]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
93
94 /*
95 * Start watchdog monitoring.
96 */
97 rt2x00link_start_watchdog(rt2x00dev);
98
99 return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
106
107 /*
108 * Stop watchdog monitoring.
109 */
110 rt2x00link_stop_watchdog(rt2x00dev);
111
112 /*
113 * Stop all queues
114 */
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
121
122 /*
123 * Disable radio.
124 */
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
133 {
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
136
137 /*
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
142 */
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
145
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
154
155 /*
156 * Iterate over each interface and perform the
157 * requested configurations.
158 */
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 IEEE80211_IFACE_ITER_RESUME_ALL,
161 rt2x00lib_intf_scheduled_iter,
162 rt2x00dev);
163 }
164
165 static void rt2x00lib_autowakeup(struct work_struct *work)
166 {
167 struct rt2x00_dev *rt2x00dev =
168 container_of(work, struct rt2x00_dev, autowakeup_work.work);
169
170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171 return;
172
173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174 ERROR(rt2x00dev, "Device failed to wakeup.\n");
175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
176 }
177
178 /*
179 * Interrupt context handlers.
180 */
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182 struct ieee80211_vif *vif)
183 {
184 struct rt2x00_dev *rt2x00dev = data;
185 struct sk_buff *skb;
186
187 /*
188 * Only AP mode interfaces do broad- and multicast buffering
189 */
190 if (vif->type != NL80211_IFTYPE_AP)
191 return;
192
193 /*
194 * Send out buffered broad- and multicast frames
195 */
196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
197 while (skb) {
198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
200 }
201 }
202
203 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
204 struct ieee80211_vif *vif)
205 {
206 struct rt2x00_dev *rt2x00dev = data;
207
208 if (vif->type != NL80211_IFTYPE_AP &&
209 vif->type != NL80211_IFTYPE_ADHOC &&
210 vif->type != NL80211_IFTYPE_MESH_POINT &&
211 vif->type != NL80211_IFTYPE_WDS)
212 return;
213
214 /*
215 * Update the beacon without locking. This is safe on PCI devices
216 * as they only update the beacon periodically here. This should
217 * never be called for USB devices.
218 */
219 WARN_ON(rt2x00_is_usb(rt2x00dev));
220 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
221 }
222
223 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
224 {
225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
226 return;
227
228 /* send buffered bc/mc frames out for every bssid */
229 ieee80211_iterate_active_interfaces_atomic(
230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231 rt2x00lib_bc_buffer_iter, rt2x00dev);
232 /*
233 * Devices with pre tbtt interrupt don't need to update the beacon
234 * here as they will fetch the next beacon directly prior to
235 * transmission.
236 */
237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
238 return;
239
240 /* fetch next beacon */
241 ieee80211_iterate_active_interfaces_atomic(
242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243 rt2x00lib_beaconupdate_iter, rt2x00dev);
244 }
245 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
246
247 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
248 {
249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
250 return;
251
252 /* fetch next beacon */
253 ieee80211_iterate_active_interfaces_atomic(
254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
255 rt2x00lib_beaconupdate_iter, rt2x00dev);
256 }
257 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
258
259 void rt2x00lib_dmastart(struct queue_entry *entry)
260 {
261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
262 rt2x00queue_index_inc(entry, Q_INDEX);
263 }
264 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
265
266 void rt2x00lib_dmadone(struct queue_entry *entry)
267 {
268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
271 }
272 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
273
274 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
275 {
276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277 struct ieee80211_bar *bar = (void *) entry->skb->data;
278 struct rt2x00_bar_list_entry *bar_entry;
279 int ret;
280
281 if (likely(!ieee80211_is_back_req(bar->frame_control)))
282 return 0;
283
284 /*
285 * Unlike all other frames, the status report for BARs does
286 * not directly come from the hardware as it is incapable of
287 * matching a BA to a previously send BAR. The hardware will
288 * report all BARs as if they weren't acked at all.
289 *
290 * Instead the RX-path will scan for incoming BAs and set the
291 * block_acked flag if it sees one that was likely caused by
292 * a BAR from us.
293 *
294 * Remove remaining BARs here and return their status for
295 * TX done processing.
296 */
297 ret = 0;
298 rcu_read_lock();
299 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
300 if (bar_entry->entry != entry)
301 continue;
302
303 spin_lock_bh(&rt2x00dev->bar_list_lock);
304 /* Return whether this BAR was blockacked or not */
305 ret = bar_entry->block_acked;
306 /* Remove the BAR from our checklist */
307 list_del_rcu(&bar_entry->list);
308 spin_unlock_bh(&rt2x00dev->bar_list_lock);
309 kfree_rcu(bar_entry, head);
310
311 break;
312 }
313 rcu_read_unlock();
314
315 return ret;
316 }
317
318 void rt2x00lib_txdone(struct queue_entry *entry,
319 struct txdone_entry_desc *txdesc)
320 {
321 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
322 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
323 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
324 unsigned int header_length, i;
325 u8 rate_idx, rate_flags, retry_rates;
326 u8 skbdesc_flags = skbdesc->flags;
327 bool success;
328
329 /*
330 * Unmap the skb.
331 */
332 rt2x00queue_unmap_skb(entry);
333
334 /*
335 * Remove the extra tx headroom from the skb.
336 */
337 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
338
339 /*
340 * Signal that the TX descriptor is no longer in the skb.
341 */
342 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
343
344 /*
345 * Determine the length of 802.11 header.
346 */
347 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
348
349 /*
350 * Remove L2 padding which was added during
351 */
352 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
353 rt2x00queue_remove_l2pad(entry->skb, header_length);
354
355 /*
356 * If the IV/EIV data was stripped from the frame before it was
357 * passed to the hardware, we should now reinsert it again because
358 * mac80211 will expect the same data to be present it the
359 * frame as it was passed to us.
360 */
361 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
362 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
363
364 /*
365 * Send frame to debugfs immediately, after this call is completed
366 * we are going to overwrite the skb->cb array.
367 */
368 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
369
370 /*
371 * Determine if the frame has been successfully transmitted and
372 * remove BARs from our check list while checking for their
373 * TX status.
374 */
375 success =
376 rt2x00lib_txdone_bar_status(entry) ||
377 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
378 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
379
380 /*
381 * Update TX statistics.
382 */
383 rt2x00dev->link.qual.tx_success += success;
384 rt2x00dev->link.qual.tx_failed += !success;
385
386 rate_idx = skbdesc->tx_rate_idx;
387 rate_flags = skbdesc->tx_rate_flags;
388 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
389 (txdesc->retry + 1) : 1;
390
391 /*
392 * Initialize TX status
393 */
394 memset(&tx_info->status, 0, sizeof(tx_info->status));
395 tx_info->status.ack_signal = 0;
396
397 /*
398 * Frame was send with retries, hardware tried
399 * different rates to send out the frame, at each
400 * retry it lowered the rate 1 step except when the
401 * lowest rate was used.
402 */
403 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
404 tx_info->status.rates[i].idx = rate_idx - i;
405 tx_info->status.rates[i].flags = rate_flags;
406
407 if (rate_idx - i == 0) {
408 /*
409 * The lowest rate (index 0) was used until the
410 * number of max retries was reached.
411 */
412 tx_info->status.rates[i].count = retry_rates - i;
413 i++;
414 break;
415 }
416 tx_info->status.rates[i].count = 1;
417 }
418 if (i < (IEEE80211_TX_MAX_RATES - 1))
419 tx_info->status.rates[i].idx = -1; /* terminate */
420
421 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
422 if (success)
423 tx_info->flags |= IEEE80211_TX_STAT_ACK;
424 else
425 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
426 }
427
428 /*
429 * Every single frame has it's own tx status, hence report
430 * every frame as ampdu of size 1.
431 *
432 * TODO: if we can find out how many frames were aggregated
433 * by the hw we could provide the real ampdu_len to mac80211
434 * which would allow the rc algorithm to better decide on
435 * which rates are suitable.
436 */
437 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
438 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
439 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
440 tx_info->status.ampdu_len = 1;
441 tx_info->status.ampdu_ack_len = success ? 1 : 0;
442
443 if (!success)
444 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
445 }
446
447 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
448 if (success)
449 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
450 else
451 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
452 }
453
454 /*
455 * Only send the status report to mac80211 when it's a frame
456 * that originated in mac80211. If this was a extra frame coming
457 * through a mac80211 library call (RTS/CTS) then we should not
458 * send the status report back.
459 */
460 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
461 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
462 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
463 else
464 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
465 } else
466 dev_kfree_skb_any(entry->skb);
467
468 /*
469 * Make this entry available for reuse.
470 */
471 entry->skb = NULL;
472 entry->flags = 0;
473
474 rt2x00dev->ops->lib->clear_entry(entry);
475
476 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
477
478 /*
479 * If the data queue was below the threshold before the txdone
480 * handler we must make sure the packet queue in the mac80211 stack
481 * is reenabled when the txdone handler has finished. This has to be
482 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
483 * before it was stopped.
484 */
485 spin_lock_bh(&entry->queue->tx_lock);
486 if (!rt2x00queue_threshold(entry->queue))
487 rt2x00queue_unpause_queue(entry->queue);
488 spin_unlock_bh(&entry->queue->tx_lock);
489 }
490 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
491
492 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
493 {
494 struct txdone_entry_desc txdesc;
495
496 txdesc.flags = 0;
497 __set_bit(status, &txdesc.flags);
498 txdesc.retry = 0;
499
500 rt2x00lib_txdone(entry, &txdesc);
501 }
502 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
503
504 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
505 {
506 struct ieee80211_mgmt *mgmt = (void *)data;
507 u8 *pos, *end;
508
509 pos = (u8 *)mgmt->u.beacon.variable;
510 end = data + len;
511 while (pos < end) {
512 if (pos + 2 + pos[1] > end)
513 return NULL;
514
515 if (pos[0] == ie)
516 return pos;
517
518 pos += 2 + pos[1];
519 }
520
521 return NULL;
522 }
523
524 static void rt2x00lib_sleep(struct work_struct *work)
525 {
526 struct rt2x00_dev *rt2x00dev =
527 container_of(work, struct rt2x00_dev, sleep_work);
528
529 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
530 return;
531
532 /*
533 * Check again is powersaving is enabled, to prevent races from delayed
534 * work execution.
535 */
536 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
537 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
538 IEEE80211_CONF_CHANGE_PS);
539 }
540
541 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
542 struct sk_buff *skb,
543 struct rxdone_entry_desc *rxdesc)
544 {
545 struct rt2x00_bar_list_entry *entry;
546 struct ieee80211_bar *ba = (void *)skb->data;
547
548 if (likely(!ieee80211_is_back(ba->frame_control)))
549 return;
550
551 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
552 return;
553
554 rcu_read_lock();
555 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
556
557 if (ba->start_seq_num != entry->start_seq_num)
558 continue;
559
560 #define TID_CHECK(a, b) ( \
561 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
562 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
563
564 if (!TID_CHECK(ba->control, entry->control))
565 continue;
566
567 #undef TID_CHECK
568
569 if (compare_ether_addr(ba->ra, entry->ta))
570 continue;
571
572 if (compare_ether_addr(ba->ta, entry->ra))
573 continue;
574
575 /* Mark BAR since we received the according BA */
576 spin_lock_bh(&rt2x00dev->bar_list_lock);
577 entry->block_acked = 1;
578 spin_unlock_bh(&rt2x00dev->bar_list_lock);
579 break;
580 }
581 rcu_read_unlock();
582
583 }
584
585 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
586 struct sk_buff *skb,
587 struct rxdone_entry_desc *rxdesc)
588 {
589 struct ieee80211_hdr *hdr = (void *) skb->data;
590 struct ieee80211_tim_ie *tim_ie;
591 u8 *tim;
592 u8 tim_len;
593 bool cam;
594
595 /* If this is not a beacon, or if mac80211 has no powersaving
596 * configured, or if the device is already in powersaving mode
597 * we can exit now. */
598 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
599 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
600 return;
601
602 /* min. beacon length + FCS_LEN */
603 if (skb->len <= 40 + FCS_LEN)
604 return;
605
606 /* and only beacons from the associated BSSID, please */
607 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
608 !rt2x00dev->aid)
609 return;
610
611 rt2x00dev->last_beacon = jiffies;
612
613 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
614 if (!tim)
615 return;
616
617 if (tim[1] < sizeof(*tim_ie))
618 return;
619
620 tim_len = tim[1];
621 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
622
623 /* Check whenever the PHY can be turned off again. */
624
625 /* 1. What about buffered unicast traffic for our AID? */
626 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
627
628 /* 2. Maybe the AP wants to send multicast/broadcast data? */
629 cam |= (tim_ie->bitmap_ctrl & 0x01);
630
631 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
632 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
633 }
634
635 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
636 struct rxdone_entry_desc *rxdesc)
637 {
638 struct ieee80211_supported_band *sband;
639 const struct rt2x00_rate *rate;
640 unsigned int i;
641 int signal = rxdesc->signal;
642 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
643
644 switch (rxdesc->rate_mode) {
645 case RATE_MODE_CCK:
646 case RATE_MODE_OFDM:
647 /*
648 * For non-HT rates the MCS value needs to contain the
649 * actually used rate modulation (CCK or OFDM).
650 */
651 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
652 signal = RATE_MCS(rxdesc->rate_mode, signal);
653
654 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
655 for (i = 0; i < sband->n_bitrates; i++) {
656 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
657 if (((type == RXDONE_SIGNAL_PLCP) &&
658 (rate->plcp == signal)) ||
659 ((type == RXDONE_SIGNAL_BITRATE) &&
660 (rate->bitrate == signal)) ||
661 ((type == RXDONE_SIGNAL_MCS) &&
662 (rate->mcs == signal))) {
663 return i;
664 }
665 }
666 break;
667 case RATE_MODE_HT_MIX:
668 case RATE_MODE_HT_GREENFIELD:
669 if (signal >= 0 && signal <= 76)
670 return signal;
671 break;
672 default:
673 break;
674 }
675
676 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
677 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
678 rxdesc->rate_mode, signal, type);
679 return 0;
680 }
681
682 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
683 {
684 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
685 struct rxdone_entry_desc rxdesc;
686 struct sk_buff *skb;
687 struct ieee80211_rx_status *rx_status;
688 unsigned int header_length;
689 int rate_idx;
690
691 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
692 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
693 goto submit_entry;
694
695 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
696 goto submit_entry;
697
698 /*
699 * Allocate a new sk_buffer. If no new buffer available, drop the
700 * received frame and reuse the existing buffer.
701 */
702 skb = rt2x00queue_alloc_rxskb(entry, gfp);
703 if (!skb)
704 goto submit_entry;
705
706 /*
707 * Unmap the skb.
708 */
709 rt2x00queue_unmap_skb(entry);
710
711 /*
712 * Extract the RXD details.
713 */
714 memset(&rxdesc, 0, sizeof(rxdesc));
715 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
716
717 /*
718 * Check for valid size in case we get corrupted descriptor from
719 * hardware.
720 */
721 if (unlikely(rxdesc.size == 0 ||
722 rxdesc.size > entry->queue->data_size)) {
723 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
724 rxdesc.size, entry->queue->data_size);
725 dev_kfree_skb(entry->skb);
726 goto renew_skb;
727 }
728
729 /*
730 * The data behind the ieee80211 header must be
731 * aligned on a 4 byte boundary.
732 */
733 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
734
735 /*
736 * Hardware might have stripped the IV/EIV/ICV data,
737 * in that case it is possible that the data was
738 * provided separately (through hardware descriptor)
739 * in which case we should reinsert the data into the frame.
740 */
741 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
742 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
743 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
744 &rxdesc);
745 else if (header_length &&
746 (rxdesc.size > header_length) &&
747 (rxdesc.dev_flags & RXDONE_L2PAD))
748 rt2x00queue_remove_l2pad(entry->skb, header_length);
749
750 /* Trim buffer to correct size */
751 skb_trim(entry->skb, rxdesc.size);
752
753 /*
754 * Translate the signal to the correct bitrate index.
755 */
756 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
757 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
758 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
759 rxdesc.flags |= RX_FLAG_HT;
760
761 /*
762 * Check if this is a beacon, and more frames have been
763 * buffered while we were in powersaving mode.
764 */
765 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
766
767 /*
768 * Check for incoming BlockAcks to match to the BlockAckReqs
769 * we've send out.
770 */
771 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
772
773 /*
774 * Update extra components
775 */
776 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
777 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
778 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
779
780 /*
781 * Initialize RX status information, and send frame
782 * to mac80211.
783 */
784 rx_status = IEEE80211_SKB_RXCB(entry->skb);
785
786 /* Ensure that all fields of rx_status are initialized
787 * properly. The skb->cb array was used for driver
788 * specific informations, so rx_status might contain
789 * garbage.
790 */
791 memset(rx_status, 0, sizeof(*rx_status));
792
793 rx_status->mactime = rxdesc.timestamp;
794 rx_status->band = rt2x00dev->curr_band;
795 rx_status->freq = rt2x00dev->curr_freq;
796 rx_status->rate_idx = rate_idx;
797 rx_status->signal = rxdesc.rssi;
798 rx_status->flag = rxdesc.flags;
799 rx_status->antenna = rt2x00dev->link.ant.active.rx;
800
801 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
802
803 renew_skb:
804 /*
805 * Replace the skb with the freshly allocated one.
806 */
807 entry->skb = skb;
808
809 submit_entry:
810 entry->flags = 0;
811 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
812 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
813 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
814 rt2x00dev->ops->lib->clear_entry(entry);
815 }
816 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
817
818 /*
819 * Driver initialization handlers.
820 */
821 const struct rt2x00_rate rt2x00_supported_rates[12] = {
822 {
823 .flags = DEV_RATE_CCK,
824 .bitrate = 10,
825 .ratemask = BIT(0),
826 .plcp = 0x00,
827 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
828 },
829 {
830 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
831 .bitrate = 20,
832 .ratemask = BIT(1),
833 .plcp = 0x01,
834 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
835 },
836 {
837 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
838 .bitrate = 55,
839 .ratemask = BIT(2),
840 .plcp = 0x02,
841 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
842 },
843 {
844 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
845 .bitrate = 110,
846 .ratemask = BIT(3),
847 .plcp = 0x03,
848 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
849 },
850 {
851 .flags = DEV_RATE_OFDM,
852 .bitrate = 60,
853 .ratemask = BIT(4),
854 .plcp = 0x0b,
855 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
856 },
857 {
858 .flags = DEV_RATE_OFDM,
859 .bitrate = 90,
860 .ratemask = BIT(5),
861 .plcp = 0x0f,
862 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
863 },
864 {
865 .flags = DEV_RATE_OFDM,
866 .bitrate = 120,
867 .ratemask = BIT(6),
868 .plcp = 0x0a,
869 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
870 },
871 {
872 .flags = DEV_RATE_OFDM,
873 .bitrate = 180,
874 .ratemask = BIT(7),
875 .plcp = 0x0e,
876 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
877 },
878 {
879 .flags = DEV_RATE_OFDM,
880 .bitrate = 240,
881 .ratemask = BIT(8),
882 .plcp = 0x09,
883 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
884 },
885 {
886 .flags = DEV_RATE_OFDM,
887 .bitrate = 360,
888 .ratemask = BIT(9),
889 .plcp = 0x0d,
890 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
891 },
892 {
893 .flags = DEV_RATE_OFDM,
894 .bitrate = 480,
895 .ratemask = BIT(10),
896 .plcp = 0x08,
897 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
898 },
899 {
900 .flags = DEV_RATE_OFDM,
901 .bitrate = 540,
902 .ratemask = BIT(11),
903 .plcp = 0x0c,
904 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
905 },
906 };
907
908 static void rt2x00lib_channel(struct ieee80211_channel *entry,
909 const int channel, const int tx_power,
910 const int value)
911 {
912 /* XXX: this assumption about the band is wrong for 802.11j */
913 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
914 entry->center_freq = ieee80211_channel_to_frequency(channel,
915 entry->band);
916 entry->hw_value = value;
917 entry->max_power = tx_power;
918 entry->max_antenna_gain = 0xff;
919 }
920
921 static void rt2x00lib_rate(struct ieee80211_rate *entry,
922 const u16 index, const struct rt2x00_rate *rate)
923 {
924 entry->flags = 0;
925 entry->bitrate = rate->bitrate;
926 entry->hw_value = index;
927 entry->hw_value_short = index;
928
929 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
930 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
931 }
932
933 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
934 struct hw_mode_spec *spec)
935 {
936 struct ieee80211_hw *hw = rt2x00dev->hw;
937 struct ieee80211_channel *channels;
938 struct ieee80211_rate *rates;
939 unsigned int num_rates;
940 unsigned int i;
941
942 num_rates = 0;
943 if (spec->supported_rates & SUPPORT_RATE_CCK)
944 num_rates += 4;
945 if (spec->supported_rates & SUPPORT_RATE_OFDM)
946 num_rates += 8;
947
948 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
949 if (!channels)
950 return -ENOMEM;
951
952 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
953 if (!rates)
954 goto exit_free_channels;
955
956 /*
957 * Initialize Rate list.
958 */
959 for (i = 0; i < num_rates; i++)
960 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
961
962 /*
963 * Initialize Channel list.
964 */
965 for (i = 0; i < spec->num_channels; i++) {
966 rt2x00lib_channel(&channels[i],
967 spec->channels[i].channel,
968 spec->channels_info[i].max_power, i);
969 }
970
971 /*
972 * Intitialize 802.11b, 802.11g
973 * Rates: CCK, OFDM.
974 * Channels: 2.4 GHz
975 */
976 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
979 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
980 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
981 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
982 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
983 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
984 &spec->ht, sizeof(spec->ht));
985 }
986
987 /*
988 * Intitialize 802.11a
989 * Rates: OFDM.
990 * Channels: OFDM, UNII, HiperLAN2.
991 */
992 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
993 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
994 spec->num_channels - 14;
995 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
996 num_rates - 4;
997 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
998 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
999 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1000 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1001 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1002 &spec->ht, sizeof(spec->ht));
1003 }
1004
1005 return 0;
1006
1007 exit_free_channels:
1008 kfree(channels);
1009 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
1010 return -ENOMEM;
1011 }
1012
1013 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1014 {
1015 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1016 ieee80211_unregister_hw(rt2x00dev->hw);
1017
1018 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1019 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1020 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1021 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1022 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1023 }
1024
1025 kfree(rt2x00dev->spec.channels_info);
1026 }
1027
1028 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1029 {
1030 struct hw_mode_spec *spec = &rt2x00dev->spec;
1031 int status;
1032
1033 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1034 return 0;
1035
1036 /*
1037 * Initialize HW modes.
1038 */
1039 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1040 if (status)
1041 return status;
1042
1043 /*
1044 * Initialize HW fields.
1045 */
1046 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1047
1048 /*
1049 * Initialize extra TX headroom required.
1050 */
1051 rt2x00dev->hw->extra_tx_headroom =
1052 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1053 rt2x00dev->ops->extra_tx_headroom);
1054
1055 /*
1056 * Take TX headroom required for alignment into account.
1057 */
1058 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1059 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1060 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1061 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1062
1063 /*
1064 * Tell mac80211 about the size of our private STA structure.
1065 */
1066 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1067
1068 /*
1069 * Allocate tx status FIFO for driver use.
1070 */
1071 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1072 /*
1073 * Allocate the txstatus fifo. In the worst case the tx
1074 * status fifo has to hold the tx status of all entries
1075 * in all tx queues. Hence, calculate the kfifo size as
1076 * tx_queues * entry_num and round up to the nearest
1077 * power of 2.
1078 */
1079 int kfifo_size =
1080 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1081 rt2x00dev->ops->tx->entry_num *
1082 sizeof(u32));
1083
1084 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1085 GFP_KERNEL);
1086 if (status)
1087 return status;
1088 }
1089
1090 /*
1091 * Initialize tasklets if used by the driver. Tasklets are
1092 * disabled until the interrupts are turned on. The driver
1093 * has to handle that.
1094 */
1095 #define RT2X00_TASKLET_INIT(taskletname) \
1096 if (rt2x00dev->ops->lib->taskletname) { \
1097 tasklet_init(&rt2x00dev->taskletname, \
1098 rt2x00dev->ops->lib->taskletname, \
1099 (unsigned long)rt2x00dev); \
1100 }
1101
1102 RT2X00_TASKLET_INIT(txstatus_tasklet);
1103 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1104 RT2X00_TASKLET_INIT(tbtt_tasklet);
1105 RT2X00_TASKLET_INIT(rxdone_tasklet);
1106 RT2X00_TASKLET_INIT(autowake_tasklet);
1107
1108 #undef RT2X00_TASKLET_INIT
1109
1110 /*
1111 * Register HW.
1112 */
1113 status = ieee80211_register_hw(rt2x00dev->hw);
1114 if (status)
1115 return status;
1116
1117 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1118
1119 return 0;
1120 }
1121
1122 /*
1123 * Initialization/uninitialization handlers.
1124 */
1125 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1126 {
1127 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1128 return;
1129
1130 /*
1131 * Unregister extra components.
1132 */
1133 rt2x00rfkill_unregister(rt2x00dev);
1134
1135 /*
1136 * Allow the HW to uninitialize.
1137 */
1138 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1139
1140 /*
1141 * Free allocated queue entries.
1142 */
1143 rt2x00queue_uninitialize(rt2x00dev);
1144 }
1145
1146 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1147 {
1148 int status;
1149
1150 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1151 return 0;
1152
1153 /*
1154 * Allocate all queue entries.
1155 */
1156 status = rt2x00queue_initialize(rt2x00dev);
1157 if (status)
1158 return status;
1159
1160 /*
1161 * Initialize the device.
1162 */
1163 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1164 if (status) {
1165 rt2x00queue_uninitialize(rt2x00dev);
1166 return status;
1167 }
1168
1169 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1170
1171 return 0;
1172 }
1173
1174 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1175 {
1176 int retval;
1177
1178 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1179 return 0;
1180
1181 /*
1182 * If this is the first interface which is added,
1183 * we should load the firmware now.
1184 */
1185 retval = rt2x00lib_load_firmware(rt2x00dev);
1186 if (retval)
1187 return retval;
1188
1189 /*
1190 * Initialize the device.
1191 */
1192 retval = rt2x00lib_initialize(rt2x00dev);
1193 if (retval)
1194 return retval;
1195
1196 rt2x00dev->intf_ap_count = 0;
1197 rt2x00dev->intf_sta_count = 0;
1198 rt2x00dev->intf_associated = 0;
1199
1200 /* Enable the radio */
1201 retval = rt2x00lib_enable_radio(rt2x00dev);
1202 if (retval)
1203 return retval;
1204
1205 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1206
1207 return 0;
1208 }
1209
1210 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1211 {
1212 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1213 return;
1214
1215 /*
1216 * Perhaps we can add something smarter here,
1217 * but for now just disabling the radio should do.
1218 */
1219 rt2x00lib_disable_radio(rt2x00dev);
1220
1221 rt2x00dev->intf_ap_count = 0;
1222 rt2x00dev->intf_sta_count = 0;
1223 rt2x00dev->intf_associated = 0;
1224 }
1225
1226 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1227 {
1228 struct ieee80211_iface_limit *if_limit;
1229 struct ieee80211_iface_combination *if_combination;
1230
1231 if (rt2x00dev->ops->max_ap_intf < 2)
1232 return;
1233
1234 /*
1235 * Build up AP interface limits structure.
1236 */
1237 if_limit = &rt2x00dev->if_limits_ap;
1238 if_limit->max = rt2x00dev->ops->max_ap_intf;
1239 if_limit->types = BIT(NL80211_IFTYPE_AP);
1240 #ifdef CONFIG_MAC80211_MESH
1241 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1242 #endif
1243
1244 /*
1245 * Build up AP interface combinations structure.
1246 */
1247 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1248 if_combination->limits = if_limit;
1249 if_combination->n_limits = 1;
1250 if_combination->max_interfaces = if_limit->max;
1251 if_combination->num_different_channels = 1;
1252
1253 /*
1254 * Finally, specify the possible combinations to mac80211.
1255 */
1256 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1257 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1258 }
1259
1260 /*
1261 * driver allocation handlers.
1262 */
1263 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1264 {
1265 int retval = -ENOMEM;
1266
1267 /*
1268 * Set possible interface combinations.
1269 */
1270 rt2x00lib_set_if_combinations(rt2x00dev);
1271
1272 /*
1273 * Allocate the driver data memory, if necessary.
1274 */
1275 if (rt2x00dev->ops->drv_data_size > 0) {
1276 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1277 GFP_KERNEL);
1278 if (!rt2x00dev->drv_data) {
1279 retval = -ENOMEM;
1280 goto exit;
1281 }
1282 }
1283
1284 spin_lock_init(&rt2x00dev->irqmask_lock);
1285 mutex_init(&rt2x00dev->csr_mutex);
1286 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1287 spin_lock_init(&rt2x00dev->bar_list_lock);
1288
1289 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1290
1291 /*
1292 * Make room for rt2x00_intf inside the per-interface
1293 * structure ieee80211_vif.
1294 */
1295 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1296
1297 /*
1298 * rt2x00 devices can only use the last n bits of the MAC address
1299 * for virtual interfaces.
1300 */
1301 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1302 (rt2x00dev->ops->max_ap_intf - 1);
1303
1304 /*
1305 * Determine which operating modes are supported, all modes
1306 * which require beaconing, depend on the availability of
1307 * beacon entries.
1308 */
1309 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1310 if (rt2x00dev->ops->bcn->entry_num > 0)
1311 rt2x00dev->hw->wiphy->interface_modes |=
1312 BIT(NL80211_IFTYPE_ADHOC) |
1313 BIT(NL80211_IFTYPE_AP) |
1314 #ifdef CONFIG_MAC80211_MESH
1315 BIT(NL80211_IFTYPE_MESH_POINT) |
1316 #endif
1317 BIT(NL80211_IFTYPE_WDS);
1318
1319 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1320
1321 /*
1322 * Initialize work.
1323 */
1324 rt2x00dev->workqueue =
1325 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1326 if (!rt2x00dev->workqueue) {
1327 retval = -ENOMEM;
1328 goto exit;
1329 }
1330
1331 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1332 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1333 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1334
1335 /*
1336 * Let the driver probe the device to detect the capabilities.
1337 */
1338 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1339 if (retval) {
1340 ERROR(rt2x00dev, "Failed to allocate device.\n");
1341 goto exit;
1342 }
1343
1344 /*
1345 * Allocate queue array.
1346 */
1347 retval = rt2x00queue_allocate(rt2x00dev);
1348 if (retval)
1349 goto exit;
1350
1351 /*
1352 * Initialize ieee80211 structure.
1353 */
1354 retval = rt2x00lib_probe_hw(rt2x00dev);
1355 if (retval) {
1356 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1357 goto exit;
1358 }
1359
1360 /*
1361 * Register extra components.
1362 */
1363 rt2x00link_register(rt2x00dev);
1364 rt2x00leds_register(rt2x00dev);
1365 rt2x00debug_register(rt2x00dev);
1366 rt2x00rfkill_register(rt2x00dev);
1367
1368 return 0;
1369
1370 exit:
1371 rt2x00lib_remove_dev(rt2x00dev);
1372
1373 return retval;
1374 }
1375 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1376
1377 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1378 {
1379 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1380
1381 /*
1382 * Disable radio.
1383 */
1384 rt2x00lib_disable_radio(rt2x00dev);
1385
1386 /*
1387 * Stop all work.
1388 */
1389 cancel_work_sync(&rt2x00dev->intf_work);
1390 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1391 cancel_work_sync(&rt2x00dev->sleep_work);
1392 if (rt2x00_is_usb(rt2x00dev)) {
1393 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1394 cancel_work_sync(&rt2x00dev->rxdone_work);
1395 cancel_work_sync(&rt2x00dev->txdone_work);
1396 }
1397 if (rt2x00dev->workqueue)
1398 destroy_workqueue(rt2x00dev->workqueue);
1399
1400 /*
1401 * Free the tx status fifo.
1402 */
1403 kfifo_free(&rt2x00dev->txstatus_fifo);
1404
1405 /*
1406 * Kill the tx status tasklet.
1407 */
1408 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1409 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1410 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1411 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1412 tasklet_kill(&rt2x00dev->autowake_tasklet);
1413
1414 /*
1415 * Uninitialize device.
1416 */
1417 rt2x00lib_uninitialize(rt2x00dev);
1418
1419 /*
1420 * Free extra components
1421 */
1422 rt2x00debug_deregister(rt2x00dev);
1423 rt2x00leds_unregister(rt2x00dev);
1424
1425 /*
1426 * Free ieee80211_hw memory.
1427 */
1428 rt2x00lib_remove_hw(rt2x00dev);
1429
1430 /*
1431 * Free firmware image.
1432 */
1433 rt2x00lib_free_firmware(rt2x00dev);
1434
1435 /*
1436 * Free queue structures.
1437 */
1438 rt2x00queue_free(rt2x00dev);
1439
1440 /*
1441 * Free the driver data.
1442 */
1443 if (rt2x00dev->drv_data)
1444 kfree(rt2x00dev->drv_data);
1445 }
1446 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1447
1448 /*
1449 * Device state handlers
1450 */
1451 #ifdef CONFIG_PM
1452 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1453 {
1454 DEBUG(rt2x00dev, "Going to sleep.\n");
1455
1456 /*
1457 * Prevent mac80211 from accessing driver while suspended.
1458 */
1459 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1460 return 0;
1461
1462 /*
1463 * Cleanup as much as possible.
1464 */
1465 rt2x00lib_uninitialize(rt2x00dev);
1466
1467 /*
1468 * Suspend/disable extra components.
1469 */
1470 rt2x00leds_suspend(rt2x00dev);
1471 rt2x00debug_deregister(rt2x00dev);
1472
1473 /*
1474 * Set device mode to sleep for power management,
1475 * on some hardware this call seems to consistently fail.
1476 * From the specifications it is hard to tell why it fails,
1477 * and if this is a "bad thing".
1478 * Overall it is safe to just ignore the failure and
1479 * continue suspending. The only downside is that the
1480 * device will not be in optimal power save mode, but with
1481 * the radio and the other components already disabled the
1482 * device is as good as disabled.
1483 */
1484 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1485 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1486 "continue suspending.\n");
1487
1488 return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1491
1492 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1493 {
1494 DEBUG(rt2x00dev, "Waking up.\n");
1495
1496 /*
1497 * Restore/enable extra components.
1498 */
1499 rt2x00debug_register(rt2x00dev);
1500 rt2x00leds_resume(rt2x00dev);
1501
1502 /*
1503 * We are ready again to receive requests from mac80211.
1504 */
1505 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1506
1507 return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1510 #endif /* CONFIG_PM */
1511
1512 /*
1513 * rt2x00lib module information.
1514 */
1515 MODULE_AUTHOR(DRV_PROJECT);
1516 MODULE_VERSION(DRV_VERSION);
1517 MODULE_DESCRIPTION("rt2x00 library");
1518 MODULE_LICENSE("GPL");