]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt2x00queue.c
rt2x00: Update copyright year to 2009
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
35 {
36 struct sk_buff *skb;
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
41
42 /*
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
45 */
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
47
48 /*
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
52 */
53 head_size = 4;
54
55 /*
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 8 bytes for ICV data as tailroon.
59 */
60 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
61 head_size += 8;
62 tail_size += 8;
63 }
64
65 /*
66 * Allocate skbuffer.
67 */
68 skb = dev_alloc_skb(frame_size + head_size + tail_size);
69 if (!skb)
70 return NULL;
71
72 /*
73 * Make sure we not have a frame with the requested bytes
74 * available in the head and tail.
75 */
76 skb_reserve(skb, head_size);
77 skb_put(skb, frame_size);
78
79 /*
80 * Populate skbdesc.
81 */
82 skbdesc = get_skb_frame_desc(skb);
83 memset(skbdesc, 0, sizeof(*skbdesc));
84 skbdesc->entry = entry;
85
86 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
87 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
88 skb->data,
89 skb->len,
90 DMA_FROM_DEVICE);
91 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
92 }
93
94 return skb;
95 }
96
97 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
98 {
99 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
100
101 /*
102 * If device has requested headroom, we should make sure that
103 * is also mapped to the DMA so it can be used for transfering
104 * additional descriptor information to the hardware.
105 */
106 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
107
108 skbdesc->skb_dma =
109 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
110
111 /*
112 * Restore data pointer to original location again.
113 */
114 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
115
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
117 }
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
119
120 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
121 {
122 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
123
124 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
125 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
126 DMA_FROM_DEVICE);
127 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
128 }
129
130 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 /*
132 * Add headroom to the skb length, it has been removed
133 * by the driver, but it was actually mapped to DMA.
134 */
135 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
136 skb->len + rt2x00dev->hw->extra_tx_headroom,
137 DMA_TO_DEVICE);
138 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
139 }
140 }
141
142 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
143 {
144 if (!skb)
145 return;
146
147 rt2x00queue_unmap_skb(rt2x00dev, skb);
148 dev_kfree_skb_any(skb);
149 }
150
151 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
152 struct txentry_desc *txdesc)
153 {
154 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
155 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
156 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
157 unsigned long irqflags;
158
159 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
160 unlikely(!tx_info->control.vif))
161 return;
162
163 /*
164 * Hardware should insert sequence counter.
165 * FIXME: We insert a software sequence counter first for
166 * hardware that doesn't support hardware sequence counting.
167 *
168 * This is wrong because beacons are not getting sequence
169 * numbers assigned properly.
170 *
171 * A secondary problem exists for drivers that cannot toggle
172 * sequence counting per-frame, since those will override the
173 * sequence counter given by mac80211.
174 */
175 spin_lock_irqsave(&intf->seqlock, irqflags);
176
177 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
178 intf->seqno += 0x10;
179 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
180 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
181
182 spin_unlock_irqrestore(&intf->seqlock, irqflags);
183
184 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
185 }
186
187 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
188 struct txentry_desc *txdesc,
189 const struct rt2x00_rate *hwrate)
190 {
191 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
192 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
193 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
194 unsigned int data_length;
195 unsigned int duration;
196 unsigned int residual;
197
198 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
199 data_length = entry->skb->len + 4;
200 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
201
202 /*
203 * PLCP setup
204 * Length calculation depends on OFDM/CCK rate.
205 */
206 txdesc->signal = hwrate->plcp;
207 txdesc->service = 0x04;
208
209 if (hwrate->flags & DEV_RATE_OFDM) {
210 txdesc->length_high = (data_length >> 6) & 0x3f;
211 txdesc->length_low = data_length & 0x3f;
212 } else {
213 /*
214 * Convert length to microseconds.
215 */
216 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
217 duration = GET_DURATION(data_length, hwrate->bitrate);
218
219 if (residual != 0) {
220 duration++;
221
222 /*
223 * Check if we need to set the Length Extension
224 */
225 if (hwrate->bitrate == 110 && residual <= 30)
226 txdesc->service |= 0x80;
227 }
228
229 txdesc->length_high = (duration >> 8) & 0xff;
230 txdesc->length_low = duration & 0xff;
231
232 /*
233 * When preamble is enabled we should set the
234 * preamble bit for the signal.
235 */
236 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
237 txdesc->signal |= 0x08;
238 }
239 }
240
241 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
242 struct txentry_desc *txdesc)
243 {
244 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
246 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
247 struct ieee80211_rate *rate =
248 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
249 const struct rt2x00_rate *hwrate;
250
251 memset(txdesc, 0, sizeof(*txdesc));
252
253 /*
254 * Initialize information from queue
255 */
256 txdesc->queue = entry->queue->qid;
257 txdesc->cw_min = entry->queue->cw_min;
258 txdesc->cw_max = entry->queue->cw_max;
259 txdesc->aifs = entry->queue->aifs;
260
261 /*
262 * Check whether this frame is to be acked.
263 */
264 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
265 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
266
267 /*
268 * Check if this is a RTS/CTS frame
269 */
270 if (ieee80211_is_rts(hdr->frame_control) ||
271 ieee80211_is_cts(hdr->frame_control)) {
272 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
273 if (ieee80211_is_rts(hdr->frame_control))
274 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
275 else
276 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
277 if (tx_info->control.rts_cts_rate_idx >= 0)
278 rate =
279 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
280 }
281
282 /*
283 * Determine retry information.
284 */
285 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
286 if (txdesc->retry_limit >= rt2x00dev->long_retry)
287 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
288
289 /*
290 * Check if more fragments are pending
291 */
292 if (ieee80211_has_morefrags(hdr->frame_control)) {
293 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
294 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
295 }
296
297 /*
298 * Beacons and probe responses require the tsf timestamp
299 * to be inserted into the frame.
300 */
301 if (ieee80211_is_beacon(hdr->frame_control) ||
302 ieee80211_is_probe_resp(hdr->frame_control))
303 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
304
305 /*
306 * Determine with what IFS priority this frame should be send.
307 * Set ifs to IFS_SIFS when the this is not the first fragment,
308 * or this fragment came after RTS/CTS.
309 */
310 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
311 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
312 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
313 txdesc->ifs = IFS_BACKOFF;
314 } else
315 txdesc->ifs = IFS_SIFS;
316
317 /*
318 * Determine rate modulation.
319 */
320 hwrate = rt2x00_get_rate(rate->hw_value);
321 txdesc->rate_mode = RATE_MODE_CCK;
322 if (hwrate->flags & DEV_RATE_OFDM)
323 txdesc->rate_mode = RATE_MODE_OFDM;
324
325 /*
326 * Apply TX descriptor handling by components
327 */
328 rt2x00crypto_create_tx_descriptor(entry, txdesc);
329 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
330 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
331 }
332
333 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
334 struct txentry_desc *txdesc)
335 {
336 struct data_queue *queue = entry->queue;
337 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
338
339 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
340
341 /*
342 * All processing on the frame has been completed, this means
343 * it is now ready to be dumped to userspace through debugfs.
344 */
345 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
346
347 /*
348 * Check if we need to kick the queue, there are however a few rules
349 * 1) Don't kick beacon queue
350 * 2) Don't kick unless this is the last in frame in a burst.
351 * When the burst flag is set, this frame is always followed
352 * by another frame which in some way are related to eachother.
353 * This is true for fragments, RTS or CTS-to-self frames.
354 * 3) Rule 2 can be broken when the available entries
355 * in the queue are less then a certain threshold.
356 */
357 if (entry->queue->qid == QID_BEACON)
358 return;
359
360 if (rt2x00queue_threshold(queue) ||
361 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
362 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
363 }
364
365 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
366 {
367 struct ieee80211_tx_info *tx_info;
368 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
369 struct txentry_desc txdesc;
370 struct skb_frame_desc *skbdesc;
371 unsigned int iv_len = 0;
372 u8 rate_idx, rate_flags;
373
374 if (unlikely(rt2x00queue_full(queue)))
375 return -ENOBUFS;
376
377 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
378 ERROR(queue->rt2x00dev,
379 "Arrived at non-free entry in the non-full queue %d.\n"
380 "Please file bug report to %s.\n",
381 queue->qid, DRV_PROJECT);
382 return -EINVAL;
383 }
384
385 /*
386 * Copy all TX descriptor information into txdesc,
387 * after that we are free to use the skb->cb array
388 * for our information.
389 */
390 entry->skb = skb;
391 rt2x00queue_create_tx_descriptor(entry, &txdesc);
392
393 if (IEEE80211_SKB_CB(skb)->control.hw_key != NULL)
394 iv_len = IEEE80211_SKB_CB(skb)->control.hw_key->iv_len;
395
396 /*
397 * All information is retrieved from the skb->cb array,
398 * now we should claim ownership of the driver part of that
399 * array, preserving the bitrate index and flags.
400 */
401 tx_info = IEEE80211_SKB_CB(skb);
402 rate_idx = tx_info->control.rates[0].idx;
403 rate_flags = tx_info->control.rates[0].flags;
404 skbdesc = get_skb_frame_desc(skb);
405 memset(skbdesc, 0, sizeof(*skbdesc));
406 skbdesc->entry = entry;
407 skbdesc->tx_rate_idx = rate_idx;
408 skbdesc->tx_rate_flags = rate_flags;
409
410 /*
411 * When hardware encryption is supported, and this frame
412 * is to be encrypted, we should strip the IV/EIV data from
413 * the frame so we can provide it to the driver seperately.
414 */
415 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
416 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
417 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
418 rt2x00crypto_tx_copy_iv(skb, iv_len);
419 else
420 rt2x00crypto_tx_remove_iv(skb, iv_len);
421 }
422
423 /*
424 * It could be possible that the queue was corrupted and this
425 * call failed. Since we always return NETDEV_TX_OK to mac80211,
426 * this frame will simply be dropped.
427 */
428 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
429 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
430 entry->skb = NULL;
431 return -EIO;
432 }
433
434 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
435 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
436
437 set_bit(ENTRY_DATA_PENDING, &entry->flags);
438
439 rt2x00queue_index_inc(queue, Q_INDEX);
440 rt2x00queue_write_tx_descriptor(entry, &txdesc);
441
442 return 0;
443 }
444
445 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
446 struct ieee80211_vif *vif)
447 {
448 struct rt2x00_intf *intf = vif_to_intf(vif);
449 struct skb_frame_desc *skbdesc;
450 struct txentry_desc txdesc;
451 __le32 desc[16];
452
453 if (unlikely(!intf->beacon))
454 return -ENOBUFS;
455
456 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
457 if (!intf->beacon->skb)
458 return -ENOMEM;
459
460 /*
461 * Copy all TX descriptor information into txdesc,
462 * after that we are free to use the skb->cb array
463 * for our information.
464 */
465 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
466
467 /*
468 * For the descriptor we use a local array from where the
469 * driver can move it to the correct location required for
470 * the hardware.
471 */
472 memset(desc, 0, sizeof(desc));
473
474 /*
475 * Fill in skb descriptor
476 */
477 skbdesc = get_skb_frame_desc(intf->beacon->skb);
478 memset(skbdesc, 0, sizeof(*skbdesc));
479 skbdesc->desc = desc;
480 skbdesc->desc_len = intf->beacon->queue->desc_size;
481 skbdesc->entry = intf->beacon;
482
483 /*
484 * Write TX descriptor into reserved room in front of the beacon.
485 */
486 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
487
488 /*
489 * Send beacon to hardware.
490 * Also enable beacon generation, which might have been disabled
491 * by the driver during the config_beacon() callback function.
492 */
493 rt2x00dev->ops->lib->write_beacon(intf->beacon);
494 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
495
496 return 0;
497 }
498
499 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
500 const enum data_queue_qid queue)
501 {
502 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
503
504 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
505 return &rt2x00dev->tx[queue];
506
507 if (!rt2x00dev->bcn)
508 return NULL;
509
510 if (queue == QID_BEACON)
511 return &rt2x00dev->bcn[0];
512 else if (queue == QID_ATIM && atim)
513 return &rt2x00dev->bcn[1];
514
515 return NULL;
516 }
517 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
518
519 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
520 enum queue_index index)
521 {
522 struct queue_entry *entry;
523 unsigned long irqflags;
524
525 if (unlikely(index >= Q_INDEX_MAX)) {
526 ERROR(queue->rt2x00dev,
527 "Entry requested from invalid index type (%d)\n", index);
528 return NULL;
529 }
530
531 spin_lock_irqsave(&queue->lock, irqflags);
532
533 entry = &queue->entries[queue->index[index]];
534
535 spin_unlock_irqrestore(&queue->lock, irqflags);
536
537 return entry;
538 }
539 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
540
541 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
542 {
543 unsigned long irqflags;
544
545 if (unlikely(index >= Q_INDEX_MAX)) {
546 ERROR(queue->rt2x00dev,
547 "Index change on invalid index type (%d)\n", index);
548 return;
549 }
550
551 spin_lock_irqsave(&queue->lock, irqflags);
552
553 queue->index[index]++;
554 if (queue->index[index] >= queue->limit)
555 queue->index[index] = 0;
556
557 if (index == Q_INDEX) {
558 queue->length++;
559 } else if (index == Q_INDEX_DONE) {
560 queue->length--;
561 queue->count++;
562 }
563
564 spin_unlock_irqrestore(&queue->lock, irqflags);
565 }
566
567 static void rt2x00queue_reset(struct data_queue *queue)
568 {
569 unsigned long irqflags;
570
571 spin_lock_irqsave(&queue->lock, irqflags);
572
573 queue->count = 0;
574 queue->length = 0;
575 memset(queue->index, 0, sizeof(queue->index));
576
577 spin_unlock_irqrestore(&queue->lock, irqflags);
578 }
579
580 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
581 {
582 struct data_queue *queue;
583 unsigned int i;
584
585 queue_for_each(rt2x00dev, queue) {
586 rt2x00queue_reset(queue);
587
588 for (i = 0; i < queue->limit; i++) {
589 queue->entries[i].flags = 0;
590
591 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
592 }
593 }
594 }
595
596 static int rt2x00queue_alloc_entries(struct data_queue *queue,
597 const struct data_queue_desc *qdesc)
598 {
599 struct queue_entry *entries;
600 unsigned int entry_size;
601 unsigned int i;
602
603 rt2x00queue_reset(queue);
604
605 queue->limit = qdesc->entry_num;
606 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
607 queue->data_size = qdesc->data_size;
608 queue->desc_size = qdesc->desc_size;
609
610 /*
611 * Allocate all queue entries.
612 */
613 entry_size = sizeof(*entries) + qdesc->priv_size;
614 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
615 if (!entries)
616 return -ENOMEM;
617
618 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
619 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
620 ((__index) * (__psize)) )
621
622 for (i = 0; i < queue->limit; i++) {
623 entries[i].flags = 0;
624 entries[i].queue = queue;
625 entries[i].skb = NULL;
626 entries[i].entry_idx = i;
627 entries[i].priv_data =
628 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
629 sizeof(*entries), qdesc->priv_size);
630 }
631
632 #undef QUEUE_ENTRY_PRIV_OFFSET
633
634 queue->entries = entries;
635
636 return 0;
637 }
638
639 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
640 struct data_queue *queue)
641 {
642 unsigned int i;
643
644 if (!queue->entries)
645 return;
646
647 for (i = 0; i < queue->limit; i++) {
648 if (queue->entries[i].skb)
649 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
650 }
651 }
652
653 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
654 struct data_queue *queue)
655 {
656 unsigned int i;
657 struct sk_buff *skb;
658
659 for (i = 0; i < queue->limit; i++) {
660 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
661 if (!skb)
662 return -ENOMEM;
663 queue->entries[i].skb = skb;
664 }
665
666 return 0;
667 }
668
669 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
670 {
671 struct data_queue *queue;
672 int status;
673
674 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
675 if (status)
676 goto exit;
677
678 tx_queue_for_each(rt2x00dev, queue) {
679 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
680 if (status)
681 goto exit;
682 }
683
684 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
685 if (status)
686 goto exit;
687
688 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
689 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
690 rt2x00dev->ops->atim);
691 if (status)
692 goto exit;
693 }
694
695 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
696 if (status)
697 goto exit;
698
699 return 0;
700
701 exit:
702 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
703
704 rt2x00queue_uninitialize(rt2x00dev);
705
706 return status;
707 }
708
709 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
710 {
711 struct data_queue *queue;
712
713 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
714
715 queue_for_each(rt2x00dev, queue) {
716 kfree(queue->entries);
717 queue->entries = NULL;
718 }
719 }
720
721 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
722 struct data_queue *queue, enum data_queue_qid qid)
723 {
724 spin_lock_init(&queue->lock);
725
726 queue->rt2x00dev = rt2x00dev;
727 queue->qid = qid;
728 queue->txop = 0;
729 queue->aifs = 2;
730 queue->cw_min = 5;
731 queue->cw_max = 10;
732 }
733
734 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
735 {
736 struct data_queue *queue;
737 enum data_queue_qid qid;
738 unsigned int req_atim =
739 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
740
741 /*
742 * We need the following queues:
743 * RX: 1
744 * TX: ops->tx_queues
745 * Beacon: 1
746 * Atim: 1 (if required)
747 */
748 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
749
750 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
751 if (!queue) {
752 ERROR(rt2x00dev, "Queue allocation failed.\n");
753 return -ENOMEM;
754 }
755
756 /*
757 * Initialize pointers
758 */
759 rt2x00dev->rx = queue;
760 rt2x00dev->tx = &queue[1];
761 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
762
763 /*
764 * Initialize queue parameters.
765 * RX: qid = QID_RX
766 * TX: qid = QID_AC_BE + index
767 * TX: cw_min: 2^5 = 32.
768 * TX: cw_max: 2^10 = 1024.
769 * BCN: qid = QID_BEACON
770 * ATIM: qid = QID_ATIM
771 */
772 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
773
774 qid = QID_AC_BE;
775 tx_queue_for_each(rt2x00dev, queue)
776 rt2x00queue_init(rt2x00dev, queue, qid++);
777
778 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
779 if (req_atim)
780 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
781
782 return 0;
783 }
784
785 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
786 {
787 kfree(rt2x00dev->rx);
788 rt2x00dev->rx = NULL;
789 rt2x00dev->tx = NULL;
790 rt2x00dev->bcn = NULL;
791 }