]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge branches 'release' and 'gpe-ack' into release
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34 * Ring handler.
35 */
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37 const unsigned int queue)
38 {
39 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
40
41 /*
42 * Check if we are requesting a reqular TX ring,
43 * or if we are requesting a Beacon or Atim ring.
44 * For Atim rings, we should check if it is supported.
45 */
46 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47 return &rt2x00dev->tx[queue];
48
49 if (!rt2x00dev->bcn || !beacon)
50 return NULL;
51
52 if (queue == IEEE80211_TX_QUEUE_BEACON)
53 return &rt2x00dev->bcn[0];
54 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55 return &rt2x00dev->bcn[1];
56
57 return NULL;
58 }
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
60
61 /*
62 * Link tuning handlers
63 */
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
65 {
66 rt2x00dev->link.count = 0;
67 rt2x00dev->link.vgc_level = 0;
68
69 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
70
71 /*
72 * The RX and TX percentage should start at 50%
73 * this will assure we will get at least get some
74 * decent value when the link tuner starts.
75 * The value will be dropped and overwritten with
76 * the correct (measured )value anyway during the
77 * first run of the link tuner.
78 */
79 rt2x00dev->link.qual.rx_percentage = 50;
80 rt2x00dev->link.qual.tx_percentage = 50;
81
82 /*
83 * Reset the link tuner.
84 */
85 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86
87 queue_delayed_work(rt2x00dev->hw->workqueue,
88 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
89 }
90
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
92 {
93 cancel_delayed_work_sync(&rt2x00dev->link.work);
94 }
95
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
97 {
98 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99 return;
100
101 rt2x00lib_stop_link_tuner(rt2x00dev);
102 rt2x00lib_start_link_tuner(rt2x00dev);
103 }
104
105 /*
106 * Ring initialization
107 */
108 static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
109 {
110 struct data_ring *ring = rt2x00dev->rx;
111 unsigned int i;
112
113 if (!rt2x00dev->ops->lib->init_rxentry)
114 return;
115
116 if (ring->data_addr)
117 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
118
119 for (i = 0; i < ring->stats.limit; i++)
120 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
121
122 rt2x00_ring_index_clear(ring);
123 }
124
125 static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
126 {
127 struct data_ring *ring;
128 unsigned int i;
129
130 if (!rt2x00dev->ops->lib->init_txentry)
131 return;
132
133 txringall_for_each(rt2x00dev, ring) {
134 if (ring->data_addr)
135 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
136
137 for (i = 0; i < ring->stats.limit; i++)
138 rt2x00dev->ops->lib->init_txentry(rt2x00dev,
139 &ring->entry[i]);
140
141 rt2x00_ring_index_clear(ring);
142 }
143 }
144
145 /*
146 * Radio control handlers.
147 */
148 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
149 {
150 int status;
151
152 /*
153 * Don't enable the radio twice.
154 * And check if the hardware button has been disabled.
155 */
156 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
157 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
158 return 0;
159
160 /*
161 * Initialize all data rings.
162 */
163 rt2x00lib_init_rxrings(rt2x00dev);
164 rt2x00lib_init_txrings(rt2x00dev);
165
166 /*
167 * Enable radio.
168 */
169 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
170 STATE_RADIO_ON);
171 if (status)
172 return status;
173
174 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
175
176 /*
177 * Enable RX.
178 */
179 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
180
181 /*
182 * Start the TX queues.
183 */
184 ieee80211_start_queues(rt2x00dev->hw);
185
186 return 0;
187 }
188
189 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
190 {
191 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
192 return;
193
194 /*
195 * Stop all scheduled work.
196 */
197 if (work_pending(&rt2x00dev->beacon_work))
198 cancel_work_sync(&rt2x00dev->beacon_work);
199 if (work_pending(&rt2x00dev->filter_work))
200 cancel_work_sync(&rt2x00dev->filter_work);
201 if (work_pending(&rt2x00dev->config_work))
202 cancel_work_sync(&rt2x00dev->config_work);
203
204 /*
205 * Stop the TX queues.
206 */
207 ieee80211_stop_queues(rt2x00dev->hw);
208
209 /*
210 * Disable RX.
211 */
212 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
213
214 /*
215 * Disable radio.
216 */
217 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
218 }
219
220 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
221 {
222 /*
223 * When we are disabling the RX, we should also stop the link tuner.
224 */
225 if (state == STATE_RADIO_RX_OFF)
226 rt2x00lib_stop_link_tuner(rt2x00dev);
227
228 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
229
230 /*
231 * When we are enabling the RX, we should also start the link tuner.
232 */
233 if (state == STATE_RADIO_RX_ON &&
234 is_interface_present(&rt2x00dev->interface))
235 rt2x00lib_start_link_tuner(rt2x00dev);
236 }
237
238 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
239 {
240 enum antenna rx = rt2x00dev->link.ant.active.rx;
241 enum antenna tx = rt2x00dev->link.ant.active.tx;
242 int sample_a =
243 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
244 int sample_b =
245 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
246
247 /*
248 * We are done sampling. Now we should evaluate the results.
249 */
250 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
251
252 /*
253 * During the last period we have sampled the RSSI
254 * from both antenna's. It now is time to determine
255 * which antenna demonstrated the best performance.
256 * When we are already on the antenna with the best
257 * performance, then there really is nothing for us
258 * left to do.
259 */
260 if (sample_a == sample_b)
261 return;
262
263 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
264 if (sample_a > sample_b && rx == ANTENNA_B)
265 rx = ANTENNA_A;
266 else if (rx == ANTENNA_A)
267 rx = ANTENNA_B;
268 }
269
270 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
271 if (sample_a > sample_b && tx == ANTENNA_B)
272 tx = ANTENNA_A;
273 else if (tx == ANTENNA_A)
274 tx = ANTENNA_B;
275 }
276
277 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
278 }
279
280 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
281 {
282 enum antenna rx = rt2x00dev->link.ant.active.rx;
283 enum antenna tx = rt2x00dev->link.ant.active.tx;
284 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
285 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
286
287 /*
288 * Legacy driver indicates that we should swap antenna's
289 * when the difference in RSSI is greater that 5. This
290 * also should be done when the RSSI was actually better
291 * then the previous sample.
292 * When the difference exceeds the threshold we should
293 * sample the rssi from the other antenna to make a valid
294 * comparison between the 2 antennas.
295 */
296 if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
297 return;
298
299 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
300
301 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
302 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
303
304 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
305 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
306
307 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
308 }
309
310 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
311 {
312 /*
313 * Determine if software diversity is enabled for
314 * either the TX or RX antenna (or both).
315 * Always perform this check since within the link
316 * tuner interval the configuration might have changed.
317 */
318 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
319 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
320
321 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
322 rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
323 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
324 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
325 rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
326 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
327
328 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
329 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
330 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
331 return;
332 }
333
334 /*
335 * If we have only sampled the data over the last period
336 * we should now harvest the data. Otherwise just evaluate
337 * the data. The latter should only be performed once
338 * every 2 seconds.
339 */
340 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
341 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
342 else if (rt2x00dev->link.count & 1)
343 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
344 }
345
346 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
347 {
348 int avg_rssi = rssi;
349
350 /*
351 * Update global RSSI
352 */
353 if (link->qual.avg_rssi)
354 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
355 link->qual.avg_rssi = avg_rssi;
356
357 /*
358 * Update antenna RSSI
359 */
360 if (link->ant.rssi_ant)
361 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
362 link->ant.rssi_ant = rssi;
363 }
364
365 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
366 {
367 if (qual->rx_failed || qual->rx_success)
368 qual->rx_percentage =
369 (qual->rx_success * 100) /
370 (qual->rx_failed + qual->rx_success);
371 else
372 qual->rx_percentage = 50;
373
374 if (qual->tx_failed || qual->tx_success)
375 qual->tx_percentage =
376 (qual->tx_success * 100) /
377 (qual->tx_failed + qual->tx_success);
378 else
379 qual->tx_percentage = 50;
380
381 qual->rx_success = 0;
382 qual->rx_failed = 0;
383 qual->tx_success = 0;
384 qual->tx_failed = 0;
385 }
386
387 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
388 int rssi)
389 {
390 int rssi_percentage = 0;
391 int signal;
392
393 /*
394 * We need a positive value for the RSSI.
395 */
396 if (rssi < 0)
397 rssi += rt2x00dev->rssi_offset;
398
399 /*
400 * Calculate the different percentages,
401 * which will be used for the signal.
402 */
403 if (rt2x00dev->rssi_offset)
404 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
405
406 /*
407 * Add the individual percentages and use the WEIGHT
408 * defines to calculate the current link signal.
409 */
410 signal = ((WEIGHT_RSSI * rssi_percentage) +
411 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
412 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
413
414 return (signal > 100) ? 100 : signal;
415 }
416
417 static void rt2x00lib_link_tuner(struct work_struct *work)
418 {
419 struct rt2x00_dev *rt2x00dev =
420 container_of(work, struct rt2x00_dev, link.work.work);
421
422 /*
423 * When the radio is shutting down we should
424 * immediately cease all link tuning.
425 */
426 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
427 return;
428
429 /*
430 * Update statistics.
431 */
432 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
433 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
434 rt2x00dev->link.qual.rx_failed;
435
436 /*
437 * Only perform the link tuning when Link tuning
438 * has been enabled (This could have been disabled from the EEPROM).
439 */
440 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
441 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
442
443 /*
444 * Evaluate antenna setup.
445 */
446 rt2x00lib_evaluate_antenna(rt2x00dev);
447
448 /*
449 * Precalculate a portion of the link signal which is
450 * in based on the tx/rx success/failure counters.
451 */
452 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
453
454 /*
455 * Increase tuner counter, and reschedule the next link tuner run.
456 */
457 rt2x00dev->link.count++;
458 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
459 LINK_TUNE_INTERVAL);
460 }
461
462 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
463 {
464 struct rt2x00_dev *rt2x00dev =
465 container_of(work, struct rt2x00_dev, filter_work);
466 unsigned int filter = rt2x00dev->packet_filter;
467
468 /*
469 * Since we had stored the filter inside interface.filter,
470 * we should now clear that field. Otherwise the driver will
471 * assume nothing has changed (*total_flags will be compared
472 * to interface.filter to determine if any action is required).
473 */
474 rt2x00dev->packet_filter = 0;
475
476 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
477 filter, &filter, 0, NULL);
478 }
479
480 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
481 {
482 struct rt2x00_dev *rt2x00dev =
483 container_of(work, struct rt2x00_dev, config_work);
484 struct ieee80211_bss_conf bss_conf;
485
486 bss_conf.use_short_preamble =
487 test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
488
489 /*
490 * FIXME: shouldn't invoke it this way because all other contents
491 * of bss_conf is invalid.
492 */
493 rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
494 &bss_conf, BSS_CHANGED_ERP_PREAMBLE);
495 }
496
497 /*
498 * Interrupt context handlers.
499 */
500 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
501 {
502 struct rt2x00_dev *rt2x00dev =
503 container_of(work, struct rt2x00_dev, beacon_work);
504 struct data_ring *ring =
505 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
506 struct data_entry *entry = rt2x00_get_data_entry(ring);
507 struct sk_buff *skb;
508
509 skb = ieee80211_beacon_get(rt2x00dev->hw,
510 rt2x00dev->interface.id,
511 &entry->tx_status.control);
512 if (!skb)
513 return;
514
515 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
516 &entry->tx_status.control);
517
518 dev_kfree_skb(skb);
519 }
520
521 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
522 {
523 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
524 return;
525
526 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
527 }
528 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
529
530 void rt2x00lib_txdone(struct data_entry *entry,
531 const int status, const int retry)
532 {
533 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
534 struct ieee80211_tx_status *tx_status = &entry->tx_status;
535 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
536 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
537 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
538 status == TX_FAIL_OTHER);
539
540 /*
541 * Update TX statistics.
542 */
543 tx_status->flags = 0;
544 tx_status->ack_signal = 0;
545 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
546 tx_status->retry_count = retry;
547 rt2x00dev->link.qual.tx_success += success;
548 rt2x00dev->link.qual.tx_failed += retry + fail;
549
550 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
551 if (success)
552 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
553 else
554 stats->dot11ACKFailureCount++;
555 }
556
557 tx_status->queue_length = entry->ring->stats.limit;
558 tx_status->queue_number = tx_status->control.queue;
559
560 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
561 if (success)
562 stats->dot11RTSSuccessCount++;
563 else
564 stats->dot11RTSFailureCount++;
565 }
566
567 /*
568 * Send the tx_status to mac80211 & debugfs.
569 * mac80211 will clean up the skb structure.
570 */
571 get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
572 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
573 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
574 entry->skb = NULL;
575 }
576 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
577
578 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
579 struct rxdata_entry_desc *desc)
580 {
581 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
582 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
583 struct ieee80211_hw_mode *mode;
584 struct ieee80211_rate *rate;
585 struct ieee80211_hdr *hdr;
586 unsigned int i;
587 int val = 0;
588 u16 fc;
589
590 /*
591 * Update RX statistics.
592 */
593 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
594 for (i = 0; i < mode->num_rates; i++) {
595 rate = &mode->rates[i];
596
597 /*
598 * When frame was received with an OFDM bitrate,
599 * the signal is the PLCP value. If it was received with
600 * a CCK bitrate the signal is the rate in 0.5kbit/s.
601 */
602 if (!desc->ofdm)
603 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
604 else
605 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
606
607 if (val == desc->signal) {
608 val = rate->val;
609 break;
610 }
611 }
612
613 /*
614 * Only update link status if this is a beacon frame carrying our bssid.
615 */
616 hdr = (struct ieee80211_hdr*)skb->data;
617 fc = le16_to_cpu(hdr->frame_control);
618 if (is_beacon(fc) && desc->my_bss)
619 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
620
621 rt2x00dev->link.qual.rx_success++;
622
623 rx_status->rate = val;
624 rx_status->signal =
625 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
626 rx_status->ssi = desc->rssi;
627 rx_status->flag = desc->flags;
628 rx_status->antenna = rt2x00dev->link.ant.active.rx;
629
630 /*
631 * Send frame to mac80211 & debugfs
632 */
633 get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
634 rt2x00debug_dump_frame(rt2x00dev, skb);
635 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
636 }
637 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
638
639 /*
640 * TX descriptor initializer
641 */
642 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
643 struct sk_buff *skb,
644 struct ieee80211_tx_control *control)
645 {
646 struct txdata_entry_desc desc;
647 struct skb_desc *skbdesc = get_skb_desc(skb);
648 struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
649 int tx_rate;
650 int bitrate;
651 int length;
652 int duration;
653 int residual;
654 u16 frame_control;
655 u16 seq_ctrl;
656
657 memset(&desc, 0, sizeof(desc));
658
659 desc.cw_min = skbdesc->ring->tx_params.cw_min;
660 desc.cw_max = skbdesc->ring->tx_params.cw_max;
661 desc.aifs = skbdesc->ring->tx_params.aifs;
662
663 /*
664 * Identify queue
665 */
666 if (control->queue < rt2x00dev->hw->queues)
667 desc.queue = control->queue;
668 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
669 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
670 desc.queue = QUEUE_MGMT;
671 else
672 desc.queue = QUEUE_OTHER;
673
674 /*
675 * Read required fields from ieee80211 header.
676 */
677 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
678 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
679
680 tx_rate = control->tx_rate;
681
682 /*
683 * Check whether this frame is to be acked
684 */
685 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
686 __set_bit(ENTRY_TXD_ACK, &desc.flags);
687
688 /*
689 * Check if this is a RTS/CTS frame
690 */
691 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
692 __set_bit(ENTRY_TXD_BURST, &desc.flags);
693 if (is_rts_frame(frame_control)) {
694 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
695 __set_bit(ENTRY_TXD_ACK, &desc.flags);
696 } else
697 __clear_bit(ENTRY_TXD_ACK, &desc.flags);
698 if (control->rts_cts_rate)
699 tx_rate = control->rts_cts_rate;
700 }
701
702 /*
703 * Check for OFDM
704 */
705 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
706 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
707
708 /*
709 * Check if more fragments are pending
710 */
711 if (ieee80211_get_morefrag(ieee80211hdr)) {
712 __set_bit(ENTRY_TXD_BURST, &desc.flags);
713 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
714 }
715
716 /*
717 * Beacons and probe responses require the tsf timestamp
718 * to be inserted into the frame.
719 */
720 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
721 is_probe_resp(frame_control))
722 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
723
724 /*
725 * Determine with what IFS priority this frame should be send.
726 * Set ifs to IFS_SIFS when the this is not the first fragment,
727 * or this fragment came after RTS/CTS.
728 */
729 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
730 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
731 desc.ifs = IFS_SIFS;
732 else
733 desc.ifs = IFS_BACKOFF;
734
735 /*
736 * PLCP setup
737 * Length calculation depends on OFDM/CCK rate.
738 */
739 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
740 desc.service = 0x04;
741
742 length = skbdesc->data_len + FCS_LEN;
743 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
744 desc.length_high = (length >> 6) & 0x3f;
745 desc.length_low = length & 0x3f;
746 } else {
747 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
748
749 /*
750 * Convert length to microseconds.
751 */
752 residual = get_duration_res(length, bitrate);
753 duration = get_duration(length, bitrate);
754
755 if (residual != 0) {
756 duration++;
757
758 /*
759 * Check if we need to set the Length Extension
760 */
761 if (bitrate == 110 && residual <= 30)
762 desc.service |= 0x80;
763 }
764
765 desc.length_high = (duration >> 8) & 0xff;
766 desc.length_low = duration & 0xff;
767
768 /*
769 * When preamble is enabled we should set the
770 * preamble bit for the signal.
771 */
772 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
773 desc.signal |= 0x08;
774 }
775
776 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
777
778 /*
779 * Update ring entry.
780 */
781 skbdesc->entry->skb = skb;
782 memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
783
784 /*
785 * The frame has been completely initialized and ready
786 * for sending to the device. The caller will push the
787 * frame to the device, but we are going to push the
788 * frame to debugfs here.
789 */
790 skbdesc->frame_type = DUMP_FRAME_TX;
791 rt2x00debug_dump_frame(rt2x00dev, skb);
792 }
793 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
794
795 /*
796 * Driver initialization handlers.
797 */
798 static void rt2x00lib_channel(struct ieee80211_channel *entry,
799 const int channel, const int tx_power,
800 const int value)
801 {
802 entry->chan = channel;
803 if (channel <= 14)
804 entry->freq = 2407 + (5 * channel);
805 else
806 entry->freq = 5000 + (5 * channel);
807 entry->val = value;
808 entry->flag =
809 IEEE80211_CHAN_W_IBSS |
810 IEEE80211_CHAN_W_ACTIVE_SCAN |
811 IEEE80211_CHAN_W_SCAN;
812 entry->power_level = tx_power;
813 entry->antenna_max = 0xff;
814 }
815
816 static void rt2x00lib_rate(struct ieee80211_rate *entry,
817 const int rate, const int mask,
818 const int plcp, const int flags)
819 {
820 entry->rate = rate;
821 entry->val =
822 DEVICE_SET_RATE_FIELD(rate, RATE) |
823 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
824 DEVICE_SET_RATE_FIELD(plcp, PLCP);
825 entry->flags = flags;
826 entry->val2 = entry->val;
827 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
828 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
829 entry->min_rssi_ack = 0;
830 entry->min_rssi_ack_delta = 0;
831 }
832
833 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
834 struct hw_mode_spec *spec)
835 {
836 struct ieee80211_hw *hw = rt2x00dev->hw;
837 struct ieee80211_hw_mode *hwmodes;
838 struct ieee80211_channel *channels;
839 struct ieee80211_rate *rates;
840 unsigned int i;
841 unsigned char tx_power;
842
843 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
844 if (!hwmodes)
845 goto exit;
846
847 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
848 if (!channels)
849 goto exit_free_modes;
850
851 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
852 if (!rates)
853 goto exit_free_channels;
854
855 /*
856 * Initialize Rate list.
857 */
858 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
859 0x00, IEEE80211_RATE_CCK);
860 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
861 0x01, IEEE80211_RATE_CCK_2);
862 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
863 0x02, IEEE80211_RATE_CCK_2);
864 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
865 0x03, IEEE80211_RATE_CCK_2);
866
867 if (spec->num_rates > 4) {
868 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
869 0x0b, IEEE80211_RATE_OFDM);
870 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
871 0x0f, IEEE80211_RATE_OFDM);
872 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
873 0x0a, IEEE80211_RATE_OFDM);
874 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
875 0x0e, IEEE80211_RATE_OFDM);
876 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
877 0x09, IEEE80211_RATE_OFDM);
878 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
879 0x0d, IEEE80211_RATE_OFDM);
880 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
881 0x08, IEEE80211_RATE_OFDM);
882 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
883 0x0c, IEEE80211_RATE_OFDM);
884 }
885
886 /*
887 * Initialize Channel list.
888 */
889 for (i = 0; i < spec->num_channels; i++) {
890 if (spec->channels[i].channel <= 14)
891 tx_power = spec->tx_power_bg[i];
892 else if (spec->tx_power_a)
893 tx_power = spec->tx_power_a[i];
894 else
895 tx_power = spec->tx_power_default;
896
897 rt2x00lib_channel(&channels[i],
898 spec->channels[i].channel, tx_power, i);
899 }
900
901 /*
902 * Intitialize 802.11b
903 * Rates: CCK.
904 * Channels: OFDM.
905 */
906 if (spec->num_modes > HWMODE_B) {
907 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
908 hwmodes[HWMODE_B].num_channels = 14;
909 hwmodes[HWMODE_B].num_rates = 4;
910 hwmodes[HWMODE_B].channels = channels;
911 hwmodes[HWMODE_B].rates = rates;
912 }
913
914 /*
915 * Intitialize 802.11g
916 * Rates: CCK, OFDM.
917 * Channels: OFDM.
918 */
919 if (spec->num_modes > HWMODE_G) {
920 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
921 hwmodes[HWMODE_G].num_channels = 14;
922 hwmodes[HWMODE_G].num_rates = spec->num_rates;
923 hwmodes[HWMODE_G].channels = channels;
924 hwmodes[HWMODE_G].rates = rates;
925 }
926
927 /*
928 * Intitialize 802.11a
929 * Rates: OFDM.
930 * Channels: OFDM, UNII, HiperLAN2.
931 */
932 if (spec->num_modes > HWMODE_A) {
933 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
934 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
935 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
936 hwmodes[HWMODE_A].channels = &channels[14];
937 hwmodes[HWMODE_A].rates = &rates[4];
938 }
939
940 if (spec->num_modes > HWMODE_G &&
941 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
942 goto exit_free_rates;
943
944 if (spec->num_modes > HWMODE_B &&
945 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
946 goto exit_free_rates;
947
948 if (spec->num_modes > HWMODE_A &&
949 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
950 goto exit_free_rates;
951
952 rt2x00dev->hwmodes = hwmodes;
953
954 return 0;
955
956 exit_free_rates:
957 kfree(rates);
958
959 exit_free_channels:
960 kfree(channels);
961
962 exit_free_modes:
963 kfree(hwmodes);
964
965 exit:
966 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
967 return -ENOMEM;
968 }
969
970 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
971 {
972 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
973 ieee80211_unregister_hw(rt2x00dev->hw);
974
975 if (likely(rt2x00dev->hwmodes)) {
976 kfree(rt2x00dev->hwmodes->channels);
977 kfree(rt2x00dev->hwmodes->rates);
978 kfree(rt2x00dev->hwmodes);
979 rt2x00dev->hwmodes = NULL;
980 }
981 }
982
983 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
984 {
985 struct hw_mode_spec *spec = &rt2x00dev->spec;
986 int status;
987
988 /*
989 * Initialize HW modes.
990 */
991 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
992 if (status)
993 return status;
994
995 /*
996 * Register HW.
997 */
998 status = ieee80211_register_hw(rt2x00dev->hw);
999 if (status) {
1000 rt2x00lib_remove_hw(rt2x00dev);
1001 return status;
1002 }
1003
1004 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * Initialization/uninitialization handlers.
1011 */
1012 static int rt2x00lib_alloc_entries(struct data_ring *ring,
1013 const u16 max_entries, const u16 data_size,
1014 const u16 desc_size)
1015 {
1016 struct data_entry *entry;
1017 unsigned int i;
1018
1019 ring->stats.limit = max_entries;
1020 ring->data_size = data_size;
1021 ring->desc_size = desc_size;
1022
1023 /*
1024 * Allocate all ring entries.
1025 */
1026 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
1027 if (!entry)
1028 return -ENOMEM;
1029
1030 for (i = 0; i < ring->stats.limit; i++) {
1031 entry[i].flags = 0;
1032 entry[i].ring = ring;
1033 entry[i].skb = NULL;
1034 entry[i].entry_idx = i;
1035 }
1036
1037 ring->entry = entry;
1038
1039 return 0;
1040 }
1041
1042 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1043 {
1044 struct data_ring *ring;
1045
1046 /*
1047 * Allocate the RX ring.
1048 */
1049 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1050 rt2x00dev->ops->rxd_size))
1051 return -ENOMEM;
1052
1053 /*
1054 * First allocate the TX rings.
1055 */
1056 txring_for_each(rt2x00dev, ring) {
1057 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1058 rt2x00dev->ops->txd_size))
1059 return -ENOMEM;
1060 }
1061
1062 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1063 return 0;
1064
1065 /*
1066 * Allocate the BEACON ring.
1067 */
1068 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1069 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1070 return -ENOMEM;
1071
1072 /*
1073 * Allocate the Atim ring.
1074 */
1075 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1076 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1077 return -ENOMEM;
1078
1079 return 0;
1080 }
1081
1082 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1083 {
1084 struct data_ring *ring;
1085
1086 ring_for_each(rt2x00dev, ring) {
1087 kfree(ring->entry);
1088 ring->entry = NULL;
1089 }
1090 }
1091
1092 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1093 {
1094 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1095 return;
1096
1097 /*
1098 * Unregister rfkill.
1099 */
1100 rt2x00rfkill_unregister(rt2x00dev);
1101
1102 /*
1103 * Allow the HW to uninitialize.
1104 */
1105 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1106
1107 /*
1108 * Free allocated ring entries.
1109 */
1110 rt2x00lib_free_ring_entries(rt2x00dev);
1111 }
1112
1113 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1114 {
1115 int status;
1116
1117 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1118 return 0;
1119
1120 /*
1121 * Allocate all ring entries.
1122 */
1123 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1124 if (status) {
1125 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1126 return status;
1127 }
1128
1129 /*
1130 * Initialize the device.
1131 */
1132 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1133 if (status)
1134 goto exit;
1135
1136 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1137
1138 /*
1139 * Register the rfkill handler.
1140 */
1141 status = rt2x00rfkill_register(rt2x00dev);
1142 if (status)
1143 goto exit_unitialize;
1144
1145 return 0;
1146
1147 exit_unitialize:
1148 rt2x00lib_uninitialize(rt2x00dev);
1149
1150 exit:
1151 rt2x00lib_free_ring_entries(rt2x00dev);
1152
1153 return status;
1154 }
1155
1156 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1157 {
1158 int retval;
1159
1160 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1161 return 0;
1162
1163 /*
1164 * If this is the first interface which is added,
1165 * we should load the firmware now.
1166 */
1167 if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1168 retval = rt2x00lib_load_firmware(rt2x00dev);
1169 if (retval)
1170 return retval;
1171 }
1172
1173 /*
1174 * Initialize the device.
1175 */
1176 retval = rt2x00lib_initialize(rt2x00dev);
1177 if (retval)
1178 return retval;
1179
1180 /*
1181 * Enable radio.
1182 */
1183 retval = rt2x00lib_enable_radio(rt2x00dev);
1184 if (retval) {
1185 rt2x00lib_uninitialize(rt2x00dev);
1186 return retval;
1187 }
1188
1189 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1190
1191 return 0;
1192 }
1193
1194 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1195 {
1196 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1197 return;
1198
1199 /*
1200 * Perhaps we can add something smarter here,
1201 * but for now just disabling the radio should do.
1202 */
1203 rt2x00lib_disable_radio(rt2x00dev);
1204
1205 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1206 }
1207
1208 /*
1209 * driver allocation handlers.
1210 */
1211 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1212 {
1213 struct data_ring *ring;
1214 unsigned int index;
1215
1216 /*
1217 * We need the following rings:
1218 * RX: 1
1219 * TX: hw->queues
1220 * Beacon: 1 (if required)
1221 * Atim: 1 (if required)
1222 */
1223 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1224 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1225
1226 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1227 if (!ring) {
1228 ERROR(rt2x00dev, "Ring allocation failed.\n");
1229 return -ENOMEM;
1230 }
1231
1232 /*
1233 * Initialize pointers
1234 */
1235 rt2x00dev->rx = ring;
1236 rt2x00dev->tx = &rt2x00dev->rx[1];
1237 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1238 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1239
1240 /*
1241 * Initialize ring parameters.
1242 * RX: queue_idx = 0
1243 * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
1244 * TX: cw_min: 2^5 = 32.
1245 * TX: cw_max: 2^10 = 1024.
1246 */
1247 rt2x00dev->rx->rt2x00dev = rt2x00dev;
1248 rt2x00dev->rx->queue_idx = 0;
1249
1250 index = IEEE80211_TX_QUEUE_DATA0;
1251 txring_for_each(rt2x00dev, ring) {
1252 ring->rt2x00dev = rt2x00dev;
1253 ring->queue_idx = index++;
1254 ring->tx_params.aifs = 2;
1255 ring->tx_params.cw_min = 5;
1256 ring->tx_params.cw_max = 10;
1257 }
1258
1259 return 0;
1260 }
1261
1262 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1263 {
1264 kfree(rt2x00dev->rx);
1265 rt2x00dev->rx = NULL;
1266 rt2x00dev->tx = NULL;
1267 rt2x00dev->bcn = NULL;
1268 }
1269
1270 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1271 {
1272 int retval = -ENOMEM;
1273
1274 /*
1275 * Let the driver probe the device to detect the capabilities.
1276 */
1277 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1278 if (retval) {
1279 ERROR(rt2x00dev, "Failed to allocate device.\n");
1280 goto exit;
1281 }
1282
1283 /*
1284 * Initialize configuration work.
1285 */
1286 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1287 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1288 INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1289 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1290
1291 /*
1292 * Reset current working type.
1293 */
1294 rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1295
1296 /*
1297 * Allocate ring array.
1298 */
1299 retval = rt2x00lib_alloc_rings(rt2x00dev);
1300 if (retval)
1301 goto exit;
1302
1303 /*
1304 * Initialize ieee80211 structure.
1305 */
1306 retval = rt2x00lib_probe_hw(rt2x00dev);
1307 if (retval) {
1308 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1309 goto exit;
1310 }
1311
1312 /*
1313 * Allocatie rfkill.
1314 */
1315 retval = rt2x00rfkill_allocate(rt2x00dev);
1316 if (retval)
1317 goto exit;
1318
1319 /*
1320 * Open the debugfs entry.
1321 */
1322 rt2x00debug_register(rt2x00dev);
1323
1324 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1325
1326 return 0;
1327
1328 exit:
1329 rt2x00lib_remove_dev(rt2x00dev);
1330
1331 return retval;
1332 }
1333 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1334
1335 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1336 {
1337 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1338
1339 /*
1340 * Disable radio.
1341 */
1342 rt2x00lib_disable_radio(rt2x00dev);
1343
1344 /*
1345 * Uninitialize device.
1346 */
1347 rt2x00lib_uninitialize(rt2x00dev);
1348
1349 /*
1350 * Close debugfs entry.
1351 */
1352 rt2x00debug_deregister(rt2x00dev);
1353
1354 /*
1355 * Free rfkill
1356 */
1357 rt2x00rfkill_free(rt2x00dev);
1358
1359 /*
1360 * Free ieee80211_hw memory.
1361 */
1362 rt2x00lib_remove_hw(rt2x00dev);
1363
1364 /*
1365 * Free firmware image.
1366 */
1367 rt2x00lib_free_firmware(rt2x00dev);
1368
1369 /*
1370 * Free ring structures.
1371 */
1372 rt2x00lib_free_rings(rt2x00dev);
1373 }
1374 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1375
1376 /*
1377 * Device state handlers
1378 */
1379 #ifdef CONFIG_PM
1380 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1381 {
1382 int retval;
1383
1384 NOTICE(rt2x00dev, "Going to sleep.\n");
1385 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1386
1387 /*
1388 * Only continue if mac80211 has open interfaces.
1389 */
1390 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1391 goto exit;
1392 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1393
1394 /*
1395 * Disable radio and unitialize all items
1396 * that must be recreated on resume.
1397 */
1398 rt2x00lib_stop(rt2x00dev);
1399 rt2x00lib_uninitialize(rt2x00dev);
1400 rt2x00debug_deregister(rt2x00dev);
1401
1402 exit:
1403 /*
1404 * Set device mode to sleep for power management.
1405 */
1406 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1407 if (retval)
1408 return retval;
1409
1410 return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1413
1414 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1415 {
1416 struct interface *intf = &rt2x00dev->interface;
1417 int retval;
1418
1419 NOTICE(rt2x00dev, "Waking up.\n");
1420
1421 /*
1422 * Open the debugfs entry.
1423 */
1424 rt2x00debug_register(rt2x00dev);
1425
1426 /*
1427 * Only continue if mac80211 had open interfaces.
1428 */
1429 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1430 return 0;
1431
1432 /*
1433 * Reinitialize device and all active interfaces.
1434 */
1435 retval = rt2x00lib_start(rt2x00dev);
1436 if (retval)
1437 goto exit;
1438
1439 /*
1440 * Reconfigure device.
1441 */
1442 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1443 if (!rt2x00dev->hw->conf.radio_enabled)
1444 rt2x00lib_disable_radio(rt2x00dev);
1445
1446 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1447 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1448 rt2x00lib_config_type(rt2x00dev, intf->type);
1449
1450 /*
1451 * We are ready again to receive requests from mac80211.
1452 */
1453 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1454
1455 /*
1456 * It is possible that during that mac80211 has attempted
1457 * to send frames while we were suspending or resuming.
1458 * In that case we have disabled the TX queue and should
1459 * now enable it again
1460 */
1461 ieee80211_start_queues(rt2x00dev->hw);
1462
1463 /*
1464 * When in Master or Ad-hoc mode,
1465 * restart Beacon transmitting by faking a beacondone event.
1466 */
1467 if (intf->type == IEEE80211_IF_TYPE_AP ||
1468 intf->type == IEEE80211_IF_TYPE_IBSS)
1469 rt2x00lib_beacondone(rt2x00dev);
1470
1471 return 0;
1472
1473 exit:
1474 rt2x00lib_disable_radio(rt2x00dev);
1475 rt2x00lib_uninitialize(rt2x00dev);
1476 rt2x00debug_deregister(rt2x00dev);
1477
1478 return retval;
1479 }
1480 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1481 #endif /* CONFIG_PM */
1482
1483 /*
1484 * rt2x00lib module information.
1485 */
1486 MODULE_AUTHOR(DRV_PROJECT);
1487 MODULE_VERSION(DRV_VERSION);
1488 MODULE_DESCRIPTION("rt2x00 library");
1489 MODULE_LICENSE("GPL");