]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
drivers/net/: use DEFINE_PCI_DEVICE_TABLE()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2 Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28 /*
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
32 */
33
34 #include <linux/crc-ccitt.h>
35 #include <linux/delay.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/eeprom_93cx6.h>
43
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52 * Allow hardware encryption to be disabled.
53 */
54 static int modparam_nohwcrypt = 1;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 {
60 unsigned int i;
61 u32 reg;
62
63 for (i = 0; i < 200; i++) {
64 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
65
66 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
67 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
68 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
69 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
70 break;
71
72 udelay(REGISTER_BUSY_DELAY);
73 }
74
75 if (i == 200)
76 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
77
78 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
79 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
80 }
81
82 #ifdef CONFIG_RT2800PCI_SOC
83 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
84 {
85 u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
86
87 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
88 }
89 #else
90 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
91 {
92 }
93 #endif /* CONFIG_RT2800PCI_SOC */
94
95 #ifdef CONFIG_RT2800PCI_PCI
96 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
97 {
98 struct rt2x00_dev *rt2x00dev = eeprom->data;
99 u32 reg;
100
101 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
102
103 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
104 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
105 eeprom->reg_data_clock =
106 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
107 eeprom->reg_chip_select =
108 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
109 }
110
111 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
112 {
113 struct rt2x00_dev *rt2x00dev = eeprom->data;
114 u32 reg = 0;
115
116 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
117 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
118 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
119 !!eeprom->reg_data_clock);
120 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
121 !!eeprom->reg_chip_select);
122
123 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
124 }
125
126 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
127 {
128 struct eeprom_93cx6 eeprom;
129 u32 reg;
130
131 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
132
133 eeprom.data = rt2x00dev;
134 eeprom.register_read = rt2800pci_eepromregister_read;
135 eeprom.register_write = rt2800pci_eepromregister_write;
136 eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
137 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
138 eeprom.reg_data_in = 0;
139 eeprom.reg_data_out = 0;
140 eeprom.reg_data_clock = 0;
141 eeprom.reg_chip_select = 0;
142
143 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
144 EEPROM_SIZE / sizeof(u16));
145 }
146
147 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
148 {
149 return rt2800_efuse_detect(rt2x00dev);
150 }
151
152 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
153 {
154 rt2800_read_eeprom_efuse(rt2x00dev);
155 }
156 #else
157 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
158 {
159 }
160
161 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
162 {
163 return 0;
164 }
165
166 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
167 {
168 }
169 #endif /* CONFIG_RT2800PCI_PCI */
170
171 /*
172 * Firmware functions
173 */
174 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
175 {
176 return FIRMWARE_RT2860;
177 }
178
179 static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
180 const u8 *data, const size_t len)
181 {
182 u16 fw_crc;
183 u16 crc;
184
185 /*
186 * Only support 8kb firmware files.
187 */
188 if (len != 8192)
189 return FW_BAD_LENGTH;
190
191 /*
192 * The last 2 bytes in the firmware array are the crc checksum itself,
193 * this means that we should never pass those 2 bytes to the crc
194 * algorithm.
195 */
196 fw_crc = (data[len - 2] << 8 | data[len - 1]);
197
198 /*
199 * Use the crc ccitt algorithm.
200 * This will return the same value as the legacy driver which
201 * used bit ordering reversion on the both the firmware bytes
202 * before input input as well as on the final output.
203 * Obviously using crc ccitt directly is much more efficient.
204 */
205 crc = crc_ccitt(~0, data, len - 2);
206
207 /*
208 * There is a small difference between the crc-itu-t + bitrev and
209 * the crc-ccitt crc calculation. In the latter method the 2 bytes
210 * will be swapped, use swab16 to convert the crc to the correct
211 * value.
212 */
213 crc = swab16(crc);
214
215 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
216 }
217
218 static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
219 const u8 *data, const size_t len)
220 {
221 unsigned int i;
222 u32 reg;
223
224 /*
225 * Wait for stable hardware.
226 */
227 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
228 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
229 if (reg && reg != ~0)
230 break;
231 msleep(1);
232 }
233
234 if (i == REGISTER_BUSY_COUNT) {
235 ERROR(rt2x00dev, "Unstable hardware.\n");
236 return -EBUSY;
237 }
238
239 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
240 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
241
242 /*
243 * Disable DMA, will be reenabled later when enabling
244 * the radio.
245 */
246 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
247 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
248 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
249 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
250 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
251 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
252 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
253
254 /*
255 * enable Host program ram write selection
256 */
257 reg = 0;
258 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
259 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
260
261 /*
262 * Write firmware to device.
263 */
264 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
265 data, len);
266
267 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
268 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
269
270 /*
271 * Wait for device to stabilize.
272 */
273 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
274 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
275 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
276 break;
277 msleep(1);
278 }
279
280 if (i == REGISTER_BUSY_COUNT) {
281 ERROR(rt2x00dev, "PBF system register not ready.\n");
282 return -EBUSY;
283 }
284
285 /*
286 * Disable interrupts
287 */
288 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
289
290 /*
291 * Initialize BBP R/W access agent
292 */
293 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
294 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
295
296 return 0;
297 }
298
299 /*
300 * Initialization functions.
301 */
302 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
303 {
304 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
305 u32 word;
306
307 if (entry->queue->qid == QID_RX) {
308 rt2x00_desc_read(entry_priv->desc, 1, &word);
309
310 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
311 } else {
312 rt2x00_desc_read(entry_priv->desc, 1, &word);
313
314 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
315 }
316 }
317
318 static void rt2800pci_clear_entry(struct queue_entry *entry)
319 {
320 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
321 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
322 u32 word;
323
324 if (entry->queue->qid == QID_RX) {
325 rt2x00_desc_read(entry_priv->desc, 0, &word);
326 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
327 rt2x00_desc_write(entry_priv->desc, 0, word);
328
329 rt2x00_desc_read(entry_priv->desc, 1, &word);
330 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
331 rt2x00_desc_write(entry_priv->desc, 1, word);
332 } else {
333 rt2x00_desc_read(entry_priv->desc, 1, &word);
334 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
335 rt2x00_desc_write(entry_priv->desc, 1, word);
336 }
337 }
338
339 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
340 {
341 struct queue_entry_priv_pci *entry_priv;
342 u32 reg;
343
344 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
345 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
346 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
347 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
348 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
349 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
350 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
351 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
352 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
353
354 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
355 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
356
357 /*
358 * Initialize registers.
359 */
360 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
361 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
362 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
363 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
364 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
365
366 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
367 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
368 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
369 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
370 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
371
372 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
373 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
374 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
375 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
376 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
377
378 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
379 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
380 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
381 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
382 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
383
384 entry_priv = rt2x00dev->rx->entries[0].priv_data;
385 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
386 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
387 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
388 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
389
390 /*
391 * Enable global DMA configuration
392 */
393 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
394 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
395 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
396 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
397 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
398
399 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
400
401 return 0;
402 }
403
404 /*
405 * Device state switch handlers.
406 */
407 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
408 enum dev_state state)
409 {
410 u32 reg;
411
412 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
413 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
414 (state == STATE_RADIO_RX_ON) ||
415 (state == STATE_RADIO_RX_ON_LINK));
416 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
417 }
418
419 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
420 enum dev_state state)
421 {
422 int mask = (state == STATE_RADIO_IRQ_ON);
423 u32 reg;
424
425 /*
426 * When interrupts are being enabled, the interrupt registers
427 * should clear the register to assure a clean state.
428 */
429 if (state == STATE_RADIO_IRQ_ON) {
430 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
431 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
432 }
433
434 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
435 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
436 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
437 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
438 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
439 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
440 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
441 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
442 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
443 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
444 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
445 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
446 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
447 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
448 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
449 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
450 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
451 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
452 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
453 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
454 }
455
456 static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
457 {
458 unsigned int i;
459 u32 reg;
460
461 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
462 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
463 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
464 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
465 return 0;
466
467 msleep(1);
468 }
469
470 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
471 return -EACCES;
472 }
473
474 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
475 {
476 u32 reg;
477 u16 word;
478
479 /*
480 * Initialize all registers.
481 */
482 if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
483 rt2800pci_init_queues(rt2x00dev) ||
484 rt2800_init_registers(rt2x00dev) ||
485 rt2800pci_wait_wpdma_ready(rt2x00dev) ||
486 rt2800_init_bbp(rt2x00dev) ||
487 rt2800_init_rfcsr(rt2x00dev)))
488 return -EIO;
489
490 /*
491 * Send signal to firmware during boot time.
492 */
493 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
494
495 /*
496 * Enable RX.
497 */
498 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
499 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
500 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
501 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
502
503 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
504 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
505 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
506 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
507 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
508 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
509
510 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
511 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
512 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
513 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
514
515 /*
516 * Initialize LED control
517 */
518 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
519 rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
520 word & 0xff, (word >> 8) & 0xff);
521
522 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
523 rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
524 word & 0xff, (word >> 8) & 0xff);
525
526 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
527 rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
528 word & 0xff, (word >> 8) & 0xff);
529
530 return 0;
531 }
532
533 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
534 {
535 u32 reg;
536
537 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
538 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
539 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
540 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
541 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
542 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
543 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
544
545 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
546 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
547 rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
548
549 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
550
551 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
552 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
553 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
554 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
555 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
556 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
557 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
558 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
559 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
560
561 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
562 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
563
564 /* Wait for DMA, ignore error */
565 rt2800pci_wait_wpdma_ready(rt2x00dev);
566 }
567
568 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
569 enum dev_state state)
570 {
571 /*
572 * Always put the device to sleep (even when we intend to wakeup!)
573 * if the device is booting and wasn't asleep it will return
574 * failure when attempting to wakeup.
575 */
576 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
577
578 if (state == STATE_AWAKE) {
579 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
580 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
581 }
582
583 return 0;
584 }
585
586 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
587 enum dev_state state)
588 {
589 int retval = 0;
590
591 switch (state) {
592 case STATE_RADIO_ON:
593 /*
594 * Before the radio can be enabled, the device first has
595 * to be woken up. After that it needs a bit of time
596 * to be fully awake and then the radio can be enabled.
597 */
598 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
599 msleep(1);
600 retval = rt2800pci_enable_radio(rt2x00dev);
601 break;
602 case STATE_RADIO_OFF:
603 /*
604 * After the radio has been disabled, the device should
605 * be put to sleep for powersaving.
606 */
607 rt2800pci_disable_radio(rt2x00dev);
608 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
609 break;
610 case STATE_RADIO_RX_ON:
611 case STATE_RADIO_RX_ON_LINK:
612 case STATE_RADIO_RX_OFF:
613 case STATE_RADIO_RX_OFF_LINK:
614 rt2800pci_toggle_rx(rt2x00dev, state);
615 break;
616 case STATE_RADIO_IRQ_ON:
617 case STATE_RADIO_IRQ_OFF:
618 rt2800pci_toggle_irq(rt2x00dev, state);
619 break;
620 case STATE_DEEP_SLEEP:
621 case STATE_SLEEP:
622 case STATE_STANDBY:
623 case STATE_AWAKE:
624 retval = rt2800pci_set_state(rt2x00dev, state);
625 break;
626 default:
627 retval = -ENOTSUPP;
628 break;
629 }
630
631 if (unlikely(retval))
632 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
633 state, retval);
634
635 return retval;
636 }
637
638 /*
639 * TX descriptor initialization
640 */
641 static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
642 struct sk_buff *skb,
643 struct txentry_desc *txdesc)
644 {
645 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
646 __le32 *txd = skbdesc->desc;
647 __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
648 u32 word;
649
650 /*
651 * Initialize TX Info descriptor
652 */
653 rt2x00_desc_read(txwi, 0, &word);
654 rt2x00_set_field32(&word, TXWI_W0_FRAG,
655 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
656 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
657 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
658 rt2x00_set_field32(&word, TXWI_W0_TS,
659 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
660 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
661 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
662 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
663 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
664 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
665 rt2x00_set_field32(&word, TXWI_W0_BW,
666 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
667 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
668 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
669 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
670 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
671 rt2x00_desc_write(txwi, 0, word);
672
673 rt2x00_desc_read(txwi, 1, &word);
674 rt2x00_set_field32(&word, TXWI_W1_ACK,
675 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
676 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
677 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
678 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
679 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
680 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
681 txdesc->key_idx : 0xff);
682 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
683 skb->len - txdesc->l2pad);
684 rt2x00_set_field32(&word, TXWI_W1_PACKETID,
685 skbdesc->entry->queue->qid + 1);
686 rt2x00_desc_write(txwi, 1, word);
687
688 /*
689 * Always write 0 to IV/EIV fields, hardware will insert the IV
690 * from the IVEIV register when TXD_W3_WIV is set to 0.
691 * When TXD_W3_WIV is set to 1 it will use the IV data
692 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
693 * crypto entry in the registers should be used to encrypt the frame.
694 */
695 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
696 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
697
698 /*
699 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
700 * must contains a TXWI structure + 802.11 header + padding + 802.11
701 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
702 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
703 * data. It means that LAST_SEC0 is always 0.
704 */
705
706 /*
707 * Initialize TX descriptor
708 */
709 rt2x00_desc_read(txd, 0, &word);
710 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
711 rt2x00_desc_write(txd, 0, word);
712
713 rt2x00_desc_read(txd, 1, &word);
714 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
715 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
716 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
717 rt2x00_set_field32(&word, TXD_W1_BURST,
718 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
719 rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
720 rt2x00dev->ops->extra_tx_headroom);
721 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
722 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
723 rt2x00_desc_write(txd, 1, word);
724
725 rt2x00_desc_read(txd, 2, &word);
726 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
727 skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
728 rt2x00_desc_write(txd, 2, word);
729
730 rt2x00_desc_read(txd, 3, &word);
731 rt2x00_set_field32(&word, TXD_W3_WIV,
732 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
733 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
734 rt2x00_desc_write(txd, 3, word);
735 }
736
737 /*
738 * TX data initialization
739 */
740 static void rt2800pci_write_beacon(struct queue_entry *entry)
741 {
742 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
743 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
744 unsigned int beacon_base;
745 u32 reg;
746
747 /*
748 * Disable beaconing while we are reloading the beacon data,
749 * otherwise we might be sending out invalid data.
750 */
751 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
752 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
753 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
754
755 /*
756 * Write entire beacon with descriptor to register.
757 */
758 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
759 rt2800_register_multiwrite(rt2x00dev,
760 beacon_base,
761 skbdesc->desc, skbdesc->desc_len);
762 rt2800_register_multiwrite(rt2x00dev,
763 beacon_base + skbdesc->desc_len,
764 entry->skb->data, entry->skb->len);
765
766 /*
767 * Clean up beacon skb.
768 */
769 dev_kfree_skb_any(entry->skb);
770 entry->skb = NULL;
771 }
772
773 static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
774 const enum data_queue_qid queue_idx)
775 {
776 struct data_queue *queue;
777 unsigned int idx, qidx = 0;
778 u32 reg;
779
780 if (queue_idx == QID_BEACON) {
781 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
782 if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
783 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
784 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
785 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
786 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
787 }
788 return;
789 }
790
791 if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
792 return;
793
794 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
795 idx = queue->index[Q_INDEX];
796
797 if (queue_idx == QID_MGMT)
798 qidx = 5;
799 else
800 qidx = queue_idx;
801
802 rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
803 }
804
805 static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
806 const enum data_queue_qid qid)
807 {
808 u32 reg;
809
810 if (qid == QID_BEACON) {
811 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
812 return;
813 }
814
815 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
816 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
817 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
818 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
819 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
820 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
821 }
822
823 /*
824 * RX control handlers
825 */
826 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
827 struct rxdone_entry_desc *rxdesc)
828 {
829 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
830 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
831 __le32 *rxd = entry_priv->desc;
832 __le32 *rxwi = (__le32 *)entry->skb->data;
833 u32 rxd3;
834 u32 rxwi0;
835 u32 rxwi1;
836 u32 rxwi2;
837 u32 rxwi3;
838
839 rt2x00_desc_read(rxd, 3, &rxd3);
840 rt2x00_desc_read(rxwi, 0, &rxwi0);
841 rt2x00_desc_read(rxwi, 1, &rxwi1);
842 rt2x00_desc_read(rxwi, 2, &rxwi2);
843 rt2x00_desc_read(rxwi, 3, &rxwi3);
844
845 if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
846 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
847
848 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
849 /*
850 * Unfortunately we don't know the cipher type used during
851 * decryption. This prevents us from correct providing
852 * correct statistics through debugfs.
853 */
854 rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
855 rxdesc->cipher_status =
856 rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
857 }
858
859 if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
860 /*
861 * Hardware has stripped IV/EIV data from 802.11 frame during
862 * decryption. Unfortunately the descriptor doesn't contain
863 * any fields with the EIV/IV data either, so they can't
864 * be restored by rt2x00lib.
865 */
866 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
867
868 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
869 rxdesc->flags |= RX_FLAG_DECRYPTED;
870 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
871 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
872 }
873
874 if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
875 rxdesc->dev_flags |= RXDONE_MY_BSS;
876
877 if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
878 rxdesc->dev_flags |= RXDONE_L2PAD;
879
880 if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
881 rxdesc->flags |= RX_FLAG_SHORT_GI;
882
883 if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
884 rxdesc->flags |= RX_FLAG_40MHZ;
885
886 /*
887 * Detect RX rate, always use MCS as signal type.
888 */
889 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
890 rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
891 rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
892
893 /*
894 * Mask of 0x8 bit to remove the short preamble flag.
895 */
896 if (rxdesc->rate_mode == RATE_MODE_CCK)
897 rxdesc->signal &= ~0x8;
898
899 rxdesc->rssi =
900 (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
901 rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
902
903 rxdesc->noise =
904 (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
905 rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
906
907 rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
908
909 /*
910 * Set RX IDX in register to inform hardware that we have handled
911 * this entry and it is available for reuse again.
912 */
913 rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
914
915 /*
916 * Remove TXWI descriptor from start of buffer.
917 */
918 skb_pull(entry->skb, RXWI_DESC_SIZE);
919 }
920
921 /*
922 * Interrupt functions.
923 */
924 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
925 {
926 struct data_queue *queue;
927 struct queue_entry *entry;
928 struct queue_entry *entry_done;
929 struct queue_entry_priv_pci *entry_priv;
930 struct txdone_entry_desc txdesc;
931 u32 word;
932 u32 reg;
933 u32 old_reg;
934 unsigned int type;
935 unsigned int index;
936 u16 mcs, real_mcs;
937
938 /*
939 * During each loop we will compare the freshly read
940 * TX_STA_FIFO register value with the value read from
941 * the previous loop. If the 2 values are equal then
942 * we should stop processing because the chance it
943 * quite big that the device has been unplugged and
944 * we risk going into an endless loop.
945 */
946 old_reg = 0;
947
948 while (1) {
949 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
950 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
951 break;
952
953 if (old_reg == reg)
954 break;
955 old_reg = reg;
956
957 /*
958 * Skip this entry when it contains an invalid
959 * queue identication number.
960 */
961 type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
962 if (type >= QID_RX)
963 continue;
964
965 queue = rt2x00queue_get_queue(rt2x00dev, type);
966 if (unlikely(!queue))
967 continue;
968
969 /*
970 * Skip this entry when it contains an invalid
971 * index number.
972 */
973 index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
974 if (unlikely(index >= queue->limit))
975 continue;
976
977 entry = &queue->entries[index];
978 entry_priv = entry->priv_data;
979 rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
980
981 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
982 while (entry != entry_done) {
983 /*
984 * Catch up.
985 * Just report any entries we missed as failed.
986 */
987 WARNING(rt2x00dev,
988 "TX status report missed for entry %d\n",
989 entry_done->entry_idx);
990
991 txdesc.flags = 0;
992 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
993 txdesc.retry = 0;
994
995 rt2x00lib_txdone(entry_done, &txdesc);
996 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
997 }
998
999 /*
1000 * Obtain the status about this packet.
1001 */
1002 txdesc.flags = 0;
1003 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
1004 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1005 else
1006 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1007
1008 /*
1009 * Ralink has a retry mechanism using a global fallback
1010 * table. We setup this fallback table to try immediate
1011 * lower rate for all rates. In the TX_STA_FIFO,
1012 * the MCS field contains the MCS used for the successfull
1013 * transmission. If the first transmission succeed,
1014 * we have mcs == tx_mcs. On the second transmission,
1015 * we have mcs = tx_mcs - 1. So the number of
1016 * retry is (tx_mcs - mcs).
1017 */
1018 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
1019 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
1020 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
1021 txdesc.retry = mcs - min(mcs, real_mcs);
1022
1023 rt2x00lib_txdone(entry, &txdesc);
1024 }
1025 }
1026
1027 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1028 {
1029 struct rt2x00_dev *rt2x00dev = dev_instance;
1030 u32 reg;
1031
1032 /* Read status and ACK all interrupts */
1033 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1034 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1035
1036 if (!reg)
1037 return IRQ_NONE;
1038
1039 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1040 return IRQ_HANDLED;
1041
1042 /*
1043 * 1 - Rx ring done interrupt.
1044 */
1045 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1046 rt2x00pci_rxdone(rt2x00dev);
1047
1048 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
1049 rt2800pci_txdone(rt2x00dev);
1050
1051 return IRQ_HANDLED;
1052 }
1053
1054 /*
1055 * Device probe functions.
1056 */
1057 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1058 {
1059 /*
1060 * Read EEPROM into buffer
1061 */
1062 switch (rt2x00dev->chip.rt) {
1063 case RT2880:
1064 case RT3052:
1065 rt2800pci_read_eeprom_soc(rt2x00dev);
1066 break;
1067 default:
1068 if (rt2800pci_efuse_detect(rt2x00dev))
1069 rt2800pci_read_eeprom_efuse(rt2x00dev);
1070 else
1071 rt2800pci_read_eeprom_pci(rt2x00dev);
1072 break;
1073 }
1074
1075 return rt2800_validate_eeprom(rt2x00dev);
1076 }
1077
1078 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1079 .register_read = rt2x00pci_register_read,
1080 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1081 .register_write = rt2x00pci_register_write,
1082 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1083
1084 .register_multiread = rt2x00pci_register_multiread,
1085 .register_multiwrite = rt2x00pci_register_multiwrite,
1086
1087 .regbusy_read = rt2x00pci_regbusy_read,
1088 };
1089
1090 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1091 {
1092 int retval;
1093
1094 rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
1095
1096 /*
1097 * Allocate eeprom data.
1098 */
1099 retval = rt2800pci_validate_eeprom(rt2x00dev);
1100 if (retval)
1101 return retval;
1102
1103 retval = rt2800_init_eeprom(rt2x00dev);
1104 if (retval)
1105 return retval;
1106
1107 /*
1108 * Initialize hw specifications.
1109 */
1110 retval = rt2800_probe_hw_mode(rt2x00dev);
1111 if (retval)
1112 return retval;
1113
1114 /*
1115 * This device has multiple filters for control frames
1116 * and has a separate filter for PS Poll frames.
1117 */
1118 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
1119 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
1120
1121 /*
1122 * This device requires firmware.
1123 */
1124 if (!rt2x00_rt(rt2x00dev, RT2880) && !rt2x00_rt(rt2x00dev, RT3052))
1125 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
1126 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1127 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
1128 if (!modparam_nohwcrypt)
1129 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1130
1131 /*
1132 * Set the rssi offset.
1133 */
1134 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1135
1136 return 0;
1137 }
1138
1139 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1140 .irq_handler = rt2800pci_interrupt,
1141 .probe_hw = rt2800pci_probe_hw,
1142 .get_firmware_name = rt2800pci_get_firmware_name,
1143 .check_firmware = rt2800pci_check_firmware,
1144 .load_firmware = rt2800pci_load_firmware,
1145 .initialize = rt2x00pci_initialize,
1146 .uninitialize = rt2x00pci_uninitialize,
1147 .get_entry_state = rt2800pci_get_entry_state,
1148 .clear_entry = rt2800pci_clear_entry,
1149 .set_device_state = rt2800pci_set_device_state,
1150 .rfkill_poll = rt2800_rfkill_poll,
1151 .link_stats = rt2800_link_stats,
1152 .reset_tuner = rt2800_reset_tuner,
1153 .link_tuner = rt2800_link_tuner,
1154 .write_tx_desc = rt2800pci_write_tx_desc,
1155 .write_tx_data = rt2x00pci_write_tx_data,
1156 .write_beacon = rt2800pci_write_beacon,
1157 .kick_tx_queue = rt2800pci_kick_tx_queue,
1158 .kill_tx_queue = rt2800pci_kill_tx_queue,
1159 .fill_rxdone = rt2800pci_fill_rxdone,
1160 .config_shared_key = rt2800_config_shared_key,
1161 .config_pairwise_key = rt2800_config_pairwise_key,
1162 .config_filter = rt2800_config_filter,
1163 .config_intf = rt2800_config_intf,
1164 .config_erp = rt2800_config_erp,
1165 .config_ant = rt2800_config_ant,
1166 .config = rt2800_config,
1167 };
1168
1169 static const struct data_queue_desc rt2800pci_queue_rx = {
1170 .entry_num = RX_ENTRIES,
1171 .data_size = AGGREGATION_SIZE,
1172 .desc_size = RXD_DESC_SIZE,
1173 .priv_size = sizeof(struct queue_entry_priv_pci),
1174 };
1175
1176 static const struct data_queue_desc rt2800pci_queue_tx = {
1177 .entry_num = TX_ENTRIES,
1178 .data_size = AGGREGATION_SIZE,
1179 .desc_size = TXD_DESC_SIZE,
1180 .priv_size = sizeof(struct queue_entry_priv_pci),
1181 };
1182
1183 static const struct data_queue_desc rt2800pci_queue_bcn = {
1184 .entry_num = 8 * BEACON_ENTRIES,
1185 .data_size = 0, /* No DMA required for beacons */
1186 .desc_size = TXWI_DESC_SIZE,
1187 .priv_size = sizeof(struct queue_entry_priv_pci),
1188 };
1189
1190 static const struct rt2x00_ops rt2800pci_ops = {
1191 .name = KBUILD_MODNAME,
1192 .max_sta_intf = 1,
1193 .max_ap_intf = 8,
1194 .eeprom_size = EEPROM_SIZE,
1195 .rf_size = RF_SIZE,
1196 .tx_queues = NUM_TX_QUEUES,
1197 .extra_tx_headroom = TXWI_DESC_SIZE,
1198 .rx = &rt2800pci_queue_rx,
1199 .tx = &rt2800pci_queue_tx,
1200 .bcn = &rt2800pci_queue_bcn,
1201 .lib = &rt2800pci_rt2x00_ops,
1202 .hw = &rt2800_mac80211_ops,
1203 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1204 .debugfs = &rt2800_rt2x00debug,
1205 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1206 };
1207
1208 /*
1209 * RT2800pci module information.
1210 */
1211 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1212 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1213 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1214 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1215 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1216 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1217 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1218 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1219 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1220 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1221 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1222 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1223 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1224 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1225 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1226 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1227 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1228 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1229 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1230 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1231 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1232 { 0, }
1233 };
1234
1235 MODULE_AUTHOR(DRV_PROJECT);
1236 MODULE_VERSION(DRV_VERSION);
1237 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1238 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1239 #ifdef CONFIG_RT2800PCI_PCI
1240 MODULE_FIRMWARE(FIRMWARE_RT2860);
1241 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1242 #endif /* CONFIG_RT2800PCI_PCI */
1243 MODULE_LICENSE("GPL");
1244
1245 #ifdef CONFIG_RT2800PCI_SOC
1246 #if defined(CONFIG_RALINK_RT288X)
1247 __rt2x00soc_probe(RT2880, &rt2800pci_ops);
1248 #elif defined(CONFIG_RALINK_RT305X)
1249 __rt2x00soc_probe(RT3052, &rt2800pci_ops);
1250 #endif
1251
1252 static struct platform_driver rt2800soc_driver = {
1253 .driver = {
1254 .name = "rt2800_wmac",
1255 .owner = THIS_MODULE,
1256 .mod_name = KBUILD_MODNAME,
1257 },
1258 .probe = __rt2x00soc_probe,
1259 .remove = __devexit_p(rt2x00soc_remove),
1260 .suspend = rt2x00soc_suspend,
1261 .resume = rt2x00soc_resume,
1262 };
1263 #endif /* CONFIG_RT2800PCI_SOC */
1264
1265 #ifdef CONFIG_RT2800PCI_PCI
1266 static struct pci_driver rt2800pci_driver = {
1267 .name = KBUILD_MODNAME,
1268 .id_table = rt2800pci_device_table,
1269 .probe = rt2x00pci_probe,
1270 .remove = __devexit_p(rt2x00pci_remove),
1271 .suspend = rt2x00pci_suspend,
1272 .resume = rt2x00pci_resume,
1273 };
1274 #endif /* CONFIG_RT2800PCI_PCI */
1275
1276 static int __init rt2800pci_init(void)
1277 {
1278 int ret = 0;
1279
1280 #ifdef CONFIG_RT2800PCI_SOC
1281 ret = platform_driver_register(&rt2800soc_driver);
1282 if (ret)
1283 return ret;
1284 #endif
1285 #ifdef CONFIG_RT2800PCI_PCI
1286 ret = pci_register_driver(&rt2800pci_driver);
1287 if (ret) {
1288 #ifdef CONFIG_RT2800PCI_SOC
1289 platform_driver_unregister(&rt2800soc_driver);
1290 #endif
1291 return ret;
1292 }
1293 #endif
1294
1295 return ret;
1296 }
1297
1298 static void __exit rt2800pci_exit(void)
1299 {
1300 #ifdef CONFIG_RT2800PCI_PCI
1301 pci_unregister_driver(&rt2800pci_driver);
1302 #endif
1303 #ifdef CONFIG_RT2800PCI_SOC
1304 platform_driver_unregister(&rt2800soc_driver);
1305 #endif
1306 }
1307
1308 module_init(rt2800pci_init);
1309 module_exit(rt2800pci_exit);