2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
39 * Allow hardware encryption to be disabled.
41 static int modparam_nohwcrypt
= 0;
42 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
43 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
47 * All access to the CSR registers will go through the methods
48 * rt2500usb_register_read and rt2500usb_register_write.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers BBPCSR and RFCSR to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 * If the csr_mutex is already held then the _lock variants must
60 static inline void rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
61 const unsigned int offset
,
65 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
66 USB_VENDOR_REQUEST_IN
, offset
,
67 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
68 *value
= le16_to_cpu(reg
);
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
72 const unsigned int offset
,
76 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
77 USB_VENDOR_REQUEST_IN
, offset
,
78 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
79 *value
= le16_to_cpu(reg
);
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev
*rt2x00dev
,
83 const unsigned int offset
,
84 void *value
, const u16 length
)
86 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
87 USB_VENDOR_REQUEST_IN
, offset
,
89 REGISTER_TIMEOUT16(length
));
92 static inline void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
93 const unsigned int offset
,
96 __le16 reg
= cpu_to_le16(value
);
97 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
98 USB_VENDOR_REQUEST_OUT
, offset
,
99 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
103 const unsigned int offset
,
106 __le16 reg
= cpu_to_le16(value
);
107 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
108 USB_VENDOR_REQUEST_OUT
, offset
,
109 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
113 const unsigned int offset
,
114 void *value
, const u16 length
)
116 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
117 USB_VENDOR_REQUEST_OUT
, offset
,
119 REGISTER_TIMEOUT16(length
));
122 static int rt2500usb_regbusy_read(struct rt2x00_dev
*rt2x00dev
,
123 const unsigned int offset
,
124 struct rt2x00_field16 field
,
129 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
130 rt2500usb_register_read_lock(rt2x00dev
, offset
, reg
);
131 if (!rt2x00_get_field16(*reg
, field
))
133 udelay(REGISTER_BUSY_DELAY
);
136 ERROR(rt2x00dev
, "Indirect register access failed: "
137 "offset=0x%.08x, value=0x%.08x\n", offset
, *reg
);
143 #define WAIT_FOR_BBP(__dev, __reg) \
144 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
149 const unsigned int word
, const u8 value
)
153 mutex_lock(&rt2x00dev
->csr_mutex
);
156 * Wait until the BBP becomes available, afterwards we
157 * can safely write the new data into the register.
159 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
161 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
162 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
163 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
165 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
168 mutex_unlock(&rt2x00dev
->csr_mutex
);
171 static void rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
172 const unsigned int word
, u8
*value
)
176 mutex_lock(&rt2x00dev
->csr_mutex
);
179 * Wait until the BBP becomes available, afterwards we
180 * can safely write the read request into the register.
181 * After the data has been written, we wait until hardware
182 * returns the correct value, if at any time the register
183 * doesn't become available in time, reg will be 0xffffffff
184 * which means we return 0xff to the caller.
186 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
188 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
189 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
191 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
193 if (WAIT_FOR_BBP(rt2x00dev
, ®
))
194 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
, ®
);
197 *value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
199 mutex_unlock(&rt2x00dev
->csr_mutex
);
202 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
203 const unsigned int word
, const u32 value
)
207 mutex_lock(&rt2x00dev
->csr_mutex
);
210 * Wait until the RF becomes available, afterwards we
211 * can safely write the new data into the register.
213 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
215 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
216 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
219 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
220 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
221 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
222 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
224 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
225 rt2x00_rf_write(rt2x00dev
, word
, value
);
228 mutex_unlock(&rt2x00dev
->csr_mutex
);
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
233 const unsigned int offset
,
236 rt2500usb_register_read(rt2x00dev
, offset
, (u16
*)value
);
239 static void _rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
240 const unsigned int offset
,
243 rt2500usb_register_write(rt2x00dev
, offset
, value
);
246 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
247 .owner
= THIS_MODULE
,
249 .read
= _rt2500usb_register_read
,
250 .write
= _rt2500usb_register_write
,
251 .flags
= RT2X00DEBUGFS_OFFSET
,
252 .word_base
= CSR_REG_BASE
,
253 .word_size
= sizeof(u16
),
254 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
257 .read
= rt2x00_eeprom_read
,
258 .write
= rt2x00_eeprom_write
,
259 .word_base
= EEPROM_BASE
,
260 .word_size
= sizeof(u16
),
261 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
264 .read
= rt2500usb_bbp_read
,
265 .write
= rt2500usb_bbp_write
,
266 .word_base
= BBP_BASE
,
267 .word_size
= sizeof(u8
),
268 .word_count
= BBP_SIZE
/ sizeof(u8
),
271 .read
= rt2x00_rf_read
,
272 .write
= rt2500usb_rf_write
,
273 .word_base
= RF_BASE
,
274 .word_size
= sizeof(u32
),
275 .word_count
= RF_SIZE
/ sizeof(u32
),
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
284 rt2500usb_register_read(rt2x00dev
, MAC_CSR19
, ®
);
285 return rt2x00_get_field32(reg
, MAC_CSR19_BIT7
);
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
290 enum led_brightness brightness
)
292 struct rt2x00_led
*led
=
293 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
294 unsigned int enabled
= brightness
!= LED_OFF
;
297 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
, ®
);
299 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
300 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
301 else if (led
->type
== LED_TYPE_ACTIVITY
)
302 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
304 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
307 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
308 unsigned long *delay_on
,
309 unsigned long *delay_off
)
311 struct rt2x00_led
*led
=
312 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
315 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
, ®
);
316 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
317 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
318 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
323 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
324 struct rt2x00_led
*led
,
327 led
->rt2x00dev
= rt2x00dev
;
329 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
330 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
331 led
->flags
= LED_INITIALIZED
;
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
336 * Configuration handlers.
340 * rt2500usb does not differentiate between shared and pairwise
341 * keys, so we should use the same function for both key types.
343 static int rt2500usb_config_key(struct rt2x00_dev
*rt2x00dev
,
344 struct rt2x00lib_crypto
*crypto
,
345 struct ieee80211_key_conf
*key
)
351 if (crypto
->cmd
== SET_KEY
) {
353 * Pairwise key will always be entry 0, but this
354 * could collide with a shared key on the same
357 mask
= TXRX_CSR0_KEY_ID
.bit_mask
;
359 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
362 if (reg
&& reg
== mask
)
365 reg
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
367 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
370 * The encryption key doesn't fit within the CSR cache,
371 * this means we should allocate it seperately and use
372 * rt2x00usb_vendor_request() to send the key to the hardware.
374 reg
= KEY_ENTRY(key
->hw_key_idx
);
375 timeout
= REGISTER_TIMEOUT32(sizeof(crypto
->key
));
376 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
377 USB_VENDOR_REQUEST_OUT
, reg
,
383 * The driver does not support the IV/EIV generation
384 * in hardware. However it demands the data to be provided
385 * both seperately as well as inside the frame.
386 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387 * to ensure rt2x00lib will not strip the data from the
388 * frame after the copy, now we must tell mac80211
389 * to generate the IV/EIV data.
391 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
392 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
396 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397 * a particular key is valid.
399 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
400 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, crypto
->cipher
);
401 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
403 mask
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
404 if (crypto
->cmd
== SET_KEY
)
405 mask
|= 1 << key
->hw_key_idx
;
406 else if (crypto
->cmd
== DISABLE_KEY
)
407 mask
&= ~(1 << key
->hw_key_idx
);
408 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, mask
);
409 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
414 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
415 const unsigned int filter_flags
)
420 * Start configuration steps.
421 * Note that the version error will always be dropped
422 * and broadcast frames will always be accepted since
423 * there is no filter for it at this time.
425 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
426 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
427 !(filter_flags
& FIF_FCSFAIL
));
428 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
429 !(filter_flags
& FIF_PLCPFAIL
));
430 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
431 !(filter_flags
& FIF_CONTROL
));
432 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
433 !(filter_flags
& FIF_PROMISC_IN_BSS
));
434 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
435 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
436 !rt2x00dev
->intf_ap_count
);
437 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
438 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
439 !(filter_flags
& FIF_ALLMULTI
));
440 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
441 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
444 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
445 struct rt2x00_intf
*intf
,
446 struct rt2x00intf_conf
*conf
,
447 const unsigned int flags
)
449 unsigned int bcn_preload
;
452 if (flags
& CONFIG_UPDATE_TYPE
) {
454 * Enable beacon config
456 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
457 rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
, ®
);
458 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
459 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
460 2 * (conf
->type
!= NL80211_IFTYPE_STATION
));
461 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
464 * Enable synchronisation.
466 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
467 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
468 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
470 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
471 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
472 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
473 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
474 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
477 if (flags
& CONFIG_UPDATE_MAC
)
478 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
479 (3 * sizeof(__le16
)));
481 if (flags
& CONFIG_UPDATE_BSSID
)
482 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
483 (3 * sizeof(__le16
)));
486 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
487 struct rt2x00lib_erp
*erp
)
491 rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
, ®
);
492 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
493 !!erp
->short_preamble
);
494 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
496 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
, erp
->basic_rates
);
498 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
499 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
, erp
->beacon_int
* 4);
500 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
502 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, erp
->slot_time
);
503 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, erp
->sifs
);
504 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, erp
->eifs
);
507 static void rt2500usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
508 struct antenna_setup
*ant
)
516 * We should never come here because rt2x00lib is supposed
517 * to catch this and send us the correct antenna explicitely.
519 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
520 ant
->tx
== ANTENNA_SW_DIVERSITY
);
522 rt2500usb_bbp_read(rt2x00dev
, 2, &r2
);
523 rt2500usb_bbp_read(rt2x00dev
, 14, &r14
);
524 rt2500usb_register_read(rt2x00dev
, PHY_CSR5
, &csr5
);
525 rt2500usb_register_read(rt2x00dev
, PHY_CSR6
, &csr6
);
528 * Configure the TX antenna.
531 case ANTENNA_HW_DIVERSITY
:
532 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
533 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
534 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
537 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
538 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
539 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
543 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
544 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
545 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
550 * Configure the RX antenna.
553 case ANTENNA_HW_DIVERSITY
:
554 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
557 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
561 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
566 * RT2525E and RT5222 need to flip TX I/Q
568 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
569 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
570 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
571 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
574 * RT2525E does not need RX I/Q Flip.
576 if (rt2x00_rf(rt2x00dev
, RF2525E
))
577 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
579 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
580 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
583 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
584 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
585 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
586 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
589 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
590 struct rf_channel
*rf
, const int txpower
)
595 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
598 * For RT2525E we should first set the channel to half band higher.
600 if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
601 static const u32 vals
[] = {
602 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
603 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
604 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
605 0x00000902, 0x00000906
608 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
610 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
613 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
614 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
615 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
617 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
620 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
625 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
626 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
627 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
630 static void rt2500usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
631 struct rt2x00lib_conf
*libconf
)
633 enum dev_state state
=
634 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
635 STATE_SLEEP
: STATE_AWAKE
;
638 if (state
== STATE_SLEEP
) {
639 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
640 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
,
641 rt2x00dev
->beacon_int
- 20);
642 rt2x00_set_field16(®
, MAC_CSR18_BEACONS_BEFORE_WAKEUP
,
643 libconf
->conf
->listen_interval
- 1);
645 /* We must first disable autowake before it can be enabled */
646 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
647 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
649 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 1);
650 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
653 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
656 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
657 struct rt2x00lib_conf
*libconf
,
658 const unsigned int flags
)
660 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
661 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
662 libconf
->conf
->power_level
);
663 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
664 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
665 rt2500usb_config_txpower(rt2x00dev
,
666 libconf
->conf
->power_level
);
667 if (flags
& IEEE80211_CONF_CHANGE_PS
)
668 rt2500usb_config_ps(rt2x00dev
, libconf
);
674 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
675 struct link_qual
*qual
)
680 * Update FCS error count from register.
682 rt2500usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
683 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
686 * Update False CCA count from register.
688 rt2500usb_register_read(rt2x00dev
, STA_CSR3
, ®
);
689 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
692 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
693 struct link_qual
*qual
)
698 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &eeprom
);
699 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
700 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
702 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &eeprom
);
703 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
704 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
706 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &eeprom
);
707 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
708 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
710 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &eeprom
);
711 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
712 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
714 qual
->vgc_level
= value
;
718 * Initialization functions.
720 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
724 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
725 USB_MODE_TEST
, REGISTER_TIMEOUT
);
726 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
727 0x00f0, REGISTER_TIMEOUT
);
729 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
730 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
731 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
733 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
734 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
736 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
737 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
738 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
739 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
740 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
742 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
743 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
744 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
745 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
746 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
748 rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
, ®
);
749 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
750 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
751 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
752 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
753 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
755 rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
, ®
);
756 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
757 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
758 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
759 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
760 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
762 rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
763 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
764 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
765 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
766 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
767 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
769 rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
770 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
771 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
772 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
773 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
774 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
776 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
777 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
778 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, 0);
779 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
780 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
781 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
783 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
784 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
786 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
789 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
790 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
791 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
792 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
793 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
795 if (rt2x00_rev(rt2x00dev
) >= RT2570_VERSION_C
) {
796 rt2500usb_register_read(rt2x00dev
, PHY_CSR2
, ®
);
797 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
800 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
801 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
803 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
805 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
806 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
807 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
808 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
810 rt2500usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
811 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
812 rt2x00dev
->rx
->data_size
);
813 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
815 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
816 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
817 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0);
818 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
820 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
821 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
822 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
824 rt2500usb_register_read(rt2x00dev
, PHY_CSR4
, ®
);
825 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
826 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
828 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
829 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
830 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
835 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
840 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
841 rt2500usb_bbp_read(rt2x00dev
, 0, &value
);
842 if ((value
!= 0xff) && (value
!= 0x00))
844 udelay(REGISTER_BUSY_DELAY
);
847 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
851 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
858 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
861 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
862 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
863 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
864 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
865 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
866 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
867 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
868 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
869 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
870 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
871 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
872 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
873 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
874 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
875 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
876 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
877 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
878 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
879 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
880 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
881 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
882 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
883 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
884 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
885 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
886 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
887 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
888 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
889 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
890 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
891 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
893 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
894 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
896 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
897 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
898 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
899 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
907 * Device state switch handlers.
909 static void rt2500usb_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
910 enum dev_state state
)
914 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
915 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
,
916 (state
== STATE_RADIO_RX_OFF
) ||
917 (state
== STATE_RADIO_RX_OFF_LINK
));
918 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
921 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
924 * Initialize all registers.
926 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
927 rt2500usb_init_bbp(rt2x00dev
)))
933 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
935 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
936 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
939 * Disable synchronisation.
941 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
943 rt2x00usb_disable_radio(rt2x00dev
);
946 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
947 enum dev_state state
)
956 put_to_sleep
= (state
!= STATE_AWAKE
);
959 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
960 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
961 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
962 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
963 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
964 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
967 * Device is not guaranteed to be in the requested state yet.
968 * We must wait until the register indicates that the
969 * device has entered the correct state.
971 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
972 rt2500usb_register_read(rt2x00dev
, MAC_CSR17
, ®2
);
973 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
974 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
975 if (bbp_state
== state
&& rf_state
== state
)
977 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
984 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
985 enum dev_state state
)
991 retval
= rt2500usb_enable_radio(rt2x00dev
);
993 case STATE_RADIO_OFF
:
994 rt2500usb_disable_radio(rt2x00dev
);
996 case STATE_RADIO_RX_ON
:
997 case STATE_RADIO_RX_ON_LINK
:
998 case STATE_RADIO_RX_OFF
:
999 case STATE_RADIO_RX_OFF_LINK
:
1000 rt2500usb_toggle_rx(rt2x00dev
, state
);
1002 case STATE_RADIO_IRQ_ON
:
1003 case STATE_RADIO_IRQ_OFF
:
1004 /* No support, but no error either */
1006 case STATE_DEEP_SLEEP
:
1010 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1017 if (unlikely(retval
))
1018 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1025 * TX descriptor initialization
1027 static void rt2500usb_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1028 struct sk_buff
*skb
,
1029 struct txentry_desc
*txdesc
)
1031 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1032 __le32
*txd
= skbdesc
->desc
;
1036 * Start writing the descriptor words.
1038 rt2x00_desc_read(txd
, 1, &word
);
1039 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1040 rt2x00_set_field32(&word
, TXD_W1_AIFS
, txdesc
->aifs
);
1041 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1042 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1043 rt2x00_desc_write(txd
, 1, word
);
1045 rt2x00_desc_read(txd
, 2, &word
);
1046 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1047 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1048 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1049 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1050 rt2x00_desc_write(txd
, 2, word
);
1052 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1053 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1054 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1057 rt2x00_desc_read(txd
, 0, &word
);
1058 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1059 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1060 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1061 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1062 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1063 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1064 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1065 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1066 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1067 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1068 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1069 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1070 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skb
->len
);
1071 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, !!txdesc
->cipher
);
1072 rt2x00_set_field32(&word
, TXD_W0_KEY_ID
, txdesc
->key_idx
);
1073 rt2x00_desc_write(txd
, 0, word
);
1077 * TX data initialization
1079 static void rt2500usb_beacondone(struct urb
*urb
);
1081 static void rt2500usb_write_beacon(struct queue_entry
*entry
)
1083 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1084 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1085 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1086 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1087 int pipe
= usb_sndbulkpipe(usb_dev
, entry
->queue
->usb_endpoint
);
1092 * Add the descriptor in front of the skb.
1094 skb_push(entry
->skb
, entry
->queue
->desc_size
);
1095 memcpy(entry
->skb
->data
, skbdesc
->desc
, skbdesc
->desc_len
);
1096 skbdesc
->desc
= entry
->skb
->data
;
1099 * Disable beaconing while we are reloading the beacon data,
1100 * otherwise we might be sending out invalid data.
1102 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1103 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1104 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1107 * USB devices cannot blindly pass the skb->len as the
1108 * length of the data to usb_fill_bulk_urb. Pass the skb
1109 * to the driver to determine what the length should be.
1111 length
= rt2x00dev
->ops
->lib
->get_tx_data_len(entry
);
1113 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1114 entry
->skb
->data
, length
, rt2500usb_beacondone
,
1118 * Second we need to create the guardian byte.
1119 * We only need a single byte, so lets recycle
1120 * the 'flags' field we are not using for beacons.
1122 bcn_priv
->guardian_data
= 0;
1123 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1124 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1128 * Send out the guardian byte.
1130 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1133 static int rt2500usb_get_tx_data_len(struct queue_entry
*entry
)
1138 * The length _must_ be a multiple of 2,
1139 * but it must _not_ be a multiple of the USB packet size.
1141 length
= roundup(entry
->skb
->len
, 2);
1142 length
+= (2 * !(length
% entry
->queue
->usb_maxpacket
));
1147 static void rt2500usb_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1148 const enum data_queue_qid queue
)
1152 if (queue
!= QID_BEACON
) {
1153 rt2x00usb_kick_tx_queue(rt2x00dev
, queue
);
1157 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1158 if (!rt2x00_get_field16(reg
, TXRX_CSR19_BEACON_GEN
)) {
1159 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1160 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1162 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1164 * Beacon generation will fail initially.
1165 * To prevent this we need to change the TXRX_CSR19
1166 * register several times (reg0 is the same as reg
1167 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1170 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1171 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1172 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1173 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1174 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1179 * RX control handlers
1181 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1182 struct rxdone_entry_desc
*rxdesc
)
1184 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1185 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1186 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1188 (__le32
*)(entry
->skb
->data
+
1189 (entry_priv
->urb
->actual_length
-
1190 entry
->queue
->desc_size
));
1195 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1196 * frame data in rt2x00usb.
1198 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1199 rxd
= (__le32
*)skbdesc
->desc
;
1202 * It is now safe to read the descriptor on all architectures.
1204 rt2x00_desc_read(rxd
, 0, &word0
);
1205 rt2x00_desc_read(rxd
, 1, &word1
);
1207 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1208 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1209 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1210 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1212 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
)) {
1213 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER
);
1214 if (rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
))
1215 rxdesc
->cipher_status
= RX_CRYPTO_FAIL_KEY
;
1218 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1219 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1220 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1221 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1223 /* ICV is located at the end of frame */
1225 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1226 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1227 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1228 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1229 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1233 * Obtain the status about this packet.
1234 * When frame was received with an OFDM bitrate,
1235 * the signal is the PLCP value. If it was received with
1236 * a CCK bitrate the signal is the rate in 100kbit/s.
1238 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1240 rt2x00_get_field32(word1
, RXD_W1_RSSI
) - rt2x00dev
->rssi_offset
;
1241 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1243 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1244 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1246 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1247 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1248 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1251 * Adjust the skb memory window to the frame boundaries.
1253 skb_trim(entry
->skb
, rxdesc
->size
);
1257 * Interrupt functions.
1259 static void rt2500usb_beacondone(struct urb
*urb
)
1261 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1262 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1264 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1268 * Check if this was the guardian beacon,
1269 * if that was the case we need to send the real beacon now.
1270 * Otherwise we should free the sk_buffer, the device
1271 * should be doing the rest of the work now.
1273 if (bcn_priv
->guardian_urb
== urb
) {
1274 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1275 } else if (bcn_priv
->urb
== urb
) {
1276 dev_kfree_skb(entry
->skb
);
1282 * Device probe functions.
1284 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1290 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1293 * Start validation of the data that has been read.
1295 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1296 if (!is_valid_ether_addr(mac
)) {
1297 random_ether_addr(mac
);
1298 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1301 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1302 if (word
== 0xffff) {
1303 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1304 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1305 ANTENNA_SW_DIVERSITY
);
1306 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1307 ANTENNA_SW_DIVERSITY
);
1308 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1310 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1311 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1312 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1313 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1314 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1317 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1318 if (word
== 0xffff) {
1319 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1320 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1321 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1322 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1323 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1326 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1327 if (word
== 0xffff) {
1328 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1329 DEFAULT_RSSI_OFFSET
);
1330 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1331 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1334 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &word
);
1335 if (word
== 0xffff) {
1336 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1337 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1338 EEPROM(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1342 * Switch lower vgc bound to current BBP R17 value,
1343 * lower the value a bit for better quality.
1345 rt2500usb_bbp_read(rt2x00dev
, 17, &bbp
);
1348 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &word
);
1349 if (word
== 0xffff) {
1350 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1351 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1352 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1353 EEPROM(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1355 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1356 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1359 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &word
);
1360 if (word
== 0xffff) {
1361 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1362 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1363 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1364 EEPROM(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1367 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &word
);
1368 if (word
== 0xffff) {
1369 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1370 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1371 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1372 EEPROM(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1375 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &word
);
1376 if (word
== 0xffff) {
1377 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1378 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1379 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1380 EEPROM(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1383 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &word
);
1384 if (word
== 0xffff) {
1385 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1386 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1387 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1388 EEPROM(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1394 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1401 * Read EEPROM word for configuration.
1403 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1406 * Identify RF chipset.
1408 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1409 rt2500usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1410 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1412 if (((reg
& 0xfff0) != 0) || ((reg
& 0x0000000f) == 0)) {
1413 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1417 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1418 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1419 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1420 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1421 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1422 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1423 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1428 * Identify default antenna configuration.
1430 rt2x00dev
->default_ant
.tx
=
1431 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1432 rt2x00dev
->default_ant
.rx
=
1433 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1436 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1437 * I am not 100% sure about this, but the legacy drivers do not
1438 * indicate antenna swapping in software is required when
1439 * diversity is enabled.
1441 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1442 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1443 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1444 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1447 * Store led mode, for correct led behaviour.
1449 #ifdef CONFIG_RT2X00_LIB_LEDS
1450 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1452 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1453 if (value
== LED_MODE_TXRX_ACTIVITY
||
1454 value
== LED_MODE_DEFAULT
||
1455 value
== LED_MODE_ASUS
)
1456 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1458 #endif /* CONFIG_RT2X00_LIB_LEDS */
1461 * Detect if this device has an hardware controlled radio.
1463 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1464 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1467 * Check if the BBP tuning should be disabled.
1469 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1470 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1471 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1474 * Read the RSSI <-> dBm offset information.
1476 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1477 rt2x00dev
->rssi_offset
=
1478 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1484 * RF value list for RF2522
1487 static const struct rf_channel rf_vals_bg_2522
[] = {
1488 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1489 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1490 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1491 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1492 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1493 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1494 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1495 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1496 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1497 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1498 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1499 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1500 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1501 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1505 * RF value list for RF2523
1508 static const struct rf_channel rf_vals_bg_2523
[] = {
1509 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1510 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1511 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1512 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1513 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1514 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1515 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1516 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1517 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1518 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1519 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1520 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1521 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1522 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1526 * RF value list for RF2524
1529 static const struct rf_channel rf_vals_bg_2524
[] = {
1530 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1531 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1532 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1533 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1534 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1535 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1536 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1537 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1538 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1539 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1540 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1541 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1542 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1543 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1547 * RF value list for RF2525
1550 static const struct rf_channel rf_vals_bg_2525
[] = {
1551 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1552 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1553 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1554 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1555 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1556 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1557 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1558 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1559 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1560 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1561 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1562 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1563 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1564 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1568 * RF value list for RF2525e
1571 static const struct rf_channel rf_vals_bg_2525e
[] = {
1572 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1573 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1574 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1575 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1576 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1577 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1578 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1579 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1580 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1581 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1582 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1583 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1584 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1585 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1589 * RF value list for RF5222
1590 * Supports: 2.4 GHz & 5.2 GHz
1592 static const struct rf_channel rf_vals_5222
[] = {
1593 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1594 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1595 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1596 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1597 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1598 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1599 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1600 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1601 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1602 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1603 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1604 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1605 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1606 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1608 /* 802.11 UNI / HyperLan 2 */
1609 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1610 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1611 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1612 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1613 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1614 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1615 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1616 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1618 /* 802.11 HyperLan 2 */
1619 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1620 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1621 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1622 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1623 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1624 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1625 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1626 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1627 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1628 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1631 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1632 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1633 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1634 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1635 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1638 static int rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1640 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1641 struct channel_info
*info
;
1646 * Disable powersaving as default.
1648 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1651 * Initialize all hw fields.
1653 rt2x00dev
->hw
->flags
=
1654 IEEE80211_HW_RX_INCLUDES_FCS
|
1655 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1656 IEEE80211_HW_SIGNAL_DBM
|
1657 IEEE80211_HW_SUPPORTS_PS
|
1658 IEEE80211_HW_PS_NULLFUNC_STACK
;
1660 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1661 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1662 rt2x00_eeprom_addr(rt2x00dev
,
1663 EEPROM_MAC_ADDR_0
));
1666 * Initialize hw_mode information.
1668 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1669 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1671 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1672 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1673 spec
->channels
= rf_vals_bg_2522
;
1674 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1675 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1676 spec
->channels
= rf_vals_bg_2523
;
1677 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1678 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1679 spec
->channels
= rf_vals_bg_2524
;
1680 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1681 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1682 spec
->channels
= rf_vals_bg_2525
;
1683 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1684 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1685 spec
->channels
= rf_vals_bg_2525e
;
1686 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1687 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1688 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1689 spec
->channels
= rf_vals_5222
;
1693 * Create channel information array
1695 info
= kzalloc(spec
->num_channels
* sizeof(*info
), GFP_KERNEL
);
1699 spec
->channels_info
= info
;
1701 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1702 for (i
= 0; i
< 14; i
++)
1703 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1705 if (spec
->num_channels
> 14) {
1706 for (i
= 14; i
< spec
->num_channels
; i
++)
1707 info
[i
].tx_power1
= DEFAULT_TXPOWER
;
1713 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1718 * Allocate eeprom data.
1720 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1724 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1729 * Initialize hw specifications.
1731 retval
= rt2500usb_probe_hw_mode(rt2x00dev
);
1736 * This device requires the atim queue
1738 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1739 __set_bit(DRIVER_REQUIRE_BEACON_GUARD
, &rt2x00dev
->flags
);
1740 if (!modparam_nohwcrypt
) {
1741 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
1742 __set_bit(DRIVER_REQUIRE_COPY_IV
, &rt2x00dev
->flags
);
1744 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1747 * Set the rssi offset.
1749 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1754 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1756 .start
= rt2x00mac_start
,
1757 .stop
= rt2x00mac_stop
,
1758 .add_interface
= rt2x00mac_add_interface
,
1759 .remove_interface
= rt2x00mac_remove_interface
,
1760 .config
= rt2x00mac_config
,
1761 .configure_filter
= rt2x00mac_configure_filter
,
1762 .set_tim
= rt2x00mac_set_tim
,
1763 .set_key
= rt2x00mac_set_key
,
1764 .get_stats
= rt2x00mac_get_stats
,
1765 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1766 .conf_tx
= rt2x00mac_conf_tx
,
1767 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1770 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1771 .probe_hw
= rt2500usb_probe_hw
,
1772 .initialize
= rt2x00usb_initialize
,
1773 .uninitialize
= rt2x00usb_uninitialize
,
1774 .clear_entry
= rt2x00usb_clear_entry
,
1775 .set_device_state
= rt2500usb_set_device_state
,
1776 .rfkill_poll
= rt2500usb_rfkill_poll
,
1777 .link_stats
= rt2500usb_link_stats
,
1778 .reset_tuner
= rt2500usb_reset_tuner
,
1779 .write_tx_desc
= rt2500usb_write_tx_desc
,
1780 .write_tx_data
= rt2x00usb_write_tx_data
,
1781 .write_beacon
= rt2500usb_write_beacon
,
1782 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1783 .kick_tx_queue
= rt2500usb_kick_tx_queue
,
1784 .kill_tx_queue
= rt2x00usb_kill_tx_queue
,
1785 .fill_rxdone
= rt2500usb_fill_rxdone
,
1786 .config_shared_key
= rt2500usb_config_key
,
1787 .config_pairwise_key
= rt2500usb_config_key
,
1788 .config_filter
= rt2500usb_config_filter
,
1789 .config_intf
= rt2500usb_config_intf
,
1790 .config_erp
= rt2500usb_config_erp
,
1791 .config_ant
= rt2500usb_config_ant
,
1792 .config
= rt2500usb_config
,
1795 static const struct data_queue_desc rt2500usb_queue_rx
= {
1796 .entry_num
= RX_ENTRIES
,
1797 .data_size
= DATA_FRAME_SIZE
,
1798 .desc_size
= RXD_DESC_SIZE
,
1799 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1802 static const struct data_queue_desc rt2500usb_queue_tx
= {
1803 .entry_num
= TX_ENTRIES
,
1804 .data_size
= DATA_FRAME_SIZE
,
1805 .desc_size
= TXD_DESC_SIZE
,
1806 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1809 static const struct data_queue_desc rt2500usb_queue_bcn
= {
1810 .entry_num
= BEACON_ENTRIES
,
1811 .data_size
= MGMT_FRAME_SIZE
,
1812 .desc_size
= TXD_DESC_SIZE
,
1813 .priv_size
= sizeof(struct queue_entry_priv_usb_bcn
),
1816 static const struct data_queue_desc rt2500usb_queue_atim
= {
1817 .entry_num
= ATIM_ENTRIES
,
1818 .data_size
= DATA_FRAME_SIZE
,
1819 .desc_size
= TXD_DESC_SIZE
,
1820 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1823 static const struct rt2x00_ops rt2500usb_ops
= {
1824 .name
= KBUILD_MODNAME
,
1827 .eeprom_size
= EEPROM_SIZE
,
1829 .tx_queues
= NUM_TX_QUEUES
,
1830 .extra_tx_headroom
= TXD_DESC_SIZE
,
1831 .rx
= &rt2500usb_queue_rx
,
1832 .tx
= &rt2500usb_queue_tx
,
1833 .bcn
= &rt2500usb_queue_bcn
,
1834 .atim
= &rt2500usb_queue_atim
,
1835 .lib
= &rt2500usb_rt2x00_ops
,
1836 .hw
= &rt2500usb_mac80211_ops
,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838 .debugfs
= &rt2500usb_rt2x00debug
,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1843 * rt2500usb module information.
1845 static struct usb_device_id rt2500usb_device_table
[] = {
1847 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1848 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops
) },
1850 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops
) },
1851 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops
) },
1852 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1854 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops
) },
1855 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops
) },
1856 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1858 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops
) },
1860 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops
) },
1862 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops
) },
1864 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops
) },
1865 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops
) },
1867 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops
) },
1869 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops
) },
1870 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops
) },
1871 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops
) },
1872 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops
) },
1873 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops
) },
1875 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops
) },
1876 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops
) },
1877 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops
) },
1879 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1880 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops
) },
1881 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops
) },
1882 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1884 { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops
) },
1886 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops
) },
1888 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops
) },
1890 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops
) },
1892 { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops
) },
1894 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1896 { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops
) },
1898 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops
) },
1902 MODULE_AUTHOR(DRV_PROJECT
);
1903 MODULE_VERSION(DRV_VERSION
);
1904 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1905 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1906 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1907 MODULE_LICENSE("GPL");
1909 static struct usb_driver rt2500usb_driver
= {
1910 .name
= KBUILD_MODNAME
,
1911 .id_table
= rt2500usb_device_table
,
1912 .probe
= rt2x00usb_probe
,
1913 .disconnect
= rt2x00usb_disconnect
,
1914 .suspend
= rt2x00usb_suspend
,
1915 .resume
= rt2x00usb_resume
,
1918 static int __init
rt2500usb_init(void)
1920 return usb_register(&rt2500usb_driver
);
1923 static void __exit
rt2500usb_exit(void)
1925 usb_deregister(&rt2500usb_driver
);
1928 module_init(rt2500usb_init
);
1929 module_exit(rt2500usb_exit
);