]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Remove debugfs CSR access wrappers
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
51 * be used instead.
52 */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54 const unsigned int offset,
55 u16 *value)
56 {
57 __le16 reg;
58 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59 USB_VENDOR_REQUEST_IN, offset,
60 &reg, sizeof(u16), REGISTER_TIMEOUT);
61 *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65 const unsigned int offset,
66 u16 *value)
67 {
68 __le16 reg;
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70 USB_VENDOR_REQUEST_IN, offset,
71 &reg, sizeof(u16), REGISTER_TIMEOUT);
72 *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76 const unsigned int offset,
77 void *value, const u16 length)
78 {
79 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
80 USB_VENDOR_REQUEST_IN, offset,
81 value, length,
82 REGISTER_TIMEOUT16(length));
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86 const unsigned int offset,
87 u16 value)
88 {
89 __le16 reg = cpu_to_le16(value);
90 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91 USB_VENDOR_REQUEST_OUT, offset,
92 &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96 const unsigned int offset,
97 u16 value)
98 {
99 __le16 reg = cpu_to_le16(value);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101 USB_VENDOR_REQUEST_OUT, offset,
102 &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106 const unsigned int offset,
107 void *value, const u16 length)
108 {
109 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
110 USB_VENDOR_REQUEST_OUT, offset,
111 value, length,
112 REGISTER_TIMEOUT16(length));
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117 u16 reg;
118 unsigned int i;
119
120 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123 break;
124 udelay(REGISTER_BUSY_DELAY);
125 }
126
127 return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u8 value)
132 {
133 u16 reg;
134
135 mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137 /*
138 * Wait until the BBP becomes ready.
139 */
140 reg = rt2500usb_bbp_check(rt2x00dev);
141 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
142 goto exit_fail;
143
144 /*
145 * Write the data into the BBP.
146 */
147 reg = 0;
148 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
149 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
150 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
151
152 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
153
154 mutex_unlock(&rt2x00dev->usb_cache_mutex);
155
156 return;
157
158 exit_fail:
159 mutex_unlock(&rt2x00dev->usb_cache_mutex);
160
161 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
162 }
163
164 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
165 const unsigned int word, u8 *value)
166 {
167 u16 reg;
168
169 mutex_lock(&rt2x00dev->usb_cache_mutex);
170
171 /*
172 * Wait until the BBP becomes ready.
173 */
174 reg = rt2500usb_bbp_check(rt2x00dev);
175 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
176 goto exit_fail;
177
178 /*
179 * Write the request into the BBP.
180 */
181 reg = 0;
182 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
183 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
184
185 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
186
187 /*
188 * Wait until the BBP becomes ready.
189 */
190 reg = rt2500usb_bbp_check(rt2x00dev);
191 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
192 goto exit_fail;
193
194 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
196
197 mutex_unlock(&rt2x00dev->usb_cache_mutex);
198
199 return;
200
201 exit_fail:
202 mutex_unlock(&rt2x00dev->usb_cache_mutex);
203
204 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
205 *value = 0xff;
206 }
207
208 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
209 const unsigned int word, const u32 value)
210 {
211 u16 reg;
212 unsigned int i;
213
214 if (!word)
215 return;
216
217 mutex_lock(&rt2x00dev->usb_cache_mutex);
218
219 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
220 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
221 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
222 goto rf_write;
223 udelay(REGISTER_BUSY_DELAY);
224 }
225
226 mutex_unlock(&rt2x00dev->usb_cache_mutex);
227 ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
228 return;
229
230 rf_write:
231 reg = 0;
232 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
233 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
234
235 reg = 0;
236 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
237 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
238 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
239 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
240
241 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
242 rt2x00_rf_write(rt2x00dev, word, value);
243
244 mutex_unlock(&rt2x00dev->usb_cache_mutex);
245 }
246
247 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
248 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
249 const unsigned int offset,
250 u32 *value)
251 {
252 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
253 }
254
255 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
256 const unsigned int offset,
257 u32 value)
258 {
259 rt2500usb_register_write(rt2x00dev, offset, value);
260 }
261
262 static const struct rt2x00debug rt2500usb_rt2x00debug = {
263 .owner = THIS_MODULE,
264 .csr = {
265 .read = _rt2500usb_register_read,
266 .write = _rt2500usb_register_write,
267 .flags = RT2X00DEBUGFS_OFFSET,
268 .word_base = CSR_REG_BASE,
269 .word_size = sizeof(u16),
270 .word_count = CSR_REG_SIZE / sizeof(u16),
271 },
272 .eeprom = {
273 .read = rt2x00_eeprom_read,
274 .write = rt2x00_eeprom_write,
275 .word_base = EEPROM_BASE,
276 .word_size = sizeof(u16),
277 .word_count = EEPROM_SIZE / sizeof(u16),
278 },
279 .bbp = {
280 .read = rt2500usb_bbp_read,
281 .write = rt2500usb_bbp_write,
282 .word_base = BBP_BASE,
283 .word_size = sizeof(u8),
284 .word_count = BBP_SIZE / sizeof(u8),
285 },
286 .rf = {
287 .read = rt2x00_rf_read,
288 .write = rt2500usb_rf_write,
289 .word_base = RF_BASE,
290 .word_size = sizeof(u32),
291 .word_count = RF_SIZE / sizeof(u32),
292 },
293 };
294 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
295
296 #ifdef CONFIG_RT2X00_LIB_LEDS
297 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
298 enum led_brightness brightness)
299 {
300 struct rt2x00_led *led =
301 container_of(led_cdev, struct rt2x00_led, led_dev);
302 unsigned int enabled = brightness != LED_OFF;
303 u16 reg;
304
305 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
306
307 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
308 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
309 else if (led->type == LED_TYPE_ACTIVITY)
310 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
311
312 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
313 }
314
315 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
316 unsigned long *delay_on,
317 unsigned long *delay_off)
318 {
319 struct rt2x00_led *led =
320 container_of(led_cdev, struct rt2x00_led, led_dev);
321 u16 reg;
322
323 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
324 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
325 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
326 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
327
328 return 0;
329 }
330
331 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
332 struct rt2x00_led *led,
333 enum led_type type)
334 {
335 led->rt2x00dev = rt2x00dev;
336 led->type = type;
337 led->led_dev.brightness_set = rt2500usb_brightness_set;
338 led->led_dev.blink_set = rt2500usb_blink_set;
339 led->flags = LED_INITIALIZED;
340 }
341 #endif /* CONFIG_RT2X00_LIB_LEDS */
342
343 /*
344 * Configuration handlers.
345 */
346 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
347 const unsigned int filter_flags)
348 {
349 u16 reg;
350
351 /*
352 * Start configuration steps.
353 * Note that the version error will always be dropped
354 * and broadcast frames will always be accepted since
355 * there is no filter for it at this time.
356 */
357 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
358 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
359 !(filter_flags & FIF_FCSFAIL));
360 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
361 !(filter_flags & FIF_PLCPFAIL));
362 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
363 !(filter_flags & FIF_CONTROL));
364 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
365 !(filter_flags & FIF_PROMISC_IN_BSS));
366 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
367 !(filter_flags & FIF_PROMISC_IN_BSS) &&
368 !rt2x00dev->intf_ap_count);
369 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
370 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
371 !(filter_flags & FIF_ALLMULTI));
372 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
373 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
374 }
375
376 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
377 struct rt2x00_intf *intf,
378 struct rt2x00intf_conf *conf,
379 const unsigned int flags)
380 {
381 unsigned int bcn_preload;
382 u16 reg;
383
384 if (flags & CONFIG_UPDATE_TYPE) {
385 /*
386 * Enable beacon config
387 */
388 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
389 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
390 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
391 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
392 2 * (conf->type != NL80211_IFTYPE_STATION));
393 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
394
395 /*
396 * Enable synchronisation.
397 */
398 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
399 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
400 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
401
402 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
403 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
404 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
405 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
406 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
407 }
408
409 if (flags & CONFIG_UPDATE_MAC)
410 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
411 (3 * sizeof(__le16)));
412
413 if (flags & CONFIG_UPDATE_BSSID)
414 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
415 (3 * sizeof(__le16)));
416 }
417
418 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
419 struct rt2x00lib_erp *erp)
420 {
421 u16 reg;
422
423 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
424 rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
425 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
426
427 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
428 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
429 !!erp->short_preamble);
430 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
431
432 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
433
434 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
435 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
436 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
437 }
438
439 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
440 struct antenna_setup *ant)
441 {
442 u8 r2;
443 u8 r14;
444 u16 csr5;
445 u16 csr6;
446
447 /*
448 * We should never come here because rt2x00lib is supposed
449 * to catch this and send us the correct antenna explicitely.
450 */
451 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
452 ant->tx == ANTENNA_SW_DIVERSITY);
453
454 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
455 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
456 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
457 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
458
459 /*
460 * Configure the TX antenna.
461 */
462 switch (ant->tx) {
463 case ANTENNA_HW_DIVERSITY:
464 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
465 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
466 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
467 break;
468 case ANTENNA_A:
469 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
470 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
471 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
472 break;
473 case ANTENNA_B:
474 default:
475 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
476 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
477 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
478 break;
479 }
480
481 /*
482 * Configure the RX antenna.
483 */
484 switch (ant->rx) {
485 case ANTENNA_HW_DIVERSITY:
486 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
487 break;
488 case ANTENNA_A:
489 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
490 break;
491 case ANTENNA_B:
492 default:
493 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
494 break;
495 }
496
497 /*
498 * RT2525E and RT5222 need to flip TX I/Q
499 */
500 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
501 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
502 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
503 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
504 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
505
506 /*
507 * RT2525E does not need RX I/Q Flip.
508 */
509 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
510 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
511 } else {
512 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
513 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
514 }
515
516 rt2500usb_bbp_write(rt2x00dev, 2, r2);
517 rt2500usb_bbp_write(rt2x00dev, 14, r14);
518 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
519 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
520 }
521
522 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
523 struct rf_channel *rf, const int txpower)
524 {
525 /*
526 * Set TXpower.
527 */
528 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
529
530 /*
531 * For RT2525E we should first set the channel to half band higher.
532 */
533 if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
534 static const u32 vals[] = {
535 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
536 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
537 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
538 0x00000902, 0x00000906
539 };
540
541 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
542 if (rf->rf4)
543 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
544 }
545
546 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
547 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
548 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
549 if (rf->rf4)
550 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
551 }
552
553 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
554 const int txpower)
555 {
556 u32 rf3;
557
558 rt2x00_rf_read(rt2x00dev, 3, &rf3);
559 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
560 rt2500usb_rf_write(rt2x00dev, 3, rf3);
561 }
562
563 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
564 struct rt2x00lib_conf *libconf)
565 {
566 u16 reg;
567
568 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
569 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
570 libconf->conf->beacon_int * 4);
571 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
572 }
573
574 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
575 struct rt2x00lib_conf *libconf,
576 const unsigned int flags)
577 {
578 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
579 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
580 libconf->conf->power_level);
581 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
582 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
583 rt2500usb_config_txpower(rt2x00dev,
584 libconf->conf->power_level);
585 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
586 rt2500usb_config_duration(rt2x00dev, libconf);
587 }
588
589 /*
590 * Link tuning
591 */
592 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
593 struct link_qual *qual)
594 {
595 u16 reg;
596
597 /*
598 * Update FCS error count from register.
599 */
600 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
601 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
602
603 /*
604 * Update False CCA count from register.
605 */
606 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
607 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
608 }
609
610 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
611 {
612 u16 eeprom;
613 u16 value;
614
615 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
616 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
617 rt2500usb_bbp_write(rt2x00dev, 24, value);
618
619 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
620 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
621 rt2500usb_bbp_write(rt2x00dev, 25, value);
622
623 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
624 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
625 rt2500usb_bbp_write(rt2x00dev, 61, value);
626
627 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
628 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
629 rt2500usb_bbp_write(rt2x00dev, 17, value);
630
631 rt2x00dev->link.vgc_level = value;
632 }
633
634 /*
635 * NOTE: This function is directly ported from legacy driver, but
636 * despite it being declared it was never called. Although link tuning
637 * sounds like a good idea, and usually works well for the other drivers,
638 * it does _not_ work with rt2500usb. Enabling this function will result
639 * in TX capabilities only until association kicks in. Immediately
640 * after the successful association all TX frames will be kept in the
641 * hardware queue and never transmitted.
642 */
643 #if 0
644 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
645 {
646 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
647 u16 bbp_thresh;
648 u16 vgc_bound;
649 u16 sens;
650 u16 r24;
651 u16 r25;
652 u16 r61;
653 u16 r17_sens;
654 u8 r17;
655 u8 up_bound;
656 u8 low_bound;
657
658 /*
659 * Read current r17 value, as well as the sensitivity values
660 * for the r17 register.
661 */
662 rt2500usb_bbp_read(rt2x00dev, 17, &r17);
663 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
664
665 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
666 up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
667 low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
668
669 /*
670 * If we are not associated, we should go straight to the
671 * dynamic CCA tuning.
672 */
673 if (!rt2x00dev->intf_associated)
674 goto dynamic_cca_tune;
675
676 /*
677 * Determine the BBP tuning threshold and correctly
678 * set BBP 24, 25 and 61.
679 */
680 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
681 bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
682
683 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
684 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
685 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
686
687 if ((rssi + bbp_thresh) > 0) {
688 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
689 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
690 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
691 } else {
692 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
693 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
694 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
695 }
696
697 rt2500usb_bbp_write(rt2x00dev, 24, r24);
698 rt2500usb_bbp_write(rt2x00dev, 25, r25);
699 rt2500usb_bbp_write(rt2x00dev, 61, r61);
700
701 /*
702 * A too low RSSI will cause too much false CCA which will
703 * then corrupt the R17 tuning. To remidy this the tuning should
704 * be stopped (While making sure the R17 value will not exceed limits)
705 */
706 if (rssi >= -40) {
707 if (r17 != 0x60)
708 rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
709 return;
710 }
711
712 /*
713 * Special big-R17 for short distance
714 */
715 if (rssi >= -58) {
716 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
717 if (r17 != sens)
718 rt2500usb_bbp_write(rt2x00dev, 17, sens);
719 return;
720 }
721
722 /*
723 * Special mid-R17 for middle distance
724 */
725 if (rssi >= -74) {
726 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
727 if (r17 != sens)
728 rt2500usb_bbp_write(rt2x00dev, 17, sens);
729 return;
730 }
731
732 /*
733 * Leave short or middle distance condition, restore r17
734 * to the dynamic tuning range.
735 */
736 low_bound = 0x32;
737 if (rssi < -77)
738 up_bound -= (-77 - rssi);
739
740 if (up_bound < low_bound)
741 up_bound = low_bound;
742
743 if (r17 > up_bound) {
744 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
745 rt2x00dev->link.vgc_level = up_bound;
746 return;
747 }
748
749 dynamic_cca_tune:
750
751 /*
752 * R17 is inside the dynamic tuning range,
753 * start tuning the link based on the false cca counter.
754 */
755 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
756 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
757 rt2x00dev->link.vgc_level = r17;
758 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
759 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
760 rt2x00dev->link.vgc_level = r17;
761 }
762 }
763 #else
764 #define rt2500usb_link_tuner NULL
765 #endif
766
767 /*
768 * Initialization functions.
769 */
770 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
771 {
772 u16 reg;
773
774 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
775 USB_MODE_TEST, REGISTER_TIMEOUT);
776 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
777 0x00f0, REGISTER_TIMEOUT);
778
779 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
780 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
781 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
782
783 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
784 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
785
786 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
787 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
788 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
789 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
790 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
791
792 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
793 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
794 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
795 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
796 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
797
798 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
799 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
800 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
801 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
802 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
803 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
804
805 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
806 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
807 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
808 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
809 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
810 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
811
812 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
813 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
814 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
815 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
816 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
817 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
818
819 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
820 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
821 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
822 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
823 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
824 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
825
826 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
827 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
828 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
829 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
830 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
831 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
832
833 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
834 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
835
836 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
837 return -EBUSY;
838
839 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
840 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
841 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
842 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
843 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
844
845 if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
846 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
847 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
848 } else {
849 reg = 0;
850 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
851 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
852 }
853 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
854
855 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
856 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
857 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
858 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
859
860 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
861 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
862 rt2x00dev->rx->data_size);
863 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
864
865 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
866 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
867 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
868 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
869
870 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
871 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
872 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
873
874 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
875 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
876 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
877
878 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
879 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
880 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
881
882 return 0;
883 }
884
885 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
886 {
887 unsigned int i;
888 u8 value;
889
890 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
891 rt2500usb_bbp_read(rt2x00dev, 0, &value);
892 if ((value != 0xff) && (value != 0x00))
893 return 0;
894 udelay(REGISTER_BUSY_DELAY);
895 }
896
897 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
898 return -EACCES;
899 }
900
901 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
902 {
903 unsigned int i;
904 u16 eeprom;
905 u8 value;
906 u8 reg_id;
907
908 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
909 return -EACCES;
910
911 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
912 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
913 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
914 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
915 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
916 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
917 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
918 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
919 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
920 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
921 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
922 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
923 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
924 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
925 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
926 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
927 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
928 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
929 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
930 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
931 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
932 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
933 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
934 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
935 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
936 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
937 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
938 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
939 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
940 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
941 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
942
943 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
944 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
945
946 if (eeprom != 0xffff && eeprom != 0x0000) {
947 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
948 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
949 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
950 }
951 }
952
953 return 0;
954 }
955
956 /*
957 * Device state switch handlers.
958 */
959 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
960 enum dev_state state)
961 {
962 u16 reg;
963
964 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
965 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
966 (state == STATE_RADIO_RX_OFF) ||
967 (state == STATE_RADIO_RX_OFF_LINK));
968 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
969 }
970
971 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
972 {
973 /*
974 * Initialize all registers.
975 */
976 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
977 rt2500usb_init_bbp(rt2x00dev)))
978 return -EIO;
979
980 return 0;
981 }
982
983 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
984 {
985 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
986 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
987
988 /*
989 * Disable synchronisation.
990 */
991 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
992
993 rt2x00usb_disable_radio(rt2x00dev);
994 }
995
996 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
997 enum dev_state state)
998 {
999 u16 reg;
1000 u16 reg2;
1001 unsigned int i;
1002 char put_to_sleep;
1003 char bbp_state;
1004 char rf_state;
1005
1006 put_to_sleep = (state != STATE_AWAKE);
1007
1008 reg = 0;
1009 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1010 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1011 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1012 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1014 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1015
1016 /*
1017 * Device is not guaranteed to be in the requested state yet.
1018 * We must wait until the register indicates that the
1019 * device has entered the correct state.
1020 */
1021 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1022 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1023 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1024 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1025 if (bbp_state == state && rf_state == state)
1026 return 0;
1027 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1028 msleep(30);
1029 }
1030
1031 return -EBUSY;
1032 }
1033
1034 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1035 enum dev_state state)
1036 {
1037 int retval = 0;
1038
1039 switch (state) {
1040 case STATE_RADIO_ON:
1041 retval = rt2500usb_enable_radio(rt2x00dev);
1042 break;
1043 case STATE_RADIO_OFF:
1044 rt2500usb_disable_radio(rt2x00dev);
1045 break;
1046 case STATE_RADIO_RX_ON:
1047 case STATE_RADIO_RX_ON_LINK:
1048 case STATE_RADIO_RX_OFF:
1049 case STATE_RADIO_RX_OFF_LINK:
1050 rt2500usb_toggle_rx(rt2x00dev, state);
1051 break;
1052 case STATE_RADIO_IRQ_ON:
1053 case STATE_RADIO_IRQ_OFF:
1054 /* No support, but no error either */
1055 break;
1056 case STATE_DEEP_SLEEP:
1057 case STATE_SLEEP:
1058 case STATE_STANDBY:
1059 case STATE_AWAKE:
1060 retval = rt2500usb_set_state(rt2x00dev, state);
1061 break;
1062 default:
1063 retval = -ENOTSUPP;
1064 break;
1065 }
1066
1067 if (unlikely(retval))
1068 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1069 state, retval);
1070
1071 return retval;
1072 }
1073
1074 /*
1075 * TX descriptor initialization
1076 */
1077 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1078 struct sk_buff *skb,
1079 struct txentry_desc *txdesc)
1080 {
1081 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1082 __le32 *txd = skbdesc->desc;
1083 u32 word;
1084
1085 /*
1086 * Start writing the descriptor words.
1087 */
1088 rt2x00_desc_read(txd, 1, &word);
1089 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1090 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1091 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1092 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1093 rt2x00_desc_write(txd, 1, word);
1094
1095 rt2x00_desc_read(txd, 2, &word);
1096 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1097 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1098 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1099 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1100 rt2x00_desc_write(txd, 2, word);
1101
1102 rt2x00_desc_read(txd, 0, &word);
1103 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1104 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1105 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1106 rt2x00_set_field32(&word, TXD_W0_ACK,
1107 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1108 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1109 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1110 rt2x00_set_field32(&word, TXD_W0_OFDM,
1111 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1112 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1113 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1114 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1115 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1116 rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1117 rt2x00_desc_write(txd, 0, word);
1118 }
1119
1120 /*
1121 * TX data initialization
1122 */
1123 static void rt2500usb_beacondone(struct urb *urb);
1124
1125 static void rt2500usb_write_beacon(struct queue_entry *entry)
1126 {
1127 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1128 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1129 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1130 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1131 int pipe = usb_sndbulkpipe(usb_dev, 1);
1132 int length;
1133 u16 reg;
1134
1135 /*
1136 * Add the descriptor in front of the skb.
1137 */
1138 skb_push(entry->skb, entry->queue->desc_size);
1139 memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1140 skbdesc->desc = entry->skb->data;
1141
1142 /*
1143 * Disable beaconing while we are reloading the beacon data,
1144 * otherwise we might be sending out invalid data.
1145 */
1146 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1147 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1148 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1149 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1150 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1151
1152 /*
1153 * USB devices cannot blindly pass the skb->len as the
1154 * length of the data to usb_fill_bulk_urb. Pass the skb
1155 * to the driver to determine what the length should be.
1156 */
1157 length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb);
1158
1159 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160 entry->skb->data, length, rt2500usb_beacondone,
1161 entry);
1162
1163 /*
1164 * Second we need to create the guardian byte.
1165 * We only need a single byte, so lets recycle
1166 * the 'flags' field we are not using for beacons.
1167 */
1168 bcn_priv->guardian_data = 0;
1169 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171 entry);
1172
1173 /*
1174 * Send out the guardian byte.
1175 */
1176 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177 }
1178
1179 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1180 struct sk_buff *skb)
1181 {
1182 int length;
1183
1184 /*
1185 * The length _must_ be a multiple of 2,
1186 * but it must _not_ be a multiple of the USB packet size.
1187 */
1188 length = roundup(skb->len, 2);
1189 length += (2 * !(length % rt2x00dev->usb_maxpacket));
1190
1191 return length;
1192 }
1193
1194 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1195 const enum data_queue_qid queue)
1196 {
1197 u16 reg;
1198
1199 if (queue != QID_BEACON) {
1200 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1201 return;
1202 }
1203
1204 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1205 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1206 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1207 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1208 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1209 /*
1210 * Beacon generation will fail initially.
1211 * To prevent this we need to register the TXRX_CSR19
1212 * register several times.
1213 */
1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1216 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1217 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1218 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1219 }
1220 }
1221
1222 /*
1223 * RX control handlers
1224 */
1225 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1226 struct rxdone_entry_desc *rxdesc)
1227 {
1228 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1229 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1230 __le32 *rxd =
1231 (__le32 *)(entry->skb->data +
1232 (entry_priv->urb->actual_length -
1233 entry->queue->desc_size));
1234 u32 word0;
1235 u32 word1;
1236
1237 /*
1238 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1239 * frame data in rt2x00usb.
1240 */
1241 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1242 rxd = (__le32 *)skbdesc->desc;
1243
1244 /*
1245 * It is now safe to read the descriptor on all architectures.
1246 */
1247 rt2x00_desc_read(rxd, 0, &word0);
1248 rt2x00_desc_read(rxd, 1, &word1);
1249
1250 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1251 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1252 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1253 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1254
1255 /*
1256 * Obtain the status about this packet.
1257 * When frame was received with an OFDM bitrate,
1258 * the signal is the PLCP value. If it was received with
1259 * a CCK bitrate the signal is the rate in 100kbit/s.
1260 */
1261 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1262 rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1263 entry->queue->rt2x00dev->rssi_offset;
1264 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1265
1266 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1267 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1268 else
1269 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1270 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1271 rxdesc->dev_flags |= RXDONE_MY_BSS;
1272
1273 /*
1274 * Adjust the skb memory window to the frame boundaries.
1275 */
1276 skb_trim(entry->skb, rxdesc->size);
1277 }
1278
1279 /*
1280 * Interrupt functions.
1281 */
1282 static void rt2500usb_beacondone(struct urb *urb)
1283 {
1284 struct queue_entry *entry = (struct queue_entry *)urb->context;
1285 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1286
1287 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1288 return;
1289
1290 /*
1291 * Check if this was the guardian beacon,
1292 * if that was the case we need to send the real beacon now.
1293 * Otherwise we should free the sk_buffer, the device
1294 * should be doing the rest of the work now.
1295 */
1296 if (bcn_priv->guardian_urb == urb) {
1297 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1298 } else if (bcn_priv->urb == urb) {
1299 dev_kfree_skb(entry->skb);
1300 entry->skb = NULL;
1301 }
1302 }
1303
1304 /*
1305 * Device probe functions.
1306 */
1307 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1308 {
1309 u16 word;
1310 u8 *mac;
1311 u8 bbp;
1312
1313 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1314
1315 /*
1316 * Start validation of the data that has been read.
1317 */
1318 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1319 if (!is_valid_ether_addr(mac)) {
1320 random_ether_addr(mac);
1321 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1322 }
1323
1324 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1325 if (word == 0xffff) {
1326 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1327 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1328 ANTENNA_SW_DIVERSITY);
1329 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1330 ANTENNA_SW_DIVERSITY);
1331 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1332 LED_MODE_DEFAULT);
1333 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1334 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1335 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1336 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1337 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1338 }
1339
1340 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1341 if (word == 0xffff) {
1342 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1343 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1344 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1345 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1346 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1347 }
1348
1349 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1350 if (word == 0xffff) {
1351 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1352 DEFAULT_RSSI_OFFSET);
1353 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1354 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1355 }
1356
1357 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1358 if (word == 0xffff) {
1359 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1360 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1361 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1362 }
1363
1364 /*
1365 * Switch lower vgc bound to current BBP R17 value,
1366 * lower the value a bit for better quality.
1367 */
1368 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1369 bbp -= 6;
1370
1371 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1372 if (word == 0xffff) {
1373 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1374 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1375 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1376 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1377 } else {
1378 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1379 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1380 }
1381
1382 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1383 if (word == 0xffff) {
1384 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1385 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1386 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1387 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1388 }
1389
1390 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1391 if (word == 0xffff) {
1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1393 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1395 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1396 }
1397
1398 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1399 if (word == 0xffff) {
1400 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1401 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1402 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1403 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1404 }
1405
1406 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1407 if (word == 0xffff) {
1408 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1411 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1412 }
1413
1414 return 0;
1415 }
1416
1417 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1418 {
1419 u16 reg;
1420 u16 value;
1421 u16 eeprom;
1422
1423 /*
1424 * Read EEPROM word for configuration.
1425 */
1426 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1427
1428 /*
1429 * Identify RF chipset.
1430 */
1431 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1432 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1433 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1434
1435 if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1436 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1437 return -ENODEV;
1438 }
1439
1440 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1441 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1442 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1443 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1444 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1445 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1446 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1447 return -ENODEV;
1448 }
1449
1450 /*
1451 * Identify default antenna configuration.
1452 */
1453 rt2x00dev->default_ant.tx =
1454 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1455 rt2x00dev->default_ant.rx =
1456 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1457
1458 /*
1459 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1460 * I am not 100% sure about this, but the legacy drivers do not
1461 * indicate antenna swapping in software is required when
1462 * diversity is enabled.
1463 */
1464 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1465 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1466 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1467 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1468
1469 /*
1470 * Store led mode, for correct led behaviour.
1471 */
1472 #ifdef CONFIG_RT2X00_LIB_LEDS
1473 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1474
1475 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1476 if (value == LED_MODE_TXRX_ACTIVITY)
1477 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1478 LED_TYPE_ACTIVITY);
1479 #endif /* CONFIG_RT2X00_LIB_LEDS */
1480
1481 /*
1482 * Check if the BBP tuning should be disabled.
1483 */
1484 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1485 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1486 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1487
1488 /*
1489 * Read the RSSI <-> dBm offset information.
1490 */
1491 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1492 rt2x00dev->rssi_offset =
1493 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * RF value list for RF2522
1500 * Supports: 2.4 GHz
1501 */
1502 static const struct rf_channel rf_vals_bg_2522[] = {
1503 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1504 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1505 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1506 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1507 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1508 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1509 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1510 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1511 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1512 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1513 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1514 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1515 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1516 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1517 };
1518
1519 /*
1520 * RF value list for RF2523
1521 * Supports: 2.4 GHz
1522 */
1523 static const struct rf_channel rf_vals_bg_2523[] = {
1524 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1525 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1526 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1527 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1528 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1529 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1530 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1531 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1532 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1533 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1534 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1535 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1536 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1537 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1538 };
1539
1540 /*
1541 * RF value list for RF2524
1542 * Supports: 2.4 GHz
1543 */
1544 static const struct rf_channel rf_vals_bg_2524[] = {
1545 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1546 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1547 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1548 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1549 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1550 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1551 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1552 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1553 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1554 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1555 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1556 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1557 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1558 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1559 };
1560
1561 /*
1562 * RF value list for RF2525
1563 * Supports: 2.4 GHz
1564 */
1565 static const struct rf_channel rf_vals_bg_2525[] = {
1566 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1567 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1568 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1569 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1570 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1571 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1572 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1573 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1574 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1575 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1576 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1577 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1578 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1579 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1580 };
1581
1582 /*
1583 * RF value list for RF2525e
1584 * Supports: 2.4 GHz
1585 */
1586 static const struct rf_channel rf_vals_bg_2525e[] = {
1587 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1588 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1589 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1590 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1591 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1592 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1593 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1594 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1595 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1596 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1597 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1598 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1599 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1600 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1601 };
1602
1603 /*
1604 * RF value list for RF5222
1605 * Supports: 2.4 GHz & 5.2 GHz
1606 */
1607 static const struct rf_channel rf_vals_5222[] = {
1608 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1609 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1610 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1611 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1612 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1613 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1614 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1615 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1616 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1617 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1618 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1619 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1620 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1621 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1622
1623 /* 802.11 UNI / HyperLan 2 */
1624 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1625 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1626 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1627 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1628 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1629 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1630 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1631 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1632
1633 /* 802.11 HyperLan 2 */
1634 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1635 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1636 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1637 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1638 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1639 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1640 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1641 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1642 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1643 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1644
1645 /* 802.11 UNII */
1646 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1647 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1648 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1649 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1650 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1651 };
1652
1653 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1654 {
1655 struct hw_mode_spec *spec = &rt2x00dev->spec;
1656 struct channel_info *info;
1657 char *tx_power;
1658 unsigned int i;
1659
1660 /*
1661 * Initialize all hw fields.
1662 */
1663 rt2x00dev->hw->flags =
1664 IEEE80211_HW_RX_INCLUDES_FCS |
1665 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1666 IEEE80211_HW_SIGNAL_DBM;
1667
1668 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1669
1670 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1671 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1672 rt2x00_eeprom_addr(rt2x00dev,
1673 EEPROM_MAC_ADDR_0));
1674
1675 /*
1676 * Initialize hw_mode information.
1677 */
1678 spec->supported_bands = SUPPORT_BAND_2GHZ;
1679 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1680
1681 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1682 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1683 spec->channels = rf_vals_bg_2522;
1684 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1685 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1686 spec->channels = rf_vals_bg_2523;
1687 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1688 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1689 spec->channels = rf_vals_bg_2524;
1690 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1691 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1692 spec->channels = rf_vals_bg_2525;
1693 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1694 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1695 spec->channels = rf_vals_bg_2525e;
1696 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1697 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1698 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1699 spec->channels = rf_vals_5222;
1700 }
1701
1702 /*
1703 * Create channel information array
1704 */
1705 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1706 if (!info)
1707 return -ENOMEM;
1708
1709 spec->channels_info = info;
1710
1711 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1712 for (i = 0; i < 14; i++)
1713 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1714
1715 if (spec->num_channels > 14) {
1716 for (i = 14; i < spec->num_channels; i++)
1717 info[i].tx_power1 = DEFAULT_TXPOWER;
1718 }
1719
1720 return 0;
1721 }
1722
1723 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1724 {
1725 int retval;
1726
1727 /*
1728 * Allocate eeprom data.
1729 */
1730 retval = rt2500usb_validate_eeprom(rt2x00dev);
1731 if (retval)
1732 return retval;
1733
1734 retval = rt2500usb_init_eeprom(rt2x00dev);
1735 if (retval)
1736 return retval;
1737
1738 /*
1739 * Initialize hw specifications.
1740 */
1741 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1742 if (retval)
1743 return retval;
1744
1745 /*
1746 * This device requires the atim queue
1747 */
1748 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1749 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1750 __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1751 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1752
1753 /*
1754 * Set the rssi offset.
1755 */
1756 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1757
1758 return 0;
1759 }
1760
1761 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1762 .tx = rt2x00mac_tx,
1763 .start = rt2x00mac_start,
1764 .stop = rt2x00mac_stop,
1765 .add_interface = rt2x00mac_add_interface,
1766 .remove_interface = rt2x00mac_remove_interface,
1767 .config = rt2x00mac_config,
1768 .config_interface = rt2x00mac_config_interface,
1769 .configure_filter = rt2x00mac_configure_filter,
1770 .get_stats = rt2x00mac_get_stats,
1771 .bss_info_changed = rt2x00mac_bss_info_changed,
1772 .conf_tx = rt2x00mac_conf_tx,
1773 .get_tx_stats = rt2x00mac_get_tx_stats,
1774 };
1775
1776 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1777 .probe_hw = rt2500usb_probe_hw,
1778 .initialize = rt2x00usb_initialize,
1779 .uninitialize = rt2x00usb_uninitialize,
1780 .init_rxentry = rt2x00usb_init_rxentry,
1781 .init_txentry = rt2x00usb_init_txentry,
1782 .set_device_state = rt2500usb_set_device_state,
1783 .link_stats = rt2500usb_link_stats,
1784 .reset_tuner = rt2500usb_reset_tuner,
1785 .link_tuner = rt2500usb_link_tuner,
1786 .write_tx_desc = rt2500usb_write_tx_desc,
1787 .write_tx_data = rt2x00usb_write_tx_data,
1788 .write_beacon = rt2500usb_write_beacon,
1789 .get_tx_data_len = rt2500usb_get_tx_data_len,
1790 .kick_tx_queue = rt2500usb_kick_tx_queue,
1791 .fill_rxdone = rt2500usb_fill_rxdone,
1792 .config_filter = rt2500usb_config_filter,
1793 .config_intf = rt2500usb_config_intf,
1794 .config_erp = rt2500usb_config_erp,
1795 .config_ant = rt2500usb_config_ant,
1796 .config = rt2500usb_config,
1797 };
1798
1799 static const struct data_queue_desc rt2500usb_queue_rx = {
1800 .entry_num = RX_ENTRIES,
1801 .data_size = DATA_FRAME_SIZE,
1802 .desc_size = RXD_DESC_SIZE,
1803 .priv_size = sizeof(struct queue_entry_priv_usb),
1804 };
1805
1806 static const struct data_queue_desc rt2500usb_queue_tx = {
1807 .entry_num = TX_ENTRIES,
1808 .data_size = DATA_FRAME_SIZE,
1809 .desc_size = TXD_DESC_SIZE,
1810 .priv_size = sizeof(struct queue_entry_priv_usb),
1811 };
1812
1813 static const struct data_queue_desc rt2500usb_queue_bcn = {
1814 .entry_num = BEACON_ENTRIES,
1815 .data_size = MGMT_FRAME_SIZE,
1816 .desc_size = TXD_DESC_SIZE,
1817 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1818 };
1819
1820 static const struct data_queue_desc rt2500usb_queue_atim = {
1821 .entry_num = ATIM_ENTRIES,
1822 .data_size = DATA_FRAME_SIZE,
1823 .desc_size = TXD_DESC_SIZE,
1824 .priv_size = sizeof(struct queue_entry_priv_usb),
1825 };
1826
1827 static const struct rt2x00_ops rt2500usb_ops = {
1828 .name = KBUILD_MODNAME,
1829 .max_sta_intf = 1,
1830 .max_ap_intf = 1,
1831 .eeprom_size = EEPROM_SIZE,
1832 .rf_size = RF_SIZE,
1833 .tx_queues = NUM_TX_QUEUES,
1834 .rx = &rt2500usb_queue_rx,
1835 .tx = &rt2500usb_queue_tx,
1836 .bcn = &rt2500usb_queue_bcn,
1837 .atim = &rt2500usb_queue_atim,
1838 .lib = &rt2500usb_rt2x00_ops,
1839 .hw = &rt2500usb_mac80211_ops,
1840 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1841 .debugfs = &rt2500usb_rt2x00debug,
1842 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1843 };
1844
1845 /*
1846 * rt2500usb module information.
1847 */
1848 static struct usb_device_id rt2500usb_device_table[] = {
1849 /* ASUS */
1850 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1851 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1852 /* Belkin */
1853 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1854 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1855 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1856 /* Cisco Systems */
1857 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1858 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1859 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1860 /* Conceptronic */
1861 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1862 /* D-LINK */
1863 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1864 /* Gigabyte */
1865 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1866 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1867 /* Hercules */
1868 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 /* Melco */
1870 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1871 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1872 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1873 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1874 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1875 /* MSI */
1876 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1877 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1878 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1879 /* Ralink */
1880 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1881 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1882 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1883 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1884 /* Siemens */
1885 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1886 /* SMC */
1887 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1888 /* Spairon */
1889 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1890 /* Trust */
1891 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1892 /* Zinwell */
1893 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1894 { 0, }
1895 };
1896
1897 MODULE_AUTHOR(DRV_PROJECT);
1898 MODULE_VERSION(DRV_VERSION);
1899 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1900 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1901 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1902 MODULE_LICENSE("GPL");
1903
1904 static struct usb_driver rt2500usb_driver = {
1905 .name = KBUILD_MODNAME,
1906 .id_table = rt2500usb_device_table,
1907 .probe = rt2x00usb_probe,
1908 .disconnect = rt2x00usb_disconnect,
1909 .suspend = rt2x00usb_suspend,
1910 .resume = rt2x00usb_resume,
1911 };
1912
1913 static int __init rt2500usb_init(void)
1914 {
1915 return usb_register(&rt2500usb_driver);
1916 }
1917
1918 static void __exit rt2500usb_exit(void)
1919 {
1920 usb_deregister(&rt2500usb_driver);
1921 }
1922
1923 module_init(rt2500usb_init);
1924 module_exit(rt2500usb_exit);