u8 *txpower;
1658 unsigned int i;
1659
1660 /*
1661 * Initialize all hw fields.
1662 */
1663 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1664 rt2x00dev->hw->extra_tx_headroom = 0;
1665 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1666 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1667 rt2x00dev->hw->queues = 2;
1668
1669 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1670 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1671 rt2x00_eeprom_addr(rt2x00dev,
1672 EEPROM_MAC_ADDR_0));
1673
1674 /*
1675 * Convert tx_power array in eeprom.
1676 */
1677 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1678 for (i = 0; i < 14; i++)
1679 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1680
1681 /*
1682 * Initialize hw_mode information.
1683 */
1684 spec->num_modes = 2;
1685 spec->num_rates = 12;
1686 spec->tx_power_a = NULL;
1687 spec->tx_power_bg = txpower;
1688 spec->tx_power_default = DEFAULT_TXPOWER;
1689
1690 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1691 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1692 spec->channels = rf_vals_bg_2522;
1693 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1694 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1695 spec->channels = rf_vals_bg_2523;
1696 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1697 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1698 spec->channels = rf_vals_bg_2524;
1699 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1700 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1701 spec->channels = rf_vals_bg_2525;
1702 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1703 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1704 spec->channels = rf_vals_bg_2525e;
1705 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1706 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1707 spec->channels = rf_vals_5222;
1708 spec->num_modes = 3;
1709 }
1710 }
1711
1712 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1713 {
1714 int retval;
1715
1716 /*
1717 * Allocate eeprom data.
1718 */
1719 retval = rt2500pci_validate_eeprom(rt2x00dev);
1720 if (retval)
1721 return retval;
1722
1723 retval = rt2500pci_init_eeprom(rt2x00dev);
1724 if (retval)
1725 return retval;
1726
1727 /*
1728 * Initialize hw specifications.
1729 */
1730 rt2500pci_probe_hw_mode(rt2x00dev);
1731
1732 /*
1733 * This device requires the beacon ring
1734 */
1735 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1736
1737 /*
1738 * Set the rssi offset.
1739 */
1740 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * IEEE80211 stack callback functions.
1747 */
1748 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1749 unsigned int changed_flags,
1750 unsigned int *total_flags,
1751 int mc_count,
1752 struct dev_addr_list *mc_list)
1753 {
1754 struct rt2x00_dev *rt2x00dev = hw->priv;
1755 u32 reg;
1756
1757 /*
1758 * Mask off any flags we are going to ignore from
1759 * the total_flags field.
1760 */
1761 *total_flags &=
1762 FIF_ALLMULTI |
1763 FIF_FCSFAIL |
1764 FIF_PLCPFAIL |
1765 FIF_CONTROL |
1766 FIF_OTHER_BSS |
1767 FIF_PROMISC_IN_BSS;
1768
1769 /*
1770 * Apply some rules to the filters:
1771 * - Some filters imply different filters to be set.
1772 * - Some things we can't filter out at all.
1773 */
1774 if (mc_count)
1775 *total_flags |= FIF_ALLMULTI;
1776 if (*total_flags & FIF_OTHER_BSS ||
1777 *total_flags & FIF_PROMISC_IN_BSS)
1778 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1779
1780 /*
1781 * Check if there is any work left for us.
1782 */
1783 if (rt2x00dev->packet_filter == *total_flags)
1784 return;
1785 rt2x00dev->packet_filter = *total_flags;
1786
1787 /*
1788 * Start configuration steps.
1789 * Note that the version error will always be dropped
1790 * and broadcast frames will always be accepted since
1791 * there is no filter for it at this time.
1792 */
1793 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1794 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1795 !(*total_flags & FIF_FCSFAIL));
1796 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1797 !(*total_flags & FIF_PLCPFAIL));
1798 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1799 !(*total_flags & FIF_CONTROL));
1800 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1801 !(*total_flags & FIF_PROMISC_IN_BSS));
1802 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1803 !(*total_flags & FIF_PROMISC_IN_BSS));
1804 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1805 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1806 !(*total_flags & FIF_ALLMULTI));
1807 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1808 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1809 }
1810
1811 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1812 u32 short_retry, u32 long_retry)
1813 {
1814 struct rt2x00_dev *rt2x00dev = hw->priv;
1815 u32 reg;
1816
1817 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1818 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1819 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1820 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1821
1822 return 0;
1823 }
1824
1825 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1826 {
1827 struct rt2x00_dev *rt2x00dev = hw->priv;
1828 u64 tsf;
1829 u32 reg;
1830
1831 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1832 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1833 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1834 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1835
1836 return tsf;
1837 }
1838
1839 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1840 {
1841 struct rt2x00_dev *rt2x00dev = hw->priv;
1842
1843 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1844 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1845 }
1846
1847 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1848 {
1849 struct rt2x00_dev *rt2x00dev = hw->priv;
1850 u32 reg;
1851
1852 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1853 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1854 }
1855
1856 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1857 .tx = rt2x00mac_tx,
1858 .start = rt2x00mac_start,
1859 .stop = rt2x00mac_stop,
1860 .add_interface = rt2x00mac_add_interface,
1861 .remove_interface = rt2x00mac_remove_interface,
1862 .config = rt2x00mac_config,
1863 .config_interface = rt2x00mac_config_interface,
1864 .configure_filter = rt2500pci_configure_filter,
1865 .get_stats = rt2x00mac_get_stats,
1866 .set_retry_limit = rt2500pci_set_retry_limit,
1867 .erp_ie_changed = rt2x00mac_erp_ie_changed,
1868 .conf_tx = rt2x00mac_conf_tx,
1869 .get_tx_stats = rt2x00mac_get_tx_stats,
1870 .get_tsf = rt2500pci_get_tsf,
1871 .reset_tsf = rt2500pci_reset_tsf,
1872 .beacon_update = rt2x00pci_beacon_update,
1873 .tx_last_beacon = rt2500pci_tx_last_beacon,
1874 };
1875
1876 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1877 .irq_handler = rt2500pci_interrupt,
1878 .probe_hw = rt2500pci_probe_hw,
1879 .initialize = rt2x00pci_initialize,
1880 .uninitialize = rt2x00pci_uninitialize,
1881 .set_device_state = rt2500pci_set_device_state,
1882 .rfkill_poll = rt2500pci_rfkill_poll,
1883 .link_stats = rt2500pci_link_stats,
1884 .reset_tuner = rt2500pci_reset_tuner,
1885 .link_tuner = rt2500pci_link_tuner,
1886 .write_tx_desc = rt2500pci_write_tx_desc,
1887 .write_tx_data = rt2x00pci_write_tx_data,
1888 .kick_tx_queue = rt2500pci_kick_tx_queue,
1889 .fill_rxdone = rt2500pci_fill_rxdone,
1890 .config_mac_addr = rt2500pci_config_mac_addr,
1891 .config_bssid = rt2500pci_config_bssid,
1892 .config_type = rt2500pci_config_type,
1893 .config_preamble = rt2500pci_config_preamble,
1894 .config = rt2500pci_config,
1895 };
1896
1897 static const struct rt2x00_ops rt2500pci_ops = {
1898 .name = KBUILD_MODNAME,
1899 .rxd_size = RXD_DESC_SIZE,
1900 .txd_size = TXD_DESC_SIZE,
1901 .eeprom_size = EEPROM_SIZE,
1902 .rf_size = RF_SIZE,
1903 .lib = &rt2500pci_rt2x00_ops,
1904 .hw = &rt2500pci_mac80211_ops,
1905 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1906 .debugfs = &rt2500pci_rt2x00debug,
1907 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1908 };
1909
1910 /*
1911 * RT2500pci module information.
1912 */
1913 static struct pci_device_id rt2500pci_device_table[] = {
1914 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1915 { 0, }
1916 };
1917
1918 MODULE_AUTHOR(DRV_PROJECT);
1919 MODULE_VERSION(DRV_VERSION);
1920 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1921 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1922 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1923 MODULE_LICENSE("GPL");
1924
1925 static struct pci_driver rt2500pci_driver = {
1926 .name = KBUILD_MODNAME,
1927 .id_table = rt2500pci_device_table,
1928 .probe = rt2x00pci_probe,
1929 .remove = __devexit_p(rt2x00pci_remove),
1930 .suspend = rt2x00pci_suspend,
1931 .resume = rt2x00pci_resume,
1932 };
1933
1934 static int __init rt2500pci_init(void)
1935 {
1936 return pci_register_driver(&rt2500pci_driver);
1937 }
1938
1939 static void __exit rt2500pci_exit(void)
1940 {
1941 pci_unregister_driver(&rt2500pci_driver);
1942 }
1943
1944 module_init(rt2500pci_init);
1945 module_exit(rt2500pci_exit);