]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/rt2x00/rt2800lib.c
dcd3a8981ca2231b0c37f33d7d5367ce5d981bda
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / rt2x00 / rt2800lib.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 */
31
32 /*
33 Module: rt2800lib
34 Abstract: rt2800 generic device routines.
35 */
36
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
41
42 #include "rt2x00.h"
43 #include "rt2800lib.h"
44 #include "rt2800.h"
45
46 /*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
59 */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
69
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
71 {
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev) ||
74 !rt2x00_rt(rt2x00dev, RT2872))
75 return false;
76
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev, RF3020) ||
79 rt2x00_rf(rt2x00dev, RF3021) ||
80 rt2x00_rf(rt2x00dev, RF3022))
81 return true;
82
83 NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
84 return false;
85 }
86
87 static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, const u8 value)
89 {
90 u32 reg;
91
92 mutex_lock(&rt2x00dev->csr_mutex);
93
94 /*
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
97 */
98 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99 reg = 0;
100 rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
101 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
102 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
103 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
104 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
105
106 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
107 }
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, u8 *value)
114 {
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
126 */
127 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
128 reg = 0;
129 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
130 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
131 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
132 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
133
134 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
135
136 WAIT_FOR_BBP(rt2x00dev, &reg);
137 }
138
139 *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
140
141 mutex_unlock(&rt2x00dev->csr_mutex);
142 }
143
144 static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
146 {
147 u32 reg;
148
149 mutex_lock(&rt2x00dev->csr_mutex);
150
151 /*
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
154 */
155 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
158 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
159 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
160 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
161
162 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
163 }
164
165 mutex_unlock(&rt2x00dev->csr_mutex);
166 }
167
168 static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
169 const unsigned int word, u8 *value)
170 {
171 u32 reg;
172
173 mutex_lock(&rt2x00dev->csr_mutex);
174
175 /*
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
182 */
183 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
184 reg = 0;
185 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
186 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
187 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
188
189 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
190
191 WAIT_FOR_RFCSR(rt2x00dev, &reg);
192 }
193
194 *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
195
196 mutex_unlock(&rt2x00dev->csr_mutex);
197 }
198
199 static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, const u32 value)
201 {
202 u32 reg;
203
204 mutex_lock(&rt2x00dev->csr_mutex);
205
206 /*
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
209 */
210 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
211 reg = 0;
212 rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
213 rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
214 rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
215 rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
216
217 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
218 rt2x00_rf_write(rt2x00dev, word, value);
219 }
220
221 mutex_unlock(&rt2x00dev->csr_mutex);
222 }
223
224 void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
225 const u8 command, const u8 token,
226 const u8 arg0, const u8 arg1)
227 {
228 u32 reg;
229
230 /*
231 * SOC devices don't support MCU requests.
232 */
233 if (rt2x00_is_soc(rt2x00dev))
234 return;
235
236 mutex_lock(&rt2x00dev->csr_mutex);
237
238 /*
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
241 */
242 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
243 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
244 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
245 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
246 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
247 rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
248
249 reg = 0;
250 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
251 rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
252 }
253
254 mutex_unlock(&rt2x00dev->csr_mutex);
255 }
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request);
257
258 int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
259 {
260 unsigned int i = 0;
261 u32 reg;
262
263 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
264 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
265 if (reg && reg != ~0)
266 return 0;
267 msleep(1);
268 }
269
270 ERROR(rt2x00dev, "Unstable hardware.\n");
271 return -EBUSY;
272 }
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
274
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
276 {
277 unsigned int i;
278 u32 reg;
279
280 /*
281 * Some devices are really slow to respond here. Wait a whole second
282 * before timing out.
283 */
284 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
285 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
286 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
287 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
288 return 0;
289
290 msleep(10);
291 }
292
293 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
294 return -EACCES;
295 }
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
297
298 static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
299 {
300 u16 fw_crc;
301 u16 crc;
302
303 /*
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
306 * algorithm.
307 */
308 fw_crc = (data[len - 2] << 8 | data[len - 1]);
309
310 /*
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
316 */
317 crc = crc_ccitt(~0, data, len - 2);
318
319 /*
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
323 * value.
324 */
325 crc = swab16(crc);
326
327 return fw_crc == crc;
328 }
329
330 int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
331 const u8 *data, const size_t len)
332 {
333 size_t offset = 0;
334 size_t fw_len;
335 bool multiple;
336
337 /*
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
344 */
345 if (rt2x00_is_usb(rt2x00dev)) {
346 fw_len = 4096;
347 multiple = true;
348 } else {
349 fw_len = 8192;
350 multiple = true;
351 }
352
353 /*
354 * Validate the firmware length
355 */
356 if (len != fw_len && (!multiple || (len % fw_len) != 0))
357 return FW_BAD_LENGTH;
358
359 /*
360 * Check if the chipset requires one of the upper parts
361 * of the firmware.
362 */
363 if (rt2x00_is_usb(rt2x00dev) &&
364 !rt2x00_rt(rt2x00dev, RT2860) &&
365 !rt2x00_rt(rt2x00dev, RT2872) &&
366 !rt2x00_rt(rt2x00dev, RT3070) &&
367 ((len / fw_len) == 1))
368 return FW_BAD_VERSION;
369
370 /*
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
373 */
374 while (offset < len) {
375 if (!rt2800_check_firmware_crc(data + offset, fw_len))
376 return FW_BAD_CRC;
377
378 offset += fw_len;
379 }
380
381 return FW_OK;
382 }
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware);
384
385 int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
386 const u8 *data, const size_t len)
387 {
388 unsigned int i;
389 u32 reg;
390
391 /*
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
394 */
395 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
396
397 /*
398 * Wait for stable hardware.
399 */
400 if (rt2800_wait_csr_ready(rt2x00dev))
401 return -EBUSY;
402
403 if (rt2x00_is_pci(rt2x00dev))
404 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
405
406 /*
407 * Disable DMA, will be reenabled later when enabling
408 * the radio.
409 */
410 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
411 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
412 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
413 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
414 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
415 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
416 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
417
418 /*
419 * Write firmware to the device.
420 */
421 rt2800_drv_write_firmware(rt2x00dev, data, len);
422
423 /*
424 * Wait for device to stabilize.
425 */
426 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
427 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
428 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
429 break;
430 msleep(1);
431 }
432
433 if (i == REGISTER_BUSY_COUNT) {
434 ERROR(rt2x00dev, "PBF system register not ready.\n");
435 return -EBUSY;
436 }
437
438 /*
439 * Initialize firmware.
440 */
441 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
442 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
443 msleep(1);
444
445 return 0;
446 }
447 EXPORT_SYMBOL_GPL(rt2800_load_firmware);
448
449 void rt2800_write_tx_data(struct queue_entry *entry,
450 struct txentry_desc *txdesc)
451 {
452 __le32 *txwi = rt2800_drv_get_txwi(entry);
453 u32 word;
454
455 /*
456 * Initialize TX Info descriptor
457 */
458 rt2x00_desc_read(txwi, 0, &word);
459 rt2x00_set_field32(&word, TXWI_W0_FRAG,
460 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
461 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
462 test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
463 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
464 rt2x00_set_field32(&word, TXWI_W0_TS,
465 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
466 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
467 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
468 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
469 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop);
470 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
471 rt2x00_set_field32(&word, TXWI_W0_BW,
472 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
473 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
474 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
475 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
476 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
477 rt2x00_desc_write(txwi, 0, word);
478
479 rt2x00_desc_read(txwi, 1, &word);
480 rt2x00_set_field32(&word, TXWI_W1_ACK,
481 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
482 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
483 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
484 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
485 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
486 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
487 txdesc->key_idx : 0xff);
488 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
489 txdesc->length);
490 rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, txdesc->qid);
491 rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
492 rt2x00_desc_write(txwi, 1, word);
493
494 /*
495 * Always write 0 to IV/EIV fields, hardware will insert the IV
496 * from the IVEIV register when TXD_W3_WIV is set to 0.
497 * When TXD_W3_WIV is set to 1 it will use the IV data
498 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
499 * crypto entry in the registers should be used to encrypt the frame.
500 */
501 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
502 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
503 }
504 EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
505
506 static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
507 {
508 int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
509 int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
510 int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
511 u16 eeprom;
512 u8 offset0;
513 u8 offset1;
514 u8 offset2;
515
516 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
517 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
518 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
519 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
520 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
521 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
522 } else {
523 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
524 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
525 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
526 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
527 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
528 }
529
530 /*
531 * Convert the value from the descriptor into the RSSI value
532 * If the value in the descriptor is 0, it is considered invalid
533 * and the default (extremely low) rssi value is assumed
534 */
535 rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
536 rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
537 rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
538
539 /*
540 * mac80211 only accepts a single RSSI value. Calculating the
541 * average doesn't deliver a fair answer either since -60:-60 would
542 * be considered equally good as -50:-70 while the second is the one
543 * which gives less energy...
544 */
545 rssi0 = max(rssi0, rssi1);
546 return max(rssi0, rssi2);
547 }
548
549 void rt2800_process_rxwi(struct queue_entry *entry,
550 struct rxdone_entry_desc *rxdesc)
551 {
552 __le32 *rxwi = (__le32 *) entry->skb->data;
553 u32 word;
554
555 rt2x00_desc_read(rxwi, 0, &word);
556
557 rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
558 rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
559
560 rt2x00_desc_read(rxwi, 1, &word);
561
562 if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
563 rxdesc->flags |= RX_FLAG_SHORT_GI;
564
565 if (rt2x00_get_field32(word, RXWI_W1_BW))
566 rxdesc->flags |= RX_FLAG_40MHZ;
567
568 /*
569 * Detect RX rate, always use MCS as signal type.
570 */
571 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
572 rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
573 rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
574
575 /*
576 * Mask of 0x8 bit to remove the short preamble flag.
577 */
578 if (rxdesc->rate_mode == RATE_MODE_CCK)
579 rxdesc->signal &= ~0x8;
580
581 rt2x00_desc_read(rxwi, 2, &word);
582
583 /*
584 * Convert descriptor AGC value to RSSI value.
585 */
586 rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
587
588 /*
589 * Remove RXWI descriptor from start of buffer.
590 */
591 skb_pull(entry->skb, RXWI_DESC_SIZE);
592 }
593 EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
594
595 static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
596 {
597 __le32 *txwi;
598 u32 word;
599 int wcid, ack, pid;
600 int tx_wcid, tx_ack, tx_pid;
601
602 wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
603 ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
604 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
605
606 /*
607 * This frames has returned with an IO error,
608 * so the status report is not intended for this
609 * frame.
610 */
611 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) {
612 rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
613 return false;
614 }
615
616 /*
617 * Validate if this TX status report is intended for
618 * this entry by comparing the WCID/ACK/PID fields.
619 */
620 txwi = rt2800_drv_get_txwi(entry);
621
622 rt2x00_desc_read(txwi, 1, &word);
623 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
624 tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
625 tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
626
627 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) {
628 WARNING(entry->queue->rt2x00dev,
629 "TX status report missed for queue %d entry %d\n",
630 entry->queue->qid, entry->entry_idx);
631 rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
632 return false;
633 }
634
635 return true;
636 }
637
638 void rt2800_txdone_entry(struct queue_entry *entry, u32 status)
639 {
640 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
641 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
642 struct txdone_entry_desc txdesc;
643 u32 word;
644 u16 mcs, real_mcs;
645 int aggr, ampdu;
646 __le32 *txwi;
647
648 /*
649 * Obtain the status about this packet.
650 */
651 txdesc.flags = 0;
652 txwi = rt2800_drv_get_txwi(entry);
653 rt2x00_desc_read(txwi, 0, &word);
654
655 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
656 ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
657
658 real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
659 aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
660
661 /*
662 * If a frame was meant to be sent as a single non-aggregated MPDU
663 * but ended up in an aggregate the used tx rate doesn't correlate
664 * with the one specified in the TXWI as the whole aggregate is sent
665 * with the same rate.
666 *
667 * For example: two frames are sent to rt2x00, the first one sets
668 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
669 * and requests MCS15. If the hw aggregates both frames into one
670 * AMDPU the tx status for both frames will contain MCS7 although
671 * the frame was sent successfully.
672 *
673 * Hence, replace the requested rate with the real tx rate to not
674 * confuse the rate control algortihm by providing clearly wrong
675 * data.
676 */
677 if (aggr == 1 && ampdu == 0 && real_mcs != mcs) {
678 skbdesc->tx_rate_idx = real_mcs;
679 mcs = real_mcs;
680 }
681
682 /*
683 * Ralink has a retry mechanism using a global fallback
684 * table. We setup this fallback table to try the immediate
685 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
686 * always contains the MCS used for the last transmission, be
687 * it successful or not.
688 */
689 if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
690 /*
691 * Transmission succeeded. The number of retries is
692 * mcs - real_mcs
693 */
694 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
695 txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
696 } else {
697 /*
698 * Transmission failed. The number of retries is
699 * always 7 in this case (for a total number of 8
700 * frames sent).
701 */
702 __set_bit(TXDONE_FAILURE, &txdesc.flags);
703 txdesc.retry = rt2x00dev->long_retry;
704 }
705
706 /*
707 * the frame was retried at least once
708 * -> hw used fallback rates
709 */
710 if (txdesc.retry)
711 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
712
713 rt2x00lib_txdone(entry, &txdesc);
714 }
715 EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
716
717 void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
718 {
719 struct data_queue *queue;
720 struct queue_entry *entry;
721 u32 reg;
722 u8 pid;
723 int i;
724
725 /*
726 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
727 * at most X times and also stop processing once the TX_STA_FIFO_VALID
728 * flag is not set anymore.
729 *
730 * The legacy drivers use X=TX_RING_SIZE but state in a comment
731 * that the TX_STA_FIFO stack has a size of 16. We stick to our
732 * tx ring size for now.
733 */
734 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
735 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
736 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
737 break;
738
739 /*
740 * Skip this entry when it contains an invalid
741 * queue identication number.
742 */
743 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
744 if (pid >= QID_RX)
745 continue;
746
747 queue = rt2x00queue_get_queue(rt2x00dev, pid);
748 if (unlikely(!queue))
749 continue;
750
751 /*
752 * Inside each queue, we process each entry in a chronological
753 * order. We first check that the queue is not empty.
754 */
755 entry = NULL;
756 while (!rt2x00queue_empty(queue)) {
757 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
758 if (rt2800_txdone_entry_check(entry, reg))
759 break;
760 }
761
762 if (!entry || rt2x00queue_empty(queue))
763 break;
764
765 rt2800_txdone_entry(entry, reg);
766 }
767 }
768 EXPORT_SYMBOL_GPL(rt2800_txdone);
769
770 void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
771 {
772 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
773 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
774 unsigned int beacon_base;
775 u32 reg;
776
777 /*
778 * Disable beaconing while we are reloading the beacon data,
779 * otherwise we might be sending out invalid data.
780 */
781 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
782 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
783 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
784
785 /*
786 * Add space for the TXWI in front of the skb.
787 */
788 skb_push(entry->skb, TXWI_DESC_SIZE);
789 memset(entry->skb, 0, TXWI_DESC_SIZE);
790
791 /*
792 * Register descriptor details in skb frame descriptor.
793 */
794 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
795 skbdesc->desc = entry->skb->data;
796 skbdesc->desc_len = TXWI_DESC_SIZE;
797
798 /*
799 * Add the TXWI for the beacon to the skb.
800 */
801 rt2800_write_tx_data(entry, txdesc);
802
803 /*
804 * Dump beacon to userspace through debugfs.
805 */
806 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
807
808 /*
809 * Write entire beacon with TXWI to register.
810 */
811 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
812 rt2800_register_multiwrite(rt2x00dev, beacon_base,
813 entry->skb->data, entry->skb->len);
814
815 /*
816 * Enable beaconing again.
817 */
818 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
819 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
820 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
821 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
822
823 /*
824 * Clean up beacon skb.
825 */
826 dev_kfree_skb_any(entry->skb);
827 entry->skb = NULL;
828 }
829 EXPORT_SYMBOL_GPL(rt2800_write_beacon);
830
831 static void inline rt2800_clear_beacon(struct rt2x00_dev *rt2x00dev,
832 unsigned int beacon_base)
833 {
834 int i;
835
836 /*
837 * For the Beacon base registers we only need to clear
838 * the whole TXWI which (when set to 0) will invalidate
839 * the entire beacon.
840 */
841 for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
842 rt2800_register_write(rt2x00dev, beacon_base + i, 0);
843 }
844
845 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
846 const struct rt2x00debug rt2800_rt2x00debug = {
847 .owner = THIS_MODULE,
848 .csr = {
849 .read = rt2800_register_read,
850 .write = rt2800_register_write,
851 .flags = RT2X00DEBUGFS_OFFSET,
852 .word_base = CSR_REG_BASE,
853 .word_size = sizeof(u32),
854 .word_count = CSR_REG_SIZE / sizeof(u32),
855 },
856 .eeprom = {
857 .read = rt2x00_eeprom_read,
858 .write = rt2x00_eeprom_write,
859 .word_base = EEPROM_BASE,
860 .word_size = sizeof(u16),
861 .word_count = EEPROM_SIZE / sizeof(u16),
862 },
863 .bbp = {
864 .read = rt2800_bbp_read,
865 .write = rt2800_bbp_write,
866 .word_base = BBP_BASE,
867 .word_size = sizeof(u8),
868 .word_count = BBP_SIZE / sizeof(u8),
869 },
870 .rf = {
871 .read = rt2x00_rf_read,
872 .write = rt2800_rf_write,
873 .word_base = RF_BASE,
874 .word_size = sizeof(u32),
875 .word_count = RF_SIZE / sizeof(u32),
876 },
877 };
878 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
879 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
880
881 int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
882 {
883 u32 reg;
884
885 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
886 return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
887 }
888 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
889
890 #ifdef CONFIG_RT2X00_LIB_LEDS
891 static void rt2800_brightness_set(struct led_classdev *led_cdev,
892 enum led_brightness brightness)
893 {
894 struct rt2x00_led *led =
895 container_of(led_cdev, struct rt2x00_led, led_dev);
896 unsigned int enabled = brightness != LED_OFF;
897 unsigned int bg_mode =
898 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
899 unsigned int polarity =
900 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
901 EEPROM_FREQ_LED_POLARITY);
902 unsigned int ledmode =
903 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
904 EEPROM_FREQ_LED_MODE);
905
906 if (led->type == LED_TYPE_RADIO) {
907 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
908 enabled ? 0x20 : 0);
909 } else if (led->type == LED_TYPE_ASSOC) {
910 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
911 enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
912 } else if (led->type == LED_TYPE_QUALITY) {
913 /*
914 * The brightness is divided into 6 levels (0 - 5),
915 * The specs tell us the following levels:
916 * 0, 1 ,3, 7, 15, 31
917 * to determine the level in a simple way we can simply
918 * work with bitshifting:
919 * (1 << level) - 1
920 */
921 rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
922 (1 << brightness / (LED_FULL / 6)) - 1,
923 polarity);
924 }
925 }
926
927 static int rt2800_blink_set(struct led_classdev *led_cdev,
928 unsigned long *delay_on, unsigned long *delay_off)
929 {
930 struct rt2x00_led *led =
931 container_of(led_cdev, struct rt2x00_led, led_dev);
932 u32 reg;
933
934 rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
935 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
936 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
937 rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
938
939 return 0;
940 }
941
942 static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
943 struct rt2x00_led *led, enum led_type type)
944 {
945 led->rt2x00dev = rt2x00dev;
946 led->type = type;
947 led->led_dev.brightness_set = rt2800_brightness_set;
948 led->led_dev.blink_set = rt2800_blink_set;
949 led->flags = LED_INITIALIZED;
950 }
951 #endif /* CONFIG_RT2X00_LIB_LEDS */
952
953 /*
954 * Configuration handlers.
955 */
956 static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
957 struct rt2x00lib_crypto *crypto,
958 struct ieee80211_key_conf *key)
959 {
960 struct mac_wcid_entry wcid_entry;
961 struct mac_iveiv_entry iveiv_entry;
962 u32 offset;
963 u32 reg;
964
965 offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
966
967 if (crypto->cmd == SET_KEY) {
968 rt2800_register_read(rt2x00dev, offset, &reg);
969 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
970 !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
971 /*
972 * Both the cipher as the BSS Idx numbers are split in a main
973 * value of 3 bits, and a extended field for adding one additional
974 * bit to the value.
975 */
976 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
977 (crypto->cipher & 0x7));
978 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
979 (crypto->cipher & 0x8) >> 3);
980 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
981 (crypto->bssidx & 0x7));
982 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
983 (crypto->bssidx & 0x8) >> 3);
984 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
985 rt2800_register_write(rt2x00dev, offset, reg);
986 } else {
987 rt2800_register_write(rt2x00dev, offset, 0);
988 }
989
990 offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
991
992 memset(&iveiv_entry, 0, sizeof(iveiv_entry));
993 if ((crypto->cipher == CIPHER_TKIP) ||
994 (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
995 (crypto->cipher == CIPHER_AES))
996 iveiv_entry.iv[3] |= 0x20;
997 iveiv_entry.iv[3] |= key->keyidx << 6;
998 rt2800_register_multiwrite(rt2x00dev, offset,
999 &iveiv_entry, sizeof(iveiv_entry));
1000
1001 offset = MAC_WCID_ENTRY(key->hw_key_idx);
1002
1003 memset(&wcid_entry, 0, sizeof(wcid_entry));
1004 if (crypto->cmd == SET_KEY)
1005 memcpy(&wcid_entry, crypto->address, ETH_ALEN);
1006 rt2800_register_multiwrite(rt2x00dev, offset,
1007 &wcid_entry, sizeof(wcid_entry));
1008 }
1009
1010 int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
1011 struct rt2x00lib_crypto *crypto,
1012 struct ieee80211_key_conf *key)
1013 {
1014 struct hw_key_entry key_entry;
1015 struct rt2x00_field32 field;
1016 u32 offset;
1017 u32 reg;
1018
1019 if (crypto->cmd == SET_KEY) {
1020 key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
1021
1022 memcpy(key_entry.key, crypto->key,
1023 sizeof(key_entry.key));
1024 memcpy(key_entry.tx_mic, crypto->tx_mic,
1025 sizeof(key_entry.tx_mic));
1026 memcpy(key_entry.rx_mic, crypto->rx_mic,
1027 sizeof(key_entry.rx_mic));
1028
1029 offset = SHARED_KEY_ENTRY(key->hw_key_idx);
1030 rt2800_register_multiwrite(rt2x00dev, offset,
1031 &key_entry, sizeof(key_entry));
1032 }
1033
1034 /*
1035 * The cipher types are stored over multiple registers
1036 * starting with SHARED_KEY_MODE_BASE each word will have
1037 * 32 bits and contains the cipher types for 2 bssidx each.
1038 * Using the correct defines correctly will cause overhead,
1039 * so just calculate the correct offset.
1040 */
1041 field.bit_offset = 4 * (key->hw_key_idx % 8);
1042 field.bit_mask = 0x7 << field.bit_offset;
1043
1044 offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
1045
1046 rt2800_register_read(rt2x00dev, offset, &reg);
1047 rt2x00_set_field32(&reg, field,
1048 (crypto->cmd == SET_KEY) * crypto->cipher);
1049 rt2800_register_write(rt2x00dev, offset, reg);
1050
1051 /*
1052 * Update WCID information
1053 */
1054 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1055
1056 return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
1059
1060 int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
1061 struct rt2x00lib_crypto *crypto,
1062 struct ieee80211_key_conf *key)
1063 {
1064 struct hw_key_entry key_entry;
1065 u32 offset;
1066
1067 if (crypto->cmd == SET_KEY) {
1068 /*
1069 * 1 pairwise key is possible per AID, this means that the AID
1070 * equals our hw_key_idx. Make sure the WCID starts _after_ the
1071 * last possible shared key entry.
1072 *
1073 * Since parts of the pairwise key table might be shared with
1074 * the beacon frame buffers 6 & 7 we should only write into the
1075 * first 222 entries.
1076 */
1077 if (crypto->aid > (222 - 32))
1078 return -ENOSPC;
1079
1080 key->hw_key_idx = 32 + crypto->aid;
1081
1082 memcpy(key_entry.key, crypto->key,
1083 sizeof(key_entry.key));
1084 memcpy(key_entry.tx_mic, crypto->tx_mic,
1085 sizeof(key_entry.tx_mic));
1086 memcpy(key_entry.rx_mic, crypto->rx_mic,
1087 sizeof(key_entry.rx_mic));
1088
1089 offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
1090 rt2800_register_multiwrite(rt2x00dev, offset,
1091 &key_entry, sizeof(key_entry));
1092 }
1093
1094 /*
1095 * Update WCID information
1096 */
1097 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1098
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
1102
1103 void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
1104 const unsigned int filter_flags)
1105 {
1106 u32 reg;
1107
1108 /*
1109 * Start configuration steps.
1110 * Note that the version error will always be dropped
1111 * and broadcast frames will always be accepted since
1112 * there is no filter for it at this time.
1113 */
1114 rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
1115 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
1116 !(filter_flags & FIF_FCSFAIL));
1117 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
1118 !(filter_flags & FIF_PLCPFAIL));
1119 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
1120 !(filter_flags & FIF_PROMISC_IN_BSS));
1121 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
1122 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
1123 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
1124 !(filter_flags & FIF_ALLMULTI));
1125 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
1126 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
1127 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
1128 !(filter_flags & FIF_CONTROL));
1129 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
1130 !(filter_flags & FIF_CONTROL));
1131 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
1132 !(filter_flags & FIF_CONTROL));
1133 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
1134 !(filter_flags & FIF_CONTROL));
1135 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
1136 !(filter_flags & FIF_CONTROL));
1137 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
1138 !(filter_flags & FIF_PSPOLL));
1139 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
1140 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
1141 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
1142 !(filter_flags & FIF_CONTROL));
1143 rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
1144 }
1145 EXPORT_SYMBOL_GPL(rt2800_config_filter);
1146
1147 void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
1148 struct rt2x00intf_conf *conf, const unsigned int flags)
1149 {
1150 u32 reg;
1151
1152 if (flags & CONFIG_UPDATE_TYPE) {
1153 /*
1154 * Clear current synchronisation setup.
1155 */
1156 rt2800_clear_beacon(rt2x00dev,
1157 HW_BEACON_OFFSET(intf->beacon->entry_idx));
1158 /*
1159 * Enable synchronisation.
1160 */
1161 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1162 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
1163 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
1164 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE,
1165 (conf->sync == TSF_SYNC_ADHOC ||
1166 conf->sync == TSF_SYNC_AP_NONE));
1167 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1168
1169 /*
1170 * Enable pre tbtt interrupt for beaconing modes
1171 */
1172 rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
1173 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER,
1174 (conf->sync == TSF_SYNC_AP_NONE));
1175 rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
1176
1177 }
1178
1179 if (flags & CONFIG_UPDATE_MAC) {
1180 if (!is_zero_ether_addr((const u8 *)conf->mac)) {
1181 reg = le32_to_cpu(conf->mac[1]);
1182 rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
1183 conf->mac[1] = cpu_to_le32(reg);
1184 }
1185
1186 rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
1187 conf->mac, sizeof(conf->mac));
1188 }
1189
1190 if (flags & CONFIG_UPDATE_BSSID) {
1191 if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
1192 reg = le32_to_cpu(conf->bssid[1]);
1193 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
1194 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
1195 conf->bssid[1] = cpu_to_le32(reg);
1196 }
1197
1198 rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
1199 conf->bssid, sizeof(conf->bssid));
1200 }
1201 }
1202 EXPORT_SYMBOL_GPL(rt2800_config_intf);
1203
1204 static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
1205 struct rt2x00lib_erp *erp)
1206 {
1207 bool any_sta_nongf = !!(erp->ht_opmode &
1208 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
1209 u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
1210 u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
1211 u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
1212 u32 reg;
1213
1214 /* default protection rate for HT20: OFDM 24M */
1215 mm20_rate = gf20_rate = 0x4004;
1216
1217 /* default protection rate for HT40: duplicate OFDM 24M */
1218 mm40_rate = gf40_rate = 0x4084;
1219
1220 switch (protection) {
1221 case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
1222 /*
1223 * All STAs in this BSS are HT20/40 but there might be
1224 * STAs not supporting greenfield mode.
1225 * => Disable protection for HT transmissions.
1226 */
1227 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
1228
1229 break;
1230 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
1231 /*
1232 * All STAs in this BSS are HT20 or HT20/40 but there
1233 * might be STAs not supporting greenfield mode.
1234 * => Protect all HT40 transmissions.
1235 */
1236 mm20_mode = gf20_mode = 0;
1237 mm40_mode = gf40_mode = 2;
1238
1239 break;
1240 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
1241 /*
1242 * Nonmember protection:
1243 * According to 802.11n we _should_ protect all
1244 * HT transmissions (but we don't have to).
1245 *
1246 * But if cts_protection is enabled we _shall_ protect
1247 * all HT transmissions using a CCK rate.
1248 *
1249 * And if any station is non GF we _shall_ protect
1250 * GF transmissions.
1251 *
1252 * We decide to protect everything
1253 * -> fall through to mixed mode.
1254 */
1255 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
1256 /*
1257 * Legacy STAs are present
1258 * => Protect all HT transmissions.
1259 */
1260 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
1261
1262 /*
1263 * If erp protection is needed we have to protect HT
1264 * transmissions with CCK 11M long preamble.
1265 */
1266 if (erp->cts_protection) {
1267 /* don't duplicate RTS/CTS in CCK mode */
1268 mm20_rate = mm40_rate = 0x0003;
1269 gf20_rate = gf40_rate = 0x0003;
1270 }
1271 break;
1272 };
1273
1274 /* check for STAs not supporting greenfield mode */
1275 if (any_sta_nongf)
1276 gf20_mode = gf40_mode = 2;
1277
1278 /* Update HT protection config */
1279 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
1280 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
1281 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
1282 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
1283
1284 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
1285 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
1286 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
1287 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
1288
1289 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
1290 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
1291 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
1292 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
1293
1294 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
1295 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
1296 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
1297 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
1298 }
1299
1300 void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
1301 u32 changed)
1302 {
1303 u32 reg;
1304
1305 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1306 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
1307 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
1308 !!erp->short_preamble);
1309 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
1310 !!erp->short_preamble);
1311 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
1312 }
1313
1314 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1315 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1316 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
1317 erp->cts_protection ? 2 : 0);
1318 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
1319 }
1320
1321 if (changed & BSS_CHANGED_BASIC_RATES) {
1322 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
1323 erp->basic_rates);
1324 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1325 }
1326
1327 if (changed & BSS_CHANGED_ERP_SLOT) {
1328 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
1329 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
1330 erp->slot_time);
1331 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
1332
1333 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
1334 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
1335 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
1336 }
1337
1338 if (changed & BSS_CHANGED_BEACON_INT) {
1339 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1340 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
1341 erp->beacon_int * 16);
1342 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1343 }
1344
1345 if (changed & BSS_CHANGED_HT)
1346 rt2800_config_ht_opmode(rt2x00dev, erp);
1347 }
1348 EXPORT_SYMBOL_GPL(rt2800_config_erp);
1349
1350 void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
1351 {
1352 u8 r1;
1353 u8 r3;
1354
1355 rt2800_bbp_read(rt2x00dev, 1, &r1);
1356 rt2800_bbp_read(rt2x00dev, 3, &r3);
1357
1358 /*
1359 * Configure the TX antenna.
1360 */
1361 switch ((int)ant->tx) {
1362 case 1:
1363 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1364 break;
1365 case 2:
1366 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
1367 break;
1368 case 3:
1369 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1370 break;
1371 }
1372
1373 /*
1374 * Configure the RX antenna.
1375 */
1376 switch ((int)ant->rx) {
1377 case 1:
1378 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
1379 break;
1380 case 2:
1381 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
1382 break;
1383 case 3:
1384 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
1385 break;
1386 }
1387
1388 rt2800_bbp_write(rt2x00dev, 3, r3);
1389 rt2800_bbp_write(rt2x00dev, 1, r1);
1390 }
1391 EXPORT_SYMBOL_GPL(rt2800_config_ant);
1392
1393 static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
1394 struct rt2x00lib_conf *libconf)
1395 {
1396 u16 eeprom;
1397 short lna_gain;
1398
1399 if (libconf->rf.channel <= 14) {
1400 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1401 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
1402 } else if (libconf->rf.channel <= 64) {
1403 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1404 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
1405 } else if (libconf->rf.channel <= 128) {
1406 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
1407 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
1408 } else {
1409 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
1410 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
1411 }
1412
1413 rt2x00dev->lna_gain = lna_gain;
1414 }
1415
1416 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
1417 struct ieee80211_conf *conf,
1418 struct rf_channel *rf,
1419 struct channel_info *info)
1420 {
1421 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
1422
1423 if (rt2x00dev->default_ant.tx == 1)
1424 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
1425
1426 if (rt2x00dev->default_ant.rx == 1) {
1427 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
1428 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1429 } else if (rt2x00dev->default_ant.rx == 2)
1430 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1431
1432 if (rf->channel > 14) {
1433 /*
1434 * When TX power is below 0, we should increase it by 7 to
1435 * make it a positive value (Minumum value is -7).
1436 * However this means that values between 0 and 7 have
1437 * double meaning, and we should set a 7DBm boost flag.
1438 */
1439 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
1440 (info->default_power1 >= 0));
1441
1442 if (info->default_power1 < 0)
1443 info->default_power1 += 7;
1444
1445 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
1446
1447 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
1448 (info->default_power2 >= 0));
1449
1450 if (info->default_power2 < 0)
1451 info->default_power2 += 7;
1452
1453 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
1454 } else {
1455 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
1456 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
1457 }
1458
1459 rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
1460
1461 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1462 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1463 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1464 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1465
1466 udelay(200);
1467
1468 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1469 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1470 rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
1471 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1472
1473 udelay(200);
1474
1475 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1476 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1477 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1478 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1479 }
1480
1481 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
1482 struct ieee80211_conf *conf,
1483 struct rf_channel *rf,
1484 struct channel_info *info)
1485 {
1486 u8 rfcsr;
1487
1488 rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1489 rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1490
1491 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1492 rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1493 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
1494
1495 rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
1496 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
1497 rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
1498
1499 rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
1500 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
1501 rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
1502
1503 rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
1504 rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
1505 rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
1506
1507 rt2800_rfcsr_write(rt2x00dev, 24,
1508 rt2x00dev->calibration[conf_is_ht40(conf)]);
1509
1510 rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1511 rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1512 rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1513 }
1514
1515 static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
1516 struct ieee80211_conf *conf,
1517 struct rf_channel *rf,
1518 struct channel_info *info)
1519 {
1520 u32 reg;
1521 unsigned int tx_pin;
1522 u8 bbp;
1523
1524 if (rf->channel <= 14) {
1525 info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
1526 info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
1527 } else {
1528 info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
1529 info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
1530 }
1531
1532 if (rt2x00_rf(rt2x00dev, RF2020) ||
1533 rt2x00_rf(rt2x00dev, RF3020) ||
1534 rt2x00_rf(rt2x00dev, RF3021) ||
1535 rt2x00_rf(rt2x00dev, RF3022) ||
1536 rt2x00_rf(rt2x00dev, RF3052))
1537 rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
1538 else
1539 rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
1540
1541 /*
1542 * Change BBP settings
1543 */
1544 rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
1545 rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
1546 rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
1547 rt2800_bbp_write(rt2x00dev, 86, 0);
1548
1549 if (rf->channel <= 14) {
1550 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1551 rt2800_bbp_write(rt2x00dev, 82, 0x62);
1552 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1553 } else {
1554 rt2800_bbp_write(rt2x00dev, 82, 0x84);
1555 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1556 }
1557 } else {
1558 rt2800_bbp_write(rt2x00dev, 82, 0xf2);
1559
1560 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1561 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1562 else
1563 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1564 }
1565
1566 rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1567 rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
1568 rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
1569 rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
1570 rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
1571
1572 tx_pin = 0;
1573
1574 /* Turn on unused PA or LNA when not using 1T or 1R */
1575 if (rt2x00dev->default_ant.tx != 1) {
1576 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
1577 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
1578 }
1579
1580 /* Turn on unused PA or LNA when not using 1T or 1R */
1581 if (rt2x00dev->default_ant.rx != 1) {
1582 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
1583 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
1584 }
1585
1586 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
1587 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
1588 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
1589 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
1590 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
1591 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
1592
1593 rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
1594
1595 rt2800_bbp_read(rt2x00dev, 4, &bbp);
1596 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
1597 rt2800_bbp_write(rt2x00dev, 4, bbp);
1598
1599 rt2800_bbp_read(rt2x00dev, 3, &bbp);
1600 rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
1601 rt2800_bbp_write(rt2x00dev, 3, bbp);
1602
1603 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
1604 if (conf_is_ht40(conf)) {
1605 rt2800_bbp_write(rt2x00dev, 69, 0x1a);
1606 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
1607 rt2800_bbp_write(rt2x00dev, 73, 0x16);
1608 } else {
1609 rt2800_bbp_write(rt2x00dev, 69, 0x16);
1610 rt2800_bbp_write(rt2x00dev, 70, 0x08);
1611 rt2800_bbp_write(rt2x00dev, 73, 0x11);
1612 }
1613 }
1614
1615 msleep(1);
1616 }
1617
1618 static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
1619 const int max_txpower)
1620 {
1621 u8 txpower;
1622 u8 max_value = (u8)max_txpower;
1623 u16 eeprom;
1624 int i;
1625 u32 reg;
1626 u8 r1;
1627 u32 offset;
1628
1629 /*
1630 * set to normal tx power mode: +/- 0dBm
1631 */
1632 rt2800_bbp_read(rt2x00dev, 1, &r1);
1633 rt2x00_set_field8(&r1, BBP1_TX_POWER, 0);
1634 rt2800_bbp_write(rt2x00dev, 1, r1);
1635
1636 /*
1637 * The eeprom contains the tx power values for each rate. These
1638 * values map to 100% tx power. Each 16bit word contains four tx
1639 * power values and the order is the same as used in the TX_PWR_CFG
1640 * registers.
1641 */
1642 offset = TX_PWR_CFG_0;
1643
1644 for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
1645 /* just to be safe */
1646 if (offset > TX_PWR_CFG_4)
1647 break;
1648
1649 rt2800_register_read(rt2x00dev, offset, &reg);
1650
1651 /* read the next four txpower values */
1652 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
1653 &eeprom);
1654
1655 /* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
1656 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
1657 * TX_PWR_CFG_4: unknown */
1658 txpower = rt2x00_get_field16(eeprom,
1659 EEPROM_TXPOWER_BYRATE_RATE0);
1660 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0,
1661 min(txpower, max_value));
1662
1663 /* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
1664 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
1665 * TX_PWR_CFG_4: unknown */
1666 txpower = rt2x00_get_field16(eeprom,
1667 EEPROM_TXPOWER_BYRATE_RATE1);
1668 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1,
1669 min(txpower, max_value));
1670
1671 /* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
1672 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
1673 * TX_PWR_CFG_4: unknown */
1674 txpower = rt2x00_get_field16(eeprom,
1675 EEPROM_TXPOWER_BYRATE_RATE2);
1676 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2,
1677 min(txpower, max_value));
1678
1679 /* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
1680 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
1681 * TX_PWR_CFG_4: unknown */
1682 txpower = rt2x00_get_field16(eeprom,
1683 EEPROM_TXPOWER_BYRATE_RATE3);
1684 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3,
1685 min(txpower, max_value));
1686
1687 /* read the next four txpower values */
1688 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
1689 &eeprom);
1690
1691 /* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
1692 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
1693 * TX_PWR_CFG_4: unknown */
1694 txpower = rt2x00_get_field16(eeprom,
1695 EEPROM_TXPOWER_BYRATE_RATE0);
1696 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4,
1697 min(txpower, max_value));
1698
1699 /* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
1700 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
1701 * TX_PWR_CFG_4: unknown */
1702 txpower = rt2x00_get_field16(eeprom,
1703 EEPROM_TXPOWER_BYRATE_RATE1);
1704 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5,
1705 min(txpower, max_value));
1706
1707 /* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
1708 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
1709 * TX_PWR_CFG_4: unknown */
1710 txpower = rt2x00_get_field16(eeprom,
1711 EEPROM_TXPOWER_BYRATE_RATE2);
1712 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6,
1713 min(txpower, max_value));
1714
1715 /* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
1716 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
1717 * TX_PWR_CFG_4: unknown */
1718 txpower = rt2x00_get_field16(eeprom,
1719 EEPROM_TXPOWER_BYRATE_RATE3);
1720 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7,
1721 min(txpower, max_value));
1722
1723 rt2800_register_write(rt2x00dev, offset, reg);
1724
1725 /* next TX_PWR_CFG register */
1726 offset += 4;
1727 }
1728 }
1729
1730 static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
1731 struct rt2x00lib_conf *libconf)
1732 {
1733 u32 reg;
1734
1735 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
1736 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
1737 libconf->conf->short_frame_max_tx_count);
1738 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
1739 libconf->conf->long_frame_max_tx_count);
1740 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
1741 }
1742
1743 static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
1744 struct rt2x00lib_conf *libconf)
1745 {
1746 enum dev_state state =
1747 (libconf->conf->flags & IEEE80211_CONF_PS) ?
1748 STATE_SLEEP : STATE_AWAKE;
1749 u32 reg;
1750
1751 if (state == STATE_SLEEP) {
1752 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
1753
1754 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
1755 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
1756 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
1757 libconf->conf->listen_interval - 1);
1758 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
1759 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
1760
1761 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
1762 } else {
1763 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
1764 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
1765 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
1766 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
1767 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
1768
1769 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
1770 }
1771 }
1772
1773 void rt2800_config(struct rt2x00_dev *rt2x00dev,
1774 struct rt2x00lib_conf *libconf,
1775 const unsigned int flags)
1776 {
1777 /* Always recalculate LNA gain before changing configuration */
1778 rt2800_config_lna_gain(rt2x00dev, libconf);
1779
1780 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1781 rt2800_config_channel(rt2x00dev, libconf->conf,
1782 &libconf->rf, &libconf->channel);
1783 if (flags & IEEE80211_CONF_CHANGE_POWER)
1784 rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
1785 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1786 rt2800_config_retry_limit(rt2x00dev, libconf);
1787 if (flags & IEEE80211_CONF_CHANGE_PS)
1788 rt2800_config_ps(rt2x00dev, libconf);
1789 }
1790 EXPORT_SYMBOL_GPL(rt2800_config);
1791
1792 /*
1793 * Link tuning
1794 */
1795 void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
1796 {
1797 u32 reg;
1798
1799 /*
1800 * Update FCS error count from register.
1801 */
1802 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
1803 qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
1804 }
1805 EXPORT_SYMBOL_GPL(rt2800_link_stats);
1806
1807 static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
1808 {
1809 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
1810 if (rt2x00_rt(rt2x00dev, RT3070) ||
1811 rt2x00_rt(rt2x00dev, RT3071) ||
1812 rt2x00_rt(rt2x00dev, RT3090) ||
1813 rt2x00_rt(rt2x00dev, RT3390))
1814 return 0x1c + (2 * rt2x00dev->lna_gain);
1815 else
1816 return 0x2e + rt2x00dev->lna_gain;
1817 }
1818
1819 if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
1820 return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
1821 else
1822 return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
1823 }
1824
1825 static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
1826 struct link_qual *qual, u8 vgc_level)
1827 {
1828 if (qual->vgc_level != vgc_level) {
1829 rt2800_bbp_write(rt2x00dev, 66, vgc_level);
1830 qual->vgc_level = vgc_level;
1831 qual->vgc_level_reg = vgc_level;
1832 }
1833 }
1834
1835 void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
1836 {
1837 rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
1838 }
1839 EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
1840
1841 void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
1842 const u32 count)
1843 {
1844 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
1845 return;
1846
1847 /*
1848 * When RSSI is better then -80 increase VGC level with 0x10
1849 */
1850 rt2800_set_vgc(rt2x00dev, qual,
1851 rt2800_get_default_vgc(rt2x00dev) +
1852 ((qual->rssi > -80) * 0x10));
1853 }
1854 EXPORT_SYMBOL_GPL(rt2800_link_tuner);
1855
1856 /*
1857 * Initialization functions.
1858 */
1859 static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
1860 {
1861 u32 reg;
1862 u16 eeprom;
1863 unsigned int i;
1864 int ret;
1865
1866 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
1867 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
1868 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
1869 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
1870 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
1871 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
1872 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
1873
1874 ret = rt2800_drv_init_registers(rt2x00dev);
1875 if (ret)
1876 return ret;
1877
1878 rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
1879 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
1880 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
1881 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
1882 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
1883 rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
1884
1885 rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
1886 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
1887 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
1888 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
1889 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
1890 rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
1891
1892 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
1893 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1894
1895 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
1896
1897 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1898 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
1899 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
1900 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
1901 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
1902 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
1903 rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
1904 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1905
1906 rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
1907
1908 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
1909 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
1910 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
1911 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
1912
1913 if (rt2x00_rt(rt2x00dev, RT3071) ||
1914 rt2x00_rt(rt2x00dev, RT3090) ||
1915 rt2x00_rt(rt2x00dev, RT3390)) {
1916 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
1917 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
1918 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
1919 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
1920 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
1921 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1922 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
1923 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
1924 0x0000002c);
1925 else
1926 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
1927 0x0000000f);
1928 } else {
1929 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
1930 }
1931 } else if (rt2x00_rt(rt2x00dev, RT3070)) {
1932 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
1933
1934 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
1935 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
1936 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
1937 } else {
1938 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
1939 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
1940 }
1941 } else if (rt2800_is_305x_soc(rt2x00dev)) {
1942 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
1943 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
1944 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
1945 } else {
1946 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
1947 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
1948 }
1949
1950 rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
1951 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
1952 rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
1953 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
1954 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
1955 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
1956 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
1957 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
1958 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
1959 rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
1960
1961 rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
1962 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
1963 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
1964 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
1965 rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
1966
1967 rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
1968 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
1969 if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
1970 rt2x00_rt(rt2x00dev, RT2883) ||
1971 rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
1972 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
1973 else
1974 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
1975 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
1976 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
1977 rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
1978
1979 rt2800_register_read(rt2x00dev, LED_CFG, &reg);
1980 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
1981 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
1982 rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
1983 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
1984 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
1985 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
1986 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
1987 rt2800_register_write(rt2x00dev, LED_CFG, reg);
1988
1989 rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
1990
1991 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
1992 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
1993 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
1994 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
1995 rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
1996 rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
1997 rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
1998 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
1999
2000 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
2001 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
2002 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
2003 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
2004 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
2005 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
2006 rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
2007 rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
2008 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
2009
2010 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
2011 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
2012 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
2013 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
2014 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2015 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2016 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2017 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2018 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2019 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2020 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
2021 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
2022
2023 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
2024 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
2025 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
2026 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
2027 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2028 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2029 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2030 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2031 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2032 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2033 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
2034 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
2035
2036 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
2037 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
2038 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
2039 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
2040 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2041 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2042 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2043 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2044 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2045 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2046 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
2047 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
2048
2049 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
2050 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
2051 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
2052 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
2053 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2054 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2055 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2056 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2057 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2058 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2059 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
2060 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
2061
2062 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
2063 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
2064 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
2065 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
2066 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2067 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2068 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2069 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2070 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2071 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2072 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
2073 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
2074
2075 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
2076 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
2077 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
2078 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
2079 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2080 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2081 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2082 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2083 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2084 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2085 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
2086 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
2087
2088 if (rt2x00_is_usb(rt2x00dev)) {
2089 rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
2090
2091 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2092 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2093 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2094 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2095 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2096 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
2097 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
2098 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
2099 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
2100 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
2101 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2102 }
2103
2104 /*
2105 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2106 * although it is reserved.
2107 */
2108 rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
2109 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
2110 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
2111 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
2112 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
2113 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
2114 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
2115 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
2116 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
2117 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
2118 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
2119 rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
2120
2121 rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
2122
2123 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
2124 rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
2125 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
2126 IEEE80211_MAX_RTS_THRESHOLD);
2127 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
2128 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
2129
2130 rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
2131
2132 /*
2133 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2134 * time should be set to 16. However, the original Ralink driver uses
2135 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2136 * connection problems with 11g + CTS protection. Hence, use the same
2137 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2138 */
2139 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
2140 rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
2141 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
2142 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
2143 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
2144 rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
2145 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
2146
2147 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
2148
2149 /*
2150 * ASIC will keep garbage value after boot, clear encryption keys.
2151 */
2152 for (i = 0; i < 4; i++)
2153 rt2800_register_write(rt2x00dev,
2154 SHARED_KEY_MODE_ENTRY(i), 0);
2155
2156 for (i = 0; i < 256; i++) {
2157 u32 wcid[2] = { 0xffffffff, 0x00ffffff };
2158 rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
2159 wcid, sizeof(wcid));
2160
2161 rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
2162 rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
2163 }
2164
2165 /*
2166 * Clear all beacons
2167 */
2168 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE0);
2169 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE1);
2170 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE2);
2171 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE3);
2172 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE4);
2173 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE5);
2174 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE6);
2175 rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE7);
2176
2177 if (rt2x00_is_usb(rt2x00dev)) {
2178 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2179 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
2180 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2181 }
2182
2183 rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
2184 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
2185 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
2186 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
2187 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
2188 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
2189 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
2190 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
2191 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
2192 rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
2193
2194 rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
2195 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
2196 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
2197 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
2198 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
2199 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
2200 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
2201 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
2202 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
2203 rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
2204
2205 rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
2206 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
2207 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
2208 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
2209 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
2210 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
2211 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
2212 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
2213 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
2214 rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
2215
2216 rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
2217 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
2218 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
2219 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
2220 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
2221 rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
2222
2223 /*
2224 * Do not force the BA window size, we use the TXWI to set it
2225 */
2226 rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
2227 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
2228 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
2229 rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
2230
2231 /*
2232 * We must clear the error counters.
2233 * These registers are cleared on read,
2234 * so we may pass a useless variable to store the value.
2235 */
2236 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2237 rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
2238 rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
2239 rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
2240 rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
2241 rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
2242
2243 /*
2244 * Setup leadtime for pre tbtt interrupt to 6ms
2245 */
2246 rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
2247 rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
2248 rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
2249
2250 return 0;
2251 }
2252
2253 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
2254 {
2255 unsigned int i;
2256 u32 reg;
2257
2258 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2259 rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
2260 if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
2261 return 0;
2262
2263 udelay(REGISTER_BUSY_DELAY);
2264 }
2265
2266 ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
2267 return -EACCES;
2268 }
2269
2270 static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
2271 {
2272 unsigned int i;
2273 u8 value;
2274
2275 /*
2276 * BBP was enabled after firmware was loaded,
2277 * but we need to reactivate it now.
2278 */
2279 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
2280 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
2281 msleep(1);
2282
2283 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2284 rt2800_bbp_read(rt2x00dev, 0, &value);
2285 if ((value != 0xff) && (value != 0x00))
2286 return 0;
2287 udelay(REGISTER_BUSY_DELAY);
2288 }
2289
2290 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
2291 return -EACCES;
2292 }
2293
2294 static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
2295 {
2296 unsigned int i;
2297 u16 eeprom;
2298 u8 reg_id;
2299 u8 value;
2300
2301 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
2302 rt2800_wait_bbp_ready(rt2x00dev)))
2303 return -EACCES;
2304
2305 if (rt2800_is_305x_soc(rt2x00dev))
2306 rt2800_bbp_write(rt2x00dev, 31, 0x08);
2307
2308 rt2800_bbp_write(rt2x00dev, 65, 0x2c);
2309 rt2800_bbp_write(rt2x00dev, 66, 0x38);
2310
2311 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
2312 rt2800_bbp_write(rt2x00dev, 69, 0x16);
2313 rt2800_bbp_write(rt2x00dev, 73, 0x12);
2314 } else {
2315 rt2800_bbp_write(rt2x00dev, 69, 0x12);
2316 rt2800_bbp_write(rt2x00dev, 73, 0x10);
2317 }
2318
2319 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
2320
2321 if (rt2x00_rt(rt2x00dev, RT3070) ||
2322 rt2x00_rt(rt2x00dev, RT3071) ||
2323 rt2x00_rt(rt2x00dev, RT3090) ||
2324 rt2x00_rt(rt2x00dev, RT3390)) {
2325 rt2800_bbp_write(rt2x00dev, 79, 0x13);
2326 rt2800_bbp_write(rt2x00dev, 80, 0x05);
2327 rt2800_bbp_write(rt2x00dev, 81, 0x33);
2328 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2329 rt2800_bbp_write(rt2x00dev, 78, 0x0e);
2330 rt2800_bbp_write(rt2x00dev, 80, 0x08);
2331 } else {
2332 rt2800_bbp_write(rt2x00dev, 81, 0x37);
2333 }
2334
2335 rt2800_bbp_write(rt2x00dev, 82, 0x62);
2336 rt2800_bbp_write(rt2x00dev, 83, 0x6a);
2337
2338 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
2339 rt2800_bbp_write(rt2x00dev, 84, 0x19);
2340 else
2341 rt2800_bbp_write(rt2x00dev, 84, 0x99);
2342
2343 rt2800_bbp_write(rt2x00dev, 86, 0x00);
2344 rt2800_bbp_write(rt2x00dev, 91, 0x04);
2345 rt2800_bbp_write(rt2x00dev, 92, 0x00);
2346
2347 if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
2348 rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
2349 rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
2350 rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
2351 rt2800_is_305x_soc(rt2x00dev))
2352 rt2800_bbp_write(rt2x00dev, 103, 0xc0);
2353 else
2354 rt2800_bbp_write(rt2x00dev, 103, 0x00);
2355
2356 if (rt2800_is_305x_soc(rt2x00dev))
2357 rt2800_bbp_write(rt2x00dev, 105, 0x01);
2358 else
2359 rt2800_bbp_write(rt2x00dev, 105, 0x05);
2360 rt2800_bbp_write(rt2x00dev, 106, 0x35);
2361
2362 if (rt2x00_rt(rt2x00dev, RT3071) ||
2363 rt2x00_rt(rt2x00dev, RT3090) ||
2364 rt2x00_rt(rt2x00dev, RT3390)) {
2365 rt2800_bbp_read(rt2x00dev, 138, &value);
2366
2367 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2368 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
2369 value |= 0x20;
2370 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
2371 value &= ~0x02;
2372
2373 rt2800_bbp_write(rt2x00dev, 138, value);
2374 }
2375
2376
2377 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
2378 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
2379
2380 if (eeprom != 0xffff && eeprom != 0x0000) {
2381 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
2382 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
2383 rt2800_bbp_write(rt2x00dev, reg_id, value);
2384 }
2385 }
2386
2387 return 0;
2388 }
2389
2390 static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
2391 bool bw40, u8 rfcsr24, u8 filter_target)
2392 {
2393 unsigned int i;
2394 u8 bbp;
2395 u8 rfcsr;
2396 u8 passband;
2397 u8 stopband;
2398 u8 overtuned = 0;
2399
2400 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2401
2402 rt2800_bbp_read(rt2x00dev, 4, &bbp);
2403 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
2404 rt2800_bbp_write(rt2x00dev, 4, bbp);
2405
2406 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
2407 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
2408 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
2409
2410 /*
2411 * Set power & frequency of passband test tone
2412 */
2413 rt2800_bbp_write(rt2x00dev, 24, 0);
2414
2415 for (i = 0; i < 100; i++) {
2416 rt2800_bbp_write(rt2x00dev, 25, 0x90);
2417 msleep(1);
2418
2419 rt2800_bbp_read(rt2x00dev, 55, &passband);
2420 if (passband)
2421 break;
2422 }
2423
2424 /*
2425 * Set power & frequency of stopband test tone
2426 */
2427 rt2800_bbp_write(rt2x00dev, 24, 0x06);
2428
2429 for (i = 0; i < 100; i++) {
2430 rt2800_bbp_write(rt2x00dev, 25, 0x90);
2431 msleep(1);
2432
2433 rt2800_bbp_read(rt2x00dev, 55, &stopband);
2434
2435 if ((passband - stopband) <= filter_target) {
2436 rfcsr24++;
2437 overtuned += ((passband - stopband) == filter_target);
2438 } else
2439 break;
2440
2441 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2442 }
2443
2444 rfcsr24 -= !!overtuned;
2445
2446 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2447 return rfcsr24;
2448 }
2449
2450 static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
2451 {
2452 u8 rfcsr;
2453 u8 bbp;
2454 u32 reg;
2455 u16 eeprom;
2456
2457 if (!rt2x00_rt(rt2x00dev, RT3070) &&
2458 !rt2x00_rt(rt2x00dev, RT3071) &&
2459 !rt2x00_rt(rt2x00dev, RT3090) &&
2460 !rt2x00_rt(rt2x00dev, RT3390) &&
2461 !rt2800_is_305x_soc(rt2x00dev))
2462 return 0;
2463
2464 /*
2465 * Init RF calibration.
2466 */
2467 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
2468 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
2469 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
2470 msleep(1);
2471 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
2472 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
2473
2474 if (rt2x00_rt(rt2x00dev, RT3070) ||
2475 rt2x00_rt(rt2x00dev, RT3071) ||
2476 rt2x00_rt(rt2x00dev, RT3090)) {
2477 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2478 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
2479 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
2480 rt2800_rfcsr_write(rt2x00dev, 7, 0x70);
2481 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
2482 rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
2483 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2484 rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
2485 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2486 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
2487 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
2488 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
2489 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
2490 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
2491 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
2492 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
2493 rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
2494 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
2495 rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
2496 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
2497 rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
2498 rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
2499 rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
2500 rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
2501 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2502 rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
2503 rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
2504 rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
2505 rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
2506 rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
2507 rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
2508 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2509 rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
2510 rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
2511 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2512 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
2513 rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
2514 rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
2515 rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
2516 rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
2517 rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
2518 rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
2519 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
2520 rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
2521 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
2522 rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
2523 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
2524 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
2525 rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
2526 rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
2527 rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
2528 rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
2529 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2530 rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
2531 rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
2532 rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
2533 rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
2534 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2535 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
2536 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
2537 rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
2538 rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
2539 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
2540 rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
2541 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2542 rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
2543 rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
2544 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2545 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
2546 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
2547 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
2548 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
2549 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
2550 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
2551 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
2552 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
2553 rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
2554 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
2555 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
2556 rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
2557 rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
2558 rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
2559 rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
2560 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
2561 rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
2562 return 0;
2563 }
2564
2565 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
2566 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
2567 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
2568 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
2569 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
2570 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
2571 rt2x00_rt(rt2x00dev, RT3090)) {
2572 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
2573 rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
2574 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
2575
2576 rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
2577
2578 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
2579 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
2580 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2581 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
2582 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2583 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST))
2584 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
2585 else
2586 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
2587 }
2588 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
2589 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
2590 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
2591 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
2592 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
2593 }
2594
2595 /*
2596 * Set RX Filter calibration for 20MHz and 40MHz
2597 */
2598 if (rt2x00_rt(rt2x00dev, RT3070)) {
2599 rt2x00dev->calibration[0] =
2600 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
2601 rt2x00dev->calibration[1] =
2602 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
2603 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
2604 rt2x00_rt(rt2x00dev, RT3090) ||
2605 rt2x00_rt(rt2x00dev, RT3390)) {
2606 rt2x00dev->calibration[0] =
2607 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
2608 rt2x00dev->calibration[1] =
2609 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
2610 }
2611
2612 /*
2613 * Set back to initial state
2614 */
2615 rt2800_bbp_write(rt2x00dev, 24, 0);
2616
2617 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
2618 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
2619 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
2620
2621 /*
2622 * set BBP back to BW20
2623 */
2624 rt2800_bbp_read(rt2x00dev, 4, &bbp);
2625 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
2626 rt2800_bbp_write(rt2x00dev, 4, bbp);
2627
2628 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
2629 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2630 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
2631 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
2632 rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
2633
2634 rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
2635 rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
2636 rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
2637
2638 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
2639 rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
2640 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2641 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
2642 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
2643 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
2644 rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
2645 }
2646 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
2647 if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
2648 rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
2649 rt2x00_get_field16(eeprom,
2650 EEPROM_TXMIXER_GAIN_BG_VAL));
2651 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
2652
2653 if (rt2x00_rt(rt2x00dev, RT3090)) {
2654 rt2800_bbp_read(rt2x00dev, 138, &bbp);
2655
2656 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2657 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1)
2658 rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
2659 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1)
2660 rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
2661
2662 rt2800_bbp_write(rt2x00dev, 138, bbp);
2663 }
2664
2665 if (rt2x00_rt(rt2x00dev, RT3071) ||
2666 rt2x00_rt(rt2x00dev, RT3090) ||
2667 rt2x00_rt(rt2x00dev, RT3390)) {
2668 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
2669 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
2670 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
2671 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
2672 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
2673 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
2674 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
2675
2676 rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
2677 rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
2678 rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
2679
2680 rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
2681 rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
2682 rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
2683
2684 rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
2685 rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
2686 rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
2687 }
2688
2689 if (rt2x00_rt(rt2x00dev, RT3070) || rt2x00_rt(rt2x00dev, RT3071)) {
2690 rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
2691 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
2692 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E))
2693 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
2694 else
2695 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
2696 rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
2697 rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
2698 rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
2699 rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
2700 }
2701
2702 return 0;
2703 }
2704
2705 int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
2706 {
2707 u32 reg;
2708 u16 word;
2709
2710 /*
2711 * Initialize all registers.
2712 */
2713 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
2714 rt2800_init_registers(rt2x00dev) ||
2715 rt2800_init_bbp(rt2x00dev) ||
2716 rt2800_init_rfcsr(rt2x00dev)))
2717 return -EIO;
2718
2719 /*
2720 * Send signal to firmware during boot time.
2721 */
2722 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
2723
2724 if (rt2x00_is_usb(rt2x00dev) &&
2725 (rt2x00_rt(rt2x00dev, RT3070) ||
2726 rt2x00_rt(rt2x00dev, RT3071) ||
2727 rt2x00_rt(rt2x00dev, RT3572))) {
2728 udelay(200);
2729 rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
2730 udelay(10);
2731 }
2732
2733 /*
2734 * Enable RX.
2735 */
2736 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
2737 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
2738 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
2739 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
2740
2741 udelay(50);
2742
2743 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2744 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
2745 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
2746 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
2747 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2748 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2749
2750 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
2751 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
2752 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
2753 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
2754
2755 /*
2756 * Initialize LED control
2757 */
2758 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
2759 rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
2760 word & 0xff, (word >> 8) & 0xff);
2761
2762 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
2763 rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
2764 word & 0xff, (word >> 8) & 0xff);
2765
2766 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
2767 rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
2768 word & 0xff, (word >> 8) & 0xff);
2769
2770 return 0;
2771 }
2772 EXPORT_SYMBOL_GPL(rt2800_enable_radio);
2773
2774 void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
2775 {
2776 u32 reg;
2777
2778 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2779 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2780 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2781 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2782 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2783 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2784 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2785
2786 /* Wait for DMA, ignore error */
2787 rt2800_wait_wpdma_ready(rt2x00dev);
2788
2789 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
2790 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
2791 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
2792 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
2793
2794 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
2795 rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
2796 }
2797 EXPORT_SYMBOL_GPL(rt2800_disable_radio);
2798
2799 int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
2800 {
2801 u32 reg;
2802
2803 rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
2804
2805 return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
2806 }
2807 EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
2808
2809 static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
2810 {
2811 u32 reg;
2812
2813 mutex_lock(&rt2x00dev->csr_mutex);
2814
2815 rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
2816 rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
2817 rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
2818 rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
2819 rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
2820
2821 /* Wait until the EEPROM has been loaded */
2822 rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
2823
2824 /* Apparently the data is read from end to start */
2825 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
2826 (u32 *)&rt2x00dev->eeprom[i]);
2827 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
2828 (u32 *)&rt2x00dev->eeprom[i + 2]);
2829 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
2830 (u32 *)&rt2x00dev->eeprom[i + 4]);
2831 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
2832 (u32 *)&rt2x00dev->eeprom[i + 6]);
2833
2834 mutex_unlock(&rt2x00dev->csr_mutex);
2835 }
2836
2837 void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
2838 {
2839 unsigned int i;
2840
2841 for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
2842 rt2800_efuse_read(rt2x00dev, i);
2843 }
2844 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
2845
2846 int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2847 {
2848 u16 word;
2849 u8 *mac;
2850 u8 default_lna_gain;
2851
2852 /*
2853 * Start validation of the data that has been read.
2854 */
2855 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2856 if (!is_valid_ether_addr(mac)) {
2857 random_ether_addr(mac);
2858 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2859 }
2860
2861 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2862 if (word == 0xffff) {
2863 rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
2864 rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
2865 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
2866 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2867 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2868 } else if (rt2x00_rt(rt2x00dev, RT2860) ||
2869 rt2x00_rt(rt2x00dev, RT2872)) {
2870 /*
2871 * There is a max of 2 RX streams for RT28x0 series
2872 */
2873 if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
2874 rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
2875 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2876 }
2877
2878 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2879 if (word == 0xffff) {
2880 rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
2881 rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
2882 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2883 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2884 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2885 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
2886 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
2887 rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
2888 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
2889 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
2890 rt2x00_set_field16(&word, EEPROM_NIC_ANT_DIVERSITY, 0);
2891 rt2x00_set_field16(&word, EEPROM_NIC_DAC_TEST, 0);
2892 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2893 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2894 }
2895
2896 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2897 if ((word & 0x00ff) == 0x00ff) {
2898 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2899 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2900 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2901 }
2902 if ((word & 0xff00) == 0xff00) {
2903 rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
2904 LED_MODE_TXRX_ACTIVITY);
2905 rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
2906 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2907 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
2908 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
2909 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
2910 EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
2911 }
2912
2913 /*
2914 * During the LNA validation we are going to use
2915 * lna0 as correct value. Note that EEPROM_LNA
2916 * is never validated.
2917 */
2918 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
2919 default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
2920
2921 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
2922 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
2923 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
2924 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
2925 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
2926 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
2927
2928 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
2929 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
2930 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
2931 if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
2932 rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
2933 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
2934 default_lna_gain);
2935 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
2936
2937 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
2938 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
2939 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
2940 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
2941 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
2942 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
2943
2944 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
2945 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
2946 rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
2947 if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
2948 rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
2949 rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
2950 default_lna_gain);
2951 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
2952
2953 rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &word);
2954 if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_24GHZ) == 0xff)
2955 rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_24GHZ, MAX_G_TXPOWER);
2956 if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_5GHZ) == 0xff)
2957 rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_5GHZ, MAX_A_TXPOWER);
2958 rt2x00_eeprom_write(rt2x00dev, EEPROM_MAX_TX_POWER, word);
2959
2960 return 0;
2961 }
2962 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
2963
2964 int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
2965 {
2966 u32 reg;
2967 u16 value;
2968 u16 eeprom;
2969
2970 /*
2971 * Read EEPROM word for configuration.
2972 */
2973 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2974
2975 /*
2976 * Identify RF chipset.
2977 */
2978 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2979 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
2980
2981 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2982 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2983
2984 if (!rt2x00_rt(rt2x00dev, RT2860) &&
2985 !rt2x00_rt(rt2x00dev, RT2872) &&
2986 !rt2x00_rt(rt2x00dev, RT2883) &&
2987 !rt2x00_rt(rt2x00dev, RT3070) &&
2988 !rt2x00_rt(rt2x00dev, RT3071) &&
2989 !rt2x00_rt(rt2x00dev, RT3090) &&
2990 !rt2x00_rt(rt2x00dev, RT3390) &&
2991 !rt2x00_rt(rt2x00dev, RT3572)) {
2992 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
2993 return -ENODEV;
2994 }
2995
2996 if (!rt2x00_rf(rt2x00dev, RF2820) &&
2997 !rt2x00_rf(rt2x00dev, RF2850) &&
2998 !rt2x00_rf(rt2x00dev, RF2720) &&
2999 !rt2x00_rf(rt2x00dev, RF2750) &&
3000 !rt2x00_rf(rt2x00dev, RF3020) &&
3001 !rt2x00_rf(rt2x00dev, RF2020) &&
3002 !rt2x00_rf(rt2x00dev, RF3021) &&
3003 !rt2x00_rf(rt2x00dev, RF3022) &&
3004 !rt2x00_rf(rt2x00dev, RF3052)) {
3005 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
3006 return -ENODEV;
3007 }
3008
3009 /*
3010 * Identify default antenna configuration.
3011 */
3012 rt2x00dev->default_ant.tx =
3013 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
3014 rt2x00dev->default_ant.rx =
3015 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
3016
3017 /*
3018 * Read frequency offset and RF programming sequence.
3019 */
3020 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
3021 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
3022
3023 /*
3024 * Read external LNA informations.
3025 */
3026 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
3027
3028 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
3029 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
3030 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
3031 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
3032
3033 /*
3034 * Detect if this device has an hardware controlled radio.
3035 */
3036 if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
3037 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
3038
3039 /*
3040 * Store led settings, for correct led behaviour.
3041 */
3042 #ifdef CONFIG_RT2X00_LIB_LEDS
3043 rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
3044 rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
3045 rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
3046
3047 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
3048 #endif /* CONFIG_RT2X00_LIB_LEDS */
3049
3050 return 0;
3051 }
3052 EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
3053
3054 /*
3055 * RF value list for rt28xx
3056 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
3057 */
3058 static const struct rf_channel rf_vals[] = {
3059 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
3060 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
3061 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
3062 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
3063 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
3064 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
3065 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
3066 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
3067 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
3068 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
3069 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
3070 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
3071 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
3072 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
3073
3074 /* 802.11 UNI / HyperLan 2 */
3075 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
3076 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
3077 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
3078 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
3079 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
3080 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
3081 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
3082 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
3083 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
3084 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
3085 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
3086 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
3087
3088 /* 802.11 HyperLan 2 */
3089 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
3090 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
3091 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
3092 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
3093 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
3094 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
3095 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
3096 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
3097 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
3098 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
3099 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
3100 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
3101 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
3102 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
3103 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
3104 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
3105
3106 /* 802.11 UNII */
3107 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
3108 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
3109 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
3110 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
3111 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
3112 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
3113 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
3114 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
3115 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
3116 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
3117 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
3118
3119 /* 802.11 Japan */
3120 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
3121 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
3122 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
3123 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
3124 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
3125 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
3126 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
3127 };
3128
3129 /*
3130 * RF value list for rt3xxx
3131 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
3132 */
3133 static const struct rf_channel rf_vals_3x[] = {
3134 {1, 241, 2, 2 },
3135 {2, 241, 2, 7 },
3136 {3, 242, 2, 2 },
3137 {4, 242, 2, 7 },
3138 {5, 243, 2, 2 },
3139 {6, 243, 2, 7 },
3140 {7, 244, 2, 2 },
3141 {8, 244, 2, 7 },
3142 {9, 245, 2, 2 },
3143 {10, 245, 2, 7 },
3144 {11, 246, 2, 2 },
3145 {12, 246, 2, 7 },
3146 {13, 247, 2, 2 },
3147 {14, 248, 2, 4 },
3148
3149 /* 802.11 UNI / HyperLan 2 */
3150 {36, 0x56, 0, 4},
3151 {38, 0x56, 0, 6},
3152 {40, 0x56, 0, 8},
3153 {44, 0x57, 0, 0},
3154 {46, 0x57, 0, 2},
3155 {48, 0x57, 0, 4},
3156 {52, 0x57, 0, 8},
3157 {54, 0x57, 0, 10},
3158 {56, 0x58, 0, 0},
3159 {60, 0x58, 0, 4},
3160 {62, 0x58, 0, 6},
3161 {64, 0x58, 0, 8},
3162
3163 /* 802.11 HyperLan 2 */
3164 {100, 0x5b, 0, 8},
3165 {102, 0x5b, 0, 10},
3166 {104, 0x5c, 0, 0},
3167 {108, 0x5c, 0, 4},
3168 {110, 0x5c, 0, 6},
3169 {112, 0x5c, 0, 8},
3170 {116, 0x5d, 0, 0},
3171 {118, 0x5d, 0, 2},
3172 {120, 0x5d, 0, 4},
3173 {124, 0x5d, 0, 8},
3174 {126, 0x5d, 0, 10},
3175 {128, 0x5e, 0, 0},
3176 {132, 0x5e, 0, 4},
3177 {134, 0x5e, 0, 6},
3178 {136, 0x5e, 0, 8},
3179 {140, 0x5f, 0, 0},
3180
3181 /* 802.11 UNII */
3182 {149, 0x5f, 0, 9},
3183 {151, 0x5f, 0, 11},
3184 {153, 0x60, 0, 1},
3185 {157, 0x60, 0, 5},
3186 {159, 0x60, 0, 7},
3187 {161, 0x60, 0, 9},
3188 {165, 0x61, 0, 1},
3189 {167, 0x61, 0, 3},
3190 {169, 0x61, 0, 5},
3191 {171, 0x61, 0, 7},
3192 {173, 0x61, 0, 9},
3193 };
3194
3195 int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
3196 {
3197 struct hw_mode_spec *spec = &rt2x00dev->spec;
3198 struct channel_info *info;
3199 char *default_power1;
3200 char *default_power2;
3201 unsigned int i;
3202 unsigned short max_power;
3203 u16 eeprom;
3204
3205 /*
3206 * Disable powersaving as default on PCI devices.
3207 */
3208 if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
3209 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
3210
3211 /*
3212 * Initialize all hw fields.
3213 */
3214 rt2x00dev->hw->flags =
3215 IEEE80211_HW_SIGNAL_DBM |
3216 IEEE80211_HW_SUPPORTS_PS |
3217 IEEE80211_HW_PS_NULLFUNC_STACK |
3218 IEEE80211_HW_AMPDU_AGGREGATION;
3219 /*
3220 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
3221 * unless we are capable of sending the buffered frames out after the
3222 * DTIM transmission using rt2x00lib_beacondone. This will send out
3223 * multicast and broadcast traffic immediately instead of buffering it
3224 * infinitly and thus dropping it after some time.
3225 */
3226 if (!rt2x00_is_usb(rt2x00dev))
3227 rt2x00dev->hw->flags |=
3228 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
3229
3230 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
3231 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
3232 rt2x00_eeprom_addr(rt2x00dev,
3233 EEPROM_MAC_ADDR_0));
3234
3235 /*
3236 * As rt2800 has a global fallback table we cannot specify
3237 * more then one tx rate per frame but since the hw will
3238 * try several rates (based on the fallback table) we should
3239 * initialize max_report_rates to the maximum number of rates
3240 * we are going to try. Otherwise mac80211 will truncate our
3241 * reported tx rates and the rc algortihm will end up with
3242 * incorrect data.
3243 */
3244 rt2x00dev->hw->max_rates = 1;
3245 rt2x00dev->hw->max_report_rates = 7;
3246 rt2x00dev->hw->max_rate_tries = 1;
3247
3248 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
3249
3250 /*
3251 * Initialize hw_mode information.
3252 */
3253 spec->supported_bands = SUPPORT_BAND_2GHZ;
3254 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
3255
3256 if (rt2x00_rf(rt2x00dev, RF2820) ||
3257 rt2x00_rf(rt2x00dev, RF2720)) {
3258 spec->num_channels = 14;
3259 spec->channels = rf_vals;
3260 } else if (rt2x00_rf(rt2x00dev, RF2850) ||
3261 rt2x00_rf(rt2x00dev, RF2750)) {
3262 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3263 spec->num_channels = ARRAY_SIZE(rf_vals);
3264 spec->channels = rf_vals;
3265 } else if (rt2x00_rf(rt2x00dev, RF3020) ||
3266 rt2x00_rf(rt2x00dev, RF2020) ||
3267 rt2x00_rf(rt2x00dev, RF3021) ||
3268 rt2x00_rf(rt2x00dev, RF3022)) {
3269 spec->num_channels = 14;
3270 spec->channels = rf_vals_3x;
3271 } else if (rt2x00_rf(rt2x00dev, RF3052)) {
3272 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3273 spec->num_channels = ARRAY_SIZE(rf_vals_3x);
3274 spec->channels = rf_vals_3x;
3275 }
3276
3277 /*
3278 * Initialize HT information.
3279 */
3280 if (!rt2x00_rf(rt2x00dev, RF2020))
3281 spec->ht.ht_supported = true;
3282 else
3283 spec->ht.ht_supported = false;
3284
3285 spec->ht.cap =
3286 IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
3287 IEEE80211_HT_CAP_GRN_FLD |
3288 IEEE80211_HT_CAP_SGI_20 |
3289 IEEE80211_HT_CAP_SGI_40;
3290
3291 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) >= 2)
3292 spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
3293
3294 spec->ht.cap |=
3295 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) <<
3296 IEEE80211_HT_CAP_RX_STBC_SHIFT;
3297
3298 spec->ht.ampdu_factor = 3;
3299 spec->ht.ampdu_density = 4;
3300 spec->ht.mcs.tx_params =
3301 IEEE80211_HT_MCS_TX_DEFINED |
3302 IEEE80211_HT_MCS_TX_RX_DIFF |
3303 ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
3304 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3305
3306 switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
3307 case 3:
3308 spec->ht.mcs.rx_mask[2] = 0xff;
3309 case 2:
3310 spec->ht.mcs.rx_mask[1] = 0xff;
3311 case 1:
3312 spec->ht.mcs.rx_mask[0] = 0xff;
3313 spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
3314 break;
3315 }
3316
3317 /*
3318 * Create channel information array
3319 */
3320 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
3321 if (!info)
3322 return -ENOMEM;
3323
3324 spec->channels_info = info;
3325
3326 rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &eeprom);
3327 max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_24GHZ);
3328 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
3329 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
3330
3331 for (i = 0; i < 14; i++) {
3332 info[i].max_power = max_power;
3333 info[i].default_power1 = TXPOWER_G_FROM_DEV(default_power1[i]);
3334 info[i].default_power2 = TXPOWER_G_FROM_DEV(default_power2[i]);
3335 }
3336
3337 if (spec->num_channels > 14) {
3338 max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_5GHZ);
3339 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
3340 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
3341
3342 for (i = 14; i < spec->num_channels; i++) {
3343 info[i].max_power = max_power;
3344 info[i].default_power1 = TXPOWER_A_FROM_DEV(default_power1[i]);
3345 info[i].default_power2 = TXPOWER_A_FROM_DEV(default_power2[i]);
3346 }
3347 }
3348
3349 return 0;
3350 }
3351 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
3352
3353 /*
3354 * IEEE80211 stack callback functions.
3355 */
3356 void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
3357 u16 *iv16)
3358 {
3359 struct rt2x00_dev *rt2x00dev = hw->priv;
3360 struct mac_iveiv_entry iveiv_entry;
3361 u32 offset;
3362
3363 offset = MAC_IVEIV_ENTRY(hw_key_idx);
3364 rt2800_register_multiread(rt2x00dev, offset,
3365 &iveiv_entry, sizeof(iveiv_entry));
3366
3367 memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
3368 memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
3369 }
3370 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
3371
3372 int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3373 {
3374 struct rt2x00_dev *rt2x00dev = hw->priv;
3375 u32 reg;
3376 bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
3377
3378 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
3379 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
3380 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
3381
3382 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
3383 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
3384 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
3385
3386 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
3387 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
3388 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
3389
3390 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
3391 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
3392 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
3393
3394 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
3395 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
3396 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
3397
3398 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
3399 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
3400 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
3401
3402 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
3403 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
3404 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
3405
3406 return 0;
3407 }
3408 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
3409
3410 int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
3411 const struct ieee80211_tx_queue_params *params)
3412 {
3413 struct rt2x00_dev *rt2x00dev = hw->priv;
3414 struct data_queue *queue;
3415 struct rt2x00_field32 field;
3416 int retval;
3417 u32 reg;
3418 u32 offset;
3419
3420 /*
3421 * First pass the configuration through rt2x00lib, that will
3422 * update the queue settings and validate the input. After that
3423 * we are free to update the registers based on the value
3424 * in the queue parameter.
3425 */
3426 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
3427 if (retval)
3428 return retval;
3429
3430 /*
3431 * We only need to perform additional register initialization
3432 * for WMM queues/
3433 */
3434 if (queue_idx >= 4)
3435 return 0;
3436
3437 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
3438
3439 /* Update WMM TXOP register */
3440 offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
3441 field.bit_offset = (queue_idx & 1) * 16;
3442 field.bit_mask = 0xffff << field.bit_offset;
3443
3444 rt2800_register_read(rt2x00dev, offset, &reg);
3445 rt2x00_set_field32(&reg, field, queue->txop);
3446 rt2800_register_write(rt2x00dev, offset, reg);
3447
3448 /* Update WMM registers */
3449 field.bit_offset = queue_idx * 4;
3450 field.bit_mask = 0xf << field.bit_offset;
3451
3452 rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
3453 rt2x00_set_field32(&reg, field, queue->aifs);
3454 rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
3455
3456 rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
3457 rt2x00_set_field32(&reg, field, queue->cw_min);
3458 rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
3459
3460 rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
3461 rt2x00_set_field32(&reg, field, queue->cw_max);
3462 rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
3463
3464 /* Update EDCA registers */
3465 offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
3466
3467 rt2800_register_read(rt2x00dev, offset, &reg);
3468 rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
3469 rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
3470 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
3471 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
3472 rt2800_register_write(rt2x00dev, offset, reg);
3473
3474 return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(rt2800_conf_tx);
3477
3478 u64 rt2800_get_tsf(struct ieee80211_hw *hw)
3479 {
3480 struct rt2x00_dev *rt2x00dev = hw->priv;
3481 u64 tsf;
3482 u32 reg;
3483
3484 rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
3485 tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
3486 rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
3487 tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
3488
3489 return tsf;
3490 }
3491 EXPORT_SYMBOL_GPL(rt2800_get_tsf);
3492
3493 int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3494 enum ieee80211_ampdu_mlme_action action,
3495 struct ieee80211_sta *sta, u16 tid, u16 *ssn)
3496 {
3497 int ret = 0;
3498
3499 switch (action) {
3500 case IEEE80211_AMPDU_RX_START:
3501 case IEEE80211_AMPDU_RX_STOP:
3502 /*
3503 * The hw itself takes care of setting up BlockAck mechanisms.
3504 * So, we only have to allow mac80211 to nagotiate a BlockAck
3505 * agreement. Once that is done, the hw will BlockAck incoming
3506 * AMPDUs without further setup.
3507 */
3508 break;
3509 case IEEE80211_AMPDU_TX_START:
3510 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
3511 break;
3512 case IEEE80211_AMPDU_TX_STOP:
3513 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
3514 break;
3515 case IEEE80211_AMPDU_TX_OPERATIONAL:
3516 break;
3517 default:
3518 WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
3519 }
3520
3521 return ret;
3522 }
3523 EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
3524
3525 MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
3526 MODULE_VERSION(DRV_VERSION);
3527 MODULE_DESCRIPTION("Ralink RT2800 library");
3528 MODULE_LICENSE("GPL");