]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Use ieee80211_channel_to_frequency()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34 * Link tuning handlers
35 */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
40
41 /*
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
48 */
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
51
52 /*
53 * Reset the link tuner.
54 */
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60 /*
61 * Clear all (possibly) pre-existing quality statistics.
62 */
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65 /*
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
72 */
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
75
76 rt2x00lib_reset_link_tuner(rt2x00dev);
77
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88 * Radio control handlers.
89 */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92 int status;
93
94 /*
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
97 */
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
101
102 /*
103 * Initialize all data queues.
104 */
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
107
108 /*
109 * Enable radio.
110 */
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
115
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118 /*
119 * Enable RX.
120 */
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123 /*
124 * Start the TX queues.
125 */
126 ieee80211_start_queues(rt2x00dev->hw);
127
128 return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
135
136 /*
137 * Stop all scheduled work.
138 */
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
143
144 /*
145 * Stop the TX queues.
146 */
147 ieee80211_stop_queues(rt2x00dev->hw);
148
149 /*
150 * Disable RX.
151 */
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154 /*
155 * Disable radio.
156 */
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162 /*
163 * When we are disabling the RX, we should also stop the link tuner.
164 */
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170 /*
171 * When we are enabling the RX, we should also start the link tuner.
172 */
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187 /*
188 * We are done sampling. Now we should evaluate the results.
189 */
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192 /*
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
199 */
200 if (sample_a == sample_b)
201 return;
202
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219 /*
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
227 */
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
230
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244 /*
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
249 */
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
264 }
265
266 /*
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
271 */
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280 int avg_rssi = rssi;
281
282 /*
283 * Update global RSSI
284 */
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
288
289 /*
290 * Update antenna RSSI
291 */
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
305
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
312
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
321 {
322 int rssi_percentage = 0;
323 int signal;
324
325 /*
326 * We need a positive value for the RSSI.
327 */
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
330
331 /*
332 * Calculate the different percentages,
333 * which will be used for the signal.
334 */
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338 /*
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
341 */
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346 return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
353
354 /*
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
357 */
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
360
361 /*
362 * Update statistics.
363 */
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
367
368 /*
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
371 */
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375 /*
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
378 */
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381 /*
382 * Evaluate antenna setup, make this the last step since this could
383 * possibly reset some statistics.
384 */
385 rt2x00lib_evaluate_antenna(rt2x00dev);
386
387 /*
388 * Increase tuner counter, and reschedule the next link tuner run.
389 */
390 rt2x00dev->link.count++;
391 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
392 LINK_TUNE_INTERVAL);
393 }
394
395 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
396 {
397 struct rt2x00_dev *rt2x00dev =
398 container_of(work, struct rt2x00_dev, filter_work);
399 unsigned int filter = rt2x00dev->packet_filter;
400
401 /*
402 * Since we had stored the filter inside rt2x00dev->packet_filter,
403 * we should now clear that field. Otherwise the driver will
404 * assume nothing has changed (*total_flags will be compared
405 * to rt2x00dev->packet_filter to determine if any action is required).
406 */
407 rt2x00dev->packet_filter = 0;
408
409 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
410 filter, &filter, 0, NULL);
411 }
412
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414 struct ieee80211_vif *vif)
415 {
416 struct rt2x00_dev *rt2x00dev = data;
417 struct rt2x00_intf *intf = vif_to_intf(vif);
418 struct sk_buff *skb;
419 struct ieee80211_tx_control control;
420 struct ieee80211_bss_conf conf;
421 int delayed_flags;
422
423 /*
424 * Copy all data we need during this action under the protection
425 * of a spinlock. Otherwise race conditions might occur which results
426 * into an invalid configuration.
427 */
428 spin_lock(&intf->lock);
429
430 memcpy(&conf, &intf->conf, sizeof(conf));
431 delayed_flags = intf->delayed_flags;
432 intf->delayed_flags = 0;
433
434 spin_unlock(&intf->lock);
435
436 if (delayed_flags & DELAYED_UPDATE_BEACON) {
437 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438 if (skb) {
439 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
440 &control);
441 dev_kfree_skb(skb);
442 }
443 }
444
445 if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
446 rt2x00lib_config_preamble(rt2x00dev, intf,
447 intf->conf.use_short_preamble);
448 }
449
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
451 {
452 struct rt2x00_dev *rt2x00dev =
453 container_of(work, struct rt2x00_dev, intf_work);
454
455 /*
456 * Iterate over each interface and perform the
457 * requested configurations.
458 */
459 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460 rt2x00lib_intf_scheduled_iter,
461 rt2x00dev);
462 }
463
464 /*
465 * Interrupt context handlers.
466 */
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468 struct ieee80211_vif *vif)
469 {
470 struct rt2x00_intf *intf = vif_to_intf(vif);
471
472 if (vif->type != IEEE80211_IF_TYPE_AP &&
473 vif->type != IEEE80211_IF_TYPE_IBSS)
474 return;
475
476 spin_lock(&intf->lock);
477 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478 spin_unlock(&intf->lock);
479 }
480
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
482 {
483 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484 return;
485
486 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487 rt2x00lib_beacondone_iter,
488 rt2x00dev);
489
490 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
493
494 void rt2x00lib_txdone(struct queue_entry *entry,
495 struct txdone_entry_desc *txdesc)
496 {
497 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498 struct ieee80211_tx_status tx_status;
499 int success = !!(txdesc->status == TX_SUCCESS ||
500 txdesc->status == TX_SUCCESS_RETRY);
501 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502 txdesc->status == TX_FAIL_INVALID ||
503 txdesc->status == TX_FAIL_OTHER);
504
505 /*
506 * Update TX statistics.
507 */
508 rt2x00dev->link.qual.tx_success += success;
509 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
510
511 /*
512 * Initialize TX status
513 */
514 tx_status.flags = 0;
515 tx_status.ack_signal = 0;
516 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517 tx_status.retry_count = txdesc->retry;
518 memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
519
520 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521 if (success)
522 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523 else
524 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
525 }
526
527 tx_status.queue_length = entry->queue->limit;
528 tx_status.queue_number = tx_status.control.queue;
529
530 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
531 if (success)
532 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
533 else
534 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
535 }
536
537 /*
538 * Send the tx_status to mac80211 & debugfs.
539 * mac80211 will clean up the skb structure.
540 */
541 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
542 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
543 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
544 entry->skb = NULL;
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548 void rt2x00lib_rxdone(struct queue_entry *entry,
549 struct rxdone_entry_desc *rxdesc)
550 {
551 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
552 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
553 struct ieee80211_supported_band *sband;
554 struct ieee80211_hdr *hdr;
555 const struct rt2x00_rate *rate;
556 unsigned int i;
557 int idx = -1;
558 u16 fc;
559
560 /*
561 * Update RX statistics.
562 */
563 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564 for (i = 0; i < sband->n_bitrates; i++) {
565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
566
567 /*
568 * When frame was received with an OFDM bitrate,
569 * the signal is the PLCP value. If it was received with
570 * a CCK bitrate the signal is the rate in 100kbit/s.
571 */
572 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
573 (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
574 idx = i;
575 break;
576 }
577 }
578
579 /*
580 * Only update link status if this is a beacon frame carrying our bssid.
581 */
582 hdr = (struct ieee80211_hdr *)entry->skb->data;
583 fc = le16_to_cpu(hdr->frame_control);
584 if (is_beacon(fc) && rxdesc->my_bss)
585 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
586
587 rt2x00dev->link.qual.rx_success++;
588
589 rx_status->rate_idx = idx;
590 rx_status->signal =
591 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
592 rx_status->ssi = rxdesc->rssi;
593 rx_status->flag = rxdesc->flags;
594 rx_status->antenna = rt2x00dev->link.ant.active.rx;
595
596 /*
597 * Send frame to mac80211 & debugfs.
598 * mac80211 will clean up the skb structure.
599 */
600 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
601 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
602 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
603 entry->skb = NULL;
604 }
605 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
606
607 /*
608 * TX descriptor initializer
609 */
610 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
611 struct sk_buff *skb,
612 struct ieee80211_tx_control *control)
613 {
614 struct txentry_desc txdesc;
615 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
616 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
617 const struct rt2x00_rate *rate;
618 int tx_rate;
619 int length;
620 int duration;
621 int residual;
622 u16 frame_control;
623 u16 seq_ctrl;
624
625 memset(&txdesc, 0, sizeof(txdesc));
626
627 txdesc.queue = skbdesc->entry->queue->qid;
628 txdesc.cw_min = skbdesc->entry->queue->cw_min;
629 txdesc.cw_max = skbdesc->entry->queue->cw_max;
630 txdesc.aifs = skbdesc->entry->queue->aifs;
631
632 /*
633 * Read required fields from ieee80211 header.
634 */
635 frame_control = le16_to_cpu(hdr->frame_control);
636 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
637
638 tx_rate = control->tx_rate->hw_value;
639
640 /*
641 * Check whether this frame is to be acked
642 */
643 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
644 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
645
646 /*
647 * Check if this is a RTS/CTS frame
648 */
649 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
650 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
651 if (is_rts_frame(frame_control)) {
652 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
653 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
654 } else
655 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
656 if (control->rts_cts_rate)
657 tx_rate = control->rts_cts_rate->hw_value;
658 }
659
660 rate = rt2x00_get_rate(tx_rate);
661
662 /*
663 * Check if more fragments are pending
664 */
665 if (ieee80211_get_morefrag(hdr)) {
666 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
668 }
669
670 /*
671 * Beacons and probe responses require the tsf timestamp
672 * to be inserted into the frame.
673 */
674 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
675 is_probe_resp(frame_control))
676 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
677
678 /*
679 * Determine with what IFS priority this frame should be send.
680 * Set ifs to IFS_SIFS when the this is not the first fragment,
681 * or this fragment came after RTS/CTS.
682 */
683 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
684 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
685 txdesc.ifs = IFS_SIFS;
686 else
687 txdesc.ifs = IFS_BACKOFF;
688
689 /*
690 * PLCP setup
691 * Length calculation depends on OFDM/CCK rate.
692 */
693 txdesc.signal = rate->plcp;
694 txdesc.service = 0x04;
695
696 length = skb->len + FCS_LEN;
697 if (rate->flags & DEV_RATE_OFDM) {
698 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
699
700 txdesc.length_high = (length >> 6) & 0x3f;
701 txdesc.length_low = length & 0x3f;
702 } else {
703 /*
704 * Convert length to microseconds.
705 */
706 residual = get_duration_res(length, rate->bitrate);
707 duration = get_duration(length, rate->bitrate);
708
709 if (residual != 0) {
710 duration++;
711
712 /*
713 * Check if we need to set the Length Extension
714 */
715 if (rate->bitrate == 110 && residual <= 30)
716 txdesc.service |= 0x80;
717 }
718
719 txdesc.length_high = (duration >> 8) & 0xff;
720 txdesc.length_low = duration & 0xff;
721
722 /*
723 * When preamble is enabled we should set the
724 * preamble bit for the signal.
725 */
726 if (rt2x00_get_rate_preamble(tx_rate))
727 txdesc.signal |= 0x08;
728 }
729
730 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
731
732 /*
733 * Update queue entry.
734 */
735 skbdesc->entry->skb = skb;
736
737 /*
738 * The frame has been completely initialized and ready
739 * for sending to the device. The caller will push the
740 * frame to the device, but we are going to push the
741 * frame to debugfs here.
742 */
743 skbdesc->frame_type = DUMP_FRAME_TX;
744 rt2x00debug_dump_frame(rt2x00dev, skb);
745 }
746 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
747
748 /*
749 * Driver initialization handlers.
750 */
751 const struct rt2x00_rate rt2x00_supported_rates[12] = {
752 {
753 .flags = 0,
754 .bitrate = 10,
755 .ratemask = DEV_RATEMASK_1MB,
756 .plcp = 0x00,
757 },
758 {
759 .flags = DEV_RATE_SHORT_PREAMBLE,
760 .bitrate = 20,
761 .ratemask = DEV_RATEMASK_2MB,
762 .plcp = 0x01,
763 },
764 {
765 .flags = DEV_RATE_SHORT_PREAMBLE,
766 .bitrate = 55,
767 .ratemask = DEV_RATEMASK_5_5MB,
768 .plcp = 0x02,
769 },
770 {
771 .flags = DEV_RATE_SHORT_PREAMBLE,
772 .bitrate = 110,
773 .ratemask = DEV_RATEMASK_11MB,
774 .plcp = 0x03,
775 },
776 {
777 .flags = DEV_RATE_OFDM,
778 .bitrate = 60,
779 .ratemask = DEV_RATEMASK_6MB,
780 .plcp = 0x0b,
781 },
782 {
783 .flags = DEV_RATE_OFDM,
784 .bitrate = 90,
785 .ratemask = DEV_RATEMASK_9MB,
786 .plcp = 0x0f,
787 },
788 {
789 .flags = DEV_RATE_OFDM,
790 .bitrate = 120,
791 .ratemask = DEV_RATEMASK_12MB,
792 .plcp = 0x0a,
793 },
794 {
795 .flags = DEV_RATE_OFDM,
796 .bitrate = 180,
797 .ratemask = DEV_RATEMASK_18MB,
798 .plcp = 0x0e,
799 },
800 {
801 .flags = DEV_RATE_OFDM,
802 .bitrate = 240,
803 .ratemask = DEV_RATEMASK_24MB,
804 .plcp = 0x09,
805 },
806 {
807 .flags = DEV_RATE_OFDM,
808 .bitrate = 360,
809 .ratemask = DEV_RATEMASK_36MB,
810 .plcp = 0x0d,
811 },
812 {
813 .flags = DEV_RATE_OFDM,
814 .bitrate = 480,
815 .ratemask = DEV_RATEMASK_48MB,
816 .plcp = 0x08,
817 },
818 {
819 .flags = DEV_RATE_OFDM,
820 .bitrate = 540,
821 .ratemask = DEV_RATEMASK_54MB,
822 .plcp = 0x0c,
823 },
824 };
825
826 static void rt2x00lib_channel(struct ieee80211_channel *entry,
827 const int channel, const int tx_power,
828 const int value)
829 {
830 entry->center_freq = ieee80211_channel_to_frequency(channel);
831 entry->hw_value = value;
832 entry->max_power = tx_power;
833 entry->max_antenna_gain = 0xff;
834 }
835
836 static void rt2x00lib_rate(struct ieee80211_rate *entry,
837 const u16 index, const struct rt2x00_rate *rate)
838 {
839 entry->flags = 0;
840 entry->bitrate = rate->bitrate;
841 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
842 entry->hw_value_short = entry->hw_value;
843
844 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
845 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
846 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
847 }
848 }
849
850 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
851 struct hw_mode_spec *spec)
852 {
853 struct ieee80211_hw *hw = rt2x00dev->hw;
854 struct ieee80211_supported_band *sbands;
855 struct ieee80211_channel *channels;
856 struct ieee80211_rate *rates;
857 unsigned int i;
858 unsigned char tx_power;
859
860 sbands = &rt2x00dev->bands[0];
861
862 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
863 if (!channels)
864 return -ENOMEM;
865
866 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
867 if (!rates)
868 goto exit_free_channels;
869
870 /*
871 * Initialize Rate list.
872 */
873 for (i = 0; i < spec->num_rates; i++)
874 rt2x00lib_rate(&rates[0], i, rt2x00_get_rate(i));
875
876 /*
877 * Initialize Channel list.
878 */
879 for (i = 0; i < spec->num_channels; i++) {
880 if (spec->channels[i].channel <= 14)
881 tx_power = spec->tx_power_bg[i];
882 else if (spec->tx_power_a)
883 tx_power = spec->tx_power_a[i];
884 else
885 tx_power = spec->tx_power_default;
886
887 rt2x00lib_channel(&channels[i],
888 spec->channels[i].channel, tx_power, i);
889 }
890
891 /*
892 * Intitialize 802.11b
893 * Rates: CCK.
894 * Channels: 2.4 GHz
895 */
896 if (spec->num_modes > 0) {
897 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
898 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
899 sbands[IEEE80211_BAND_2GHZ].channels = channels;
900 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
901 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
902 }
903
904 /*
905 * Intitialize 802.11g
906 * Rates: CCK, OFDM.
907 * Channels: 2.4 GHz
908 */
909 if (spec->num_modes > 1) {
910 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
911 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
912 sbands[IEEE80211_BAND_2GHZ].channels = channels;
913 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
914 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
915 }
916
917 /*
918 * Intitialize 802.11a
919 * Rates: OFDM.
920 * Channels: OFDM, UNII, HiperLAN2.
921 */
922 if (spec->num_modes > 2) {
923 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
924 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
925 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
926 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
927 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
928 }
929
930 return 0;
931
932 exit_free_channels:
933 kfree(channels);
934 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
935 return -ENOMEM;
936 }
937
938 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
939 {
940 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
941 ieee80211_unregister_hw(rt2x00dev->hw);
942
943 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
944 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
945 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
946 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
947 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
948 }
949 }
950
951 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
952 {
953 struct hw_mode_spec *spec = &rt2x00dev->spec;
954 int status;
955
956 /*
957 * Initialize HW modes.
958 */
959 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
960 if (status)
961 return status;
962
963 /*
964 * Register HW.
965 */
966 status = ieee80211_register_hw(rt2x00dev->hw);
967 if (status) {
968 rt2x00lib_remove_hw(rt2x00dev);
969 return status;
970 }
971
972 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
973
974 return 0;
975 }
976
977 /*
978 * Initialization/uninitialization handlers.
979 */
980 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
981 {
982 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
983 return;
984
985 /*
986 * Unregister rfkill.
987 */
988 rt2x00rfkill_unregister(rt2x00dev);
989
990 /*
991 * Allow the HW to uninitialize.
992 */
993 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
994
995 /*
996 * Free allocated queue entries.
997 */
998 rt2x00queue_uninitialize(rt2x00dev);
999 }
1000
1001 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1002 {
1003 int status;
1004
1005 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1006 return 0;
1007
1008 /*
1009 * Allocate all queue entries.
1010 */
1011 status = rt2x00queue_initialize(rt2x00dev);
1012 if (status)
1013 return status;
1014
1015 /*
1016 * Initialize the device.
1017 */
1018 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1019 if (status)
1020 goto exit;
1021
1022 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1023
1024 /*
1025 * Register the rfkill handler.
1026 */
1027 status = rt2x00rfkill_register(rt2x00dev);
1028 if (status)
1029 goto exit;
1030
1031 return 0;
1032
1033 exit:
1034 rt2x00lib_uninitialize(rt2x00dev);
1035
1036 return status;
1037 }
1038
1039 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1040 {
1041 int retval;
1042
1043 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1044 return 0;
1045
1046 /*
1047 * If this is the first interface which is added,
1048 * we should load the firmware now.
1049 */
1050 retval = rt2x00lib_load_firmware(rt2x00dev);
1051 if (retval)
1052 return retval;
1053
1054 /*
1055 * Initialize the device.
1056 */
1057 retval = rt2x00lib_initialize(rt2x00dev);
1058 if (retval)
1059 return retval;
1060
1061 /*
1062 * Enable radio.
1063 */
1064 retval = rt2x00lib_enable_radio(rt2x00dev);
1065 if (retval) {
1066 rt2x00lib_uninitialize(rt2x00dev);
1067 return retval;
1068 }
1069
1070 rt2x00dev->intf_ap_count = 0;
1071 rt2x00dev->intf_sta_count = 0;
1072 rt2x00dev->intf_associated = 0;
1073
1074 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1075
1076 return 0;
1077 }
1078
1079 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1080 {
1081 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1082 return;
1083
1084 /*
1085 * Perhaps we can add something smarter here,
1086 * but for now just disabling the radio should do.
1087 */
1088 rt2x00lib_disable_radio(rt2x00dev);
1089
1090 rt2x00dev->intf_ap_count = 0;
1091 rt2x00dev->intf_sta_count = 0;
1092 rt2x00dev->intf_associated = 0;
1093
1094 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1095 }
1096
1097 /*
1098 * driver allocation handlers.
1099 */
1100 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1101 {
1102 int retval = -ENOMEM;
1103
1104 /*
1105 * Make room for rt2x00_intf inside the per-interface
1106 * structure ieee80211_vif.
1107 */
1108 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1109
1110 /*
1111 * Let the driver probe the device to detect the capabilities.
1112 */
1113 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1114 if (retval) {
1115 ERROR(rt2x00dev, "Failed to allocate device.\n");
1116 goto exit;
1117 }
1118
1119 /*
1120 * Initialize configuration work.
1121 */
1122 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1123 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1124 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1125
1126 /*
1127 * Allocate queue array.
1128 */
1129 retval = rt2x00queue_allocate(rt2x00dev);
1130 if (retval)
1131 goto exit;
1132
1133 /*
1134 * Initialize ieee80211 structure.
1135 */
1136 retval = rt2x00lib_probe_hw(rt2x00dev);
1137 if (retval) {
1138 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1139 goto exit;
1140 }
1141
1142 /*
1143 * Allocatie rfkill.
1144 */
1145 retval = rt2x00rfkill_allocate(rt2x00dev);
1146 if (retval)
1147 goto exit;
1148
1149 /*
1150 * Open the debugfs entry.
1151 */
1152 rt2x00debug_register(rt2x00dev);
1153
1154 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1155
1156 return 0;
1157
1158 exit:
1159 rt2x00lib_remove_dev(rt2x00dev);
1160
1161 return retval;
1162 }
1163 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1164
1165 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1166 {
1167 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1168
1169 /*
1170 * Disable radio.
1171 */
1172 rt2x00lib_disable_radio(rt2x00dev);
1173
1174 /*
1175 * Uninitialize device.
1176 */
1177 rt2x00lib_uninitialize(rt2x00dev);
1178
1179 /*
1180 * Close debugfs entry.
1181 */
1182 rt2x00debug_deregister(rt2x00dev);
1183
1184 /*
1185 * Free rfkill
1186 */
1187 rt2x00rfkill_free(rt2x00dev);
1188
1189 /*
1190 * Free ieee80211_hw memory.
1191 */
1192 rt2x00lib_remove_hw(rt2x00dev);
1193
1194 /*
1195 * Free firmware image.
1196 */
1197 rt2x00lib_free_firmware(rt2x00dev);
1198
1199 /*
1200 * Free queue structures.
1201 */
1202 rt2x00queue_free(rt2x00dev);
1203 }
1204 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1205
1206 /*
1207 * Device state handlers
1208 */
1209 #ifdef CONFIG_PM
1210 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1211 {
1212 int retval;
1213
1214 NOTICE(rt2x00dev, "Going to sleep.\n");
1215 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1216
1217 /*
1218 * Only continue if mac80211 has open interfaces.
1219 */
1220 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1221 goto exit;
1222 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1223
1224 /*
1225 * Disable radio and unitialize all items
1226 * that must be recreated on resume.
1227 */
1228 rt2x00lib_stop(rt2x00dev);
1229 rt2x00lib_uninitialize(rt2x00dev);
1230 rt2x00debug_deregister(rt2x00dev);
1231
1232 exit:
1233 /*
1234 * Set device mode to sleep for power management.
1235 */
1236 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1237 if (retval)
1238 return retval;
1239
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1243
1244 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1245 struct ieee80211_vif *vif)
1246 {
1247 struct rt2x00_dev *rt2x00dev = data;
1248 struct rt2x00_intf *intf = vif_to_intf(vif);
1249
1250 spin_lock(&intf->lock);
1251
1252 rt2x00lib_config_intf(rt2x00dev, intf,
1253 vif->type, intf->mac, intf->bssid);
1254
1255
1256 /*
1257 * Master or Ad-hoc mode require a new beacon update.
1258 */
1259 if (vif->type == IEEE80211_IF_TYPE_AP ||
1260 vif->type == IEEE80211_IF_TYPE_IBSS)
1261 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1262
1263 spin_unlock(&intf->lock);
1264 }
1265
1266 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1267 {
1268 int retval;
1269
1270 NOTICE(rt2x00dev, "Waking up.\n");
1271
1272 /*
1273 * Open the debugfs entry.
1274 */
1275 rt2x00debug_register(rt2x00dev);
1276
1277 /*
1278 * Only continue if mac80211 had open interfaces.
1279 */
1280 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1281 return 0;
1282
1283 /*
1284 * Reinitialize device and all active interfaces.
1285 */
1286 retval = rt2x00lib_start(rt2x00dev);
1287 if (retval)
1288 goto exit;
1289
1290 /*
1291 * Reconfigure device.
1292 */
1293 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1294 if (!rt2x00dev->hw->conf.radio_enabled)
1295 rt2x00lib_disable_radio(rt2x00dev);
1296
1297 /*
1298 * Iterator over each active interface to
1299 * reconfigure the hardware.
1300 */
1301 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1302 rt2x00lib_resume_intf, rt2x00dev);
1303
1304 /*
1305 * We are ready again to receive requests from mac80211.
1306 */
1307 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1308
1309 /*
1310 * It is possible that during that mac80211 has attempted
1311 * to send frames while we were suspending or resuming.
1312 * In that case we have disabled the TX queue and should
1313 * now enable it again
1314 */
1315 ieee80211_start_queues(rt2x00dev->hw);
1316
1317 /*
1318 * During interface iteration we might have changed the
1319 * delayed_flags, time to handles the event by calling
1320 * the work handler directly.
1321 */
1322 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1323
1324 return 0;
1325
1326 exit:
1327 rt2x00lib_disable_radio(rt2x00dev);
1328 rt2x00lib_uninitialize(rt2x00dev);
1329 rt2x00debug_deregister(rt2x00dev);
1330
1331 return retval;
1332 }
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1334 #endif /* CONFIG_PM */
1335
1336 /*
1337 * rt2x00lib module information.
1338 */
1339 MODULE_AUTHOR(DRV_PROJECT);
1340 MODULE_VERSION(DRV_VERSION);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");