]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00queue.c
rt2x00: Reorganize L2 padding inserting function.
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 Module: rt2x00lib
24 Abstract: rt2x00 queue specific routines.
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
35 struct queue_entry *entry)
36 {
37 struct sk_buff *skb;
38 struct skb_frame_desc *skbdesc;
39 unsigned int frame_size;
40 unsigned int head_size = 0;
41 unsigned int tail_size = 0;
42
43 /*
44 * The frame size includes descriptor size, because the
45 * hardware directly receive the frame into the skbuffer.
46 */
47 frame_size = entry->queue->data_size + entry->queue->desc_size;
48
49 /*
50 * The payload should be aligned to a 4-byte boundary,
51 * this means we need at least 3 bytes for moving the frame
52 * into the correct offset.
53 */
54 head_size = 4;
55
56 /*
57 * For IV/EIV/ICV assembly we must make sure there is
58 * at least 8 bytes bytes available in headroom for IV/EIV
59 * and 8 bytes for ICV data as tailroon.
60 */
61 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
62 head_size += 8;
63 tail_size += 8;
64 }
65
66 /*
67 * Allocate skbuffer.
68 */
69 skb = dev_alloc_skb(frame_size + head_size + tail_size);
70 if (!skb)
71 return NULL;
72
73 /*
74 * Make sure we not have a frame with the requested bytes
75 * available in the head and tail.
76 */
77 skb_reserve(skb, head_size);
78 skb_put(skb, frame_size);
79
80 /*
81 * Populate skbdesc.
82 */
83 skbdesc = get_skb_frame_desc(skb);
84 memset(skbdesc, 0, sizeof(*skbdesc));
85 skbdesc->entry = entry;
86
87 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
88 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
89 skb->data,
90 skb->len,
91 DMA_FROM_DEVICE);
92 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
93 }
94
95 return skb;
96 }
97
98 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
99 {
100 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
101
102 /*
103 * If device has requested headroom, we should make sure that
104 * is also mapped to the DMA so it can be used for transfering
105 * additional descriptor information to the hardware.
106 */
107 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
108
109 skbdesc->skb_dma =
110 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
111
112 /*
113 * Restore data pointer to original location again.
114 */
115 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
116
117 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
118 }
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120
121 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
122 {
123 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
124
125 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
126 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
127 DMA_FROM_DEVICE);
128 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
129 }
130
131 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
132 /*
133 * Add headroom to the skb length, it has been removed
134 * by the driver, but it was actually mapped to DMA.
135 */
136 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
137 skb->len + rt2x00dev->hw->extra_tx_headroom,
138 DMA_TO_DEVICE);
139 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
140 }
141 }
142
143 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
144 {
145 if (!skb)
146 return;
147
148 rt2x00queue_unmap_skb(rt2x00dev, skb);
149 dev_kfree_skb_any(skb);
150 }
151
152 void rt2x00queue_align_frame(struct sk_buff *skb)
153 {
154 unsigned int frame_length = skb->len;
155 unsigned int align = ALIGN_SIZE(skb, 0);
156
157 if (!align)
158 return;
159
160 skb_push(skb, align);
161 memmove(skb->data, skb->data + align, frame_length);
162 skb_trim(skb, frame_length);
163 }
164
165 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
166 {
167 unsigned int frame_length = skb->len;
168 unsigned int align = ALIGN_SIZE(skb, header_length);
169
170 if (!align)
171 return;
172
173 skb_push(skb, align);
174 memmove(skb->data, skb->data + align, frame_length);
175 skb_trim(skb, frame_length);
176 }
177
178 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
179 {
180 unsigned int payload_length = skb->len - header_length;
181 unsigned int header_align = ALIGN_SIZE(skb, 0);
182 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
183 unsigned int l2pad = L2PAD_SIZE(header_length);
184
185 /*
186 * Adjust the header alignment if the payload needs to be moved more
187 * than the header.
188 */
189 if (payload_align > header_align)
190 header_align += 4;
191
192 /* There is nothing to do if no alignment is needed */
193 if (!header_align)
194 return;
195
196 /* Reserve the amount of space needed in front of the frame */
197 skb_push(skb, header_align);
198
199 /*
200 * Move the header.
201 */
202 memmove(skb->data, skb->data + header_align, header_length);
203
204 /* Move the payload, if present and if required */
205 if (payload_length && payload_align)
206 memmove(skb->data + header_length + l2pad,
207 skb->data + header_length + l2pad + payload_align,
208 payload_length);
209
210 /* Trim the skb to the correct size */
211 skb_trim(skb, header_length + l2pad + payload_length);
212 }
213
214 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
215 {
216 unsigned int l2pad = L2PAD_SIZE(header_length);
217
218 if (!l2pad)
219 return;
220
221 memmove(skb->data + l2pad, skb->data, header_length);
222 skb_pull(skb, l2pad);
223 }
224
225 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
226 struct txentry_desc *txdesc)
227 {
228 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
229 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
230 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
231 unsigned long irqflags;
232
233 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
234 unlikely(!tx_info->control.vif))
235 return;
236
237 /*
238 * Hardware should insert sequence counter.
239 * FIXME: We insert a software sequence counter first for
240 * hardware that doesn't support hardware sequence counting.
241 *
242 * This is wrong because beacons are not getting sequence
243 * numbers assigned properly.
244 *
245 * A secondary problem exists for drivers that cannot toggle
246 * sequence counting per-frame, since those will override the
247 * sequence counter given by mac80211.
248 */
249 spin_lock_irqsave(&intf->seqlock, irqflags);
250
251 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
252 intf->seqno += 0x10;
253 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
254 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
255
256 spin_unlock_irqrestore(&intf->seqlock, irqflags);
257
258 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
259 }
260
261 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
262 struct txentry_desc *txdesc,
263 const struct rt2x00_rate *hwrate)
264 {
265 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
266 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
267 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
268 unsigned int data_length;
269 unsigned int duration;
270 unsigned int residual;
271
272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273 data_length = entry->skb->len + 4;
274 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
275
276 /*
277 * PLCP setup
278 * Length calculation depends on OFDM/CCK rate.
279 */
280 txdesc->signal = hwrate->plcp;
281 txdesc->service = 0x04;
282
283 if (hwrate->flags & DEV_RATE_OFDM) {
284 txdesc->length_high = (data_length >> 6) & 0x3f;
285 txdesc->length_low = data_length & 0x3f;
286 } else {
287 /*
288 * Convert length to microseconds.
289 */
290 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
291 duration = GET_DURATION(data_length, hwrate->bitrate);
292
293 if (residual != 0) {
294 duration++;
295
296 /*
297 * Check if we need to set the Length Extension
298 */
299 if (hwrate->bitrate == 110 && residual <= 30)
300 txdesc->service |= 0x80;
301 }
302
303 txdesc->length_high = (duration >> 8) & 0xff;
304 txdesc->length_low = duration & 0xff;
305
306 /*
307 * When preamble is enabled we should set the
308 * preamble bit for the signal.
309 */
310 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
311 txdesc->signal |= 0x08;
312 }
313 }
314
315 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
316 struct txentry_desc *txdesc)
317 {
318 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
319 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
320 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
321 struct ieee80211_rate *rate =
322 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
323 const struct rt2x00_rate *hwrate;
324
325 memset(txdesc, 0, sizeof(*txdesc));
326
327 /*
328 * Initialize information from queue
329 */
330 txdesc->queue = entry->queue->qid;
331 txdesc->cw_min = entry->queue->cw_min;
332 txdesc->cw_max = entry->queue->cw_max;
333 txdesc->aifs = entry->queue->aifs;
334
335 /*
336 * Header and alignment information.
337 */
338 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
339 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags) &&
340 (entry->skb->len > txdesc->header_length))
341 txdesc->l2pad = L2PAD_SIZE(txdesc->header_length);
342
343 /*
344 * Check whether this frame is to be acked.
345 */
346 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
347 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
348
349 /*
350 * Check if this is a RTS/CTS frame
351 */
352 if (ieee80211_is_rts(hdr->frame_control) ||
353 ieee80211_is_cts(hdr->frame_control)) {
354 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
355 if (ieee80211_is_rts(hdr->frame_control))
356 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
357 else
358 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
359 if (tx_info->control.rts_cts_rate_idx >= 0)
360 rate =
361 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
362 }
363
364 /*
365 * Determine retry information.
366 */
367 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
368 if (txdesc->retry_limit >= rt2x00dev->long_retry)
369 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
370
371 /*
372 * Check if more fragments are pending
373 */
374 if (ieee80211_has_morefrags(hdr->frame_control) ||
375 (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
376 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
377 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
378 }
379
380 /*
381 * Beacons and probe responses require the tsf timestamp
382 * to be inserted into the frame, except for a frame that has been injected
383 * through a monitor interface. This latter is needed for testing a
384 * monitor interface.
385 */
386 if ((ieee80211_is_beacon(hdr->frame_control) ||
387 ieee80211_is_probe_resp(hdr->frame_control)) &&
388 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
389 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
390
391 /*
392 * Determine with what IFS priority this frame should be send.
393 * Set ifs to IFS_SIFS when the this is not the first fragment,
394 * or this fragment came after RTS/CTS.
395 */
396 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
397 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
398 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
399 txdesc->ifs = IFS_BACKOFF;
400 } else
401 txdesc->ifs = IFS_SIFS;
402
403 /*
404 * Determine rate modulation.
405 */
406 hwrate = rt2x00_get_rate(rate->hw_value);
407 txdesc->rate_mode = RATE_MODE_CCK;
408 if (hwrate->flags & DEV_RATE_OFDM)
409 txdesc->rate_mode = RATE_MODE_OFDM;
410
411 /*
412 * Apply TX descriptor handling by components
413 */
414 rt2x00crypto_create_tx_descriptor(entry, txdesc);
415 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
416 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
417 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
418 }
419
420 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
421 struct txentry_desc *txdesc)
422 {
423 struct data_queue *queue = entry->queue;
424 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
425
426 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
427
428 /*
429 * All processing on the frame has been completed, this means
430 * it is now ready to be dumped to userspace through debugfs.
431 */
432 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
433
434 /*
435 * Check if we need to kick the queue, there are however a few rules
436 * 1) Don't kick beacon queue
437 * 2) Don't kick unless this is the last in frame in a burst.
438 * When the burst flag is set, this frame is always followed
439 * by another frame which in some way are related to eachother.
440 * This is true for fragments, RTS or CTS-to-self frames.
441 * 3) Rule 2 can be broken when the available entries
442 * in the queue are less then a certain threshold.
443 */
444 if (entry->queue->qid == QID_BEACON)
445 return;
446
447 if (rt2x00queue_threshold(queue) ||
448 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
449 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
450 }
451
452 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
453 bool local)
454 {
455 struct ieee80211_tx_info *tx_info;
456 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
457 struct txentry_desc txdesc;
458 struct skb_frame_desc *skbdesc;
459 u8 rate_idx, rate_flags;
460
461 if (unlikely(rt2x00queue_full(queue)))
462 return -ENOBUFS;
463
464 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
465 ERROR(queue->rt2x00dev,
466 "Arrived at non-free entry in the non-full queue %d.\n"
467 "Please file bug report to %s.\n",
468 queue->qid, DRV_PROJECT);
469 return -EINVAL;
470 }
471
472 /*
473 * Copy all TX descriptor information into txdesc,
474 * after that we are free to use the skb->cb array
475 * for our information.
476 */
477 entry->skb = skb;
478 rt2x00queue_create_tx_descriptor(entry, &txdesc);
479
480 /*
481 * All information is retrieved from the skb->cb array,
482 * now we should claim ownership of the driver part of that
483 * array, preserving the bitrate index and flags.
484 */
485 tx_info = IEEE80211_SKB_CB(skb);
486 rate_idx = tx_info->control.rates[0].idx;
487 rate_flags = tx_info->control.rates[0].flags;
488 skbdesc = get_skb_frame_desc(skb);
489 memset(skbdesc, 0, sizeof(*skbdesc));
490 skbdesc->entry = entry;
491 skbdesc->tx_rate_idx = rate_idx;
492 skbdesc->tx_rate_flags = rate_flags;
493
494 if (local)
495 skbdesc->flags |= SKBDESC_NOT_MAC80211;
496
497 /*
498 * When hardware encryption is supported, and this frame
499 * is to be encrypted, we should strip the IV/EIV data from
500 * the frame so we can provide it to the driver seperately.
501 */
502 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
503 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
504 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
505 rt2x00crypto_tx_copy_iv(skb, &txdesc);
506 else
507 rt2x00crypto_tx_remove_iv(skb, &txdesc);
508 }
509
510 /*
511 * When DMA allocation is required we should guarentee to the
512 * driver that the DMA is aligned to a 4-byte boundary.
513 * However some drivers require L2 padding to pad the payload
514 * rather then the header. This could be a requirement for
515 * PCI and USB devices, while header alignment only is valid
516 * for PCI devices.
517 */
518 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
519 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
520 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
521 rt2x00queue_align_frame(entry->skb);
522
523 /*
524 * It could be possible that the queue was corrupted and this
525 * call failed. Since we always return NETDEV_TX_OK to mac80211,
526 * this frame will simply be dropped.
527 */
528 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
529 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
530 entry->skb = NULL;
531 return -EIO;
532 }
533
534 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
535 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
536
537 set_bit(ENTRY_DATA_PENDING, &entry->flags);
538
539 rt2x00queue_index_inc(queue, Q_INDEX);
540 rt2x00queue_write_tx_descriptor(entry, &txdesc);
541
542 return 0;
543 }
544
545 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
546 struct ieee80211_vif *vif,
547 const bool enable_beacon)
548 {
549 struct rt2x00_intf *intf = vif_to_intf(vif);
550 struct skb_frame_desc *skbdesc;
551 struct txentry_desc txdesc;
552 __le32 desc[16];
553
554 if (unlikely(!intf->beacon))
555 return -ENOBUFS;
556
557 mutex_lock(&intf->beacon_skb_mutex);
558
559 /*
560 * Clean up the beacon skb.
561 */
562 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
563 intf->beacon->skb = NULL;
564
565 if (!enable_beacon) {
566 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
567 mutex_unlock(&intf->beacon_skb_mutex);
568 return 0;
569 }
570
571 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
572 if (!intf->beacon->skb) {
573 mutex_unlock(&intf->beacon_skb_mutex);
574 return -ENOMEM;
575 }
576
577 /*
578 * Copy all TX descriptor information into txdesc,
579 * after that we are free to use the skb->cb array
580 * for our information.
581 */
582 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
583
584 /*
585 * For the descriptor we use a local array from where the
586 * driver can move it to the correct location required for
587 * the hardware.
588 */
589 memset(desc, 0, sizeof(desc));
590
591 /*
592 * Fill in skb descriptor
593 */
594 skbdesc = get_skb_frame_desc(intf->beacon->skb);
595 memset(skbdesc, 0, sizeof(*skbdesc));
596 skbdesc->desc = desc;
597 skbdesc->desc_len = intf->beacon->queue->desc_size;
598 skbdesc->entry = intf->beacon;
599
600 /*
601 * Write TX descriptor into reserved room in front of the beacon.
602 */
603 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
604
605 /*
606 * Send beacon to hardware.
607 * Also enable beacon generation, which might have been disabled
608 * by the driver during the config_beacon() callback function.
609 */
610 rt2x00dev->ops->lib->write_beacon(intf->beacon);
611 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
612
613 mutex_unlock(&intf->beacon_skb_mutex);
614
615 return 0;
616 }
617
618 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
619 const enum data_queue_qid queue)
620 {
621 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
622
623 if (queue == QID_RX)
624 return rt2x00dev->rx;
625
626 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
627 return &rt2x00dev->tx[queue];
628
629 if (!rt2x00dev->bcn)
630 return NULL;
631
632 if (queue == QID_BEACON)
633 return &rt2x00dev->bcn[0];
634 else if (queue == QID_ATIM && atim)
635 return &rt2x00dev->bcn[1];
636
637 return NULL;
638 }
639 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
640
641 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
642 enum queue_index index)
643 {
644 struct queue_entry *entry;
645 unsigned long irqflags;
646
647 if (unlikely(index >= Q_INDEX_MAX)) {
648 ERROR(queue->rt2x00dev,
649 "Entry requested from invalid index type (%d)\n", index);
650 return NULL;
651 }
652
653 spin_lock_irqsave(&queue->lock, irqflags);
654
655 entry = &queue->entries[queue->index[index]];
656
657 spin_unlock_irqrestore(&queue->lock, irqflags);
658
659 return entry;
660 }
661 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
662
663 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
664 {
665 unsigned long irqflags;
666
667 if (unlikely(index >= Q_INDEX_MAX)) {
668 ERROR(queue->rt2x00dev,
669 "Index change on invalid index type (%d)\n", index);
670 return;
671 }
672
673 spin_lock_irqsave(&queue->lock, irqflags);
674
675 queue->index[index]++;
676 if (queue->index[index] >= queue->limit)
677 queue->index[index] = 0;
678
679 if (index == Q_INDEX) {
680 queue->length++;
681 } else if (index == Q_INDEX_DONE) {
682 queue->length--;
683 queue->count++;
684 }
685
686 spin_unlock_irqrestore(&queue->lock, irqflags);
687 }
688
689 static void rt2x00queue_reset(struct data_queue *queue)
690 {
691 unsigned long irqflags;
692
693 spin_lock_irqsave(&queue->lock, irqflags);
694
695 queue->count = 0;
696 queue->length = 0;
697 memset(queue->index, 0, sizeof(queue->index));
698
699 spin_unlock_irqrestore(&queue->lock, irqflags);
700 }
701
702 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
703 {
704 struct data_queue *queue;
705
706 txall_queue_for_each(rt2x00dev, queue)
707 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
708 }
709
710 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
711 {
712 struct data_queue *queue;
713 unsigned int i;
714
715 queue_for_each(rt2x00dev, queue) {
716 rt2x00queue_reset(queue);
717
718 for (i = 0; i < queue->limit; i++) {
719 queue->entries[i].flags = 0;
720
721 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
722 }
723 }
724 }
725
726 static int rt2x00queue_alloc_entries(struct data_queue *queue,
727 const struct data_queue_desc *qdesc)
728 {
729 struct queue_entry *entries;
730 unsigned int entry_size;
731 unsigned int i;
732
733 rt2x00queue_reset(queue);
734
735 queue->limit = qdesc->entry_num;
736 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
737 queue->data_size = qdesc->data_size;
738 queue->desc_size = qdesc->desc_size;
739
740 /*
741 * Allocate all queue entries.
742 */
743 entry_size = sizeof(*entries) + qdesc->priv_size;
744 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
745 if (!entries)
746 return -ENOMEM;
747
748 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
749 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
750 ((__index) * (__psize)) )
751
752 for (i = 0; i < queue->limit; i++) {
753 entries[i].flags = 0;
754 entries[i].queue = queue;
755 entries[i].skb = NULL;
756 entries[i].entry_idx = i;
757 entries[i].priv_data =
758 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
759 sizeof(*entries), qdesc->priv_size);
760 }
761
762 #undef QUEUE_ENTRY_PRIV_OFFSET
763
764 queue->entries = entries;
765
766 return 0;
767 }
768
769 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
770 struct data_queue *queue)
771 {
772 unsigned int i;
773
774 if (!queue->entries)
775 return;
776
777 for (i = 0; i < queue->limit; i++) {
778 if (queue->entries[i].skb)
779 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
780 }
781 }
782
783 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
784 struct data_queue *queue)
785 {
786 unsigned int i;
787 struct sk_buff *skb;
788
789 for (i = 0; i < queue->limit; i++) {
790 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
791 if (!skb)
792 return -ENOMEM;
793 queue->entries[i].skb = skb;
794 }
795
796 return 0;
797 }
798
799 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
800 {
801 struct data_queue *queue;
802 int status;
803
804 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
805 if (status)
806 goto exit;
807
808 tx_queue_for_each(rt2x00dev, queue) {
809 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
810 if (status)
811 goto exit;
812 }
813
814 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
815 if (status)
816 goto exit;
817
818 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
819 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
820 rt2x00dev->ops->atim);
821 if (status)
822 goto exit;
823 }
824
825 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
826 if (status)
827 goto exit;
828
829 return 0;
830
831 exit:
832 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
833
834 rt2x00queue_uninitialize(rt2x00dev);
835
836 return status;
837 }
838
839 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
840 {
841 struct data_queue *queue;
842
843 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
844
845 queue_for_each(rt2x00dev, queue) {
846 kfree(queue->entries);
847 queue->entries = NULL;
848 }
849 }
850
851 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
852 struct data_queue *queue, enum data_queue_qid qid)
853 {
854 spin_lock_init(&queue->lock);
855
856 queue->rt2x00dev = rt2x00dev;
857 queue->qid = qid;
858 queue->txop = 0;
859 queue->aifs = 2;
860 queue->cw_min = 5;
861 queue->cw_max = 10;
862 }
863
864 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
865 {
866 struct data_queue *queue;
867 enum data_queue_qid qid;
868 unsigned int req_atim =
869 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
870
871 /*
872 * We need the following queues:
873 * RX: 1
874 * TX: ops->tx_queues
875 * Beacon: 1
876 * Atim: 1 (if required)
877 */
878 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
879
880 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
881 if (!queue) {
882 ERROR(rt2x00dev, "Queue allocation failed.\n");
883 return -ENOMEM;
884 }
885
886 /*
887 * Initialize pointers
888 */
889 rt2x00dev->rx = queue;
890 rt2x00dev->tx = &queue[1];
891 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
892
893 /*
894 * Initialize queue parameters.
895 * RX: qid = QID_RX
896 * TX: qid = QID_AC_BE + index
897 * TX: cw_min: 2^5 = 32.
898 * TX: cw_max: 2^10 = 1024.
899 * BCN: qid = QID_BEACON
900 * ATIM: qid = QID_ATIM
901 */
902 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
903
904 qid = QID_AC_BE;
905 tx_queue_for_each(rt2x00dev, queue)
906 rt2x00queue_init(rt2x00dev, queue, qid++);
907
908 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
909 if (req_atim)
910 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
911
912 return 0;
913 }
914
915 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
916 {
917 kfree(rt2x00dev->rx);
918 rt2x00dev->rx = NULL;
919 rt2x00dev->tx = NULL;
920 rt2x00dev->bcn = NULL;
921 }