]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur/linux-2.6-arm into...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Link tuning handlers
34 */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38 return;
39
40 /*
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
47 */
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
50
51 /*
52 * Reset the link tuner.
53 */
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59 /*
60 * Clear all (possibly) pre-existing quality statistics.
61 */
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64 /*
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
71 */
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
74
75 rt2x00lib_reset_link_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87 * Radio control handlers.
88 */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91 int status;
92
93 /*
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
96 */
97 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 return 0;
100
101 /*
102 * Initialize all data queues.
103 */
104 rt2x00queue_init_rx(rt2x00dev);
105 rt2x00queue_init_tx(rt2x00dev);
106
107 /*
108 * Enable radio.
109 */
110 status =
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112 if (status)
113 return status;
114
115 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117 rt2x00leds_led_radio(rt2x00dev, true);
118 rt2x00led_led_activity(rt2x00dev, true);
119
120 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122 /*
123 * Enable RX.
124 */
125 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127 /*
128 * Start the TX queues.
129 */
130 ieee80211_wake_queues(rt2x00dev->hw);
131
132 return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138 return;
139
140 /*
141 * Stop the TX queues.
142 */
143 ieee80211_stop_queues(rt2x00dev->hw);
144
145 /*
146 * Disable RX.
147 */
148 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150 /*
151 * Disable radio.
152 */
153 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155 rt2x00led_led_activity(rt2x00dev, false);
156 rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161 /*
162 * When we are disabling the RX, we should also stop the link tuner.
163 */
164 if (state == STATE_RADIO_RX_OFF)
165 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169 /*
170 * When we are enabling the RX, we should also start the link tuner.
171 */
172 if (state == STATE_RADIO_RX_ON &&
173 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179 enum antenna rx = rt2x00dev->link.ant.active.rx;
180 enum antenna tx = rt2x00dev->link.ant.active.tx;
181 int sample_a =
182 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183 int sample_b =
184 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186 /*
187 * We are done sampling. Now we should evaluate the results.
188 */
189 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191 /*
192 * During the last period we have sampled the RSSI
193 * from both antenna's. It now is time to determine
194 * which antenna demonstrated the best performance.
195 * When we are already on the antenna with the best
196 * performance, then there really is nothing for us
197 * left to do.
198 */
199 if (sample_a == sample_b)
200 return;
201
202 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213 enum antenna rx = rt2x00dev->link.ant.active.rx;
214 enum antenna tx = rt2x00dev->link.ant.active.tx;
215 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218 /*
219 * Legacy driver indicates that we should swap antenna's
220 * when the difference in RSSI is greater that 5. This
221 * also should be done when the RSSI was actually better
222 * then the previous sample.
223 * When the difference exceeds the threshold we should
224 * sample the rssi from the other antenna to make a valid
225 * comparison between the 2 antennas.
226 */
227 if (abs(rssi_curr - rssi_old) < 5)
228 return;
229
230 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243 /*
244 * Determine if software diversity is enabled for
245 * either the TX or RX antenna (or both).
246 * Always perform this check since within the link
247 * tuner interval the configuration might have changed.
248 */
249 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261 rt2x00dev->link.ant.flags = 0;
262 return;
263 }
264
265 /*
266 * If we have only sampled the data over the last period
267 * we should now harvest the data. Otherwise just evaluate
268 * the data. The latter should only be performed once
269 * every 2 seconds.
270 */
271 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273 else if (rt2x00dev->link.count & 1)
274 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279 int avg_rssi = rssi;
280
281 /*
282 * Update global RSSI
283 */
284 if (link->qual.avg_rssi)
285 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286 link->qual.avg_rssi = avg_rssi;
287
288 /*
289 * Update antenna RSSI
290 */
291 if (link->ant.rssi_ant)
292 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293 link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298 if (qual->rx_failed || qual->rx_success)
299 qual->rx_percentage =
300 (qual->rx_success * 100) /
301 (qual->rx_failed + qual->rx_success);
302 else
303 qual->rx_percentage = 50;
304
305 if (qual->tx_failed || qual->tx_success)
306 qual->tx_percentage =
307 (qual->tx_success * 100) /
308 (qual->tx_failed + qual->tx_success);
309 else
310 qual->tx_percentage = 50;
311
312 qual->rx_success = 0;
313 qual->rx_failed = 0;
314 qual->tx_success = 0;
315 qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319 int rssi)
320 {
321 int rssi_percentage = 0;
322 int signal;
323
324 /*
325 * We need a positive value for the RSSI.
326 */
327 if (rssi < 0)
328 rssi += rt2x00dev->rssi_offset;
329
330 /*
331 * Calculate the different percentages,
332 * which will be used for the signal.
333 */
334 if (rt2x00dev->rssi_offset)
335 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337 /*
338 * Add the individual percentages and use the WEIGHT
339 * defines to calculate the current link signal.
340 */
341 signal = ((WEIGHT_RSSI * rssi_percentage) +
342 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345 return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350 struct rt2x00_dev *rt2x00dev =
351 container_of(work, struct rt2x00_dev, link.work.work);
352
353 /*
354 * When the radio is shutting down we should
355 * immediately cease all link tuning.
356 */
357 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
358 return;
359
360 /*
361 * Update statistics.
362 */
363 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365 rt2x00dev->link.qual.rx_failed;
366
367 /*
368 * Only perform the link tuning when Link tuning
369 * has been enabled (This could have been disabled from the EEPROM).
370 */
371 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374 /*
375 * Precalculate a portion of the link signal which is
376 * in based on the tx/rx success/failure counters.
377 */
378 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380 /*
381 * Send a signal to the led to update the led signal strength.
382 */
383 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385 /*
386 * Evaluate antenna setup, make this the last step since this could
387 * possibly reset some statistics.
388 */
389 rt2x00lib_evaluate_antenna(rt2x00dev);
390
391 /*
392 * Increase tuner counter, and reschedule the next link tuner run.
393 */
394 rt2x00dev->link.count++;
395 queue_delayed_work(rt2x00dev->hw->workqueue,
396 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401 struct rt2x00_dev *rt2x00dev =
402 container_of(work, struct rt2x00_dev, filter_work);
403
404 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408 struct ieee80211_vif *vif)
409 {
410 struct rt2x00_dev *rt2x00dev = data;
411 struct rt2x00_intf *intf = vif_to_intf(vif);
412 struct ieee80211_bss_conf conf;
413 int delayed_flags;
414
415 /*
416 * Copy all data we need during this action under the protection
417 * of a spinlock. Otherwise race conditions might occur which results
418 * into an invalid configuration.
419 */
420 spin_lock(&intf->lock);
421
422 memcpy(&conf, &intf->conf, sizeof(conf));
423 delayed_flags = intf->delayed_flags;
424 intf->delayed_flags = 0;
425
426 spin_unlock(&intf->lock);
427
428 /*
429 * It is possible the radio was disabled while the work had been
430 * scheduled. If that happens we should return here immediately,
431 * note that in the spinlock protected area above the delayed_flags
432 * have been cleared correctly.
433 */
434 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
435 return;
436
437 if (delayed_flags & DELAYED_UPDATE_BEACON)
438 rt2x00queue_update_beacon(rt2x00dev, vif);
439
440 if (delayed_flags & DELAYED_CONFIG_ERP)
441 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442
443 if (delayed_flags & DELAYED_LED_ASSOC)
444 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
445 }
446
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 {
449 struct rt2x00_dev *rt2x00dev =
450 container_of(work, struct rt2x00_dev, intf_work);
451
452 /*
453 * Iterate over each interface and perform the
454 * requested configurations.
455 */
456 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457 rt2x00lib_intf_scheduled_iter,
458 rt2x00dev);
459 }
460
461 /*
462 * Interrupt context handlers.
463 */
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465 struct ieee80211_vif *vif)
466 {
467 struct rt2x00_dev *rt2x00dev = data;
468 struct rt2x00_intf *intf = vif_to_intf(vif);
469
470 if (vif->type != IEEE80211_IF_TYPE_AP &&
471 vif->type != IEEE80211_IF_TYPE_IBSS)
472 return;
473
474 /*
475 * Clean up the beacon skb.
476 */
477 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478 intf->beacon->skb = NULL;
479
480 spin_lock(&intf->lock);
481 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482 spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488 return;
489
490 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491 rt2x00lib_beacondone_iter,
492 rt2x00dev);
493
494 schedule_work(&rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499 struct txdone_entry_desc *txdesc)
500 {
501 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504
505 /*
506 * Unmap the skb.
507 */
508 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
509
510 /*
511 * Send frame to debugfs immediately, after this call is completed
512 * we are going to overwrite the skb->cb array.
513 */
514 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
515
516 /*
517 * Update TX statistics.
518 */
519 rt2x00dev->link.qual.tx_success +=
520 test_bit(TXDONE_SUCCESS, &txdesc->flags);
521 rt2x00dev->link.qual.tx_failed +=
522 test_bit(TXDONE_FAILURE, &txdesc->flags);
523
524 /*
525 * Initialize TX status
526 */
527 memset(&tx_info->status, 0, sizeof(tx_info->status));
528 tx_info->status.ack_signal = 0;
529 tx_info->status.excessive_retries =
530 test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
531 tx_info->status.retry_count = txdesc->retry;
532
533 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
534 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
535 tx_info->flags |= IEEE80211_TX_STAT_ACK;
536 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
537 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
538 }
539
540 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
541 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
542 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
543 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
544 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
545 }
546
547 /*
548 * Only send the status report to mac80211 when TX status was
549 * requested by it. If this was a extra frame coming through
550 * a mac80211 library call (RTS/CTS) then we should not send the
551 * status report back.
552 */
553 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
554 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
555 else
556 dev_kfree_skb_irq(entry->skb);
557
558 /*
559 * Make this entry available for reuse.
560 */
561 entry->skb = NULL;
562 entry->flags = 0;
563
564 rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
565
566 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
567 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
568
569 /*
570 * If the data queue was below the threshold before the txdone
571 * handler we must make sure the packet queue in the mac80211 stack
572 * is reenabled when the txdone handler has finished.
573 */
574 if (!rt2x00queue_threshold(entry->queue))
575 ieee80211_wake_queue(rt2x00dev->hw, qid);
576 }
577 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
578
579 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
580 struct queue_entry *entry)
581 {
582 struct rxdone_entry_desc rxdesc;
583 struct sk_buff *skb;
584 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
585 struct ieee80211_supported_band *sband;
586 struct ieee80211_hdr *hdr;
587 const struct rt2x00_rate *rate;
588 unsigned int header_size;
589 unsigned int align;
590 unsigned int i;
591 int idx = -1;
592
593 /*
594 * Allocate a new sk_buffer. If no new buffer available, drop the
595 * received frame and reuse the existing buffer.
596 */
597 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
598 if (!skb)
599 return;
600
601 /*
602 * Unmap the skb.
603 */
604 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
605
606 /*
607 * Extract the RXD details.
608 */
609 memset(&rxdesc, 0, sizeof(rxdesc));
610 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
611
612 /*
613 * The data behind the ieee80211 header must be
614 * aligned on a 4 byte boundary.
615 */
616 header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
617 align = ((unsigned long)(entry->skb->data + header_size)) & 3;
618
619 if (align) {
620 skb_push(entry->skb, align);
621 /* Move entire frame in 1 command */
622 memmove(entry->skb->data, entry->skb->data + align,
623 rxdesc.size);
624 }
625
626 /* Update data pointers, trim buffer to correct size */
627 skb_trim(entry->skb, rxdesc.size);
628
629 /*
630 * Update RX statistics.
631 */
632 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
633 for (i = 0; i < sband->n_bitrates; i++) {
634 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
635
636 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
637 (rate->plcp == rxdesc.signal)) ||
638 (!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
639 (rate->bitrate == rxdesc.signal))) {
640 idx = i;
641 break;
642 }
643 }
644
645 if (idx < 0) {
646 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
647 "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
648 !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
649 idx = 0;
650 }
651
652 /*
653 * Only update link status if this is a beacon frame carrying our bssid.
654 */
655 hdr = (struct ieee80211_hdr *)entry->skb->data;
656 if (ieee80211_is_beacon(hdr->frame_control) &&
657 (rxdesc.dev_flags & RXDONE_MY_BSS))
658 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
659
660 rt2x00dev->link.qual.rx_success++;
661
662 rx_status->mactime = rxdesc.timestamp;
663 rx_status->rate_idx = idx;
664 rx_status->qual =
665 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
666 rx_status->signal = rxdesc.rssi;
667 rx_status->flag = rxdesc.flags;
668 rx_status->antenna = rt2x00dev->link.ant.active.rx;
669
670 /*
671 * Send frame to mac80211 & debugfs.
672 * mac80211 will clean up the skb structure.
673 */
674 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
675 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
676
677 /*
678 * Replace the skb with the freshly allocated one.
679 */
680 entry->skb = skb;
681 entry->flags = 0;
682
683 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
684
685 rt2x00queue_index_inc(entry->queue, Q_INDEX);
686 }
687 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
688
689 /*
690 * Driver initialization handlers.
691 */
692 const struct rt2x00_rate rt2x00_supported_rates[12] = {
693 {
694 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
695 .bitrate = 10,
696 .ratemask = BIT(0),
697 .plcp = 0x00,
698 },
699 {
700 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
701 .bitrate = 20,
702 .ratemask = BIT(1),
703 .plcp = 0x01,
704 },
705 {
706 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
707 .bitrate = 55,
708 .ratemask = BIT(2),
709 .plcp = 0x02,
710 },
711 {
712 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
713 .bitrate = 110,
714 .ratemask = BIT(3),
715 .plcp = 0x03,
716 },
717 {
718 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
719 .bitrate = 60,
720 .ratemask = BIT(4),
721 .plcp = 0x0b,
722 },
723 {
724 .flags = DEV_RATE_OFDM,
725 .bitrate = 90,
726 .ratemask = BIT(5),
727 .plcp = 0x0f,
728 },
729 {
730 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
731 .bitrate = 120,
732 .ratemask = BIT(6),
733 .plcp = 0x0a,
734 },
735 {
736 .flags = DEV_RATE_OFDM,
737 .bitrate = 180,
738 .ratemask = BIT(7),
739 .plcp = 0x0e,
740 },
741 {
742 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
743 .bitrate = 240,
744 .ratemask = BIT(8),
745 .plcp = 0x09,
746 },
747 {
748 .flags = DEV_RATE_OFDM,
749 .bitrate = 360,
750 .ratemask = BIT(9),
751 .plcp = 0x0d,
752 },
753 {
754 .flags = DEV_RATE_OFDM,
755 .bitrate = 480,
756 .ratemask = BIT(10),
757 .plcp = 0x08,
758 },
759 {
760 .flags = DEV_RATE_OFDM,
761 .bitrate = 540,
762 .ratemask = BIT(11),
763 .plcp = 0x0c,
764 },
765 };
766
767 static void rt2x00lib_channel(struct ieee80211_channel *entry,
768 const int channel, const int tx_power,
769 const int value)
770 {
771 entry->center_freq = ieee80211_channel_to_frequency(channel);
772 entry->hw_value = value;
773 entry->max_power = tx_power;
774 entry->max_antenna_gain = 0xff;
775 }
776
777 static void rt2x00lib_rate(struct ieee80211_rate *entry,
778 const u16 index, const struct rt2x00_rate *rate)
779 {
780 entry->flags = 0;
781 entry->bitrate = rate->bitrate;
782 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
783 entry->hw_value_short = entry->hw_value;
784
785 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
786 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
787 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
788 }
789 }
790
791 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
792 struct hw_mode_spec *spec)
793 {
794 struct ieee80211_hw *hw = rt2x00dev->hw;
795 struct ieee80211_channel *channels;
796 struct ieee80211_rate *rates;
797 unsigned int num_rates;
798 unsigned int i;
799 unsigned char tx_power;
800
801 num_rates = 0;
802 if (spec->supported_rates & SUPPORT_RATE_CCK)
803 num_rates += 4;
804 if (spec->supported_rates & SUPPORT_RATE_OFDM)
805 num_rates += 8;
806
807 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
808 if (!channels)
809 return -ENOMEM;
810
811 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
812 if (!rates)
813 goto exit_free_channels;
814
815 /*
816 * Initialize Rate list.
817 */
818 for (i = 0; i < num_rates; i++)
819 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
820
821 /*
822 * Initialize Channel list.
823 */
824 for (i = 0; i < spec->num_channels; i++) {
825 if (spec->channels[i].channel <= 14) {
826 if (spec->tx_power_bg)
827 tx_power = spec->tx_power_bg[i];
828 else
829 tx_power = spec->tx_power_default;
830 } else {
831 if (spec->tx_power_a)
832 tx_power = spec->tx_power_a[i];
833 else
834 tx_power = spec->tx_power_default;
835 }
836
837 rt2x00lib_channel(&channels[i],
838 spec->channels[i].channel, tx_power, i);
839 }
840
841 /*
842 * Intitialize 802.11b, 802.11g
843 * Rates: CCK, OFDM.
844 * Channels: 2.4 GHz
845 */
846 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
847 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
848 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
849 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
850 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
851 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
852 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
853 }
854
855 /*
856 * Intitialize 802.11a
857 * Rates: OFDM.
858 * Channels: OFDM, UNII, HiperLAN2.
859 */
860 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
861 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
862 spec->num_channels - 14;
863 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
864 num_rates - 4;
865 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
866 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
867 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
868 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
869 }
870
871 return 0;
872
873 exit_free_channels:
874 kfree(channels);
875 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
876 return -ENOMEM;
877 }
878
879 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
880 {
881 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
882 ieee80211_unregister_hw(rt2x00dev->hw);
883
884 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
885 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
886 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
887 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
888 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
889 }
890 }
891
892 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
893 {
894 struct hw_mode_spec *spec = &rt2x00dev->spec;
895 int status;
896
897 /*
898 * Initialize HW modes.
899 */
900 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
901 if (status)
902 return status;
903
904 /*
905 * Initialize HW fields.
906 */
907 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
908
909 /*
910 * Register HW.
911 */
912 status = ieee80211_register_hw(rt2x00dev->hw);
913 if (status) {
914 rt2x00lib_remove_hw(rt2x00dev);
915 return status;
916 }
917
918 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
919
920 return 0;
921 }
922
923 /*
924 * Initialization/uninitialization handlers.
925 */
926 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
927 {
928 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
929 return;
930
931 /*
932 * Unregister extra components.
933 */
934 rt2x00rfkill_unregister(rt2x00dev);
935
936 /*
937 * Allow the HW to uninitialize.
938 */
939 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
940
941 /*
942 * Free allocated queue entries.
943 */
944 rt2x00queue_uninitialize(rt2x00dev);
945 }
946
947 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
948 {
949 int status;
950
951 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
952 return 0;
953
954 /*
955 * Allocate all queue entries.
956 */
957 status = rt2x00queue_initialize(rt2x00dev);
958 if (status)
959 return status;
960
961 /*
962 * Initialize the device.
963 */
964 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
965 if (status) {
966 rt2x00queue_uninitialize(rt2x00dev);
967 return status;
968 }
969
970 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
971
972 /*
973 * Register the extra components.
974 */
975 rt2x00rfkill_register(rt2x00dev);
976
977 return 0;
978 }
979
980 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
981 {
982 int retval;
983
984 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
985 return 0;
986
987 /*
988 * If this is the first interface which is added,
989 * we should load the firmware now.
990 */
991 retval = rt2x00lib_load_firmware(rt2x00dev);
992 if (retval)
993 return retval;
994
995 /*
996 * Initialize the device.
997 */
998 retval = rt2x00lib_initialize(rt2x00dev);
999 if (retval)
1000 return retval;
1001
1002 /*
1003 * Enable radio.
1004 */
1005 retval = rt2x00lib_enable_radio(rt2x00dev);
1006 if (retval) {
1007 rt2x00lib_uninitialize(rt2x00dev);
1008 return retval;
1009 }
1010
1011 rt2x00dev->intf_ap_count = 0;
1012 rt2x00dev->intf_sta_count = 0;
1013 rt2x00dev->intf_associated = 0;
1014
1015 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1016 __set_bit(DEVICE_DIRTY_CONFIG, &rt2x00dev->flags);
1017
1018 return 0;
1019 }
1020
1021 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1022 {
1023 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1024 return;
1025
1026 /*
1027 * Perhaps we can add something smarter here,
1028 * but for now just disabling the radio should do.
1029 */
1030 rt2x00lib_disable_radio(rt2x00dev);
1031
1032 rt2x00dev->intf_ap_count = 0;
1033 rt2x00dev->intf_sta_count = 0;
1034 rt2x00dev->intf_associated = 0;
1035
1036 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1037 }
1038
1039 /*
1040 * driver allocation handlers.
1041 */
1042 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1043 {
1044 int retval = -ENOMEM;
1045
1046 /*
1047 * Make room for rt2x00_intf inside the per-interface
1048 * structure ieee80211_vif.
1049 */
1050 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1051
1052 /*
1053 * Let the driver probe the device to detect the capabilities.
1054 */
1055 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1056 if (retval) {
1057 ERROR(rt2x00dev, "Failed to allocate device.\n");
1058 goto exit;
1059 }
1060
1061 /*
1062 * Initialize configuration work.
1063 */
1064 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1065 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1066 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1067
1068 /*
1069 * Allocate queue array.
1070 */
1071 retval = rt2x00queue_allocate(rt2x00dev);
1072 if (retval)
1073 goto exit;
1074
1075 /*
1076 * Initialize ieee80211 structure.
1077 */
1078 retval = rt2x00lib_probe_hw(rt2x00dev);
1079 if (retval) {
1080 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1081 goto exit;
1082 }
1083
1084 /*
1085 * Register extra components.
1086 */
1087 rt2x00leds_register(rt2x00dev);
1088 rt2x00rfkill_allocate(rt2x00dev);
1089 rt2x00debug_register(rt2x00dev);
1090
1091 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1092
1093 return 0;
1094
1095 exit:
1096 rt2x00lib_remove_dev(rt2x00dev);
1097
1098 return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1101
1102 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1103 {
1104 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1105
1106 /*
1107 * Disable radio.
1108 */
1109 rt2x00lib_disable_radio(rt2x00dev);
1110
1111 /*
1112 * Uninitialize device.
1113 */
1114 rt2x00lib_uninitialize(rt2x00dev);
1115
1116 /*
1117 * Free extra components
1118 */
1119 rt2x00debug_deregister(rt2x00dev);
1120 rt2x00rfkill_free(rt2x00dev);
1121 rt2x00leds_unregister(rt2x00dev);
1122
1123 /*
1124 * Free ieee80211_hw memory.
1125 */
1126 rt2x00lib_remove_hw(rt2x00dev);
1127
1128 /*
1129 * Free firmware image.
1130 */
1131 rt2x00lib_free_firmware(rt2x00dev);
1132
1133 /*
1134 * Free queue structures.
1135 */
1136 rt2x00queue_free(rt2x00dev);
1137 }
1138 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1139
1140 /*
1141 * Device state handlers
1142 */
1143 #ifdef CONFIG_PM
1144 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1145 {
1146 int retval;
1147
1148 NOTICE(rt2x00dev, "Going to sleep.\n");
1149 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1150
1151 /*
1152 * Only continue if mac80211 has open interfaces.
1153 */
1154 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1155 goto exit;
1156 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1157
1158 /*
1159 * Disable radio.
1160 */
1161 rt2x00lib_stop(rt2x00dev);
1162 rt2x00lib_uninitialize(rt2x00dev);
1163
1164 /*
1165 * Suspend/disable extra components.
1166 */
1167 rt2x00leds_suspend(rt2x00dev);
1168 rt2x00debug_deregister(rt2x00dev);
1169
1170 exit:
1171 /*
1172 * Set device mode to sleep for power management,
1173 * on some hardware this call seems to consistently fail.
1174 * From the specifications it is hard to tell why it fails,
1175 * and if this is a "bad thing".
1176 * Overall it is safe to just ignore the failure and
1177 * continue suspending. The only downside is that the
1178 * device will not be in optimal power save mode, but with
1179 * the radio and the other components already disabled the
1180 * device is as good as disabled.
1181 */
1182 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1183 if (retval)
1184 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1185 "continue suspending.\n");
1186
1187 return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1190
1191 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1192 struct ieee80211_vif *vif)
1193 {
1194 struct rt2x00_dev *rt2x00dev = data;
1195 struct rt2x00_intf *intf = vif_to_intf(vif);
1196
1197 spin_lock(&intf->lock);
1198
1199 rt2x00lib_config_intf(rt2x00dev, intf,
1200 vif->type, intf->mac, intf->bssid);
1201
1202
1203 /*
1204 * Master or Ad-hoc mode require a new beacon update.
1205 */
1206 if (vif->type == IEEE80211_IF_TYPE_AP ||
1207 vif->type == IEEE80211_IF_TYPE_IBSS)
1208 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1209
1210 spin_unlock(&intf->lock);
1211 }
1212
1213 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1214 {
1215 int retval;
1216
1217 NOTICE(rt2x00dev, "Waking up.\n");
1218
1219 /*
1220 * Restore/enable extra components.
1221 */
1222 rt2x00debug_register(rt2x00dev);
1223 rt2x00leds_resume(rt2x00dev);
1224
1225 /*
1226 * Only continue if mac80211 had open interfaces.
1227 */
1228 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1229 return 0;
1230
1231 /*
1232 * Reinitialize device and all active interfaces.
1233 */
1234 retval = rt2x00lib_start(rt2x00dev);
1235 if (retval)
1236 goto exit;
1237
1238 /*
1239 * Reconfigure device.
1240 */
1241 retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf);
1242 if (retval)
1243 goto exit;
1244
1245 /*
1246 * Iterator over each active interface to
1247 * reconfigure the hardware.
1248 */
1249 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1250 rt2x00lib_resume_intf, rt2x00dev);
1251
1252 /*
1253 * We are ready again to receive requests from mac80211.
1254 */
1255 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1256
1257 /*
1258 * It is possible that during that mac80211 has attempted
1259 * to send frames while we were suspending or resuming.
1260 * In that case we have disabled the TX queue and should
1261 * now enable it again
1262 */
1263 ieee80211_wake_queues(rt2x00dev->hw);
1264
1265 /*
1266 * During interface iteration we might have changed the
1267 * delayed_flags, time to handles the event by calling
1268 * the work handler directly.
1269 */
1270 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1271
1272 return 0;
1273
1274 exit:
1275 rt2x00lib_disable_radio(rt2x00dev);
1276 rt2x00lib_uninitialize(rt2x00dev);
1277 rt2x00debug_deregister(rt2x00dev);
1278
1279 return retval;
1280 }
1281 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1282 #endif /* CONFIG_PM */
1283
1284 /*
1285 * rt2x00lib module information.
1286 */
1287 MODULE_AUTHOR(DRV_PROJECT);
1288 MODULE_VERSION(DRV_VERSION);
1289 MODULE_DESCRIPTION("rt2x00 library");
1290 MODULE_LICENSE("GPL");