]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40 * Allow hardware encryption to be disabled.
41 */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2500usb_register_read and rt2500usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * If the csr_mutex is already held then the _lock variants must
59 * be used instead.
60 */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62 const unsigned int offset,
63 u16 *value)
64 {
65 __le16 reg;
66 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67 USB_VENDOR_REQUEST_IN, offset,
68 &reg, sizeof(reg), REGISTER_TIMEOUT);
69 *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73 const unsigned int offset,
74 u16 *value)
75 {
76 __le16 reg;
77 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78 USB_VENDOR_REQUEST_IN, offset,
79 &reg, sizeof(reg), REGISTER_TIMEOUT);
80 *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84 const unsigned int offset,
85 void *value, const u16 length)
86 {
87 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88 USB_VENDOR_REQUEST_IN, offset,
89 value, length,
90 REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94 const unsigned int offset,
95 u16 value)
96 {
97 __le16 reg = cpu_to_le16(value);
98 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99 USB_VENDOR_REQUEST_OUT, offset,
100 &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104 const unsigned int offset,
105 u16 value)
106 {
107 __le16 reg = cpu_to_le16(value);
108 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109 USB_VENDOR_REQUEST_OUT, offset,
110 &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114 const unsigned int offset,
115 void *value, const u16 length)
116 {
117 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118 USB_VENDOR_REQUEST_OUT, offset,
119 value, length,
120 REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124 const unsigned int offset,
125 struct rt2x00_field16 field,
126 u16 *reg)
127 {
128 unsigned int i;
129
130 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132 if (!rt2x00_get_field16(*reg, field))
133 return 1;
134 udelay(REGISTER_BUSY_DELAY);
135 }
136
137 ERROR(rt2x00dev, "Indirect register access failed: "
138 "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139 *reg = ~0;
140
141 return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150 const unsigned int word, const u8 value)
151 {
152 u16 reg;
153
154 mutex_lock(&rt2x00dev->csr_mutex);
155
156 /*
157 * Wait until the BBP becomes available, afterwards we
158 * can safely write the new data into the register.
159 */
160 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161 reg = 0;
162 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167 }
168
169 mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173 const unsigned int word, u8 *value)
174 {
175 u16 reg;
176
177 mutex_lock(&rt2x00dev->csr_mutex);
178
179 /*
180 * Wait until the BBP becomes available, afterwards we
181 * can safely write the read request into the register.
182 * After the data has been written, we wait until hardware
183 * returns the correct value, if at any time the register
184 * doesn't become available in time, reg will be 0xffffffff
185 * which means we return 0xff to the caller.
186 */
187 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188 reg = 0;
189 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196 }
197
198 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200 mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204 const unsigned int word, const u32 value)
205 {
206 u16 reg;
207
208 mutex_lock(&rt2x00dev->csr_mutex);
209
210 /*
211 * Wait until the RF becomes available, afterwards we
212 * can safely write the new data into the register.
213 */
214 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215 reg = 0;
216 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219 reg = 0;
220 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226 rt2x00_rf_write(rt2x00dev, word, value);
227 }
228
229 mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234 const unsigned int offset,
235 u32 *value)
236 {
237 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241 const unsigned int offset,
242 u32 value)
243 {
244 rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248 .owner = THIS_MODULE,
249 .csr = {
250 .read = _rt2500usb_register_read,
251 .write = _rt2500usb_register_write,
252 .flags = RT2X00DEBUGFS_OFFSET,
253 .word_base = CSR_REG_BASE,
254 .word_size = sizeof(u16),
255 .word_count = CSR_REG_SIZE / sizeof(u16),
256 },
257 .eeprom = {
258 .read = rt2x00_eeprom_read,
259 .write = rt2x00_eeprom_write,
260 .word_base = EEPROM_BASE,
261 .word_size = sizeof(u16),
262 .word_count = EEPROM_SIZE / sizeof(u16),
263 },
264 .bbp = {
265 .read = rt2500usb_bbp_read,
266 .write = rt2500usb_bbp_write,
267 .word_base = BBP_BASE,
268 .word_size = sizeof(u8),
269 .word_count = BBP_SIZE / sizeof(u8),
270 },
271 .rf = {
272 .read = rt2x00_rf_read,
273 .write = rt2500usb_rf_write,
274 .word_base = RF_BASE,
275 .word_size = sizeof(u32),
276 .word_count = RF_SIZE / sizeof(u32),
277 },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283 u16 reg;
284
285 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286 return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291 enum led_brightness brightness)
292 {
293 struct rt2x00_led *led =
294 container_of(led_cdev, struct rt2x00_led, led_dev);
295 unsigned int enabled = brightness != LED_OFF;
296 u16 reg;
297
298 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302 else if (led->type == LED_TYPE_ACTIVITY)
303 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309 unsigned long *delay_on,
310 unsigned long *delay_off)
311 {
312 struct rt2x00_led *led =
313 container_of(led_cdev, struct rt2x00_led, led_dev);
314 u16 reg;
315
316 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321 return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325 struct rt2x00_led *led,
326 enum led_type type)
327 {
328 led->rt2x00dev = rt2x00dev;
329 led->type = type;
330 led->led_dev.brightness_set = rt2500usb_brightness_set;
331 led->led_dev.blink_set = rt2500usb_blink_set;
332 led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337 * Configuration handlers.
338 */
339
340 /*
341 * rt2500usb does not differentiate between shared and pairwise
342 * keys, so we should use the same function for both key types.
343 */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345 struct rt2x00lib_crypto *crypto,
346 struct ieee80211_key_conf *key)
347 {
348 int timeout;
349 u32 mask;
350 u16 reg;
351
352 if (crypto->cmd == SET_KEY) {
353 /*
354 * Pairwise key will always be entry 0, but this
355 * could collide with a shared key on the same
356 * position...
357 */
358 mask = TXRX_CSR0_KEY_ID.bit_mask;
359
360 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
361 reg &= mask;
362
363 if (reg && reg == mask)
364 return -ENOSPC;
365
366 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
367
368 key->hw_key_idx += reg ? ffz(reg) : 0;
369
370 /*
371 * The encryption key doesn't fit within the CSR cache,
372 * this means we should allocate it separately and use
373 * rt2x00usb_vendor_request() to send the key to the hardware.
374 */
375 reg = KEY_ENTRY(key->hw_key_idx);
376 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
377 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
378 USB_VENDOR_REQUEST_OUT, reg,
379 crypto->key,
380 sizeof(crypto->key),
381 timeout);
382
383 /*
384 * The driver does not support the IV/EIV generation
385 * in hardware. However it demands the data to be provided
386 * both separately as well as inside the frame.
387 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
388 * to ensure rt2x00lib will not strip the data from the
389 * frame after the copy, now we must tell mac80211
390 * to generate the IV/EIV data.
391 */
392 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
393 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
394 }
395
396 /*
397 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
398 * a particular key is valid.
399 */
400 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
401 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
402 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
403
404 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
405 if (crypto->cmd == SET_KEY)
406 mask |= 1 << key->hw_key_idx;
407 else if (crypto->cmd == DISABLE_KEY)
408 mask &= ~(1 << key->hw_key_idx);
409 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
410 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
411
412 return 0;
413 }
414
415 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
416 const unsigned int filter_flags)
417 {
418 u16 reg;
419
420 /*
421 * Start configuration steps.
422 * Note that the version error will always be dropped
423 * and broadcast frames will always be accepted since
424 * there is no filter for it at this time.
425 */
426 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
427 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
428 !(filter_flags & FIF_FCSFAIL));
429 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
430 !(filter_flags & FIF_PLCPFAIL));
431 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
432 !(filter_flags & FIF_CONTROL));
433 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
434 !(filter_flags & FIF_PROMISC_IN_BSS));
435 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
436 !(filter_flags & FIF_PROMISC_IN_BSS) &&
437 !rt2x00dev->intf_ap_count);
438 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
439 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
440 !(filter_flags & FIF_ALLMULTI));
441 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
442 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
443 }
444
445 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
446 struct rt2x00_intf *intf,
447 struct rt2x00intf_conf *conf,
448 const unsigned int flags)
449 {
450 unsigned int bcn_preload;
451 u16 reg;
452
453 if (flags & CONFIG_UPDATE_TYPE) {
454 /*
455 * Enable beacon config
456 */
457 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
458 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
459 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
460 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
461 2 * (conf->type != NL80211_IFTYPE_STATION));
462 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
463
464 /*
465 * Enable synchronisation.
466 */
467 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
468 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
469 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
470
471 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
472 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
473 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
474 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
475 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
476 }
477
478 if (flags & CONFIG_UPDATE_MAC)
479 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
480 (3 * sizeof(__le16)));
481
482 if (flags & CONFIG_UPDATE_BSSID)
483 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
484 (3 * sizeof(__le16)));
485 }
486
487 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
488 struct rt2x00lib_erp *erp)
489 {
490 u16 reg;
491
492 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
493 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
494 !!erp->short_preamble);
495 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
496
497 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
498
499 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
500 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
501 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
502
503 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
504 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
505 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
506 }
507
508 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
509 struct antenna_setup *ant)
510 {
511 u8 r2;
512 u8 r14;
513 u16 csr5;
514 u16 csr6;
515
516 /*
517 * We should never come here because rt2x00lib is supposed
518 * to catch this and send us the correct antenna explicitely.
519 */
520 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
521 ant->tx == ANTENNA_SW_DIVERSITY);
522
523 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
524 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
525 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
526 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
527
528 /*
529 * Configure the TX antenna.
530 */
531 switch (ant->tx) {
532 case ANTENNA_HW_DIVERSITY:
533 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
534 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
535 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
536 break;
537 case ANTENNA_A:
538 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
539 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
540 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
541 break;
542 case ANTENNA_B:
543 default:
544 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
545 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
546 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
547 break;
548 }
549
550 /*
551 * Configure the RX antenna.
552 */
553 switch (ant->rx) {
554 case ANTENNA_HW_DIVERSITY:
555 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
556 break;
557 case ANTENNA_A:
558 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
559 break;
560 case ANTENNA_B:
561 default:
562 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
563 break;
564 }
565
566 /*
567 * RT2525E and RT5222 need to flip TX I/Q
568 */
569 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
570 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
571 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
572 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
573
574 /*
575 * RT2525E does not need RX I/Q Flip.
576 */
577 if (rt2x00_rf(rt2x00dev, RF2525E))
578 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
579 } else {
580 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
581 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
582 }
583
584 rt2500usb_bbp_write(rt2x00dev, 2, r2);
585 rt2500usb_bbp_write(rt2x00dev, 14, r14);
586 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
587 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
588 }
589
590 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
591 struct rf_channel *rf, const int txpower)
592 {
593 /*
594 * Set TXpower.
595 */
596 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
597
598 /*
599 * For RT2525E we should first set the channel to half band higher.
600 */
601 if (rt2x00_rf(rt2x00dev, RF2525E)) {
602 static const u32 vals[] = {
603 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
604 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
605 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
606 0x00000902, 0x00000906
607 };
608
609 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
610 if (rf->rf4)
611 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
612 }
613
614 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
615 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
616 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
617 if (rf->rf4)
618 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619 }
620
621 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
622 const int txpower)
623 {
624 u32 rf3;
625
626 rt2x00_rf_read(rt2x00dev, 3, &rf3);
627 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
628 rt2500usb_rf_write(rt2x00dev, 3, rf3);
629 }
630
631 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
632 struct rt2x00lib_conf *libconf)
633 {
634 enum dev_state state =
635 (libconf->conf->flags & IEEE80211_CONF_PS) ?
636 STATE_SLEEP : STATE_AWAKE;
637 u16 reg;
638
639 if (state == STATE_SLEEP) {
640 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
641 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
642 rt2x00dev->beacon_int - 20);
643 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
644 libconf->conf->listen_interval - 1);
645
646 /* We must first disable autowake before it can be enabled */
647 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
648 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
649
650 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
651 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
652 }
653
654 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
655 }
656
657 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
658 struct rt2x00lib_conf *libconf,
659 const unsigned int flags)
660 {
661 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
662 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
663 libconf->conf->power_level);
664 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
665 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
666 rt2500usb_config_txpower(rt2x00dev,
667 libconf->conf->power_level);
668 if (flags & IEEE80211_CONF_CHANGE_PS)
669 rt2500usb_config_ps(rt2x00dev, libconf);
670 }
671
672 /*
673 * Link tuning
674 */
675 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
676 struct link_qual *qual)
677 {
678 u16 reg;
679
680 /*
681 * Update FCS error count from register.
682 */
683 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
684 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
685
686 /*
687 * Update False CCA count from register.
688 */
689 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
690 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
691 }
692
693 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
694 struct link_qual *qual)
695 {
696 u16 eeprom;
697 u16 value;
698
699 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
700 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
701 rt2500usb_bbp_write(rt2x00dev, 24, value);
702
703 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
704 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
705 rt2500usb_bbp_write(rt2x00dev, 25, value);
706
707 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
708 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
709 rt2500usb_bbp_write(rt2x00dev, 61, value);
710
711 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
712 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
713 rt2500usb_bbp_write(rt2x00dev, 17, value);
714
715 qual->vgc_level = value;
716 }
717
718 /*
719 * Initialization functions.
720 */
721 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
722 {
723 u16 reg;
724
725 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
726 USB_MODE_TEST, REGISTER_TIMEOUT);
727 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
728 0x00f0, REGISTER_TIMEOUT);
729
730 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
731 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
732 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
733
734 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
735 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
736
737 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
738 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
739 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
740 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
741 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
742
743 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
744 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
745 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
746 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
747 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
748
749 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
750 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
751 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
752 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
753 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
754 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
755
756 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
757 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
758 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
759 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
760 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
761 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
762
763 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
764 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
765 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
766 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
767 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
768 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
769
770 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
771 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
772 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
773 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
774 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
775 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
776
777 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
778 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
779 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
780 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
781 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
782 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
783
784 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
785 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
786
787 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
788 return -EBUSY;
789
790 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
791 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
792 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
793 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
794 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
795
796 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
797 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
798 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
799 } else {
800 reg = 0;
801 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
802 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
803 }
804 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
805
806 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
807 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
808 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
809 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
810
811 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
812 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
813 rt2x00dev->rx->data_size);
814 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
815
816 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
817 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
818 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
819 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
820
821 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
822 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
823 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
824
825 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
826 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
827 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
828
829 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
830 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
831 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
832
833 return 0;
834 }
835
836 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
837 {
838 unsigned int i;
839 u8 value;
840
841 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
842 rt2500usb_bbp_read(rt2x00dev, 0, &value);
843 if ((value != 0xff) && (value != 0x00))
844 return 0;
845 udelay(REGISTER_BUSY_DELAY);
846 }
847
848 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
849 return -EACCES;
850 }
851
852 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
853 {
854 unsigned int i;
855 u16 eeprom;
856 u8 value;
857 u8 reg_id;
858
859 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
860 return -EACCES;
861
862 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
863 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
864 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
865 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
866 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
867 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
868 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
869 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
870 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
871 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
872 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
873 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
874 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
875 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
876 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
877 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
878 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
879 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
880 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
881 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
882 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
883 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
884 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
885 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
886 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
887 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
888 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
889 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
890 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
891 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
892 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
893
894 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
895 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
896
897 if (eeprom != 0xffff && eeprom != 0x0000) {
898 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
899 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
900 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
901 }
902 }
903
904 return 0;
905 }
906
907 /*
908 * Device state switch handlers.
909 */
910 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
911 enum dev_state state)
912 {
913 u16 reg;
914
915 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
916 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
917 (state == STATE_RADIO_RX_OFF) ||
918 (state == STATE_RADIO_RX_OFF_LINK));
919 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
920 }
921
922 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
923 {
924 /*
925 * Initialize all registers.
926 */
927 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
928 rt2500usb_init_bbp(rt2x00dev)))
929 return -EIO;
930
931 return 0;
932 }
933
934 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
935 {
936 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
937 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
938
939 /*
940 * Disable synchronisation.
941 */
942 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
943
944 rt2x00usb_disable_radio(rt2x00dev);
945 }
946
947 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
948 enum dev_state state)
949 {
950 u16 reg;
951 u16 reg2;
952 unsigned int i;
953 char put_to_sleep;
954 char bbp_state;
955 char rf_state;
956
957 put_to_sleep = (state != STATE_AWAKE);
958
959 reg = 0;
960 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
961 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
962 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
963 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
964 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
965 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
966
967 /*
968 * Device is not guaranteed to be in the requested state yet.
969 * We must wait until the register indicates that the
970 * device has entered the correct state.
971 */
972 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
973 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
974 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
975 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
976 if (bbp_state == state && rf_state == state)
977 return 0;
978 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
979 msleep(30);
980 }
981
982 return -EBUSY;
983 }
984
985 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
986 enum dev_state state)
987 {
988 int retval = 0;
989
990 switch (state) {
991 case STATE_RADIO_ON:
992 retval = rt2500usb_enable_radio(rt2x00dev);
993 break;
994 case STATE_RADIO_OFF:
995 rt2500usb_disable_radio(rt2x00dev);
996 break;
997 case STATE_RADIO_RX_ON:
998 case STATE_RADIO_RX_ON_LINK:
999 case STATE_RADIO_RX_OFF:
1000 case STATE_RADIO_RX_OFF_LINK:
1001 rt2500usb_toggle_rx(rt2x00dev, state);
1002 break;
1003 case STATE_RADIO_IRQ_ON:
1004 case STATE_RADIO_IRQ_OFF:
1005 /* No support, but no error either */
1006 break;
1007 case STATE_DEEP_SLEEP:
1008 case STATE_SLEEP:
1009 case STATE_STANDBY:
1010 case STATE_AWAKE:
1011 retval = rt2500usb_set_state(rt2x00dev, state);
1012 break;
1013 default:
1014 retval = -ENOTSUPP;
1015 break;
1016 }
1017
1018 if (unlikely(retval))
1019 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1020 state, retval);
1021
1022 return retval;
1023 }
1024
1025 /*
1026 * TX descriptor initialization
1027 */
1028 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1029 struct sk_buff *skb,
1030 struct txentry_desc *txdesc)
1031 {
1032 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1033 __le32 *txd = skbdesc->desc;
1034 u32 word;
1035
1036 /*
1037 * Start writing the descriptor words.
1038 */
1039 rt2x00_desc_read(txd, 1, &word);
1040 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1041 rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1042 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1043 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1044 rt2x00_desc_write(txd, 1, word);
1045
1046 rt2x00_desc_read(txd, 2, &word);
1047 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1048 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1049 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1050 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1051 rt2x00_desc_write(txd, 2, word);
1052
1053 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1054 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1055 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1056 }
1057
1058 rt2x00_desc_read(txd, 0, &word);
1059 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1060 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1061 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1062 rt2x00_set_field32(&word, TXD_W0_ACK,
1063 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1064 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1065 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1066 rt2x00_set_field32(&word, TXD_W0_OFDM,
1067 (txdesc->rate_mode == RATE_MODE_OFDM));
1068 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1069 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1070 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1071 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1072 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1073 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1074 rt2x00_desc_write(txd, 0, word);
1075 }
1076
1077 /*
1078 * TX data initialization
1079 */
1080 static void rt2500usb_beacondone(struct urb *urb);
1081
1082 static void rt2500usb_write_beacon(struct queue_entry *entry)
1083 {
1084 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1085 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1086 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1087 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1088 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1089 int length;
1090 u16 reg;
1091
1092 /*
1093 * Add the descriptor in front of the skb.
1094 */
1095 skb_push(entry->skb, entry->queue->desc_size);
1096 memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1097 skbdesc->desc = entry->skb->data;
1098
1099 /*
1100 * Disable beaconing while we are reloading the beacon data,
1101 * otherwise we might be sending out invalid data.
1102 */
1103 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1104 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1105 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1106
1107 /*
1108 * USB devices cannot blindly pass the skb->len as the
1109 * length of the data to usb_fill_bulk_urb. Pass the skb
1110 * to the driver to determine what the length should be.
1111 */
1112 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1113
1114 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1115 entry->skb->data, length, rt2500usb_beacondone,
1116 entry);
1117
1118 /*
1119 * Second we need to create the guardian byte.
1120 * We only need a single byte, so lets recycle
1121 * the 'flags' field we are not using for beacons.
1122 */
1123 bcn_priv->guardian_data = 0;
1124 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1125 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1126 entry);
1127
1128 /*
1129 * Send out the guardian byte.
1130 */
1131 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1132 }
1133
1134 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1135 {
1136 int length;
1137
1138 /*
1139 * The length _must_ be a multiple of 2,
1140 * but it must _not_ be a multiple of the USB packet size.
1141 */
1142 length = roundup(entry->skb->len, 2);
1143 length += (2 * !(length % entry->queue->usb_maxpacket));
1144
1145 return length;
1146 }
1147
1148 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1149 const enum data_queue_qid queue)
1150 {
1151 u16 reg, reg0;
1152
1153 if (queue != QID_BEACON) {
1154 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1155 return;
1156 }
1157
1158 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1159 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1160 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1161 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1162 reg0 = reg;
1163 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1164 /*
1165 * Beacon generation will fail initially.
1166 * To prevent this we need to change the TXRX_CSR19
1167 * register several times (reg0 is the same as reg
1168 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1169 * and 1 in reg).
1170 */
1171 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1172 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1173 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1174 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1175 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1176 }
1177 }
1178
1179 /*
1180 * RX control handlers
1181 */
1182 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1183 struct rxdone_entry_desc *rxdesc)
1184 {
1185 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1186 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1187 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1188 __le32 *rxd =
1189 (__le32 *)(entry->skb->data +
1190 (entry_priv->urb->actual_length -
1191 entry->queue->desc_size));
1192 u32 word0;
1193 u32 word1;
1194
1195 /*
1196 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1197 * frame data in rt2x00usb.
1198 */
1199 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1200 rxd = (__le32 *)skbdesc->desc;
1201
1202 /*
1203 * It is now safe to read the descriptor on all architectures.
1204 */
1205 rt2x00_desc_read(rxd, 0, &word0);
1206 rt2x00_desc_read(rxd, 1, &word1);
1207
1208 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1209 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1210 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1211 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1212
1213 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1214 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1215 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1216 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1217 }
1218
1219 if (rxdesc->cipher != CIPHER_NONE) {
1220 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1221 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1222 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1223
1224 /* ICV is located at the end of frame */
1225
1226 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1227 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1228 rxdesc->flags |= RX_FLAG_DECRYPTED;
1229 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1230 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1231 }
1232
1233 /*
1234 * Obtain the status about this packet.
1235 * When frame was received with an OFDM bitrate,
1236 * the signal is the PLCP value. If it was received with
1237 * a CCK bitrate the signal is the rate in 100kbit/s.
1238 */
1239 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1240 rxdesc->rssi =
1241 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1242 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1243
1244 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1245 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1246 else
1247 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1248 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1249 rxdesc->dev_flags |= RXDONE_MY_BSS;
1250
1251 /*
1252 * Adjust the skb memory window to the frame boundaries.
1253 */
1254 skb_trim(entry->skb, rxdesc->size);
1255 }
1256
1257 /*
1258 * Interrupt functions.
1259 */
1260 static void rt2500usb_beacondone(struct urb *urb)
1261 {
1262 struct queue_entry *entry = (struct queue_entry *)urb->context;
1263 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1264
1265 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1266 return;
1267
1268 /*
1269 * Check if this was the guardian beacon,
1270 * if that was the case we need to send the real beacon now.
1271 * Otherwise we should free the sk_buffer, the device
1272 * should be doing the rest of the work now.
1273 */
1274 if (bcn_priv->guardian_urb == urb) {
1275 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1276 } else if (bcn_priv->urb == urb) {
1277 dev_kfree_skb(entry->skb);
1278 entry->skb = NULL;
1279 }
1280 }
1281
1282 /*
1283 * Device probe functions.
1284 */
1285 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1286 {
1287 u16 word;
1288 u8 *mac;
1289 u8 bbp;
1290
1291 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1292
1293 /*
1294 * Start validation of the data that has been read.
1295 */
1296 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1297 if (!is_valid_ether_addr(mac)) {
1298 random_ether_addr(mac);
1299 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1300 }
1301
1302 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1303 if (word == 0xffff) {
1304 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1305 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1306 ANTENNA_SW_DIVERSITY);
1307 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1308 ANTENNA_SW_DIVERSITY);
1309 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1310 LED_MODE_DEFAULT);
1311 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1312 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1313 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1314 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1315 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1316 }
1317
1318 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1319 if (word == 0xffff) {
1320 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1321 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1322 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1323 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1324 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1325 }
1326
1327 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1328 if (word == 0xffff) {
1329 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1330 DEFAULT_RSSI_OFFSET);
1331 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1332 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1333 }
1334
1335 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1336 if (word == 0xffff) {
1337 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1338 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1339 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1340 }
1341
1342 /*
1343 * Switch lower vgc bound to current BBP R17 value,
1344 * lower the value a bit for better quality.
1345 */
1346 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1347 bbp -= 6;
1348
1349 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1350 if (word == 0xffff) {
1351 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1352 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1353 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1354 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1355 } else {
1356 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1357 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1358 }
1359
1360 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1361 if (word == 0xffff) {
1362 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1363 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1364 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1365 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1366 }
1367
1368 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1369 if (word == 0xffff) {
1370 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1371 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1372 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1373 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1374 }
1375
1376 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1377 if (word == 0xffff) {
1378 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1379 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1380 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1381 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1382 }
1383
1384 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1385 if (word == 0xffff) {
1386 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1387 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1388 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1389 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1390 }
1391
1392 return 0;
1393 }
1394
1395 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1396 {
1397 u16 reg;
1398 u16 value;
1399 u16 eeprom;
1400
1401 /*
1402 * Read EEPROM word for configuration.
1403 */
1404 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1405
1406 /*
1407 * Identify RF chipset.
1408 */
1409 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1410 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1411 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1412
1413 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1414 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1415 return -ENODEV;
1416 }
1417
1418 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1419 !rt2x00_rf(rt2x00dev, RF2523) &&
1420 !rt2x00_rf(rt2x00dev, RF2524) &&
1421 !rt2x00_rf(rt2x00dev, RF2525) &&
1422 !rt2x00_rf(rt2x00dev, RF2525E) &&
1423 !rt2x00_rf(rt2x00dev, RF5222)) {
1424 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1425 return -ENODEV;
1426 }
1427
1428 /*
1429 * Identify default antenna configuration.
1430 */
1431 rt2x00dev->default_ant.tx =
1432 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1433 rt2x00dev->default_ant.rx =
1434 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1435
1436 /*
1437 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1438 * I am not 100% sure about this, but the legacy drivers do not
1439 * indicate antenna swapping in software is required when
1440 * diversity is enabled.
1441 */
1442 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1443 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1444 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1445 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1446
1447 /*
1448 * Store led mode, for correct led behaviour.
1449 */
1450 #ifdef CONFIG_RT2X00_LIB_LEDS
1451 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1452
1453 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1454 if (value == LED_MODE_TXRX_ACTIVITY ||
1455 value == LED_MODE_DEFAULT ||
1456 value == LED_MODE_ASUS)
1457 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1458 LED_TYPE_ACTIVITY);
1459 #endif /* CONFIG_RT2X00_LIB_LEDS */
1460
1461 /*
1462 * Detect if this device has an hardware controlled radio.
1463 */
1464 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1465 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1466
1467 /*
1468 * Check if the BBP tuning should be disabled.
1469 */
1470 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1471 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1472 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1473
1474 /*
1475 * Read the RSSI <-> dBm offset information.
1476 */
1477 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1478 rt2x00dev->rssi_offset =
1479 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1480
1481 return 0;
1482 }
1483
1484 /*
1485 * RF value list for RF2522
1486 * Supports: 2.4 GHz
1487 */
1488 static const struct rf_channel rf_vals_bg_2522[] = {
1489 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1490 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1491 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1492 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1493 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1494 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1495 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1496 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1497 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1498 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1499 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1500 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1501 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1502 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1503 };
1504
1505 /*
1506 * RF value list for RF2523
1507 * Supports: 2.4 GHz
1508 */
1509 static const struct rf_channel rf_vals_bg_2523[] = {
1510 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1511 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1512 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1513 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1514 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1515 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1516 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1517 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1518 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1519 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1520 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1521 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1522 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1523 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1524 };
1525
1526 /*
1527 * RF value list for RF2524
1528 * Supports: 2.4 GHz
1529 */
1530 static const struct rf_channel rf_vals_bg_2524[] = {
1531 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1532 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1533 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1534 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1535 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1536 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1537 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1538 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1539 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1540 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1541 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1542 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1543 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1544 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1545 };
1546
1547 /*
1548 * RF value list for RF2525
1549 * Supports: 2.4 GHz
1550 */
1551 static const struct rf_channel rf_vals_bg_2525[] = {
1552 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1553 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1554 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1555 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1556 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1557 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1558 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1559 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1560 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1561 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1562 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1563 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1564 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1565 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1566 };
1567
1568 /*
1569 * RF value list for RF2525e
1570 * Supports: 2.4 GHz
1571 */
1572 static const struct rf_channel rf_vals_bg_2525e[] = {
1573 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1574 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1575 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1576 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1577 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1578 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1579 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1580 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1581 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1582 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1583 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1584 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1585 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1586 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1587 };
1588
1589 /*
1590 * RF value list for RF5222
1591 * Supports: 2.4 GHz & 5.2 GHz
1592 */
1593 static const struct rf_channel rf_vals_5222[] = {
1594 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1595 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1596 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1597 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1598 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1599 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1600 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1601 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1602 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1603 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1604 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1605 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1606 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1607 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1608
1609 /* 802.11 UNI / HyperLan 2 */
1610 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1611 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1612 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1613 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1614 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1615 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1616 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1617 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1618
1619 /* 802.11 HyperLan 2 */
1620 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1621 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1622 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1623 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1624 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1625 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1626 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1627 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1628 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1629 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1630
1631 /* 802.11 UNII */
1632 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1633 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1634 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1635 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1636 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1637 };
1638
1639 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1640 {
1641 struct hw_mode_spec *spec = &rt2x00dev->spec;
1642 struct channel_info *info;
1643 char *tx_power;
1644 unsigned int i;
1645
1646 /*
1647 * Initialize all hw fields.
1648 */
1649 rt2x00dev->hw->flags =
1650 IEEE80211_HW_RX_INCLUDES_FCS |
1651 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1652 IEEE80211_HW_SIGNAL_DBM |
1653 IEEE80211_HW_SUPPORTS_PS |
1654 IEEE80211_HW_PS_NULLFUNC_STACK;
1655
1656 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1657 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1658 rt2x00_eeprom_addr(rt2x00dev,
1659 EEPROM_MAC_ADDR_0));
1660
1661 /*
1662 * Initialize hw_mode information.
1663 */
1664 spec->supported_bands = SUPPORT_BAND_2GHZ;
1665 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1666
1667 if (rt2x00_rf(rt2x00dev, RF2522)) {
1668 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1669 spec->channels = rf_vals_bg_2522;
1670 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1671 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1672 spec->channels = rf_vals_bg_2523;
1673 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1674 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1675 spec->channels = rf_vals_bg_2524;
1676 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1677 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1678 spec->channels = rf_vals_bg_2525;
1679 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1680 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1681 spec->channels = rf_vals_bg_2525e;
1682 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1683 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1684 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1685 spec->channels = rf_vals_5222;
1686 }
1687
1688 /*
1689 * Create channel information array
1690 */
1691 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1692 if (!info)
1693 return -ENOMEM;
1694
1695 spec->channels_info = info;
1696
1697 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1698 for (i = 0; i < 14; i++)
1699 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1700
1701 if (spec->num_channels > 14) {
1702 for (i = 14; i < spec->num_channels; i++)
1703 info[i].tx_power1 = DEFAULT_TXPOWER;
1704 }
1705
1706 return 0;
1707 }
1708
1709 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1710 {
1711 int retval;
1712
1713 /*
1714 * Allocate eeprom data.
1715 */
1716 retval = rt2500usb_validate_eeprom(rt2x00dev);
1717 if (retval)
1718 return retval;
1719
1720 retval = rt2500usb_init_eeprom(rt2x00dev);
1721 if (retval)
1722 return retval;
1723
1724 /*
1725 * Initialize hw specifications.
1726 */
1727 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1728 if (retval)
1729 return retval;
1730
1731 /*
1732 * This device requires the atim queue
1733 */
1734 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1735 __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1736 if (!modparam_nohwcrypt) {
1737 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1738 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1739 }
1740 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1741
1742 /*
1743 * Set the rssi offset.
1744 */
1745 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1746
1747 return 0;
1748 }
1749
1750 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1751 .tx = rt2x00mac_tx,
1752 .start = rt2x00mac_start,
1753 .stop = rt2x00mac_stop,
1754 .add_interface = rt2x00mac_add_interface,
1755 .remove_interface = rt2x00mac_remove_interface,
1756 .config = rt2x00mac_config,
1757 .configure_filter = rt2x00mac_configure_filter,
1758 .set_tim = rt2x00mac_set_tim,
1759 .set_key = rt2x00mac_set_key,
1760 .get_stats = rt2x00mac_get_stats,
1761 .bss_info_changed = rt2x00mac_bss_info_changed,
1762 .conf_tx = rt2x00mac_conf_tx,
1763 .rfkill_poll = rt2x00mac_rfkill_poll,
1764 };
1765
1766 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1767 .probe_hw = rt2500usb_probe_hw,
1768 .initialize = rt2x00usb_initialize,
1769 .uninitialize = rt2x00usb_uninitialize,
1770 .clear_entry = rt2x00usb_clear_entry,
1771 .set_device_state = rt2500usb_set_device_state,
1772 .rfkill_poll = rt2500usb_rfkill_poll,
1773 .link_stats = rt2500usb_link_stats,
1774 .reset_tuner = rt2500usb_reset_tuner,
1775 .write_tx_desc = rt2500usb_write_tx_desc,
1776 .write_tx_data = rt2x00usb_write_tx_data,
1777 .write_beacon = rt2500usb_write_beacon,
1778 .get_tx_data_len = rt2500usb_get_tx_data_len,
1779 .kick_tx_queue = rt2500usb_kick_tx_queue,
1780 .kill_tx_queue = rt2x00usb_kill_tx_queue,
1781 .fill_rxdone = rt2500usb_fill_rxdone,
1782 .config_shared_key = rt2500usb_config_key,
1783 .config_pairwise_key = rt2500usb_config_key,
1784 .config_filter = rt2500usb_config_filter,
1785 .config_intf = rt2500usb_config_intf,
1786 .config_erp = rt2500usb_config_erp,
1787 .config_ant = rt2500usb_config_ant,
1788 .config = rt2500usb_config,
1789 };
1790
1791 static const struct data_queue_desc rt2500usb_queue_rx = {
1792 .entry_num = RX_ENTRIES,
1793 .data_size = DATA_FRAME_SIZE,
1794 .desc_size = RXD_DESC_SIZE,
1795 .priv_size = sizeof(struct queue_entry_priv_usb),
1796 };
1797
1798 static const struct data_queue_desc rt2500usb_queue_tx = {
1799 .entry_num = TX_ENTRIES,
1800 .data_size = DATA_FRAME_SIZE,
1801 .desc_size = TXD_DESC_SIZE,
1802 .priv_size = sizeof(struct queue_entry_priv_usb),
1803 };
1804
1805 static const struct data_queue_desc rt2500usb_queue_bcn = {
1806 .entry_num = BEACON_ENTRIES,
1807 .data_size = MGMT_FRAME_SIZE,
1808 .desc_size = TXD_DESC_SIZE,
1809 .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1810 };
1811
1812 static const struct data_queue_desc rt2500usb_queue_atim = {
1813 .entry_num = ATIM_ENTRIES,
1814 .data_size = DATA_FRAME_SIZE,
1815 .desc_size = TXD_DESC_SIZE,
1816 .priv_size = sizeof(struct queue_entry_priv_usb),
1817 };
1818
1819 static const struct rt2x00_ops rt2500usb_ops = {
1820 .name = KBUILD_MODNAME,
1821 .max_sta_intf = 1,
1822 .max_ap_intf = 1,
1823 .eeprom_size = EEPROM_SIZE,
1824 .rf_size = RF_SIZE,
1825 .tx_queues = NUM_TX_QUEUES,
1826 .extra_tx_headroom = TXD_DESC_SIZE,
1827 .rx = &rt2500usb_queue_rx,
1828 .tx = &rt2500usb_queue_tx,
1829 .bcn = &rt2500usb_queue_bcn,
1830 .atim = &rt2500usb_queue_atim,
1831 .lib = &rt2500usb_rt2x00_ops,
1832 .hw = &rt2500usb_mac80211_ops,
1833 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1834 .debugfs = &rt2500usb_rt2x00debug,
1835 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1836 };
1837
1838 /*
1839 * rt2500usb module information.
1840 */
1841 static struct usb_device_id rt2500usb_device_table[] = {
1842 /* ASUS */
1843 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1844 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1845 /* Belkin */
1846 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1847 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1848 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1849 /* Cisco Systems */
1850 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1851 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1852 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1853 /* CNet */
1854 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1855 /* Conceptronic */
1856 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1857 /* D-LINK */
1858 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1859 /* Gigabyte */
1860 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1861 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1862 /* Hercules */
1863 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1864 /* Melco */
1865 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1866 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1867 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1868 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1870 /* MSI */
1871 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1872 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1873 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1874 /* Ralink */
1875 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1876 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1877 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1878 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1879 /* Sagem */
1880 { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1881 /* Siemens */
1882 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1883 /* SMC */
1884 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1885 /* Spairon */
1886 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1887 /* SURECOM */
1888 { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1889 /* Trust */
1890 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1891 /* VTech */
1892 { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1893 /* Zinwell */
1894 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1895 { 0, }
1896 };
1897
1898 MODULE_AUTHOR(DRV_PROJECT);
1899 MODULE_VERSION(DRV_VERSION);
1900 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1901 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1902 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1903 MODULE_LICENSE("GPL");
1904
1905 static struct usb_driver rt2500usb_driver = {
1906 .name = KBUILD_MODNAME,
1907 .id_table = rt2500usb_device_table,
1908 .probe = rt2x00usb_probe,
1909 .disconnect = rt2x00usb_disconnect,
1910 .suspend = rt2x00usb_suspend,
1911 .resume = rt2x00usb_resume,
1912 };
1913
1914 static int __init rt2500usb_init(void)
1915 {
1916 return usb_register(&rt2500usb_driver);
1917 }
1918
1919 static void __exit rt2500usb_exit(void)
1920 {
1921 usb_deregister(&rt2500usb_driver);
1922 }
1923
1924 module_init(rt2500usb_init);
1925 module_exit(rt2500usb_exit);