]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Link tuning handlers
34 */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38 return;
39
40 /*
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
47 */
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
50
51 /*
52 * Reset the link tuner.
53 */
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59 /*
60 * Clear all (possibly) pre-existing quality statistics.
61 */
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64 /*
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
71 */
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
74
75 rt2x00lib_reset_link_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87 * Radio control handlers.
88 */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91 int status;
92
93 /*
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
96 */
97 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 return 0;
100
101 /*
102 * Initialize all data queues.
103 */
104 rt2x00queue_init_rx(rt2x00dev);
105 rt2x00queue_init_tx(rt2x00dev);
106
107 /*
108 * Enable radio.
109 */
110 status =
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112 if (status)
113 return status;
114
115 rt2x00leds_led_radio(rt2x00dev, true);
116 rt2x00led_led_activity(rt2x00dev, true);
117
118 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120 /*
121 * Enable RX.
122 */
123 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125 /*
126 * Start the TX queues.
127 */
128 ieee80211_wake_queues(rt2x00dev->hw);
129
130 return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136 return;
137
138 /*
139 * Stop all scheduled work.
140 */
141 if (work_pending(&rt2x00dev->intf_work))
142 cancel_work_sync(&rt2x00dev->intf_work);
143 if (work_pending(&rt2x00dev->filter_work))
144 cancel_work_sync(&rt2x00dev->filter_work);
145
146 /*
147 * Stop the TX queues.
148 */
149 ieee80211_stop_queues(rt2x00dev->hw);
150
151 /*
152 * Disable RX.
153 */
154 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156 /*
157 * Disable radio.
158 */
159 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 rt2x00led_led_activity(rt2x00dev, false);
161 rt2x00leds_led_radio(rt2x00dev, false);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166 /*
167 * When we are disabling the RX, we should also stop the link tuner.
168 */
169 if (state == STATE_RADIO_RX_OFF)
170 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174 /*
175 * When we are enabling the RX, we should also start the link tuner.
176 */
177 if (state == STATE_RADIO_RX_ON &&
178 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
179 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 {
184 enum antenna rx = rt2x00dev->link.ant.active.rx;
185 enum antenna tx = rt2x00dev->link.ant.active.tx;
186 int sample_a =
187 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
188 int sample_b =
189 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
190
191 /*
192 * We are done sampling. Now we should evaluate the results.
193 */
194 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
195
196 /*
197 * During the last period we have sampled the RSSI
198 * from both antenna's. It now is time to determine
199 * which antenna demonstrated the best performance.
200 * When we are already on the antenna with the best
201 * performance, then there really is nothing for us
202 * left to do.
203 */
204 if (sample_a == sample_b)
205 return;
206
207 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
208 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209
210 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
211 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
214 }
215
216 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 {
218 enum antenna rx = rt2x00dev->link.ant.active.rx;
219 enum antenna tx = rt2x00dev->link.ant.active.tx;
220 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
221 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
222
223 /*
224 * Legacy driver indicates that we should swap antenna's
225 * when the difference in RSSI is greater that 5. This
226 * also should be done when the RSSI was actually better
227 * then the previous sample.
228 * When the difference exceeds the threshold we should
229 * sample the rssi from the other antenna to make a valid
230 * comparison between the 2 antennas.
231 */
232 if (abs(rssi_curr - rssi_old) < 5)
233 return;
234
235 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236
237 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
238 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
241 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
244 }
245
246 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
247 {
248 /*
249 * Determine if software diversity is enabled for
250 * either the TX or RX antenna (or both).
251 * Always perform this check since within the link
252 * tuner interval the configuration might have changed.
253 */
254 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
255 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256
257 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
258 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
259 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
260 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
261 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
262 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263
264 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
265 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
266 rt2x00dev->link.ant.flags = 0;
267 return;
268 }
269
270 /*
271 * If we have only sampled the data over the last period
272 * we should now harvest the data. Otherwise just evaluate
273 * the data. The latter should only be performed once
274 * every 2 seconds.
275 */
276 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
277 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
278 else if (rt2x00dev->link.count & 1)
279 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
280 }
281
282 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 {
284 int avg_rssi = rssi;
285
286 /*
287 * Update global RSSI
288 */
289 if (link->qual.avg_rssi)
290 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
291 link->qual.avg_rssi = avg_rssi;
292
293 /*
294 * Update antenna RSSI
295 */
296 if (link->ant.rssi_ant)
297 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
298 link->ant.rssi_ant = rssi;
299 }
300
301 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 {
303 if (qual->rx_failed || qual->rx_success)
304 qual->rx_percentage =
305 (qual->rx_success * 100) /
306 (qual->rx_failed + qual->rx_success);
307 else
308 qual->rx_percentage = 50;
309
310 if (qual->tx_failed || qual->tx_success)
311 qual->tx_percentage =
312 (qual->tx_success * 100) /
313 (qual->tx_failed + qual->tx_success);
314 else
315 qual->tx_percentage = 50;
316
317 qual->rx_success = 0;
318 qual->rx_failed = 0;
319 qual->tx_success = 0;
320 qual->tx_failed = 0;
321 }
322
323 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
324 int rssi)
325 {
326 int rssi_percentage = 0;
327 int signal;
328
329 /*
330 * We need a positive value for the RSSI.
331 */
332 if (rssi < 0)
333 rssi += rt2x00dev->rssi_offset;
334
335 /*
336 * Calculate the different percentages,
337 * which will be used for the signal.
338 */
339 if (rt2x00dev->rssi_offset)
340 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
341
342 /*
343 * Add the individual percentages and use the WEIGHT
344 * defines to calculate the current link signal.
345 */
346 signal = ((WEIGHT_RSSI * rssi_percentage) +
347 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
348 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349
350 return (signal > 100) ? 100 : signal;
351 }
352
353 static void rt2x00lib_link_tuner(struct work_struct *work)
354 {
355 struct rt2x00_dev *rt2x00dev =
356 container_of(work, struct rt2x00_dev, link.work.work);
357
358 /*
359 * When the radio is shutting down we should
360 * immediately cease all link tuning.
361 */
362 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
363 return;
364
365 /*
366 * Update statistics.
367 */
368 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
369 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
370 rt2x00dev->link.qual.rx_failed;
371
372 /*
373 * Only perform the link tuning when Link tuning
374 * has been enabled (This could have been disabled from the EEPROM).
375 */
376 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
377 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
378
379 /*
380 * Precalculate a portion of the link signal which is
381 * in based on the tx/rx success/failure counters.
382 */
383 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
384
385 /*
386 * Send a signal to the led to update the led signal strength.
387 */
388 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
389
390 /*
391 * Evaluate antenna setup, make this the last step since this could
392 * possibly reset some statistics.
393 */
394 rt2x00lib_evaluate_antenna(rt2x00dev);
395
396 /*
397 * Increase tuner counter, and reschedule the next link tuner run.
398 */
399 rt2x00dev->link.count++;
400 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
401 LINK_TUNE_INTERVAL);
402 }
403
404 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 {
406 struct rt2x00_dev *rt2x00dev =
407 container_of(work, struct rt2x00_dev, filter_work);
408
409 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
410 }
411
412 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
413 struct ieee80211_vif *vif)
414 {
415 struct rt2x00_dev *rt2x00dev = data;
416 struct rt2x00_intf *intf = vif_to_intf(vif);
417 struct sk_buff *skb;
418 struct ieee80211_bss_conf conf;
419 int delayed_flags;
420
421 /*
422 * Copy all data we need during this action under the protection
423 * of a spinlock. Otherwise race conditions might occur which results
424 * into an invalid configuration.
425 */
426 spin_lock(&intf->lock);
427
428 memcpy(&conf, &intf->conf, sizeof(conf));
429 delayed_flags = intf->delayed_flags;
430 intf->delayed_flags = 0;
431
432 spin_unlock(&intf->lock);
433
434 if (delayed_flags & DELAYED_UPDATE_BEACON) {
435 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
436 if (skb &&
437 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
438 dev_kfree_skb(skb);
439 }
440
441 if (delayed_flags & DELAYED_CONFIG_ERP)
442 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
443
444 if (delayed_flags & DELAYED_LED_ASSOC)
445 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
446 }
447
448 static void rt2x00lib_intf_scheduled(struct work_struct *work)
449 {
450 struct rt2x00_dev *rt2x00dev =
451 container_of(work, struct rt2x00_dev, intf_work);
452
453 /*
454 * Iterate over each interface and perform the
455 * requested configurations.
456 */
457 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
458 rt2x00lib_intf_scheduled_iter,
459 rt2x00dev);
460 }
461
462 /*
463 * Interrupt context handlers.
464 */
465 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
466 struct ieee80211_vif *vif)
467 {
468 struct rt2x00_intf *intf = vif_to_intf(vif);
469
470 if (vif->type != IEEE80211_IF_TYPE_AP &&
471 vif->type != IEEE80211_IF_TYPE_IBSS)
472 return;
473
474 spin_lock(&intf->lock);
475 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
476 spin_unlock(&intf->lock);
477 }
478
479 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
480 {
481 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
482 return;
483
484 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
485 rt2x00lib_beacondone_iter,
486 rt2x00dev);
487
488 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
489 }
490 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
491
492 void rt2x00lib_txdone(struct queue_entry *entry,
493 struct txdone_entry_desc *txdesc)
494 {
495 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
496 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
497
498 /*
499 * Send frame to debugfs immediately, after this call is completed
500 * we are going to overwrite the skb->cb array.
501 */
502 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
503
504 /*
505 * Update TX statistics.
506 */
507 rt2x00dev->link.qual.tx_success +=
508 test_bit(TXDONE_SUCCESS, &txdesc->flags);
509 rt2x00dev->link.qual.tx_failed +=
510 txdesc->retry + !!test_bit(TXDONE_FAILURE, &txdesc->flags);
511
512 /*
513 * Initialize TX status
514 */
515 memset(&tx_info->status, 0, sizeof(tx_info->status));
516 tx_info->status.ack_signal = 0;
517 tx_info->status.excessive_retries =
518 test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
519 tx_info->status.retry_count = txdesc->retry;
520
521 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
522 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
523 tx_info->flags |= IEEE80211_TX_STAT_ACK;
524 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
525 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
526 }
527
528 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
529 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
530 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
531 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
532 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
533 }
534
535 /*
536 * Only send the status report to mac80211 when TX status was
537 * requested by it. If this was a extra frame coming through
538 * a mac80211 library call (RTS/CTS) then we should not send the
539 * status report back.
540 */
541 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
542 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
543 else
544 dev_kfree_skb_irq(entry->skb);
545 entry->skb = NULL;
546 }
547 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
548
549 void rt2x00lib_rxdone(struct queue_entry *entry,
550 struct rxdone_entry_desc *rxdesc)
551 {
552 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
553 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
554 struct ieee80211_supported_band *sband;
555 struct ieee80211_hdr *hdr;
556 const struct rt2x00_rate *rate;
557 unsigned int i;
558 int idx = -1;
559 u16 fc;
560
561 /*
562 * Update RX statistics.
563 */
564 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
565 for (i = 0; i < sband->n_bitrates; i++) {
566 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
567
568 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
569 (rate->plcp == rxdesc->signal)) ||
570 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
571 (rate->bitrate == rxdesc->signal))) {
572 idx = i;
573 break;
574 }
575 }
576
577 if (idx < 0) {
578 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
579 "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
580 !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
581 idx = 0;
582 }
583
584 /*
585 * Only update link status if this is a beacon frame carrying our bssid.
586 */
587 hdr = (struct ieee80211_hdr *)entry->skb->data;
588 fc = le16_to_cpu(hdr->frame_control);
589 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
590 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
591
592 rt2x00dev->link.qual.rx_success++;
593
594 rx_status->rate_idx = idx;
595 rx_status->qual =
596 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
597 rx_status->signal = rxdesc->rssi;
598 rx_status->flag = rxdesc->flags;
599 rx_status->antenna = rt2x00dev->link.ant.active.rx;
600
601 /*
602 * Send frame to mac80211 & debugfs.
603 * mac80211 will clean up the skb structure.
604 */
605 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
606 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
607 entry->skb = NULL;
608 }
609 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
610
611 /*
612 * Driver initialization handlers.
613 */
614 const struct rt2x00_rate rt2x00_supported_rates[12] = {
615 {
616 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
617 .bitrate = 10,
618 .ratemask = BIT(0),
619 .plcp = 0x00,
620 },
621 {
622 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
623 .bitrate = 20,
624 .ratemask = BIT(1),
625 .plcp = 0x01,
626 },
627 {
628 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
629 .bitrate = 55,
630 .ratemask = BIT(2),
631 .plcp = 0x02,
632 },
633 {
634 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
635 .bitrate = 110,
636 .ratemask = BIT(3),
637 .plcp = 0x03,
638 },
639 {
640 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
641 .bitrate = 60,
642 .ratemask = BIT(4),
643 .plcp = 0x0b,
644 },
645 {
646 .flags = DEV_RATE_OFDM,
647 .bitrate = 90,
648 .ratemask = BIT(5),
649 .plcp = 0x0f,
650 },
651 {
652 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
653 .bitrate = 120,
654 .ratemask = BIT(6),
655 .plcp = 0x0a,
656 },
657 {
658 .flags = DEV_RATE_OFDM,
659 .bitrate = 180,
660 .ratemask = BIT(7),
661 .plcp = 0x0e,
662 },
663 {
664 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
665 .bitrate = 240,
666 .ratemask = BIT(8),
667 .plcp = 0x09,
668 },
669 {
670 .flags = DEV_RATE_OFDM,
671 .bitrate = 360,
672 .ratemask = BIT(9),
673 .plcp = 0x0d,
674 },
675 {
676 .flags = DEV_RATE_OFDM,
677 .bitrate = 480,
678 .ratemask = BIT(10),
679 .plcp = 0x08,
680 },
681 {
682 .flags = DEV_RATE_OFDM,
683 .bitrate = 540,
684 .ratemask = BIT(11),
685 .plcp = 0x0c,
686 },
687 };
688
689 static void rt2x00lib_channel(struct ieee80211_channel *entry,
690 const int channel, const int tx_power,
691 const int value)
692 {
693 entry->center_freq = ieee80211_channel_to_frequency(channel);
694 entry->hw_value = value;
695 entry->max_power = tx_power;
696 entry->max_antenna_gain = 0xff;
697 }
698
699 static void rt2x00lib_rate(struct ieee80211_rate *entry,
700 const u16 index, const struct rt2x00_rate *rate)
701 {
702 entry->flags = 0;
703 entry->bitrate = rate->bitrate;
704 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
705 entry->hw_value_short = entry->hw_value;
706
707 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
708 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
709 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
710 }
711 }
712
713 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
714 struct hw_mode_spec *spec)
715 {
716 struct ieee80211_hw *hw = rt2x00dev->hw;
717 struct ieee80211_channel *channels;
718 struct ieee80211_rate *rates;
719 unsigned int num_rates;
720 unsigned int i;
721 unsigned char tx_power;
722
723 num_rates = 0;
724 if (spec->supported_rates & SUPPORT_RATE_CCK)
725 num_rates += 4;
726 if (spec->supported_rates & SUPPORT_RATE_OFDM)
727 num_rates += 8;
728
729 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
730 if (!channels)
731 return -ENOMEM;
732
733 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
734 if (!rates)
735 goto exit_free_channels;
736
737 /*
738 * Initialize Rate list.
739 */
740 for (i = 0; i < num_rates; i++)
741 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
742
743 /*
744 * Initialize Channel list.
745 */
746 for (i = 0; i < spec->num_channels; i++) {
747 if (spec->channels[i].channel <= 14) {
748 if (spec->tx_power_bg)
749 tx_power = spec->tx_power_bg[i];
750 else
751 tx_power = spec->tx_power_default;
752 } else {
753 if (spec->tx_power_a)
754 tx_power = spec->tx_power_a[i];
755 else
756 tx_power = spec->tx_power_default;
757 }
758
759 rt2x00lib_channel(&channels[i],
760 spec->channels[i].channel, tx_power, i);
761 }
762
763 /*
764 * Intitialize 802.11b, 802.11g
765 * Rates: CCK, OFDM.
766 * Channels: 2.4 GHz
767 */
768 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
769 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
770 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
771 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
772 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
773 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
774 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
775 }
776
777 /*
778 * Intitialize 802.11a
779 * Rates: OFDM.
780 * Channels: OFDM, UNII, HiperLAN2.
781 */
782 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
783 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
784 spec->num_channels - 14;
785 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
786 num_rates - 4;
787 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
788 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
789 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
790 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
791 }
792
793 return 0;
794
795 exit_free_channels:
796 kfree(channels);
797 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
798 return -ENOMEM;
799 }
800
801 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
802 {
803 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
804 ieee80211_unregister_hw(rt2x00dev->hw);
805
806 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
807 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
808 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
809 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
810 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
811 }
812 }
813
814 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
815 {
816 struct hw_mode_spec *spec = &rt2x00dev->spec;
817 int status;
818
819 /*
820 * Initialize HW modes.
821 */
822 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
823 if (status)
824 return status;
825
826 /*
827 * Initialize HW fields.
828 */
829 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
830
831 /*
832 * Register HW.
833 */
834 status = ieee80211_register_hw(rt2x00dev->hw);
835 if (status) {
836 rt2x00lib_remove_hw(rt2x00dev);
837 return status;
838 }
839
840 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
841
842 return 0;
843 }
844
845 /*
846 * Initialization/uninitialization handlers.
847 */
848 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
849 {
850 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
851 return;
852
853 /*
854 * Unregister extra components.
855 */
856 rt2x00rfkill_unregister(rt2x00dev);
857
858 /*
859 * Allow the HW to uninitialize.
860 */
861 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
862
863 /*
864 * Free allocated queue entries.
865 */
866 rt2x00queue_uninitialize(rt2x00dev);
867 }
868
869 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
870 {
871 int status;
872
873 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
874 return 0;
875
876 /*
877 * Allocate all queue entries.
878 */
879 status = rt2x00queue_initialize(rt2x00dev);
880 if (status)
881 return status;
882
883 /*
884 * Initialize the device.
885 */
886 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
887 if (status) {
888 rt2x00queue_uninitialize(rt2x00dev);
889 return status;
890 }
891
892 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
893
894 /*
895 * Register the extra components.
896 */
897 rt2x00rfkill_register(rt2x00dev);
898
899 return 0;
900 }
901
902 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
903 {
904 int retval;
905
906 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
907 return 0;
908
909 /*
910 * If this is the first interface which is added,
911 * we should load the firmware now.
912 */
913 retval = rt2x00lib_load_firmware(rt2x00dev);
914 if (retval)
915 return retval;
916
917 /*
918 * Initialize the device.
919 */
920 retval = rt2x00lib_initialize(rt2x00dev);
921 if (retval)
922 return retval;
923
924 /*
925 * Enable radio.
926 */
927 retval = rt2x00lib_enable_radio(rt2x00dev);
928 if (retval) {
929 rt2x00lib_uninitialize(rt2x00dev);
930 return retval;
931 }
932
933 rt2x00dev->intf_ap_count = 0;
934 rt2x00dev->intf_sta_count = 0;
935 rt2x00dev->intf_associated = 0;
936
937 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
938
939 return 0;
940 }
941
942 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
943 {
944 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
945 return;
946
947 /*
948 * Perhaps we can add something smarter here,
949 * but for now just disabling the radio should do.
950 */
951 rt2x00lib_disable_radio(rt2x00dev);
952
953 rt2x00dev->intf_ap_count = 0;
954 rt2x00dev->intf_sta_count = 0;
955 rt2x00dev->intf_associated = 0;
956
957 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
958 }
959
960 /*
961 * driver allocation handlers.
962 */
963 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
964 {
965 int retval = -ENOMEM;
966
967 /*
968 * Make room for rt2x00_intf inside the per-interface
969 * structure ieee80211_vif.
970 */
971 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
972
973 /*
974 * Let the driver probe the device to detect the capabilities.
975 */
976 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
977 if (retval) {
978 ERROR(rt2x00dev, "Failed to allocate device.\n");
979 goto exit;
980 }
981
982 /*
983 * Initialize configuration work.
984 */
985 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
986 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
987 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
988
989 /*
990 * Allocate queue array.
991 */
992 retval = rt2x00queue_allocate(rt2x00dev);
993 if (retval)
994 goto exit;
995
996 /*
997 * Initialize ieee80211 structure.
998 */
999 retval = rt2x00lib_probe_hw(rt2x00dev);
1000 if (retval) {
1001 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1002 goto exit;
1003 }
1004
1005 /*
1006 * Register extra components.
1007 */
1008 rt2x00leds_register(rt2x00dev);
1009 rt2x00rfkill_allocate(rt2x00dev);
1010 rt2x00debug_register(rt2x00dev);
1011
1012 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1013
1014 return 0;
1015
1016 exit:
1017 rt2x00lib_remove_dev(rt2x00dev);
1018
1019 return retval;
1020 }
1021 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1022
1023 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1024 {
1025 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1026
1027 /*
1028 * Disable radio.
1029 */
1030 rt2x00lib_disable_radio(rt2x00dev);
1031
1032 /*
1033 * Uninitialize device.
1034 */
1035 rt2x00lib_uninitialize(rt2x00dev);
1036
1037 /*
1038 * Free extra components
1039 */
1040 rt2x00debug_deregister(rt2x00dev);
1041 rt2x00rfkill_free(rt2x00dev);
1042 rt2x00leds_unregister(rt2x00dev);
1043
1044 /*
1045 * Free ieee80211_hw memory.
1046 */
1047 rt2x00lib_remove_hw(rt2x00dev);
1048
1049 /*
1050 * Free firmware image.
1051 */
1052 rt2x00lib_free_firmware(rt2x00dev);
1053
1054 /*
1055 * Free queue structures.
1056 */
1057 rt2x00queue_free(rt2x00dev);
1058 }
1059 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1060
1061 /*
1062 * Device state handlers
1063 */
1064 #ifdef CONFIG_PM
1065 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1066 {
1067 int retval;
1068
1069 NOTICE(rt2x00dev, "Going to sleep.\n");
1070 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1071
1072 /*
1073 * Only continue if mac80211 has open interfaces.
1074 */
1075 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1076 goto exit;
1077 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1078
1079 /*
1080 * Disable radio.
1081 */
1082 rt2x00lib_stop(rt2x00dev);
1083 rt2x00lib_uninitialize(rt2x00dev);
1084
1085 /*
1086 * Suspend/disable extra components.
1087 */
1088 rt2x00leds_suspend(rt2x00dev);
1089 rt2x00rfkill_suspend(rt2x00dev);
1090 rt2x00debug_deregister(rt2x00dev);
1091
1092 exit:
1093 /*
1094 * Set device mode to sleep for power management,
1095 * on some hardware this call seems to consistently fail.
1096 * From the specifications it is hard to tell why it fails,
1097 * and if this is a "bad thing".
1098 * Overall it is safe to just ignore the failure and
1099 * continue suspending. The only downside is that the
1100 * device will not be in optimal power save mode, but with
1101 * the radio and the other components already disabled the
1102 * device is as good as disabled.
1103 */
1104 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1105 if (retval)
1106 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1107 "continue suspending.\n");
1108
1109 return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1112
1113 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1114 struct ieee80211_vif *vif)
1115 {
1116 struct rt2x00_dev *rt2x00dev = data;
1117 struct rt2x00_intf *intf = vif_to_intf(vif);
1118
1119 spin_lock(&intf->lock);
1120
1121 rt2x00lib_config_intf(rt2x00dev, intf,
1122 vif->type, intf->mac, intf->bssid);
1123
1124
1125 /*
1126 * Master or Ad-hoc mode require a new beacon update.
1127 */
1128 if (vif->type == IEEE80211_IF_TYPE_AP ||
1129 vif->type == IEEE80211_IF_TYPE_IBSS)
1130 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1131
1132 spin_unlock(&intf->lock);
1133 }
1134
1135 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1136 {
1137 int retval;
1138
1139 NOTICE(rt2x00dev, "Waking up.\n");
1140
1141 /*
1142 * Restore/enable extra components.
1143 */
1144 rt2x00debug_register(rt2x00dev);
1145 rt2x00rfkill_resume(rt2x00dev);
1146 rt2x00leds_resume(rt2x00dev);
1147
1148 /*
1149 * Only continue if mac80211 had open interfaces.
1150 */
1151 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1152 return 0;
1153
1154 /*
1155 * Reinitialize device and all active interfaces.
1156 */
1157 retval = rt2x00lib_start(rt2x00dev);
1158 if (retval)
1159 goto exit;
1160
1161 /*
1162 * Reconfigure device.
1163 */
1164 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1165 if (!rt2x00dev->hw->conf.radio_enabled)
1166 rt2x00lib_disable_radio(rt2x00dev);
1167
1168 /*
1169 * Iterator over each active interface to
1170 * reconfigure the hardware.
1171 */
1172 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1173 rt2x00lib_resume_intf, rt2x00dev);
1174
1175 /*
1176 * We are ready again to receive requests from mac80211.
1177 */
1178 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1179
1180 /*
1181 * It is possible that during that mac80211 has attempted
1182 * to send frames while we were suspending or resuming.
1183 * In that case we have disabled the TX queue and should
1184 * now enable it again
1185 */
1186 ieee80211_wake_queues(rt2x00dev->hw);
1187
1188 /*
1189 * During interface iteration we might have changed the
1190 * delayed_flags, time to handles the event by calling
1191 * the work handler directly.
1192 */
1193 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1194
1195 return 0;
1196
1197 exit:
1198 rt2x00lib_disable_radio(rt2x00dev);
1199 rt2x00lib_uninitialize(rt2x00dev);
1200 rt2x00debug_deregister(rt2x00dev);
1201
1202 return retval;
1203 }
1204 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1205 #endif /* CONFIG_PM */
1206
1207 /*
1208 * rt2x00lib module information.
1209 */
1210 MODULE_AUTHOR(DRV_PROJECT);
1211 MODULE_VERSION(DRV_VERSION);
1212 MODULE_DESCRIPTION("rt2x00 library");
1213 MODULE_LICENSE("GPL");