]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
4fd0c25aebf3b9f6147df3381ec2f05ce455a4ec
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34 * Link tuning handlers
35 */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
40
41 /*
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
48 */
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
51
52 /*
53 * Reset the link tuner.
54 */
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60 /*
61 * Clear all (possibly) pre-existing quality statistics.
62 */
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65 /*
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
72 */
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
75
76 rt2x00lib_reset_link_tuner(rt2x00dev);
77
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88 * Radio control handlers.
89 */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92 int status;
93
94 /*
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
97 */
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
101
102 /*
103 * Initialize all data queues.
104 */
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
107
108 /*
109 * Enable radio.
110 */
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
115
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118 /*
119 * Enable RX.
120 */
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123 /*
124 * Start the TX queues.
125 */
126 ieee80211_start_queues(rt2x00dev->hw);
127
128 return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
135
136 /*
137 * Stop all scheduled work.
138 */
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
143
144 /*
145 * Stop the TX queues.
146 */
147 ieee80211_stop_queues(rt2x00dev->hw);
148
149 /*
150 * Disable RX.
151 */
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154 /*
155 * Disable radio.
156 */
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162 /*
163 * When we are disabling the RX, we should also stop the link tuner.
164 */
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170 /*
171 * When we are enabling the RX, we should also start the link tuner.
172 */
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187 /*
188 * We are done sampling. Now we should evaluate the results.
189 */
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192 /*
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
199 */
200 if (sample_a == sample_b)
201 return;
202
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219 /*
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
227 */
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
230
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244 /*
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
249 */
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
264 }
265
266 /*
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
271 */
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280 int avg_rssi = rssi;
281
282 /*
283 * Update global RSSI
284 */
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
288
289 /*
290 * Update antenna RSSI
291 */
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
305
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
312
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
321 {
322 int rssi_percentage = 0;
323 int signal;
324
325 /*
326 * We need a positive value for the RSSI.
327 */
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
330
331 /*
332 * Calculate the different percentages,
333 * which will be used for the signal.
334 */
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338 /*
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
341 */
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346 return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
353
354 /*
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
357 */
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
360
361 /*
362 * Update statistics.
363 */
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
367
368 /*
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
371 */
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375 /*
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
378 */
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381 /*
382 * Send a signal to the led to update the led signal strength.
383 */
384 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386 /*
387 * Evaluate antenna setup, make this the last step since this could
388 * possibly reset some statistics.
389 */
390 rt2x00lib_evaluate_antenna(rt2x00dev);
391
392 /*
393 * Increase tuner counter, and reschedule the next link tuner run.
394 */
395 rt2x00dev->link.count++;
396 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397 LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402 struct rt2x00_dev *rt2x00dev =
403 container_of(work, struct rt2x00_dev, filter_work);
404 unsigned int filter = rt2x00dev->packet_filter;
405
406 /*
407 * Since we had stored the filter inside rt2x00dev->packet_filter,
408 * we should now clear that field. Otherwise the driver will
409 * assume nothing has changed (*total_flags will be compared
410 * to rt2x00dev->packet_filter to determine if any action is required).
411 */
412 rt2x00dev->packet_filter = 0;
413
414 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415 filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419 struct ieee80211_vif *vif)
420 {
421 struct rt2x00_dev *rt2x00dev = data;
422 struct rt2x00_intf *intf = vif_to_intf(vif);
423 struct sk_buff *skb;
424 struct ieee80211_tx_control control;
425 struct ieee80211_bss_conf conf;
426 int delayed_flags;
427
428 /*
429 * Copy all data we need during this action under the protection
430 * of a spinlock. Otherwise race conditions might occur which results
431 * into an invalid configuration.
432 */
433 spin_lock(&intf->lock);
434
435 memcpy(&conf, &intf->conf, sizeof(conf));
436 delayed_flags = intf->delayed_flags;
437 intf->delayed_flags = 0;
438
439 spin_unlock(&intf->lock);
440
441 if (delayed_flags & DELAYED_UPDATE_BEACON) {
442 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443 if (skb) {
444 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445 &control);
446 dev_kfree_skb(skb);
447 }
448 }
449
450 if (delayed_flags & DELAYED_CONFIG_ERP)
451 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
452 }
453
454 static void rt2x00lib_intf_scheduled(struct work_struct *work)
455 {
456 struct rt2x00_dev *rt2x00dev =
457 container_of(work, struct rt2x00_dev, intf_work);
458
459 /*
460 * Iterate over each interface and perform the
461 * requested configurations.
462 */
463 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
464 rt2x00lib_intf_scheduled_iter,
465 rt2x00dev);
466 }
467
468 /*
469 * Interrupt context handlers.
470 */
471 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
472 struct ieee80211_vif *vif)
473 {
474 struct rt2x00_intf *intf = vif_to_intf(vif);
475
476 if (vif->type != IEEE80211_IF_TYPE_AP &&
477 vif->type != IEEE80211_IF_TYPE_IBSS)
478 return;
479
480 spin_lock(&intf->lock);
481 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482 spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488 return;
489
490 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
491 rt2x00lib_beacondone_iter,
492 rt2x00dev);
493
494 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499 struct txdone_entry_desc *txdesc)
500 {
501 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 struct skb_frame_desc *skbdesc;
503 struct ieee80211_tx_status tx_status;
504 int success = !!(txdesc->status == TX_SUCCESS ||
505 txdesc->status == TX_SUCCESS_RETRY);
506 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507 txdesc->status == TX_FAIL_INVALID ||
508 txdesc->status == TX_FAIL_OTHER);
509
510 /*
511 * Update TX statistics.
512 */
513 rt2x00dev->link.qual.tx_success += success;
514 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515
516 /*
517 * Initialize TX status
518 */
519 tx_status.flags = 0;
520 tx_status.ack_signal = 0;
521 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522 tx_status.retry_count = txdesc->retry;
523 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
524
525 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526 if (success)
527 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528 else
529 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530 }
531
532 tx_status.queue_length = entry->queue->limit;
533 tx_status.queue_number = tx_status.control.queue;
534
535 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536 if (success)
537 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538 else
539 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540 }
541
542 /*
543 * Send the tx_status to debugfs. Only send the status report
544 * to mac80211 when the frame originated from there. If this was
545 * a extra frame coming through a mac80211 library call (RTS/CTS)
546 * then we should not send the status report back.
547 * If send to mac80211, mac80211 will clean up the skb structure,
548 * otherwise we have to do it ourself.
549 */
550 skbdesc = get_skb_frame_desc(entry->skb);
551 skbdesc->frame_type = DUMP_FRAME_TXDONE;
552
553 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
554
555 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
556 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
557 entry->skb, &tx_status);
558 else
559 dev_kfree_skb(entry->skb);
560 entry->skb = NULL;
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
563
564 void rt2x00lib_rxdone(struct queue_entry *entry,
565 struct rxdone_entry_desc *rxdesc)
566 {
567 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
568 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
569 struct ieee80211_supported_band *sband;
570 struct ieee80211_hdr *hdr;
571 const struct rt2x00_rate *rate;
572 unsigned int i;
573 int idx = -1;
574 u16 fc;
575
576 /*
577 * Update RX statistics.
578 */
579 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
580 for (i = 0; i < sband->n_bitrates; i++) {
581 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
582
583 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
584 (rate->plcp == rxdesc->signal)) ||
585 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
586 (rate->bitrate == rxdesc->signal))) {
587 idx = i;
588 break;
589 }
590 }
591
592 /*
593 * Only update link status if this is a beacon frame carrying our bssid.
594 */
595 hdr = (struct ieee80211_hdr *)entry->skb->data;
596 fc = le16_to_cpu(hdr->frame_control);
597 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
598 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
599
600 rt2x00dev->link.qual.rx_success++;
601
602 rx_status->rate_idx = idx;
603 rx_status->signal =
604 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
605 rx_status->ssi = rxdesc->rssi;
606 rx_status->flag = rxdesc->flags;
607 rx_status->antenna = rt2x00dev->link.ant.active.rx;
608
609 /*
610 * Send frame to mac80211 & debugfs.
611 * mac80211 will clean up the skb structure.
612 */
613 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
614 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
615 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
616 entry->skb = NULL;
617 }
618 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
619
620 /*
621 * TX descriptor initializer
622 */
623 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
624 struct sk_buff *skb,
625 struct ieee80211_tx_control *control)
626 {
627 struct txentry_desc txdesc;
628 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
629 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
630 const struct rt2x00_rate *rate;
631 int tx_rate;
632 int length;
633 int duration;
634 int residual;
635 u16 frame_control;
636 u16 seq_ctrl;
637
638 memset(&txdesc, 0, sizeof(txdesc));
639
640 txdesc.queue = skbdesc->entry->queue->qid;
641 txdesc.cw_min = skbdesc->entry->queue->cw_min;
642 txdesc.cw_max = skbdesc->entry->queue->cw_max;
643 txdesc.aifs = skbdesc->entry->queue->aifs;
644
645 /*
646 * Read required fields from ieee80211 header.
647 */
648 frame_control = le16_to_cpu(hdr->frame_control);
649 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
650
651 tx_rate = control->tx_rate->hw_value;
652
653 /*
654 * Check whether this frame is to be acked
655 */
656 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
657 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
658
659 /*
660 * Check if this is a RTS/CTS frame
661 */
662 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
663 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
664 if (is_rts_frame(frame_control)) {
665 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
666 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
667 } else
668 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
669 if (control->rts_cts_rate)
670 tx_rate = control->rts_cts_rate->hw_value;
671 }
672
673 rate = rt2x00_get_rate(tx_rate);
674
675 /*
676 * Check if more fragments are pending
677 */
678 if (ieee80211_get_morefrag(hdr)) {
679 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
680 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
681 }
682
683 /*
684 * Beacons and probe responses require the tsf timestamp
685 * to be inserted into the frame.
686 */
687 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
688 is_probe_resp(frame_control))
689 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
690
691 /*
692 * Determine with what IFS priority this frame should be send.
693 * Set ifs to IFS_SIFS when the this is not the first fragment,
694 * or this fragment came after RTS/CTS.
695 */
696 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
697 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
698 txdesc.ifs = IFS_SIFS;
699 else
700 txdesc.ifs = IFS_BACKOFF;
701
702 /*
703 * PLCP setup
704 * Length calculation depends on OFDM/CCK rate.
705 */
706 txdesc.signal = rate->plcp;
707 txdesc.service = 0x04;
708
709 length = skbdesc->data_len + FCS_LEN;
710 if (rate->flags & DEV_RATE_OFDM) {
711 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
712
713 txdesc.length_high = (length >> 6) & 0x3f;
714 txdesc.length_low = length & 0x3f;
715 } else {
716 /*
717 * Convert length to microseconds.
718 */
719 residual = get_duration_res(length, rate->bitrate);
720 duration = get_duration(length, rate->bitrate);
721
722 if (residual != 0) {
723 duration++;
724
725 /*
726 * Check if we need to set the Length Extension
727 */
728 if (rate->bitrate == 110 && residual <= 30)
729 txdesc.service |= 0x80;
730 }
731
732 txdesc.length_high = (duration >> 8) & 0xff;
733 txdesc.length_low = duration & 0xff;
734
735 /*
736 * When preamble is enabled we should set the
737 * preamble bit for the signal.
738 */
739 if (rt2x00_get_rate_preamble(tx_rate))
740 txdesc.signal |= 0x08;
741 }
742
743 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
744
745 /*
746 * Update queue entry.
747 */
748 skbdesc->entry->skb = skb;
749
750 /*
751 * The frame has been completely initialized and ready
752 * for sending to the device. The caller will push the
753 * frame to the device, but we are going to push the
754 * frame to debugfs here.
755 */
756 skbdesc->frame_type = DUMP_FRAME_TX;
757 rt2x00debug_dump_frame(rt2x00dev, skb);
758 }
759 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
760
761 /*
762 * Driver initialization handlers.
763 */
764 const struct rt2x00_rate rt2x00_supported_rates[12] = {
765 {
766 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
767 .bitrate = 10,
768 .ratemask = BIT(0),
769 .plcp = 0x00,
770 },
771 {
772 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
773 .bitrate = 20,
774 .ratemask = BIT(1),
775 .plcp = 0x01,
776 },
777 {
778 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
779 .bitrate = 55,
780 .ratemask = BIT(2),
781 .plcp = 0x02,
782 },
783 {
784 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
785 .bitrate = 110,
786 .ratemask = BIT(3),
787 .plcp = 0x03,
788 },
789 {
790 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
791 .bitrate = 60,
792 .ratemask = BIT(4),
793 .plcp = 0x0b,
794 },
795 {
796 .flags = DEV_RATE_OFDM,
797 .bitrate = 90,
798 .ratemask = BIT(5),
799 .plcp = 0x0f,
800 },
801 {
802 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
803 .bitrate = 120,
804 .ratemask = BIT(6),
805 .plcp = 0x0a,
806 },
807 {
808 .flags = DEV_RATE_OFDM,
809 .bitrate = 180,
810 .ratemask = BIT(7),
811 .plcp = 0x0e,
812 },
813 {
814 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
815 .bitrate = 240,
816 .ratemask = BIT(8),
817 .plcp = 0x09,
818 },
819 {
820 .flags = DEV_RATE_OFDM,
821 .bitrate = 360,
822 .ratemask = BIT(9),
823 .plcp = 0x0d,
824 },
825 {
826 .flags = DEV_RATE_OFDM,
827 .bitrate = 480,
828 .ratemask = BIT(10),
829 .plcp = 0x08,
830 },
831 {
832 .flags = DEV_RATE_OFDM,
833 .bitrate = 540,
834 .ratemask = BIT(11),
835 .plcp = 0x0c,
836 },
837 };
838
839 static void rt2x00lib_channel(struct ieee80211_channel *entry,
840 const int channel, const int tx_power,
841 const int value)
842 {
843 entry->center_freq = ieee80211_channel_to_frequency(channel);
844 entry->hw_value = value;
845 entry->max_power = tx_power;
846 entry->max_antenna_gain = 0xff;
847 }
848
849 static void rt2x00lib_rate(struct ieee80211_rate *entry,
850 const u16 index, const struct rt2x00_rate *rate)
851 {
852 entry->flags = 0;
853 entry->bitrate = rate->bitrate;
854 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
855 entry->hw_value_short = entry->hw_value;
856
857 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
858 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
859 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
860 }
861 }
862
863 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
864 struct hw_mode_spec *spec)
865 {
866 struct ieee80211_hw *hw = rt2x00dev->hw;
867 struct ieee80211_channel *channels;
868 struct ieee80211_rate *rates;
869 unsigned int num_rates;
870 unsigned int i;
871 unsigned char tx_power;
872
873 num_rates = 0;
874 if (spec->supported_rates & SUPPORT_RATE_CCK)
875 num_rates += 4;
876 if (spec->supported_rates & SUPPORT_RATE_OFDM)
877 num_rates += 8;
878
879 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
880 if (!channels)
881 return -ENOMEM;
882
883 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
884 if (!rates)
885 goto exit_free_channels;
886
887 /*
888 * Initialize Rate list.
889 */
890 for (i = 0; i < num_rates; i++)
891 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
892
893 /*
894 * Initialize Channel list.
895 */
896 for (i = 0; i < spec->num_channels; i++) {
897 if (spec->channels[i].channel <= 14) {
898 if (spec->tx_power_bg)
899 tx_power = spec->tx_power_bg[i];
900 else
901 tx_power = spec->tx_power_default;
902 } else {
903 if (spec->tx_power_a)
904 tx_power = spec->tx_power_a[i];
905 else
906 tx_power = spec->tx_power_default;
907 }
908
909 rt2x00lib_channel(&channels[i],
910 spec->channels[i].channel, tx_power, i);
911 }
912
913 /*
914 * Intitialize 802.11b, 802.11g
915 * Rates: CCK, OFDM.
916 * Channels: 2.4 GHz
917 */
918 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
919 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
920 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
921 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
922 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
923 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
924 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
925 }
926
927 /*
928 * Intitialize 802.11a
929 * Rates: OFDM.
930 * Channels: OFDM, UNII, HiperLAN2.
931 */
932 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
933 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
934 spec->num_channels - 14;
935 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
936 num_rates - 4;
937 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
938 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
939 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
940 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
941 }
942
943 return 0;
944
945 exit_free_channels:
946 kfree(channels);
947 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
948 return -ENOMEM;
949 }
950
951 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
952 {
953 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
954 ieee80211_unregister_hw(rt2x00dev->hw);
955
956 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
957 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
958 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
959 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
960 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
961 }
962 }
963
964 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
965 {
966 struct hw_mode_spec *spec = &rt2x00dev->spec;
967 int status;
968
969 /*
970 * Initialize HW modes.
971 */
972 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
973 if (status)
974 return status;
975
976 /*
977 * Register HW.
978 */
979 status = ieee80211_register_hw(rt2x00dev->hw);
980 if (status) {
981 rt2x00lib_remove_hw(rt2x00dev);
982 return status;
983 }
984
985 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
986
987 return 0;
988 }
989
990 /*
991 * Initialization/uninitialization handlers.
992 */
993 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
994 {
995 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
996 return;
997
998 /*
999 * Unregister extra components.
1000 */
1001 rt2x00rfkill_unregister(rt2x00dev);
1002
1003 /*
1004 * Allow the HW to uninitialize.
1005 */
1006 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1007
1008 /*
1009 * Free allocated queue entries.
1010 */
1011 rt2x00queue_uninitialize(rt2x00dev);
1012 }
1013
1014 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1015 {
1016 int status;
1017
1018 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1019 return 0;
1020
1021 /*
1022 * Allocate all queue entries.
1023 */
1024 status = rt2x00queue_initialize(rt2x00dev);
1025 if (status)
1026 return status;
1027
1028 /*
1029 * Initialize the device.
1030 */
1031 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1032 if (status)
1033 goto exit;
1034
1035 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1036
1037 /*
1038 * Register the extra components.
1039 */
1040 rt2x00rfkill_register(rt2x00dev);
1041
1042 return 0;
1043
1044 exit:
1045 rt2x00lib_uninitialize(rt2x00dev);
1046
1047 return status;
1048 }
1049
1050 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1051 {
1052 int retval;
1053
1054 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1055 return 0;
1056
1057 /*
1058 * If this is the first interface which is added,
1059 * we should load the firmware now.
1060 */
1061 retval = rt2x00lib_load_firmware(rt2x00dev);
1062 if (retval)
1063 return retval;
1064
1065 /*
1066 * Initialize the device.
1067 */
1068 retval = rt2x00lib_initialize(rt2x00dev);
1069 if (retval)
1070 return retval;
1071
1072 /*
1073 * Enable radio.
1074 */
1075 retval = rt2x00lib_enable_radio(rt2x00dev);
1076 if (retval) {
1077 rt2x00lib_uninitialize(rt2x00dev);
1078 return retval;
1079 }
1080
1081 rt2x00dev->intf_ap_count = 0;
1082 rt2x00dev->intf_sta_count = 0;
1083 rt2x00dev->intf_associated = 0;
1084
1085 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1086
1087 return 0;
1088 }
1089
1090 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1091 {
1092 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1093 return;
1094
1095 /*
1096 * Perhaps we can add something smarter here,
1097 * but for now just disabling the radio should do.
1098 */
1099 rt2x00lib_disable_radio(rt2x00dev);
1100
1101 rt2x00dev->intf_ap_count = 0;
1102 rt2x00dev->intf_sta_count = 0;
1103 rt2x00dev->intf_associated = 0;
1104
1105 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1106 }
1107
1108 /*
1109 * driver allocation handlers.
1110 */
1111 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1112 {
1113 int retval = -ENOMEM;
1114
1115 /*
1116 * Make room for rt2x00_intf inside the per-interface
1117 * structure ieee80211_vif.
1118 */
1119 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1120
1121 /*
1122 * Let the driver probe the device to detect the capabilities.
1123 */
1124 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1125 if (retval) {
1126 ERROR(rt2x00dev, "Failed to allocate device.\n");
1127 goto exit;
1128 }
1129
1130 /*
1131 * Initialize configuration work.
1132 */
1133 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1134 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1135 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1136
1137 /*
1138 * Allocate queue array.
1139 */
1140 retval = rt2x00queue_allocate(rt2x00dev);
1141 if (retval)
1142 goto exit;
1143
1144 /*
1145 * Initialize ieee80211 structure.
1146 */
1147 retval = rt2x00lib_probe_hw(rt2x00dev);
1148 if (retval) {
1149 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1150 goto exit;
1151 }
1152
1153 /*
1154 * Register extra components.
1155 */
1156 rt2x00leds_register(rt2x00dev);
1157 rt2x00rfkill_allocate(rt2x00dev);
1158 rt2x00debug_register(rt2x00dev);
1159
1160 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1161
1162 return 0;
1163
1164 exit:
1165 rt2x00lib_remove_dev(rt2x00dev);
1166
1167 return retval;
1168 }
1169 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1170
1171 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1172 {
1173 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1174
1175 /*
1176 * Disable radio.
1177 */
1178 rt2x00lib_disable_radio(rt2x00dev);
1179
1180 /*
1181 * Uninitialize device.
1182 */
1183 rt2x00lib_uninitialize(rt2x00dev);
1184
1185 /*
1186 * Free extra components
1187 */
1188 rt2x00debug_deregister(rt2x00dev);
1189 rt2x00rfkill_free(rt2x00dev);
1190
1191 /*
1192 * Free LED.
1193 */
1194 rt2x00leds_unregister(rt2x00dev);
1195
1196 /*
1197 * Free ieee80211_hw memory.
1198 */
1199 rt2x00lib_remove_hw(rt2x00dev);
1200
1201 /*
1202 * Free firmware image.
1203 */
1204 rt2x00lib_free_firmware(rt2x00dev);
1205
1206 /*
1207 * Free queue structures.
1208 */
1209 rt2x00queue_free(rt2x00dev);
1210 }
1211 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1212
1213 /*
1214 * Device state handlers
1215 */
1216 #ifdef CONFIG_PM
1217 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1218 {
1219 int retval;
1220
1221 NOTICE(rt2x00dev, "Going to sleep.\n");
1222 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1223
1224 /*
1225 * Only continue if mac80211 has open interfaces.
1226 */
1227 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1228 goto exit;
1229 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1230
1231 /*
1232 * Disable radio.
1233 */
1234 rt2x00lib_stop(rt2x00dev);
1235 rt2x00lib_uninitialize(rt2x00dev);
1236
1237 /*
1238 * Suspend/disable extra components.
1239 */
1240 rt2x00leds_suspend(rt2x00dev);
1241 rt2x00rfkill_suspend(rt2x00dev);
1242 rt2x00debug_deregister(rt2x00dev);
1243
1244 exit:
1245 /*
1246 * Set device mode to sleep for power management.
1247 */
1248 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1249 if (retval)
1250 return retval;
1251
1252 return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1255
1256 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1257 struct ieee80211_vif *vif)
1258 {
1259 struct rt2x00_dev *rt2x00dev = data;
1260 struct rt2x00_intf *intf = vif_to_intf(vif);
1261
1262 spin_lock(&intf->lock);
1263
1264 rt2x00lib_config_intf(rt2x00dev, intf,
1265 vif->type, intf->mac, intf->bssid);
1266
1267
1268 /*
1269 * Master or Ad-hoc mode require a new beacon update.
1270 */
1271 if (vif->type == IEEE80211_IF_TYPE_AP ||
1272 vif->type == IEEE80211_IF_TYPE_IBSS)
1273 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1274
1275 spin_unlock(&intf->lock);
1276 }
1277
1278 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1279 {
1280 int retval;
1281
1282 NOTICE(rt2x00dev, "Waking up.\n");
1283
1284 /*
1285 * Restore/enable extra components.
1286 */
1287 rt2x00debug_register(rt2x00dev);
1288 rt2x00rfkill_resume(rt2x00dev);
1289 rt2x00leds_resume(rt2x00dev);
1290
1291 /*
1292 * Only continue if mac80211 had open interfaces.
1293 */
1294 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1295 return 0;
1296
1297 /*
1298 * Reinitialize device and all active interfaces.
1299 */
1300 retval = rt2x00lib_start(rt2x00dev);
1301 if (retval)
1302 goto exit;
1303
1304 /*
1305 * Reconfigure device.
1306 */
1307 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1308 if (!rt2x00dev->hw->conf.radio_enabled)
1309 rt2x00lib_disable_radio(rt2x00dev);
1310
1311 /*
1312 * Iterator over each active interface to
1313 * reconfigure the hardware.
1314 */
1315 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1316 rt2x00lib_resume_intf, rt2x00dev);
1317
1318 /*
1319 * We are ready again to receive requests from mac80211.
1320 */
1321 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1322
1323 /*
1324 * It is possible that during that mac80211 has attempted
1325 * to send frames while we were suspending or resuming.
1326 * In that case we have disabled the TX queue and should
1327 * now enable it again
1328 */
1329 ieee80211_start_queues(rt2x00dev->hw);
1330
1331 /*
1332 * During interface iteration we might have changed the
1333 * delayed_flags, time to handles the event by calling
1334 * the work handler directly.
1335 */
1336 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1337
1338 return 0;
1339
1340 exit:
1341 rt2x00lib_disable_radio(rt2x00dev);
1342 rt2x00lib_uninitialize(rt2x00dev);
1343 rt2x00debug_deregister(rt2x00dev);
1344
1345 return retval;
1346 }
1347 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1348 #endif /* CONFIG_PM */
1349
1350 /*
1351 * rt2x00lib module information.
1352 */
1353 MODULE_AUTHOR(DRV_PROJECT);
1354 MODULE_VERSION(DRV_VERSION);
1355 MODULE_DESCRIPTION("rt2x00 library");
1356 MODULE_LICENSE("GPL");