]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt2500pci.c
rt2x00: Implement flush callback
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39
40 /*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
60 {
61 u32 reg;
62
63 mutex_lock(&rt2x00dev->csr_mutex);
64
65 /*
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
68 */
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 }
78
79 mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
84 {
85 u32 reg;
86
87 mutex_lock(&rt2x00dev->csr_mutex);
88
89 /*
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
96 */
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105 WAIT_FOR_BBP(rt2x00dev, &reg);
106 }
107
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110 mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
115 {
116 u32 reg;
117
118 mutex_lock(&rt2x00dev->csr_mutex);
119
120 /*
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
123 */
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
133 }
134
135 mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
142
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
157
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
164
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
178 },
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
185 },
186 .bbp = {
187 .read = rt2500pci_bbp_read,
188 .write = rt2500pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
192 },
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2500pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
199 },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 u32 reg;
206
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
214 {
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
219
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
233 {
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
237
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243 return 0;
244 }
245
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
249 {
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2500pci_brightness_set;
253 led->led_dev.blink_set = rt2500pci_blink_set;
254 led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259 * Configuration handlers.
260 */
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
263 {
264 u32 reg;
265
266 /*
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * and broadcast frames will always be accepted since
270 * there is no filter for it at this time.
271 */
272 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 !(filter_flags & FIF_FCSFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 !(filter_flags & FIF_PLCPFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 !(filter_flags & FIF_CONTROL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 !(filter_flags & FIF_PROMISC_IN_BSS));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 !(filter_flags & FIF_PROMISC_IN_BSS) &&
283 !rt2x00dev->intf_ap_count);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286 !(filter_flags & FIF_ALLMULTI));
287 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292 struct rt2x00_intf *intf,
293 struct rt2x00intf_conf *conf,
294 const unsigned int flags)
295 {
296 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
297 unsigned int bcn_preload;
298 u32 reg;
299
300 if (flags & CONFIG_UPDATE_TYPE) {
301 /*
302 * Enable beacon config
303 */
304 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310 /*
311 * Enable synchronisation.
312 */
313 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318 }
319
320 if (flags & CONFIG_UPDATE_MAC)
321 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322 conf->mac, sizeof(conf->mac));
323
324 if (flags & CONFIG_UPDATE_BSSID)
325 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326 conf->bssid, sizeof(conf->bssid));
327 }
328
329 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
330 struct rt2x00lib_erp *erp,
331 u32 changed)
332 {
333 int preamble_mask;
334 u32 reg;
335
336 /*
337 * When short preamble is enabled, we should set bit 0x08
338 */
339 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
340 preamble_mask = erp->short_preamble << 3;
341
342 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
343 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
344 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
345 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
346 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
347 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
348
349 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
350 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
351 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
352 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
353 GET_DURATION(ACK_SIZE, 10));
354 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
355
356 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
357 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
358 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
359 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
360 GET_DURATION(ACK_SIZE, 20));
361 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
362
363 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
364 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
365 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
366 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
367 GET_DURATION(ACK_SIZE, 55));
368 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
369
370 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
371 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
372 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
373 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
374 GET_DURATION(ACK_SIZE, 110));
375 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
376 }
377
378 if (changed & BSS_CHANGED_BASIC_RATES)
379 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
380
381 if (changed & BSS_CHANGED_ERP_SLOT) {
382 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
383 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
384 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
385
386 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
387 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
388 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
389 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
390
391 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
392 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
393 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
394 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
395 }
396
397 if (changed & BSS_CHANGED_BEACON_INT) {
398 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
399 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
400 erp->beacon_int * 16);
401 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
402 erp->beacon_int * 16);
403 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
404 }
405
406 }
407
408 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
409 struct antenna_setup *ant)
410 {
411 u32 reg;
412 u8 r14;
413 u8 r2;
414
415 /*
416 * We should never come here because rt2x00lib is supposed
417 * to catch this and send us the correct antenna explicitely.
418 */
419 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
420 ant->tx == ANTENNA_SW_DIVERSITY);
421
422 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
423 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
424 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
425
426 /*
427 * Configure the TX antenna.
428 */
429 switch (ant->tx) {
430 case ANTENNA_A:
431 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
432 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
433 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
434 break;
435 case ANTENNA_B:
436 default:
437 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
438 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
439 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
440 break;
441 }
442
443 /*
444 * Configure the RX antenna.
445 */
446 switch (ant->rx) {
447 case ANTENNA_A:
448 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
449 break;
450 case ANTENNA_B:
451 default:
452 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
453 break;
454 }
455
456 /*
457 * RT2525E and RT5222 need to flip TX I/Q
458 */
459 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
460 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
461 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
462 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
463
464 /*
465 * RT2525E does not need RX I/Q Flip.
466 */
467 if (rt2x00_rf(rt2x00dev, RF2525E))
468 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
469 } else {
470 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
471 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
472 }
473
474 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
475 rt2500pci_bbp_write(rt2x00dev, 14, r14);
476 rt2500pci_bbp_write(rt2x00dev, 2, r2);
477 }
478
479 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
480 struct rf_channel *rf, const int txpower)
481 {
482 u8 r70;
483
484 /*
485 * Set TXpower.
486 */
487 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
488
489 /*
490 * Switch on tuning bits.
491 * For RT2523 devices we do not need to update the R1 register.
492 */
493 if (!rt2x00_rf(rt2x00dev, RF2523))
494 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
495 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
496
497 /*
498 * For RT2525 we should first set the channel to half band higher.
499 */
500 if (rt2x00_rf(rt2x00dev, RF2525)) {
501 static const u32 vals[] = {
502 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
503 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
504 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
505 0x00080d2e, 0x00080d3a
506 };
507
508 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
509 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
510 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
511 if (rf->rf4)
512 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
513 }
514
515 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
516 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
517 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
518 if (rf->rf4)
519 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
520
521 /*
522 * Channel 14 requires the Japan filter bit to be set.
523 */
524 r70 = 0x46;
525 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
526 rt2500pci_bbp_write(rt2x00dev, 70, r70);
527
528 msleep(1);
529
530 /*
531 * Switch off tuning bits.
532 * For RT2523 devices we do not need to update the R1 register.
533 */
534 if (!rt2x00_rf(rt2x00dev, RF2523)) {
535 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
536 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
537 }
538
539 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
540 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
541
542 /*
543 * Clear false CRC during channel switch.
544 */
545 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
546 }
547
548 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
549 const int txpower)
550 {
551 u32 rf3;
552
553 rt2x00_rf_read(rt2x00dev, 3, &rf3);
554 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
555 rt2500pci_rf_write(rt2x00dev, 3, rf3);
556 }
557
558 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
559 struct rt2x00lib_conf *libconf)
560 {
561 u32 reg;
562
563 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
564 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
565 libconf->conf->long_frame_max_tx_count);
566 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
567 libconf->conf->short_frame_max_tx_count);
568 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
569 }
570
571 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
572 struct rt2x00lib_conf *libconf)
573 {
574 enum dev_state state =
575 (libconf->conf->flags & IEEE80211_CONF_PS) ?
576 STATE_SLEEP : STATE_AWAKE;
577 u32 reg;
578
579 if (state == STATE_SLEEP) {
580 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
581 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
582 (rt2x00dev->beacon_int - 20) * 16);
583 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
584 libconf->conf->listen_interval - 1);
585
586 /* We must first disable autowake before it can be enabled */
587 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
588 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
589
590 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
591 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
592 } else {
593 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
594 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
595 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
596 }
597
598 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
599 }
600
601 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
602 struct rt2x00lib_conf *libconf,
603 const unsigned int flags)
604 {
605 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
606 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
607 libconf->conf->power_level);
608 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
609 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
610 rt2500pci_config_txpower(rt2x00dev,
611 libconf->conf->power_level);
612 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
613 rt2500pci_config_retry_limit(rt2x00dev, libconf);
614 if (flags & IEEE80211_CONF_CHANGE_PS)
615 rt2500pci_config_ps(rt2x00dev, libconf);
616 }
617
618 /*
619 * Link tuning
620 */
621 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
622 struct link_qual *qual)
623 {
624 u32 reg;
625
626 /*
627 * Update FCS error count from register.
628 */
629 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
630 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
631
632 /*
633 * Update False CCA count from register.
634 */
635 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
636 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
637 }
638
639 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
640 struct link_qual *qual, u8 vgc_level)
641 {
642 if (qual->vgc_level_reg != vgc_level) {
643 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
644 qual->vgc_level = vgc_level;
645 qual->vgc_level_reg = vgc_level;
646 }
647 }
648
649 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
650 struct link_qual *qual)
651 {
652 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
653 }
654
655 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
656 struct link_qual *qual, const u32 count)
657 {
658 /*
659 * To prevent collisions with MAC ASIC on chipsets
660 * up to version C the link tuning should halt after 20
661 * seconds while being associated.
662 */
663 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
664 rt2x00dev->intf_associated && count > 20)
665 return;
666
667 /*
668 * Chipset versions C and lower should directly continue
669 * to the dynamic CCA tuning. Chipset version D and higher
670 * should go straight to dynamic CCA tuning when they
671 * are not associated.
672 */
673 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
674 !rt2x00dev->intf_associated)
675 goto dynamic_cca_tune;
676
677 /*
678 * A too low RSSI will cause too much false CCA which will
679 * then corrupt the R17 tuning. To remidy this the tuning should
680 * be stopped (While making sure the R17 value will not exceed limits)
681 */
682 if (qual->rssi < -80 && count > 20) {
683 if (qual->vgc_level_reg >= 0x41)
684 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
685 return;
686 }
687
688 /*
689 * Special big-R17 for short distance
690 */
691 if (qual->rssi >= -58) {
692 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
693 return;
694 }
695
696 /*
697 * Special mid-R17 for middle distance
698 */
699 if (qual->rssi >= -74) {
700 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
701 return;
702 }
703
704 /*
705 * Leave short or middle distance condition, restore r17
706 * to the dynamic tuning range.
707 */
708 if (qual->vgc_level_reg >= 0x41) {
709 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
710 return;
711 }
712
713 dynamic_cca_tune:
714
715 /*
716 * R17 is inside the dynamic tuning range,
717 * start tuning the link based on the false cca counter.
718 */
719 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
720 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
721 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
722 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
723 }
724
725 /*
726 * Initialization functions.
727 */
728 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
729 {
730 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
731 u32 word;
732
733 if (entry->queue->qid == QID_RX) {
734 rt2x00_desc_read(entry_priv->desc, 0, &word);
735
736 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
737 } else {
738 rt2x00_desc_read(entry_priv->desc, 0, &word);
739
740 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
741 rt2x00_get_field32(word, TXD_W0_VALID));
742 }
743 }
744
745 static void rt2500pci_clear_entry(struct queue_entry *entry)
746 {
747 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
748 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
749 u32 word;
750
751 if (entry->queue->qid == QID_RX) {
752 rt2x00_desc_read(entry_priv->desc, 1, &word);
753 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
754 rt2x00_desc_write(entry_priv->desc, 1, word);
755
756 rt2x00_desc_read(entry_priv->desc, 0, &word);
757 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
758 rt2x00_desc_write(entry_priv->desc, 0, word);
759 } else {
760 rt2x00_desc_read(entry_priv->desc, 0, &word);
761 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
762 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
763 rt2x00_desc_write(entry_priv->desc, 0, word);
764 }
765 }
766
767 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
768 {
769 struct queue_entry_priv_pci *entry_priv;
770 u32 reg;
771
772 /*
773 * Initialize registers.
774 */
775 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
776 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
777 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
778 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
779 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
780 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
781
782 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
783 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
784 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
785 entry_priv->desc_dma);
786 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
787
788 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
789 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
790 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
791 entry_priv->desc_dma);
792 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
793
794 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
795 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
796 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
797 entry_priv->desc_dma);
798 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
799
800 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
801 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
802 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
803 entry_priv->desc_dma);
804 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
805
806 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
807 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
808 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
809 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
810
811 entry_priv = rt2x00dev->rx->entries[0].priv_data;
812 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
813 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
814 entry_priv->desc_dma);
815 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
816
817 return 0;
818 }
819
820 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
821 {
822 u32 reg;
823
824 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
825 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
826 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
827 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
828
829 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
830 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
831 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
832 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
833 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
834
835 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
836 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
837 rt2x00dev->rx->data_size / 128);
838 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
839
840 /*
841 * Always use CWmin and CWmax set in descriptor.
842 */
843 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
844 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
845 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
846
847 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
848 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
849 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
850 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
851 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
852 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
853 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
854 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
855 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
856 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
857
858 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
859
860 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
861 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
862 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
863 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
864 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
865 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
866 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
867 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
868 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
869 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
870
871 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
872 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
873 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
874 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
875 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
876 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
877
878 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
879 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
880 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
881 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
882 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
883 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
884
885 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
886 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
887 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
888 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
889 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
890 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
891
892 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
893 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
894 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
895 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
896 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
897 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
898 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
899 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
900 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
901 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
902
903 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
904 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
905 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
906 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
907 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
908 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
909 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
910 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
911 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
912
913 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
914
915 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
916 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
917
918 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
919 return -EBUSY;
920
921 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
922 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
923
924 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
925 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
926 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
927
928 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
929 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
930 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
931 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
932 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
933 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
934 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
935 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
936
937 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
938
939 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
940
941 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
942 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
943 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
944 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
945 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
946
947 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
948 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
949 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
950 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
951
952 /*
953 * We must clear the FCS and FIFO error count.
954 * These registers are cleared on read,
955 * so we may pass a useless variable to store the value.
956 */
957 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
958 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
959
960 return 0;
961 }
962
963 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
964 {
965 unsigned int i;
966 u8 value;
967
968 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
969 rt2500pci_bbp_read(rt2x00dev, 0, &value);
970 if ((value != 0xff) && (value != 0x00))
971 return 0;
972 udelay(REGISTER_BUSY_DELAY);
973 }
974
975 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
976 return -EACCES;
977 }
978
979 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
980 {
981 unsigned int i;
982 u16 eeprom;
983 u8 reg_id;
984 u8 value;
985
986 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
987 return -EACCES;
988
989 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
990 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
991 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
992 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
993 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
994 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
995 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
996 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
997 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
998 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
999 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1000 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1001 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1002 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1003 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1004 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1005 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1006 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1007 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1008 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1009 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1010 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1011 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1012 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1013 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1014 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1015 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1016 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1017 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1018 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1019
1020 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1021 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1022
1023 if (eeprom != 0xffff && eeprom != 0x0000) {
1024 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1025 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1026 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1027 }
1028 }
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Device state switch handlers.
1035 */
1036 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1037 enum dev_state state)
1038 {
1039 u32 reg;
1040
1041 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1042 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1043 (state == STATE_RADIO_RX_OFF) ||
1044 (state == STATE_RADIO_RX_OFF_LINK));
1045 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1046 }
1047
1048 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1049 enum dev_state state)
1050 {
1051 int mask = (state == STATE_RADIO_IRQ_OFF) ||
1052 (state == STATE_RADIO_IRQ_OFF_ISR);
1053 u32 reg;
1054
1055 /*
1056 * When interrupts are being enabled, the interrupt registers
1057 * should clear the register to assure a clean state.
1058 */
1059 if (state == STATE_RADIO_IRQ_ON) {
1060 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1061 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1062 }
1063
1064 /*
1065 * Only toggle the interrupts bits we are going to use.
1066 * Non-checked interrupt bits are disabled by default.
1067 */
1068 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1069 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1070 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1071 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1072 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1073 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1074 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1075 }
1076
1077 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1078 {
1079 /*
1080 * Initialize all registers.
1081 */
1082 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1083 rt2500pci_init_registers(rt2x00dev) ||
1084 rt2500pci_init_bbp(rt2x00dev)))
1085 return -EIO;
1086
1087 return 0;
1088 }
1089
1090 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1091 {
1092 /*
1093 * Disable power
1094 */
1095 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1096 }
1097
1098 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1099 enum dev_state state)
1100 {
1101 u32 reg, reg2;
1102 unsigned int i;
1103 char put_to_sleep;
1104 char bbp_state;
1105 char rf_state;
1106
1107 put_to_sleep = (state != STATE_AWAKE);
1108
1109 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1110 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1111 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1112 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1113 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1114 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1115
1116 /*
1117 * Device is not guaranteed to be in the requested state yet.
1118 * We must wait until the register indicates that the
1119 * device has entered the correct state.
1120 */
1121 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1122 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1123 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1124 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1125 if (bbp_state == state && rf_state == state)
1126 return 0;
1127 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1128 msleep(10);
1129 }
1130
1131 return -EBUSY;
1132 }
1133
1134 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1135 enum dev_state state)
1136 {
1137 int retval = 0;
1138
1139 switch (state) {
1140 case STATE_RADIO_ON:
1141 retval = rt2500pci_enable_radio(rt2x00dev);
1142 break;
1143 case STATE_RADIO_OFF:
1144 rt2500pci_disable_radio(rt2x00dev);
1145 break;
1146 case STATE_RADIO_RX_ON:
1147 case STATE_RADIO_RX_ON_LINK:
1148 case STATE_RADIO_RX_OFF:
1149 case STATE_RADIO_RX_OFF_LINK:
1150 rt2500pci_toggle_rx(rt2x00dev, state);
1151 break;
1152 case STATE_RADIO_IRQ_ON:
1153 case STATE_RADIO_IRQ_ON_ISR:
1154 case STATE_RADIO_IRQ_OFF:
1155 case STATE_RADIO_IRQ_OFF_ISR:
1156 rt2500pci_toggle_irq(rt2x00dev, state);
1157 break;
1158 case STATE_DEEP_SLEEP:
1159 case STATE_SLEEP:
1160 case STATE_STANDBY:
1161 case STATE_AWAKE:
1162 retval = rt2500pci_set_state(rt2x00dev, state);
1163 break;
1164 default:
1165 retval = -ENOTSUPP;
1166 break;
1167 }
1168
1169 if (unlikely(retval))
1170 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1171 state, retval);
1172
1173 return retval;
1174 }
1175
1176 /*
1177 * TX descriptor initialization
1178 */
1179 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1180 struct txentry_desc *txdesc)
1181 {
1182 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1183 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1184 __le32 *txd = entry_priv->desc;
1185 u32 word;
1186
1187 /*
1188 * Start writing the descriptor words.
1189 */
1190 rt2x00_desc_read(txd, 1, &word);
1191 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1192 rt2x00_desc_write(txd, 1, word);
1193
1194 rt2x00_desc_read(txd, 2, &word);
1195 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1196 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1197 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1198 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1199 rt2x00_desc_write(txd, 2, word);
1200
1201 rt2x00_desc_read(txd, 3, &word);
1202 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1203 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1204 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1205 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1206 rt2x00_desc_write(txd, 3, word);
1207
1208 rt2x00_desc_read(txd, 10, &word);
1209 rt2x00_set_field32(&word, TXD_W10_RTS,
1210 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1211 rt2x00_desc_write(txd, 10, word);
1212
1213 /*
1214 * Writing TXD word 0 must the last to prevent a race condition with
1215 * the device, whereby the device may take hold of the TXD before we
1216 * finished updating it.
1217 */
1218 rt2x00_desc_read(txd, 0, &word);
1219 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1220 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1221 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1222 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1223 rt2x00_set_field32(&word, TXD_W0_ACK,
1224 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1225 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1226 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1227 rt2x00_set_field32(&word, TXD_W0_OFDM,
1228 (txdesc->rate_mode == RATE_MODE_OFDM));
1229 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1230 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1231 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1232 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1233 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1234 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1235 rt2x00_desc_write(txd, 0, word);
1236
1237 /*
1238 * Register descriptor details in skb frame descriptor.
1239 */
1240 skbdesc->desc = txd;
1241 skbdesc->desc_len = TXD_DESC_SIZE;
1242 }
1243
1244 /*
1245 * TX data initialization
1246 */
1247 static void rt2500pci_write_beacon(struct queue_entry *entry,
1248 struct txentry_desc *txdesc)
1249 {
1250 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1251 u32 reg;
1252
1253 /*
1254 * Disable beaconing while we are reloading the beacon data,
1255 * otherwise we might be sending out invalid data.
1256 */
1257 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1258 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1259 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1260
1261 rt2x00queue_map_txskb(entry);
1262
1263 /*
1264 * Write the TX descriptor for the beacon.
1265 */
1266 rt2500pci_write_tx_desc(entry, txdesc);
1267
1268 /*
1269 * Dump beacon to userspace through debugfs.
1270 */
1271 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1272
1273 /*
1274 * Enable beaconing again.
1275 */
1276 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1277 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1278 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1279 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1280 }
1281
1282 static void rt2500pci_kick_tx_queue(struct data_queue *queue)
1283 {
1284 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1285 u32 reg;
1286
1287 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1288 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
1289 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
1290 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1291 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1292 }
1293
1294 static void rt2500pci_kill_tx_queue(struct data_queue *queue)
1295 {
1296 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1297 u32 reg;
1298
1299 if (queue->qid == QID_BEACON) {
1300 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1301 } else {
1302 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1303 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1304 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1305 }
1306 }
1307
1308 /*
1309 * RX control handlers
1310 */
1311 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1312 struct rxdone_entry_desc *rxdesc)
1313 {
1314 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1315 u32 word0;
1316 u32 word2;
1317
1318 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1319 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1320
1321 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1322 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1323 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1324 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1325
1326 /*
1327 * Obtain the status about this packet.
1328 * When frame was received with an OFDM bitrate,
1329 * the signal is the PLCP value. If it was received with
1330 * a CCK bitrate the signal is the rate in 100kbit/s.
1331 */
1332 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1333 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1334 entry->queue->rt2x00dev->rssi_offset;
1335 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1336
1337 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1338 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1339 else
1340 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1341 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1342 rxdesc->dev_flags |= RXDONE_MY_BSS;
1343 }
1344
1345 /*
1346 * Interrupt functions.
1347 */
1348 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1349 const enum data_queue_qid queue_idx)
1350 {
1351 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1352 struct queue_entry_priv_pci *entry_priv;
1353 struct queue_entry *entry;
1354 struct txdone_entry_desc txdesc;
1355 u32 word;
1356
1357 while (!rt2x00queue_empty(queue)) {
1358 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1359 entry_priv = entry->priv_data;
1360 rt2x00_desc_read(entry_priv->desc, 0, &word);
1361
1362 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1363 !rt2x00_get_field32(word, TXD_W0_VALID))
1364 break;
1365
1366 /*
1367 * Obtain the status about this packet.
1368 */
1369 txdesc.flags = 0;
1370 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1371 case 0: /* Success */
1372 case 1: /* Success with retry */
1373 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1374 break;
1375 case 2: /* Failure, excessive retries */
1376 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1377 /* Don't break, this is a failed frame! */
1378 default: /* Failure */
1379 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1380 }
1381 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1382
1383 rt2x00lib_txdone(entry, &txdesc);
1384 }
1385 }
1386
1387 static irqreturn_t rt2500pci_interrupt_thread(int irq, void *dev_instance)
1388 {
1389 struct rt2x00_dev *rt2x00dev = dev_instance;
1390 u32 reg = rt2x00dev->irqvalue[0];
1391
1392 /*
1393 * Handle interrupts, walk through all bits
1394 * and run the tasks, the bits are checked in order of
1395 * priority.
1396 */
1397
1398 /*
1399 * 1 - Beacon timer expired interrupt.
1400 */
1401 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402 rt2x00lib_beacondone(rt2x00dev);
1403
1404 /*
1405 * 2 - Rx ring done interrupt.
1406 */
1407 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1408 rt2x00pci_rxdone(rt2x00dev);
1409
1410 /*
1411 * 3 - Atim ring transmit done interrupt.
1412 */
1413 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1414 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1415
1416 /*
1417 * 4 - Priority ring transmit done interrupt.
1418 */
1419 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1420 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1421
1422 /*
1423 * 5 - Tx ring transmit done interrupt.
1424 */
1425 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1426 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1427
1428 /* Enable interrupts again. */
1429 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1430 STATE_RADIO_IRQ_ON_ISR);
1431
1432 return IRQ_HANDLED;
1433 }
1434
1435 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1436 {
1437 struct rt2x00_dev *rt2x00dev = dev_instance;
1438 u32 reg;
1439
1440 /*
1441 * Get the interrupt sources & saved to local variable.
1442 * Write register value back to clear pending interrupts.
1443 */
1444 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1445 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1446
1447 if (!reg)
1448 return IRQ_NONE;
1449
1450 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1451 return IRQ_HANDLED;
1452
1453 /* Store irqvalues for use in the interrupt thread. */
1454 rt2x00dev->irqvalue[0] = reg;
1455
1456 /* Disable interrupts, will be enabled again in the interrupt thread. */
1457 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1458 STATE_RADIO_IRQ_OFF_ISR);
1459
1460 return IRQ_WAKE_THREAD;
1461 }
1462
1463 /*
1464 * Device probe functions.
1465 */
1466 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1467 {
1468 struct eeprom_93cx6 eeprom;
1469 u32 reg;
1470 u16 word;
1471 u8 *mac;
1472
1473 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1474
1475 eeprom.data = rt2x00dev;
1476 eeprom.register_read = rt2500pci_eepromregister_read;
1477 eeprom.register_write = rt2500pci_eepromregister_write;
1478 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1479 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1480 eeprom.reg_data_in = 0;
1481 eeprom.reg_data_out = 0;
1482 eeprom.reg_data_clock = 0;
1483 eeprom.reg_chip_select = 0;
1484
1485 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1486 EEPROM_SIZE / sizeof(u16));
1487
1488 /*
1489 * Start validation of the data that has been read.
1490 */
1491 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1492 if (!is_valid_ether_addr(mac)) {
1493 random_ether_addr(mac);
1494 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1495 }
1496
1497 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1498 if (word == 0xffff) {
1499 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1500 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1501 ANTENNA_SW_DIVERSITY);
1502 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1503 ANTENNA_SW_DIVERSITY);
1504 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1505 LED_MODE_DEFAULT);
1506 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1507 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1508 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1509 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1510 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1511 }
1512
1513 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1514 if (word == 0xffff) {
1515 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1516 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1517 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1518 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1519 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1520 }
1521
1522 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1523 if (word == 0xffff) {
1524 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1525 DEFAULT_RSSI_OFFSET);
1526 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1527 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1528 }
1529
1530 return 0;
1531 }
1532
1533 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1534 {
1535 u32 reg;
1536 u16 value;
1537 u16 eeprom;
1538
1539 /*
1540 * Read EEPROM word for configuration.
1541 */
1542 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1543
1544 /*
1545 * Identify RF chipset.
1546 */
1547 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1548 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1549 rt2x00_set_chip(rt2x00dev, RT2560, value,
1550 rt2x00_get_field32(reg, CSR0_REVISION));
1551
1552 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1553 !rt2x00_rf(rt2x00dev, RF2523) &&
1554 !rt2x00_rf(rt2x00dev, RF2524) &&
1555 !rt2x00_rf(rt2x00dev, RF2525) &&
1556 !rt2x00_rf(rt2x00dev, RF2525E) &&
1557 !rt2x00_rf(rt2x00dev, RF5222)) {
1558 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1559 return -ENODEV;
1560 }
1561
1562 /*
1563 * Identify default antenna configuration.
1564 */
1565 rt2x00dev->default_ant.tx =
1566 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1567 rt2x00dev->default_ant.rx =
1568 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1569
1570 /*
1571 * Store led mode, for correct led behaviour.
1572 */
1573 #ifdef CONFIG_RT2X00_LIB_LEDS
1574 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1575
1576 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1577 if (value == LED_MODE_TXRX_ACTIVITY ||
1578 value == LED_MODE_DEFAULT ||
1579 value == LED_MODE_ASUS)
1580 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1581 LED_TYPE_ACTIVITY);
1582 #endif /* CONFIG_RT2X00_LIB_LEDS */
1583
1584 /*
1585 * Detect if this device has an hardware controlled radio.
1586 */
1587 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1588 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1589
1590 /*
1591 * Check if the BBP tuning should be enabled.
1592 */
1593 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1594 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1595 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1596
1597 /*
1598 * Read the RSSI <-> dBm offset information.
1599 */
1600 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1601 rt2x00dev->rssi_offset =
1602 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1603
1604 return 0;
1605 }
1606
1607 /*
1608 * RF value list for RF2522
1609 * Supports: 2.4 GHz
1610 */
1611 static const struct rf_channel rf_vals_bg_2522[] = {
1612 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1613 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1614 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1615 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1616 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1617 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1618 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1619 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1620 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1621 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1622 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1623 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1624 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1625 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1626 };
1627
1628 /*
1629 * RF value list for RF2523
1630 * Supports: 2.4 GHz
1631 */
1632 static const struct rf_channel rf_vals_bg_2523[] = {
1633 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1634 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1635 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1636 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1637 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1638 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1639 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1640 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1641 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1642 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1643 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1644 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1645 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1646 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1647 };
1648
1649 /*
1650 * RF value list for RF2524
1651 * Supports: 2.4 GHz
1652 */
1653 static const struct rf_channel rf_vals_bg_2524[] = {
1654 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1655 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1656 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1657 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1658 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1659 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1660 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1661 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1662 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1663 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1664 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1665 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1666 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1667 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1668 };
1669
1670 /*
1671 * RF value list for RF2525
1672 * Supports: 2.4 GHz
1673 */
1674 static const struct rf_channel rf_vals_bg_2525[] = {
1675 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1676 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1677 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1678 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1679 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1680 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1681 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1682 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1683 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1684 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1685 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1686 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1687 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1688 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1689 };
1690
1691 /*
1692 * RF value list for RF2525e
1693 * Supports: 2.4 GHz
1694 */
1695 static const struct rf_channel rf_vals_bg_2525e[] = {
1696 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1697 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1698 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1699 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1700 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1701 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1702 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1703 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1704 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1705 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1706 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1707 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1708 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1709 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1710 };
1711
1712 /*
1713 * RF value list for RF5222
1714 * Supports: 2.4 GHz & 5.2 GHz
1715 */
1716 static const struct rf_channel rf_vals_5222[] = {
1717 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1718 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1719 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1720 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1721 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1722 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1723 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1724 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1725 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1726 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1727 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1728 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1729 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1730 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1731
1732 /* 802.11 UNI / HyperLan 2 */
1733 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1734 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1735 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1736 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1737 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1738 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1739 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1740 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1741
1742 /* 802.11 HyperLan 2 */
1743 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1744 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1745 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1746 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1747 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1748 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1749 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1750 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1751 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1752 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1753
1754 /* 802.11 UNII */
1755 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1756 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1757 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1758 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1759 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1760 };
1761
1762 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1763 {
1764 struct hw_mode_spec *spec = &rt2x00dev->spec;
1765 struct channel_info *info;
1766 char *tx_power;
1767 unsigned int i;
1768
1769 /*
1770 * Initialize all hw fields.
1771 */
1772 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1773 IEEE80211_HW_SIGNAL_DBM |
1774 IEEE80211_HW_SUPPORTS_PS |
1775 IEEE80211_HW_PS_NULLFUNC_STACK;
1776
1777 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1778 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1779 rt2x00_eeprom_addr(rt2x00dev,
1780 EEPROM_MAC_ADDR_0));
1781
1782 /*
1783 * Initialize hw_mode information.
1784 */
1785 spec->supported_bands = SUPPORT_BAND_2GHZ;
1786 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1787
1788 if (rt2x00_rf(rt2x00dev, RF2522)) {
1789 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1790 spec->channels = rf_vals_bg_2522;
1791 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1792 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1793 spec->channels = rf_vals_bg_2523;
1794 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1795 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1796 spec->channels = rf_vals_bg_2524;
1797 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1798 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1799 spec->channels = rf_vals_bg_2525;
1800 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1801 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1802 spec->channels = rf_vals_bg_2525e;
1803 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1804 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1805 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1806 spec->channels = rf_vals_5222;
1807 }
1808
1809 /*
1810 * Create channel information array
1811 */
1812 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1813 if (!info)
1814 return -ENOMEM;
1815
1816 spec->channels_info = info;
1817
1818 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1819 for (i = 0; i < 14; i++) {
1820 info[i].max_power = MAX_TXPOWER;
1821 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1822 }
1823
1824 if (spec->num_channels > 14) {
1825 for (i = 14; i < spec->num_channels; i++) {
1826 info[i].max_power = MAX_TXPOWER;
1827 info[i].default_power1 = DEFAULT_TXPOWER;
1828 }
1829 }
1830
1831 return 0;
1832 }
1833
1834 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1835 {
1836 int retval;
1837
1838 /*
1839 * Allocate eeprom data.
1840 */
1841 retval = rt2500pci_validate_eeprom(rt2x00dev);
1842 if (retval)
1843 return retval;
1844
1845 retval = rt2500pci_init_eeprom(rt2x00dev);
1846 if (retval)
1847 return retval;
1848
1849 /*
1850 * Initialize hw specifications.
1851 */
1852 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1853 if (retval)
1854 return retval;
1855
1856 /*
1857 * This device requires the atim queue and DMA-mapped skbs.
1858 */
1859 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1860 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1861
1862 /*
1863 * Set the rssi offset.
1864 */
1865 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1866
1867 return 0;
1868 }
1869
1870 /*
1871 * IEEE80211 stack callback functions.
1872 */
1873 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1874 {
1875 struct rt2x00_dev *rt2x00dev = hw->priv;
1876 u64 tsf;
1877 u32 reg;
1878
1879 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1880 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1881 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1882 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1883
1884 return tsf;
1885 }
1886
1887 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1888 {
1889 struct rt2x00_dev *rt2x00dev = hw->priv;
1890 u32 reg;
1891
1892 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1893 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1894 }
1895
1896 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1897 .tx = rt2x00mac_tx,
1898 .start = rt2x00mac_start,
1899 .stop = rt2x00mac_stop,
1900 .add_interface = rt2x00mac_add_interface,
1901 .remove_interface = rt2x00mac_remove_interface,
1902 .config = rt2x00mac_config,
1903 .configure_filter = rt2x00mac_configure_filter,
1904 .sw_scan_start = rt2x00mac_sw_scan_start,
1905 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1906 .get_stats = rt2x00mac_get_stats,
1907 .bss_info_changed = rt2x00mac_bss_info_changed,
1908 .conf_tx = rt2x00mac_conf_tx,
1909 .get_tsf = rt2500pci_get_tsf,
1910 .tx_last_beacon = rt2500pci_tx_last_beacon,
1911 .rfkill_poll = rt2x00mac_rfkill_poll,
1912 .flush = rt2x00mac_flush,
1913 };
1914
1915 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1916 .irq_handler = rt2500pci_interrupt,
1917 .irq_handler_thread = rt2500pci_interrupt_thread,
1918 .probe_hw = rt2500pci_probe_hw,
1919 .initialize = rt2x00pci_initialize,
1920 .uninitialize = rt2x00pci_uninitialize,
1921 .get_entry_state = rt2500pci_get_entry_state,
1922 .clear_entry = rt2500pci_clear_entry,
1923 .set_device_state = rt2500pci_set_device_state,
1924 .rfkill_poll = rt2500pci_rfkill_poll,
1925 .link_stats = rt2500pci_link_stats,
1926 .reset_tuner = rt2500pci_reset_tuner,
1927 .link_tuner = rt2500pci_link_tuner,
1928 .write_tx_desc = rt2500pci_write_tx_desc,
1929 .write_beacon = rt2500pci_write_beacon,
1930 .kick_tx_queue = rt2500pci_kick_tx_queue,
1931 .kill_tx_queue = rt2500pci_kill_tx_queue,
1932 .fill_rxdone = rt2500pci_fill_rxdone,
1933 .config_filter = rt2500pci_config_filter,
1934 .config_intf = rt2500pci_config_intf,
1935 .config_erp = rt2500pci_config_erp,
1936 .config_ant = rt2500pci_config_ant,
1937 .config = rt2500pci_config,
1938 };
1939
1940 static const struct data_queue_desc rt2500pci_queue_rx = {
1941 .entry_num = 32,
1942 .data_size = DATA_FRAME_SIZE,
1943 .desc_size = RXD_DESC_SIZE,
1944 .priv_size = sizeof(struct queue_entry_priv_pci),
1945 };
1946
1947 static const struct data_queue_desc rt2500pci_queue_tx = {
1948 .entry_num = 32,
1949 .data_size = DATA_FRAME_SIZE,
1950 .desc_size = TXD_DESC_SIZE,
1951 .priv_size = sizeof(struct queue_entry_priv_pci),
1952 };
1953
1954 static const struct data_queue_desc rt2500pci_queue_bcn = {
1955 .entry_num = 1,
1956 .data_size = MGMT_FRAME_SIZE,
1957 .desc_size = TXD_DESC_SIZE,
1958 .priv_size = sizeof(struct queue_entry_priv_pci),
1959 };
1960
1961 static const struct data_queue_desc rt2500pci_queue_atim = {
1962 .entry_num = 8,
1963 .data_size = DATA_FRAME_SIZE,
1964 .desc_size = TXD_DESC_SIZE,
1965 .priv_size = sizeof(struct queue_entry_priv_pci),
1966 };
1967
1968 static const struct rt2x00_ops rt2500pci_ops = {
1969 .name = KBUILD_MODNAME,
1970 .max_sta_intf = 1,
1971 .max_ap_intf = 1,
1972 .eeprom_size = EEPROM_SIZE,
1973 .rf_size = RF_SIZE,
1974 .tx_queues = NUM_TX_QUEUES,
1975 .extra_tx_headroom = 0,
1976 .rx = &rt2500pci_queue_rx,
1977 .tx = &rt2500pci_queue_tx,
1978 .bcn = &rt2500pci_queue_bcn,
1979 .atim = &rt2500pci_queue_atim,
1980 .lib = &rt2500pci_rt2x00_ops,
1981 .hw = &rt2500pci_mac80211_ops,
1982 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1983 .debugfs = &rt2500pci_rt2x00debug,
1984 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1985 };
1986
1987 /*
1988 * RT2500pci module information.
1989 */
1990 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1991 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1992 { 0, }
1993 };
1994
1995 MODULE_AUTHOR(DRV_PROJECT);
1996 MODULE_VERSION(DRV_VERSION);
1997 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1998 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1999 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2000 MODULE_LICENSE("GPL");
2001
2002 static struct pci_driver rt2500pci_driver = {
2003 .name = KBUILD_MODNAME,
2004 .id_table = rt2500pci_device_table,
2005 .probe = rt2x00pci_probe,
2006 .remove = __devexit_p(rt2x00pci_remove),
2007 .suspend = rt2x00pci_suspend,
2008 .resume = rt2x00pci_resume,
2009 };
2010
2011 static int __init rt2500pci_init(void)
2012 {
2013 return pci_register_driver(&rt2500pci_driver);
2014 }
2015
2016 static void __exit rt2500pci_exit(void)
2017 {
2018 pci_unregister_driver(&rt2500pci_driver);
2019 }
2020
2021 module_init(rt2500pci_init);
2022 module_exit(rt2500pci_exit);