]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Fix basic rate initialization
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34 * Link tuning handlers
35 */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
40
41 /*
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
48 */
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
51
52 /*
53 * Reset the link tuner.
54 */
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60 /*
61 * Clear all (possibly) pre-existing quality statistics.
62 */
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65 /*
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
72 */
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
75
76 rt2x00lib_reset_link_tuner(rt2x00dev);
77
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88 * Radio control handlers.
89 */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92 int status;
93
94 /*
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
97 */
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
101
102 /*
103 * Initialize all data queues.
104 */
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
107
108 /*
109 * Enable radio.
110 */
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
115
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118 /*
119 * Enable RX.
120 */
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123 /*
124 * Start the TX queues.
125 */
126 ieee80211_start_queues(rt2x00dev->hw);
127
128 return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
135
136 /*
137 * Stop all scheduled work.
138 */
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
143
144 /*
145 * Stop the TX queues.
146 */
147 ieee80211_stop_queues(rt2x00dev->hw);
148
149 /*
150 * Disable RX.
151 */
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154 /*
155 * Disable radio.
156 */
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162 /*
163 * When we are disabling the RX, we should also stop the link tuner.
164 */
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170 /*
171 * When we are enabling the RX, we should also start the link tuner.
172 */
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187 /*
188 * We are done sampling. Now we should evaluate the results.
189 */
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192 /*
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
199 */
200 if (sample_a == sample_b)
201 return;
202
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219 /*
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
227 */
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
230
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244 /*
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
249 */
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
264 }
265
266 /*
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
271 */
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280 int avg_rssi = rssi;
281
282 /*
283 * Update global RSSI
284 */
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
288
289 /*
290 * Update antenna RSSI
291 */
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
305
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
312
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
321 {
322 int rssi_percentage = 0;
323 int signal;
324
325 /*
326 * We need a positive value for the RSSI.
327 */
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
330
331 /*
332 * Calculate the different percentages,
333 * which will be used for the signal.
334 */
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338 /*
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
341 */
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346 return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
353
354 /*
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
357 */
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
360
361 /*
362 * Update statistics.
363 */
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
367
368 /*
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
371 */
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375 /*
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
378 */
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381 /*
382 * Send a signal to the led to update the led signal strength.
383 */
384 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386 /*
387 * Evaluate antenna setup, make this the last step since this could
388 * possibly reset some statistics.
389 */
390 rt2x00lib_evaluate_antenna(rt2x00dev);
391
392 /*
393 * Increase tuner counter, and reschedule the next link tuner run.
394 */
395 rt2x00dev->link.count++;
396 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397 LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402 struct rt2x00_dev *rt2x00dev =
403 container_of(work, struct rt2x00_dev, filter_work);
404 unsigned int filter = rt2x00dev->packet_filter;
405
406 /*
407 * Since we had stored the filter inside rt2x00dev->packet_filter,
408 * we should now clear that field. Otherwise the driver will
409 * assume nothing has changed (*total_flags will be compared
410 * to rt2x00dev->packet_filter to determine if any action is required).
411 */
412 rt2x00dev->packet_filter = 0;
413
414 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415 filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419 struct ieee80211_vif *vif)
420 {
421 struct rt2x00_dev *rt2x00dev = data;
422 struct rt2x00_intf *intf = vif_to_intf(vif);
423 struct sk_buff *skb;
424 struct ieee80211_tx_control control;
425 struct ieee80211_bss_conf conf;
426 int delayed_flags;
427
428 /*
429 * Copy all data we need during this action under the protection
430 * of a spinlock. Otherwise race conditions might occur which results
431 * into an invalid configuration.
432 */
433 spin_lock(&intf->lock);
434
435 memcpy(&conf, &intf->conf, sizeof(conf));
436 delayed_flags = intf->delayed_flags;
437 intf->delayed_flags = 0;
438
439 spin_unlock(&intf->lock);
440
441 if (delayed_flags & DELAYED_UPDATE_BEACON) {
442 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443 if (skb) {
444 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445 &control);
446 dev_kfree_skb(skb);
447 }
448 }
449
450 if (delayed_flags & DELAYED_CONFIG_ERP)
451 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
452 }
453
454 static void rt2x00lib_intf_scheduled(struct work_struct *work)
455 {
456 struct rt2x00_dev *rt2x00dev =
457 container_of(work, struct rt2x00_dev, intf_work);
458
459 /*
460 * Iterate over each interface and perform the
461 * requested configurations.
462 */
463 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
464 rt2x00lib_intf_scheduled_iter,
465 rt2x00dev);
466 }
467
468 /*
469 * Interrupt context handlers.
470 */
471 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
472 struct ieee80211_vif *vif)
473 {
474 struct rt2x00_intf *intf = vif_to_intf(vif);
475
476 if (vif->type != IEEE80211_IF_TYPE_AP &&
477 vif->type != IEEE80211_IF_TYPE_IBSS)
478 return;
479
480 spin_lock(&intf->lock);
481 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482 spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488 return;
489
490 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
491 rt2x00lib_beacondone_iter,
492 rt2x00dev);
493
494 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499 struct txdone_entry_desc *txdesc)
500 {
501 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 struct skb_frame_desc *skbdesc;
503 struct ieee80211_tx_status tx_status;
504 int success = !!(txdesc->status == TX_SUCCESS ||
505 txdesc->status == TX_SUCCESS_RETRY);
506 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507 txdesc->status == TX_FAIL_INVALID ||
508 txdesc->status == TX_FAIL_OTHER);
509
510 /*
511 * Update TX statistics.
512 */
513 rt2x00dev->link.qual.tx_success += success;
514 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515
516 /*
517 * Initialize TX status
518 */
519 tx_status.flags = 0;
520 tx_status.ack_signal = 0;
521 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522 tx_status.retry_count = txdesc->retry;
523 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
524
525 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526 if (success)
527 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528 else
529 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530 }
531
532 tx_status.queue_length = entry->queue->limit;
533 tx_status.queue_number = tx_status.control.queue;
534
535 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536 if (success)
537 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538 else
539 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540 }
541
542 /*
543 * Send the tx_status to debugfs. Only send the status report
544 * to mac80211 when the frame originated from there. If this was
545 * a extra frame coming through a mac80211 library call (RTS/CTS)
546 * then we should not send the status report back.
547 * If send to mac80211, mac80211 will clean up the skb structure,
548 * otherwise we have to do it ourself.
549 */
550 skbdesc = get_skb_frame_desc(entry->skb);
551 skbdesc->frame_type = DUMP_FRAME_TXDONE;
552
553 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
554
555 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
556 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
557 entry->skb, &tx_status);
558 else
559 dev_kfree_skb(entry->skb);
560 entry->skb = NULL;
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
563
564 void rt2x00lib_rxdone(struct queue_entry *entry,
565 struct rxdone_entry_desc *rxdesc)
566 {
567 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
568 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
569 struct ieee80211_supported_band *sband;
570 struct ieee80211_hdr *hdr;
571 const struct rt2x00_rate *rate;
572 unsigned int i;
573 int idx = -1;
574 u16 fc;
575
576 /*
577 * Update RX statistics.
578 */
579 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
580 for (i = 0; i < sband->n_bitrates; i++) {
581 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
582
583 /*
584 * When frame was received with an OFDM bitrate,
585 * the signal is the PLCP value. If it was received with
586 * a CCK bitrate the signal is the rate in 100kbit/s.
587 */
588 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
589 (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
590 idx = i;
591 break;
592 }
593 }
594
595 /*
596 * Only update link status if this is a beacon frame carrying our bssid.
597 */
598 hdr = (struct ieee80211_hdr *)entry->skb->data;
599 fc = le16_to_cpu(hdr->frame_control);
600 if (is_beacon(fc) && rxdesc->my_bss)
601 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
602
603 rt2x00dev->link.qual.rx_success++;
604
605 rx_status->rate_idx = idx;
606 rx_status->signal =
607 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
608 rx_status->ssi = rxdesc->rssi;
609 rx_status->flag = rxdesc->flags;
610 rx_status->antenna = rt2x00dev->link.ant.active.rx;
611
612 /*
613 * Send frame to mac80211 & debugfs.
614 * mac80211 will clean up the skb structure.
615 */
616 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
617 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
618 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
619 entry->skb = NULL;
620 }
621 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
622
623 /*
624 * TX descriptor initializer
625 */
626 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
627 struct sk_buff *skb,
628 struct ieee80211_tx_control *control)
629 {
630 struct txentry_desc txdesc;
631 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
633 const struct rt2x00_rate *rate;
634 int tx_rate;
635 int length;
636 int duration;
637 int residual;
638 u16 frame_control;
639 u16 seq_ctrl;
640
641 memset(&txdesc, 0, sizeof(txdesc));
642
643 txdesc.queue = skbdesc->entry->queue->qid;
644 txdesc.cw_min = skbdesc->entry->queue->cw_min;
645 txdesc.cw_max = skbdesc->entry->queue->cw_max;
646 txdesc.aifs = skbdesc->entry->queue->aifs;
647
648 /*
649 * Read required fields from ieee80211 header.
650 */
651 frame_control = le16_to_cpu(hdr->frame_control);
652 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
653
654 tx_rate = control->tx_rate->hw_value;
655
656 /*
657 * Check whether this frame is to be acked
658 */
659 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
660 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661
662 /*
663 * Check if this is a RTS/CTS frame
664 */
665 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
666 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667 if (is_rts_frame(frame_control)) {
668 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
669 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
670 } else
671 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
672 if (control->rts_cts_rate)
673 tx_rate = control->rts_cts_rate->hw_value;
674 }
675
676 rate = rt2x00_get_rate(tx_rate);
677
678 /*
679 * Check if more fragments are pending
680 */
681 if (ieee80211_get_morefrag(hdr)) {
682 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
683 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
684 }
685
686 /*
687 * Beacons and probe responses require the tsf timestamp
688 * to be inserted into the frame.
689 */
690 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
691 is_probe_resp(frame_control))
692 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
693
694 /*
695 * Determine with what IFS priority this frame should be send.
696 * Set ifs to IFS_SIFS when the this is not the first fragment,
697 * or this fragment came after RTS/CTS.
698 */
699 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
700 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
701 txdesc.ifs = IFS_SIFS;
702 else
703 txdesc.ifs = IFS_BACKOFF;
704
705 /*
706 * PLCP setup
707 * Length calculation depends on OFDM/CCK rate.
708 */
709 txdesc.signal = rate->plcp;
710 txdesc.service = 0x04;
711
712 length = skbdesc->data_len + FCS_LEN;
713 if (rate->flags & DEV_RATE_OFDM) {
714 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
715
716 txdesc.length_high = (length >> 6) & 0x3f;
717 txdesc.length_low = length & 0x3f;
718 } else {
719 /*
720 * Convert length to microseconds.
721 */
722 residual = get_duration_res(length, rate->bitrate);
723 duration = get_duration(length, rate->bitrate);
724
725 if (residual != 0) {
726 duration++;
727
728 /*
729 * Check if we need to set the Length Extension
730 */
731 if (rate->bitrate == 110 && residual <= 30)
732 txdesc.service |= 0x80;
733 }
734
735 txdesc.length_high = (duration >> 8) & 0xff;
736 txdesc.length_low = duration & 0xff;
737
738 /*
739 * When preamble is enabled we should set the
740 * preamble bit for the signal.
741 */
742 if (rt2x00_get_rate_preamble(tx_rate))
743 txdesc.signal |= 0x08;
744 }
745
746 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
747
748 /*
749 * Update queue entry.
750 */
751 skbdesc->entry->skb = skb;
752
753 /*
754 * The frame has been completely initialized and ready
755 * for sending to the device. The caller will push the
756 * frame to the device, but we are going to push the
757 * frame to debugfs here.
758 */
759 skbdesc->frame_type = DUMP_FRAME_TX;
760 rt2x00debug_dump_frame(rt2x00dev, skb);
761 }
762 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
763
764 /*
765 * Driver initialization handlers.
766 */
767 const struct rt2x00_rate rt2x00_supported_rates[12] = {
768 {
769 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
770 .bitrate = 10,
771 .ratemask = BIT(0),
772 .plcp = 0x00,
773 },
774 {
775 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
776 .bitrate = 20,
777 .ratemask = BIT(1),
778 .plcp = 0x01,
779 },
780 {
781 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
782 .bitrate = 55,
783 .ratemask = BIT(2),
784 .plcp = 0x02,
785 },
786 {
787 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
788 .bitrate = 110,
789 .ratemask = BIT(3),
790 .plcp = 0x03,
791 },
792 {
793 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
794 .bitrate = 60,
795 .ratemask = BIT(4),
796 .plcp = 0x0b,
797 },
798 {
799 .flags = DEV_RATE_OFDM,
800 .bitrate = 90,
801 .ratemask = BIT(5),
802 .plcp = 0x0f,
803 },
804 {
805 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
806 .bitrate = 120,
807 .ratemask = BIT(6),
808 .plcp = 0x0a,
809 },
810 {
811 .flags = DEV_RATE_OFDM,
812 .bitrate = 180,
813 .ratemask = BIT(7),
814 .plcp = 0x0e,
815 },
816 {
817 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
818 .bitrate = 240,
819 .ratemask = BIT(8),
820 .plcp = 0x09,
821 },
822 {
823 .flags = DEV_RATE_OFDM,
824 .bitrate = 360,
825 .ratemask = BIT(9),
826 .plcp = 0x0d,
827 },
828 {
829 .flags = DEV_RATE_OFDM,
830 .bitrate = 480,
831 .ratemask = BIT(10),
832 .plcp = 0x08,
833 },
834 {
835 .flags = DEV_RATE_OFDM,
836 .bitrate = 540,
837 .ratemask = BIT(11),
838 .plcp = 0x0c,
839 },
840 };
841
842 static void rt2x00lib_channel(struct ieee80211_channel *entry,
843 const int channel, const int tx_power,
844 const int value)
845 {
846 entry->center_freq = ieee80211_channel_to_frequency(channel);
847 entry->hw_value = value;
848 entry->max_power = tx_power;
849 entry->max_antenna_gain = 0xff;
850 }
851
852 static void rt2x00lib_rate(struct ieee80211_rate *entry,
853 const u16 index, const struct rt2x00_rate *rate)
854 {
855 entry->flags = 0;
856 entry->bitrate = rate->bitrate;
857 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
858 entry->hw_value_short = entry->hw_value;
859
860 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
861 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
862 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
863 }
864 }
865
866 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
867 struct hw_mode_spec *spec)
868 {
869 struct ieee80211_hw *hw = rt2x00dev->hw;
870 struct ieee80211_channel *channels;
871 struct ieee80211_rate *rates;
872 unsigned int num_rates;
873 unsigned int i;
874 unsigned char tx_power;
875
876 num_rates = 0;
877 if (spec->supported_rates & SUPPORT_RATE_CCK)
878 num_rates += 4;
879 if (spec->supported_rates & SUPPORT_RATE_OFDM)
880 num_rates += 8;
881
882 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
883 if (!channels)
884 return -ENOMEM;
885
886 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
887 if (!rates)
888 goto exit_free_channels;
889
890 /*
891 * Initialize Rate list.
892 */
893 for (i = 0; i < num_rates; i++)
894 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
895
896 /*
897 * Initialize Channel list.
898 */
899 for (i = 0; i < spec->num_channels; i++) {
900 if (spec->channels[i].channel <= 14) {
901 if (spec->tx_power_bg)
902 tx_power = spec->tx_power_bg[i];
903 else
904 tx_power = spec->tx_power_default;
905 } else {
906 if (spec->tx_power_a)
907 tx_power = spec->tx_power_a[i];
908 else
909 tx_power = spec->tx_power_default;
910 }
911
912 rt2x00lib_channel(&channels[i],
913 spec->channels[i].channel, tx_power, i);
914 }
915
916 /*
917 * Intitialize 802.11b, 802.11g
918 * Rates: CCK, OFDM.
919 * Channels: 2.4 GHz
920 */
921 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
922 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
924 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
925 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
926 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
927 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
928 }
929
930 /*
931 * Intitialize 802.11a
932 * Rates: OFDM.
933 * Channels: OFDM, UNII, HiperLAN2.
934 */
935 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
936 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
937 spec->num_channels - 14;
938 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
939 num_rates - 4;
940 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
941 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
942 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
943 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
944 }
945
946 return 0;
947
948 exit_free_channels:
949 kfree(channels);
950 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
951 return -ENOMEM;
952 }
953
954 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
955 {
956 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
957 ieee80211_unregister_hw(rt2x00dev->hw);
958
959 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
960 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
961 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
962 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
963 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
964 }
965 }
966
967 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
968 {
969 struct hw_mode_spec *spec = &rt2x00dev->spec;
970 int status;
971
972 /*
973 * Initialize HW modes.
974 */
975 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
976 if (status)
977 return status;
978
979 /*
980 * Register HW.
981 */
982 status = ieee80211_register_hw(rt2x00dev->hw);
983 if (status) {
984 rt2x00lib_remove_hw(rt2x00dev);
985 return status;
986 }
987
988 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
989
990 return 0;
991 }
992
993 /*
994 * Initialization/uninitialization handlers.
995 */
996 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
997 {
998 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
999 return;
1000
1001 /*
1002 * Unregister rfkill.
1003 */
1004 rt2x00rfkill_unregister(rt2x00dev);
1005
1006 /*
1007 * Allow the HW to uninitialize.
1008 */
1009 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1010
1011 /*
1012 * Free allocated queue entries.
1013 */
1014 rt2x00queue_uninitialize(rt2x00dev);
1015 }
1016
1017 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1018 {
1019 int status;
1020
1021 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1022 return 0;
1023
1024 /*
1025 * Allocate all queue entries.
1026 */
1027 status = rt2x00queue_initialize(rt2x00dev);
1028 if (status)
1029 return status;
1030
1031 /*
1032 * Initialize the device.
1033 */
1034 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1035 if (status)
1036 goto exit;
1037
1038 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1039
1040 /*
1041 * Register the rfkill handler.
1042 */
1043 status = rt2x00rfkill_register(rt2x00dev);
1044 if (status)
1045 goto exit;
1046
1047 return 0;
1048
1049 exit:
1050 rt2x00lib_uninitialize(rt2x00dev);
1051
1052 return status;
1053 }
1054
1055 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1056 {
1057 int retval;
1058
1059 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1060 return 0;
1061
1062 /*
1063 * If this is the first interface which is added,
1064 * we should load the firmware now.
1065 */
1066 retval = rt2x00lib_load_firmware(rt2x00dev);
1067 if (retval)
1068 return retval;
1069
1070 /*
1071 * Initialize the device.
1072 */
1073 retval = rt2x00lib_initialize(rt2x00dev);
1074 if (retval)
1075 return retval;
1076
1077 /*
1078 * Enable radio.
1079 */
1080 retval = rt2x00lib_enable_radio(rt2x00dev);
1081 if (retval) {
1082 rt2x00lib_uninitialize(rt2x00dev);
1083 return retval;
1084 }
1085
1086 rt2x00dev->intf_ap_count = 0;
1087 rt2x00dev->intf_sta_count = 0;
1088 rt2x00dev->intf_associated = 0;
1089
1090 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1091
1092 return 0;
1093 }
1094
1095 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1096 {
1097 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1098 return;
1099
1100 /*
1101 * Perhaps we can add something smarter here,
1102 * but for now just disabling the radio should do.
1103 */
1104 rt2x00lib_disable_radio(rt2x00dev);
1105
1106 rt2x00dev->intf_ap_count = 0;
1107 rt2x00dev->intf_sta_count = 0;
1108 rt2x00dev->intf_associated = 0;
1109
1110 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1111 }
1112
1113 /*
1114 * driver allocation handlers.
1115 */
1116 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1117 {
1118 int retval = -ENOMEM;
1119
1120 /*
1121 * Make room for rt2x00_intf inside the per-interface
1122 * structure ieee80211_vif.
1123 */
1124 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1125
1126 /*
1127 * Let the driver probe the device to detect the capabilities.
1128 */
1129 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1130 if (retval) {
1131 ERROR(rt2x00dev, "Failed to allocate device.\n");
1132 goto exit;
1133 }
1134
1135 /*
1136 * Initialize configuration work.
1137 */
1138 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1139 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1140 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1141
1142 /*
1143 * Allocate queue array.
1144 */
1145 retval = rt2x00queue_allocate(rt2x00dev);
1146 if (retval)
1147 goto exit;
1148
1149 /*
1150 * Initialize ieee80211 structure.
1151 */
1152 retval = rt2x00lib_probe_hw(rt2x00dev);
1153 if (retval) {
1154 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1155 goto exit;
1156 }
1157
1158 /*
1159 * Register LED.
1160 */
1161 rt2x00leds_register(rt2x00dev);
1162
1163 /*
1164 * Allocatie rfkill.
1165 */
1166 retval = rt2x00rfkill_allocate(rt2x00dev);
1167 if (retval)
1168 goto exit;
1169
1170 /*
1171 * Open the debugfs entry.
1172 */
1173 rt2x00debug_register(rt2x00dev);
1174
1175 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1176
1177 return 0;
1178
1179 exit:
1180 rt2x00lib_remove_dev(rt2x00dev);
1181
1182 return retval;
1183 }
1184 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1185
1186 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1187 {
1188 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1189
1190 /*
1191 * Disable radio.
1192 */
1193 rt2x00lib_disable_radio(rt2x00dev);
1194
1195 /*
1196 * Uninitialize device.
1197 */
1198 rt2x00lib_uninitialize(rt2x00dev);
1199
1200 /*
1201 * Close debugfs entry.
1202 */
1203 rt2x00debug_deregister(rt2x00dev);
1204
1205 /*
1206 * Free rfkill
1207 */
1208 rt2x00rfkill_free(rt2x00dev);
1209
1210 /*
1211 * Free LED.
1212 */
1213 rt2x00leds_unregister(rt2x00dev);
1214
1215 /*
1216 * Free ieee80211_hw memory.
1217 */
1218 rt2x00lib_remove_hw(rt2x00dev);
1219
1220 /*
1221 * Free firmware image.
1222 */
1223 rt2x00lib_free_firmware(rt2x00dev);
1224
1225 /*
1226 * Free queue structures.
1227 */
1228 rt2x00queue_free(rt2x00dev);
1229 }
1230 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1231
1232 /*
1233 * Device state handlers
1234 */
1235 #ifdef CONFIG_PM
1236 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1237 {
1238 int retval;
1239
1240 NOTICE(rt2x00dev, "Going to sleep.\n");
1241 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1242
1243 /*
1244 * Only continue if mac80211 has open interfaces.
1245 */
1246 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1247 goto exit;
1248 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1249
1250 /*
1251 * Disable radio and unitialize all items
1252 * that must be recreated on resume.
1253 */
1254 rt2x00lib_stop(rt2x00dev);
1255 rt2x00lib_uninitialize(rt2x00dev);
1256 rt2x00leds_suspend(rt2x00dev);
1257 rt2x00debug_deregister(rt2x00dev);
1258
1259 exit:
1260 /*
1261 * Set device mode to sleep for power management.
1262 */
1263 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1264 if (retval)
1265 return retval;
1266
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1270
1271 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1272 struct ieee80211_vif *vif)
1273 {
1274 struct rt2x00_dev *rt2x00dev = data;
1275 struct rt2x00_intf *intf = vif_to_intf(vif);
1276
1277 spin_lock(&intf->lock);
1278
1279 rt2x00lib_config_intf(rt2x00dev, intf,
1280 vif->type, intf->mac, intf->bssid);
1281
1282
1283 /*
1284 * Master or Ad-hoc mode require a new beacon update.
1285 */
1286 if (vif->type == IEEE80211_IF_TYPE_AP ||
1287 vif->type == IEEE80211_IF_TYPE_IBSS)
1288 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1289
1290 spin_unlock(&intf->lock);
1291 }
1292
1293 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1294 {
1295 int retval;
1296
1297 NOTICE(rt2x00dev, "Waking up.\n");
1298
1299 /*
1300 * Open the debugfs entry and restore led handling.
1301 */
1302 rt2x00debug_register(rt2x00dev);
1303 rt2x00leds_resume(rt2x00dev);
1304
1305 /*
1306 * Only continue if mac80211 had open interfaces.
1307 */
1308 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1309 return 0;
1310
1311 /*
1312 * Reinitialize device and all active interfaces.
1313 */
1314 retval = rt2x00lib_start(rt2x00dev);
1315 if (retval)
1316 goto exit;
1317
1318 /*
1319 * Reconfigure device.
1320 */
1321 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1322 if (!rt2x00dev->hw->conf.radio_enabled)
1323 rt2x00lib_disable_radio(rt2x00dev);
1324
1325 /*
1326 * Iterator over each active interface to
1327 * reconfigure the hardware.
1328 */
1329 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1330 rt2x00lib_resume_intf, rt2x00dev);
1331
1332 /*
1333 * We are ready again to receive requests from mac80211.
1334 */
1335 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1336
1337 /*
1338 * It is possible that during that mac80211 has attempted
1339 * to send frames while we were suspending or resuming.
1340 * In that case we have disabled the TX queue and should
1341 * now enable it again
1342 */
1343 ieee80211_start_queues(rt2x00dev->hw);
1344
1345 /*
1346 * During interface iteration we might have changed the
1347 * delayed_flags, time to handles the event by calling
1348 * the work handler directly.
1349 */
1350 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1351
1352 return 0;
1353
1354 exit:
1355 rt2x00lib_disable_radio(rt2x00dev);
1356 rt2x00lib_uninitialize(rt2x00dev);
1357 rt2x00debug_deregister(rt2x00dev);
1358
1359 return retval;
1360 }
1361 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1362 #endif /* CONFIG_PM */
1363
1364 /*
1365 * rt2x00lib module information.
1366 */
1367 MODULE_AUTHOR(DRV_PROJECT);
1368 MODULE_VERSION(DRV_VERSION);
1369 MODULE_DESCRIPTION("rt2x00 library");
1370 MODULE_LICENSE("GPL");