]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge branch 'master' of ssh://master.kernel.org/pub/scm/linux/kernel/git/linville...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attempt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140 rt2x00_rf_write(rt2x00dev, word, value);
141 }
142
143 mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147 const u8 command, const u8 token,
148 const u8 arg0, const u8 arg1)
149 {
150 u32 reg;
151
152 mutex_lock(&rt2x00dev->csr_mutex);
153
154 /*
155 * Wait until the MCU becomes available, afterwards we
156 * can safely write the new data into the register.
157 */
158 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169 }
170
171 mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg;
179
180 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184 eeprom->reg_data_clock =
185 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186 eeprom->reg_chip_select =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
193 u32 reg = 0;
194
195 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198 !!eeprom->reg_data_clock);
199 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200 !!eeprom->reg_chip_select);
201
202 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207 .owner = THIS_MODULE,
208 .csr = {
209 .read = rt2x00pci_register_read,
210 .write = rt2x00pci_register_write,
211 .flags = RT2X00DEBUGFS_OFFSET,
212 .word_base = CSR_REG_BASE,
213 .word_size = sizeof(u32),
214 .word_count = CSR_REG_SIZE / sizeof(u32),
215 },
216 .eeprom = {
217 .read = rt2x00_eeprom_read,
218 .write = rt2x00_eeprom_write,
219 .word_base = EEPROM_BASE,
220 .word_size = sizeof(u16),
221 .word_count = EEPROM_SIZE / sizeof(u16),
222 },
223 .bbp = {
224 .read = rt61pci_bbp_read,
225 .write = rt61pci_bbp_write,
226 .word_base = BBP_BASE,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt61pci_rf_write,
233 .word_base = RF_BASE,
234 .word_size = sizeof(u32),
235 .word_count = RF_SIZE / sizeof(u32),
236 },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
245 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
246 }
247
248 #ifdef CONFIG_RT2X00_LIB_LEDS
249 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
250 enum led_brightness brightness)
251 {
252 struct rt2x00_led *led =
253 container_of(led_cdev, struct rt2x00_led, led_dev);
254 unsigned int enabled = brightness != LED_OFF;
255 unsigned int a_mode =
256 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
257 unsigned int bg_mode =
258 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
259
260 if (led->type == LED_TYPE_RADIO) {
261 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262 MCU_LEDCS_RADIO_STATUS, enabled);
263
264 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265 (led->rt2x00dev->led_mcu_reg & 0xff),
266 ((led->rt2x00dev->led_mcu_reg >> 8)));
267 } else if (led->type == LED_TYPE_ASSOC) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
270 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 MCU_LEDCS_LINK_A_STATUS, a_mode);
272
273 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
274 (led->rt2x00dev->led_mcu_reg & 0xff),
275 ((led->rt2x00dev->led_mcu_reg >> 8)));
276 } else if (led->type == LED_TYPE_QUALITY) {
277 /*
278 * The brightness is divided into 6 levels (0 - 5),
279 * this means we need to convert the brightness
280 * argument into the matching level within that range.
281 */
282 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
283 brightness / (LED_FULL / 6), 0);
284 }
285 }
286
287 static int rt61pci_blink_set(struct led_classdev *led_cdev,
288 unsigned long *delay_on,
289 unsigned long *delay_off)
290 {
291 struct rt2x00_led *led =
292 container_of(led_cdev, struct rt2x00_led, led_dev);
293 u32 reg;
294
295 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
296 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
297 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
298 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
299
300 return 0;
301 }
302
303 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
304 struct rt2x00_led *led,
305 enum led_type type)
306 {
307 led->rt2x00dev = rt2x00dev;
308 led->type = type;
309 led->led_dev.brightness_set = rt61pci_brightness_set;
310 led->led_dev.blink_set = rt61pci_blink_set;
311 led->flags = LED_INITIALIZED;
312 }
313 #endif /* CONFIG_RT2X00_LIB_LEDS */
314
315 /*
316 * Configuration handlers.
317 */
318 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
319 struct rt2x00lib_crypto *crypto,
320 struct ieee80211_key_conf *key)
321 {
322 struct hw_key_entry key_entry;
323 struct rt2x00_field32 field;
324 u32 mask;
325 u32 reg;
326
327 if (crypto->cmd == SET_KEY) {
328 /*
329 * rt2x00lib can't determine the correct free
330 * key_idx for shared keys. We have 1 register
331 * with key valid bits. The goal is simple, read
332 * the register, if that is full we have no slots
333 * left.
334 * Note that each BSS is allowed to have up to 4
335 * shared keys, so put a mask over the allowed
336 * entries.
337 */
338 mask = (0xf << crypto->bssidx);
339
340 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
341 reg &= mask;
342
343 if (reg && reg == mask)
344 return -ENOSPC;
345
346 key->hw_key_idx += reg ? ffz(reg) : 0;
347
348 /*
349 * Upload key to hardware
350 */
351 memcpy(key_entry.key, crypto->key,
352 sizeof(key_entry.key));
353 memcpy(key_entry.tx_mic, crypto->tx_mic,
354 sizeof(key_entry.tx_mic));
355 memcpy(key_entry.rx_mic, crypto->rx_mic,
356 sizeof(key_entry.rx_mic));
357
358 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
359 rt2x00pci_register_multiwrite(rt2x00dev, reg,
360 &key_entry, sizeof(key_entry));
361
362 /*
363 * The cipher types are stored over 2 registers.
364 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
365 * bssidx 1 and 2 keys are stored in SEC_CSR5.
366 * Using the correct defines correctly will cause overhead,
367 * so just calculate the correct offset.
368 */
369 if (key->hw_key_idx < 8) {
370 field.bit_offset = (3 * key->hw_key_idx);
371 field.bit_mask = 0x7 << field.bit_offset;
372
373 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
374 rt2x00_set_field32(&reg, field, crypto->cipher);
375 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
376 } else {
377 field.bit_offset = (3 * (key->hw_key_idx - 8));
378 field.bit_mask = 0x7 << field.bit_offset;
379
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
381 rt2x00_set_field32(&reg, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
383 }
384
385 /*
386 * The driver does not support the IV/EIV generation
387 * in hardware. However it doesn't support the IV/EIV
388 * inside the ieee80211 frame either, but requires it
389 * to be provided separately for the descriptor.
390 * rt2x00lib will cut the IV/EIV data out of all frames
391 * given to us by mac80211, but we must tell mac80211
392 * to generate the IV/EIV data.
393 */
394 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
395 }
396
397 /*
398 * SEC_CSR0 contains only single-bit fields to indicate
399 * a particular key is valid. Because using the FIELD32()
400 * defines directly will cause a lot of overhead, we use
401 * a calculation to determine the correct bit directly.
402 */
403 mask = 1 << key->hw_key_idx;
404
405 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
406 if (crypto->cmd == SET_KEY)
407 reg |= mask;
408 else if (crypto->cmd == DISABLE_KEY)
409 reg &= ~mask;
410 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
411
412 return 0;
413 }
414
415 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
416 struct rt2x00lib_crypto *crypto,
417 struct ieee80211_key_conf *key)
418 {
419 struct hw_pairwise_ta_entry addr_entry;
420 struct hw_key_entry key_entry;
421 u32 mask;
422 u32 reg;
423
424 if (crypto->cmd == SET_KEY) {
425 /*
426 * rt2x00lib can't determine the correct free
427 * key_idx for pairwise keys. We have 2 registers
428 * with key valid bits. The goal is simple: read
429 * the first register. If that is full, move to
430 * the next register.
431 * When both registers are full, we drop the key.
432 * Otherwise, we use the first invalid entry.
433 */
434 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
435 if (reg && reg == ~0) {
436 key->hw_key_idx = 32;
437 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
438 if (reg && reg == ~0)
439 return -ENOSPC;
440 }
441
442 key->hw_key_idx += reg ? ffz(reg) : 0;
443
444 /*
445 * Upload key to hardware
446 */
447 memcpy(key_entry.key, crypto->key,
448 sizeof(key_entry.key));
449 memcpy(key_entry.tx_mic, crypto->tx_mic,
450 sizeof(key_entry.tx_mic));
451 memcpy(key_entry.rx_mic, crypto->rx_mic,
452 sizeof(key_entry.rx_mic));
453
454 memset(&addr_entry, 0, sizeof(addr_entry));
455 memcpy(&addr_entry, crypto->address, ETH_ALEN);
456 addr_entry.cipher = crypto->cipher;
457
458 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
459 rt2x00pci_register_multiwrite(rt2x00dev, reg,
460 &key_entry, sizeof(key_entry));
461
462 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
463 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464 &addr_entry, sizeof(addr_entry));
465
466 /*
467 * Enable pairwise lookup table for given BSS idx.
468 * Without this, received frames will not be decrypted
469 * by the hardware.
470 */
471 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
472 reg |= (1 << crypto->bssidx);
473 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
474
475 /*
476 * The driver does not support the IV/EIV generation
477 * in hardware. However it doesn't support the IV/EIV
478 * inside the ieee80211 frame either, but requires it
479 * to be provided seperately for the descriptor.
480 * rt2x00lib will cut the IV/EIV data out of all frames
481 * given to us by mac80211, but we must tell mac80211
482 * to generate the IV/EIV data.
483 */
484 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
485 }
486
487 /*
488 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
489 * a particular key is valid. Because using the FIELD32()
490 * defines directly will cause a lot of overhead, we use
491 * a calculation to determine the correct bit directly.
492 */
493 if (key->hw_key_idx < 32) {
494 mask = 1 << key->hw_key_idx;
495
496 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
497 if (crypto->cmd == SET_KEY)
498 reg |= mask;
499 else if (crypto->cmd == DISABLE_KEY)
500 reg &= ~mask;
501 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
502 } else {
503 mask = 1 << (key->hw_key_idx - 32);
504
505 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
506 if (crypto->cmd == SET_KEY)
507 reg |= mask;
508 else if (crypto->cmd == DISABLE_KEY)
509 reg &= ~mask;
510 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
511 }
512
513 return 0;
514 }
515
516 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
517 const unsigned int filter_flags)
518 {
519 u32 reg;
520
521 /*
522 * Start configuration steps.
523 * Note that the version error will always be dropped
524 * and broadcast frames will always be accepted since
525 * there is no filter for it at this time.
526 */
527 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
528 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
529 !(filter_flags & FIF_FCSFAIL));
530 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
531 !(filter_flags & FIF_PLCPFAIL));
532 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
533 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
534 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
535 !(filter_flags & FIF_PROMISC_IN_BSS));
536 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
537 !(filter_flags & FIF_PROMISC_IN_BSS) &&
538 !rt2x00dev->intf_ap_count);
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
541 !(filter_flags & FIF_ALLMULTI));
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
544 !(filter_flags & FIF_CONTROL));
545 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
546 }
547
548 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
549 struct rt2x00_intf *intf,
550 struct rt2x00intf_conf *conf,
551 const unsigned int flags)
552 {
553 unsigned int beacon_base;
554 u32 reg;
555
556 if (flags & CONFIG_UPDATE_TYPE) {
557 /*
558 * Clear current synchronisation setup.
559 * For the Beacon base registers, we only need to clear
560 * the first byte since that byte contains the VALID and OWNER
561 * bits which (when set to 0) will invalidate the entire beacon.
562 */
563 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
564 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
565
566 /*
567 * Enable synchronisation.
568 */
569 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
570 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
572 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
573 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
574 }
575
576 if (flags & CONFIG_UPDATE_MAC) {
577 reg = le32_to_cpu(conf->mac[1]);
578 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
579 conf->mac[1] = cpu_to_le32(reg);
580
581 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
582 conf->mac, sizeof(conf->mac));
583 }
584
585 if (flags & CONFIG_UPDATE_BSSID) {
586 reg = le32_to_cpu(conf->bssid[1]);
587 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
588 conf->bssid[1] = cpu_to_le32(reg);
589
590 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
591 conf->bssid, sizeof(conf->bssid));
592 }
593 }
594
595 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
596 struct rt2x00lib_erp *erp)
597 {
598 u32 reg;
599
600 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
601 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
602 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
603 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
604
605 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
606 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
607 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
608 !!erp->short_preamble);
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
610
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
612
613 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
614 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
615 erp->beacon_int * 16);
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
617
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
621
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
631 {
632 u8 r3;
633 u8 r4;
634 u8 r77;
635
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
641
642 /*
643 * Configure the RX antenna.
644 */
645 switch (ant->rx) {
646 case ANTENNA_HW_DIVERSITY:
647 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
648 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
649 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
650 break;
651 case ANTENNA_A:
652 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
654 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
655 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
656 else
657 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
658 break;
659 case ANTENNA_B:
660 default:
661 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
663 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665 else
666 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667 break;
668 }
669
670 rt61pci_bbp_write(rt2x00dev, 77, r77);
671 rt61pci_bbp_write(rt2x00dev, 3, r3);
672 rt61pci_bbp_write(rt2x00dev, 4, r4);
673 }
674
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
676 struct antenna_setup *ant)
677 {
678 u8 r3;
679 u8 r4;
680 u8 r77;
681
682 rt61pci_bbp_read(rt2x00dev, 3, &r3);
683 rt61pci_bbp_read(rt2x00dev, 4, &r4);
684 rt61pci_bbp_read(rt2x00dev, 77, &r77);
685
686 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
687 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
688 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
689
690 /*
691 * Configure the RX antenna.
692 */
693 switch (ant->rx) {
694 case ANTENNA_HW_DIVERSITY:
695 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
696 break;
697 case ANTENNA_A:
698 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
700 break;
701 case ANTENNA_B:
702 default:
703 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
705 break;
706 }
707
708 rt61pci_bbp_write(rt2x00dev, 77, r77);
709 rt61pci_bbp_write(rt2x00dev, 3, r3);
710 rt61pci_bbp_write(rt2x00dev, 4, r4);
711 }
712
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
714 const int p1, const int p2)
715 {
716 u32 reg;
717
718 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
719
720 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
721 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
722
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
724 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
725
726 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
727 }
728
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
730 struct antenna_setup *ant)
731 {
732 u8 r3;
733 u8 r4;
734 u8 r77;
735
736 rt61pci_bbp_read(rt2x00dev, 3, &r3);
737 rt61pci_bbp_read(rt2x00dev, 4, &r4);
738 rt61pci_bbp_read(rt2x00dev, 77, &r77);
739
740 /*
741 * Configure the RX antenna.
742 */
743 switch (ant->rx) {
744 case ANTENNA_A:
745 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
746 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
747 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
748 break;
749 case ANTENNA_HW_DIVERSITY:
750 /*
751 * FIXME: Antenna selection for the rf 2529 is very confusing
752 * in the legacy driver. Just default to antenna B until the
753 * legacy code can be properly translated into rt2x00 code.
754 */
755 case ANTENNA_B:
756 default:
757 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
758 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
759 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
760 break;
761 }
762
763 rt61pci_bbp_write(rt2x00dev, 77, r77);
764 rt61pci_bbp_write(rt2x00dev, 3, r3);
765 rt61pci_bbp_write(rt2x00dev, 4, r4);
766 }
767
768 struct antenna_sel {
769 u8 word;
770 /*
771 * value[0] -> non-LNA
772 * value[1] -> LNA
773 */
774 u8 value[2];
775 };
776
777 static const struct antenna_sel antenna_sel_a[] = {
778 { 96, { 0x58, 0x78 } },
779 { 104, { 0x38, 0x48 } },
780 { 75, { 0xfe, 0x80 } },
781 { 86, { 0xfe, 0x80 } },
782 { 88, { 0xfe, 0x80 } },
783 { 35, { 0x60, 0x60 } },
784 { 97, { 0x58, 0x58 } },
785 { 98, { 0x58, 0x58 } },
786 };
787
788 static const struct antenna_sel antenna_sel_bg[] = {
789 { 96, { 0x48, 0x68 } },
790 { 104, { 0x2c, 0x3c } },
791 { 75, { 0xfe, 0x80 } },
792 { 86, { 0xfe, 0x80 } },
793 { 88, { 0xfe, 0x80 } },
794 { 35, { 0x50, 0x50 } },
795 { 97, { 0x48, 0x48 } },
796 { 98, { 0x48, 0x48 } },
797 };
798
799 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
800 struct antenna_setup *ant)
801 {
802 const struct antenna_sel *sel;
803 unsigned int lna;
804 unsigned int i;
805 u32 reg;
806
807 /*
808 * We should never come here because rt2x00lib is supposed
809 * to catch this and send us the correct antenna explicitely.
810 */
811 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
812 ant->tx == ANTENNA_SW_DIVERSITY);
813
814 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
815 sel = antenna_sel_a;
816 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
817 } else {
818 sel = antenna_sel_bg;
819 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
820 }
821
822 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
823 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
824
825 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
826
827 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
828 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
830 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
831
832 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
833
834 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
835 rt61pci_config_antenna_5x(rt2x00dev, ant);
836 else if (rt2x00_rf(rt2x00dev, RF2527))
837 rt61pci_config_antenna_2x(rt2x00dev, ant);
838 else if (rt2x00_rf(rt2x00dev, RF2529)) {
839 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else
842 rt61pci_config_antenna_2529(rt2x00dev, ant);
843 }
844 }
845
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847 struct rt2x00lib_conf *libconf)
848 {
849 u16 eeprom;
850 short lna_gain = 0;
851
852 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
853 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
854 lna_gain += 14;
855
856 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
857 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858 } else {
859 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
860 lna_gain += 14;
861
862 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
863 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864 }
865
866 rt2x00dev->lna_gain = lna_gain;
867 }
868
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870 struct rf_channel *rf, const int txpower)
871 {
872 u8 r3;
873 u8 r94;
874 u8 smart;
875
876 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878
879 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
880
881 rt61pci_bbp_read(rt2x00dev, 3, &r3);
882 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
883 rt61pci_bbp_write(rt2x00dev, 3, r3);
884
885 r94 = 6;
886 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
887 r94 += txpower - MAX_TXPOWER;
888 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
889 r94 += txpower;
890 rt61pci_bbp_write(rt2x00dev, 94, r94);
891
892 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
893 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
894 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
896
897 udelay(200);
898
899 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
900 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
901 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
902 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903
904 udelay(200);
905
906 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
907 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
908 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
909 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910
911 msleep(1);
912 }
913
914 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
915 const int txpower)
916 {
917 struct rf_channel rf;
918
919 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
920 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
921 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
922 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
923
924 rt61pci_config_channel(rt2x00dev, &rf, txpower);
925 }
926
927 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
928 struct rt2x00lib_conf *libconf)
929 {
930 u32 reg;
931
932 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
933 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
934 libconf->conf->long_frame_max_tx_count);
935 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
936 libconf->conf->short_frame_max_tx_count);
937 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
938 }
939
940 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
941 struct rt2x00lib_conf *libconf)
942 {
943 enum dev_state state =
944 (libconf->conf->flags & IEEE80211_CONF_PS) ?
945 STATE_SLEEP : STATE_AWAKE;
946 u32 reg;
947
948 if (state == STATE_SLEEP) {
949 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
950 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
951 rt2x00dev->beacon_int - 10);
952 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
953 libconf->conf->listen_interval - 1);
954 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
955
956 /* We must first disable autowake before it can be enabled */
957 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
958 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
959
960 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
961 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
962
963 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
964 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
965 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
966
967 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
968 } else {
969 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
970 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
971 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
972 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
973 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
974 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
975
976 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
977 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
978 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
979
980 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
981 }
982 }
983
984 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
985 struct rt2x00lib_conf *libconf,
986 const unsigned int flags)
987 {
988 /* Always recalculate LNA gain before changing configuration */
989 rt61pci_config_lna_gain(rt2x00dev, libconf);
990
991 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
992 rt61pci_config_channel(rt2x00dev, &libconf->rf,
993 libconf->conf->power_level);
994 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
995 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
996 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
997 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
998 rt61pci_config_retry_limit(rt2x00dev, libconf);
999 if (flags & IEEE80211_CONF_CHANGE_PS)
1000 rt61pci_config_ps(rt2x00dev, libconf);
1001 }
1002
1003 /*
1004 * Link tuning
1005 */
1006 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1007 struct link_qual *qual)
1008 {
1009 u32 reg;
1010
1011 /*
1012 * Update FCS error count from register.
1013 */
1014 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1015 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1016
1017 /*
1018 * Update False CCA count from register.
1019 */
1020 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1021 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1022 }
1023
1024 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1025 struct link_qual *qual, u8 vgc_level)
1026 {
1027 if (qual->vgc_level != vgc_level) {
1028 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1029 qual->vgc_level = vgc_level;
1030 qual->vgc_level_reg = vgc_level;
1031 }
1032 }
1033
1034 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1035 struct link_qual *qual)
1036 {
1037 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1038 }
1039
1040 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1041 struct link_qual *qual, const u32 count)
1042 {
1043 u8 up_bound;
1044 u8 low_bound;
1045
1046 /*
1047 * Determine r17 bounds.
1048 */
1049 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1050 low_bound = 0x28;
1051 up_bound = 0x48;
1052 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1053 low_bound += 0x10;
1054 up_bound += 0x10;
1055 }
1056 } else {
1057 low_bound = 0x20;
1058 up_bound = 0x40;
1059 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1060 low_bound += 0x10;
1061 up_bound += 0x10;
1062 }
1063 }
1064
1065 /*
1066 * If we are not associated, we should go straight to the
1067 * dynamic CCA tuning.
1068 */
1069 if (!rt2x00dev->intf_associated)
1070 goto dynamic_cca_tune;
1071
1072 /*
1073 * Special big-R17 for very short distance
1074 */
1075 if (qual->rssi >= -35) {
1076 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1077 return;
1078 }
1079
1080 /*
1081 * Special big-R17 for short distance
1082 */
1083 if (qual->rssi >= -58) {
1084 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1085 return;
1086 }
1087
1088 /*
1089 * Special big-R17 for middle-short distance
1090 */
1091 if (qual->rssi >= -66) {
1092 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1093 return;
1094 }
1095
1096 /*
1097 * Special mid-R17 for middle distance
1098 */
1099 if (qual->rssi >= -74) {
1100 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1101 return;
1102 }
1103
1104 /*
1105 * Special case: Change up_bound based on the rssi.
1106 * Lower up_bound when rssi is weaker then -74 dBm.
1107 */
1108 up_bound -= 2 * (-74 - qual->rssi);
1109 if (low_bound > up_bound)
1110 up_bound = low_bound;
1111
1112 if (qual->vgc_level > up_bound) {
1113 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1114 return;
1115 }
1116
1117 dynamic_cca_tune:
1118
1119 /*
1120 * r17 does not yet exceed upper limit, continue and base
1121 * the r17 tuning on the false CCA count.
1122 */
1123 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1124 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1125 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1126 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1127 }
1128
1129 /*
1130 * Firmware functions
1131 */
1132 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1133 {
1134 char *fw_name;
1135
1136 switch (rt2x00dev->chip.rt) {
1137 case RT2561:
1138 fw_name = FIRMWARE_RT2561;
1139 break;
1140 case RT2561s:
1141 fw_name = FIRMWARE_RT2561s;
1142 break;
1143 case RT2661:
1144 fw_name = FIRMWARE_RT2661;
1145 break;
1146 default:
1147 fw_name = NULL;
1148 break;
1149 }
1150
1151 return fw_name;
1152 }
1153
1154 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1155 const u8 *data, const size_t len)
1156 {
1157 u16 fw_crc;
1158 u16 crc;
1159
1160 /*
1161 * Only support 8kb firmware files.
1162 */
1163 if (len != 8192)
1164 return FW_BAD_LENGTH;
1165
1166 /*
1167 * The last 2 bytes in the firmware array are the crc checksum itself.
1168 * This means that we should never pass those 2 bytes to the crc
1169 * algorithm.
1170 */
1171 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1172
1173 /*
1174 * Use the crc itu-t algorithm.
1175 */
1176 crc = crc_itu_t(0, data, len - 2);
1177 crc = crc_itu_t_byte(crc, 0);
1178 crc = crc_itu_t_byte(crc, 0);
1179
1180 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1181 }
1182
1183 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1184 const u8 *data, const size_t len)
1185 {
1186 int i;
1187 u32 reg;
1188
1189 /*
1190 * Wait for stable hardware.
1191 */
1192 for (i = 0; i < 100; i++) {
1193 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1194 if (reg)
1195 break;
1196 msleep(1);
1197 }
1198
1199 if (!reg) {
1200 ERROR(rt2x00dev, "Unstable hardware.\n");
1201 return -EBUSY;
1202 }
1203
1204 /*
1205 * Prepare MCU and mailbox for firmware loading.
1206 */
1207 reg = 0;
1208 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1209 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1210 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1211 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1212 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1213
1214 /*
1215 * Write firmware to device.
1216 */
1217 reg = 0;
1218 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1219 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1220 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1221
1222 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1223 data, len);
1224
1225 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1226 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1227
1228 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1229 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1230
1231 for (i = 0; i < 100; i++) {
1232 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1233 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1234 break;
1235 msleep(1);
1236 }
1237
1238 if (i == 100) {
1239 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1240 return -EBUSY;
1241 }
1242
1243 /*
1244 * Hardware needs another millisecond before it is ready.
1245 */
1246 msleep(1);
1247
1248 /*
1249 * Reset MAC and BBP registers.
1250 */
1251 reg = 0;
1252 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1253 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1254 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1255
1256 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1257 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1258 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1259 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1260
1261 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1262 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1263 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * Initialization functions.
1270 */
1271 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1272 {
1273 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1274 u32 word;
1275
1276 if (entry->queue->qid == QID_RX) {
1277 rt2x00_desc_read(entry_priv->desc, 0, &word);
1278
1279 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1280 } else {
1281 rt2x00_desc_read(entry_priv->desc, 0, &word);
1282
1283 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1284 rt2x00_get_field32(word, TXD_W0_VALID));
1285 }
1286 }
1287
1288 static void rt61pci_clear_entry(struct queue_entry *entry)
1289 {
1290 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1291 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1292 u32 word;
1293
1294 if (entry->queue->qid == QID_RX) {
1295 rt2x00_desc_read(entry_priv->desc, 5, &word);
1296 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1297 skbdesc->skb_dma);
1298 rt2x00_desc_write(entry_priv->desc, 5, word);
1299
1300 rt2x00_desc_read(entry_priv->desc, 0, &word);
1301 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1302 rt2x00_desc_write(entry_priv->desc, 0, word);
1303 } else {
1304 rt2x00_desc_read(entry_priv->desc, 0, &word);
1305 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1306 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1307 rt2x00_desc_write(entry_priv->desc, 0, word);
1308 }
1309 }
1310
1311 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1312 {
1313 struct queue_entry_priv_pci *entry_priv;
1314 u32 reg;
1315
1316 /*
1317 * Initialize registers.
1318 */
1319 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1320 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1321 rt2x00dev->tx[0].limit);
1322 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1323 rt2x00dev->tx[1].limit);
1324 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1325 rt2x00dev->tx[2].limit);
1326 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1327 rt2x00dev->tx[3].limit);
1328 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1329
1330 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1331 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1332 rt2x00dev->tx[0].desc_size / 4);
1333 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1334
1335 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1336 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1337 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1338 entry_priv->desc_dma);
1339 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1340
1341 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1342 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1343 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1344 entry_priv->desc_dma);
1345 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1346
1347 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1348 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1349 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1350 entry_priv->desc_dma);
1351 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1352
1353 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1354 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1355 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1356 entry_priv->desc_dma);
1357 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1358
1359 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1360 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1361 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1362 rt2x00dev->rx->desc_size / 4);
1363 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1364 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1365
1366 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1367 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1368 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1369 entry_priv->desc_dma);
1370 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1371
1372 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1373 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1374 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1375 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1376 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1377 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1378
1379 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1380 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1381 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1382 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1383 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1384 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1385
1386 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1387 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1388 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1389
1390 return 0;
1391 }
1392
1393 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1394 {
1395 u32 reg;
1396
1397 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1398 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1399 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1400 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1401 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1402
1403 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1404 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1405 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1406 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1407 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1408 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1409 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1410 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1411 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1412 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1413
1414 /*
1415 * CCK TXD BBP registers
1416 */
1417 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1418 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1419 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1420 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1421 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1422 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1423 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1424 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1425 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1426 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1427
1428 /*
1429 * OFDM TXD BBP registers
1430 */
1431 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1432 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1433 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1434 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1435 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1436 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1437 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1438 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1439
1440 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1441 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1442 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1443 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1444 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1445 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1446
1447 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1448 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1449 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1450 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1451 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1452 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1453
1454 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1455 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1456 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1457 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1458 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1459 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1460 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1461 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1462
1463 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1464
1465 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1466
1467 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1468 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1469 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1470
1471 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1472
1473 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1474 return -EBUSY;
1475
1476 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1477
1478 /*
1479 * Invalidate all Shared Keys (SEC_CSR0),
1480 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1481 */
1482 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1483 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1484 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1485
1486 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1487 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1488 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1489 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1490
1491 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1492
1493 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1494
1495 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1496
1497 /*
1498 * Clear all beacons
1499 * For the Beacon base registers we only need to clear
1500 * the first byte since that byte contains the VALID and OWNER
1501 * bits which (when set to 0) will invalidate the entire beacon.
1502 */
1503 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1504 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1505 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1506 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1507
1508 /*
1509 * We must clear the error counters.
1510 * These registers are cleared on read,
1511 * so we may pass a useless variable to store the value.
1512 */
1513 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1514 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1515 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1516
1517 /*
1518 * Reset MAC and BBP registers.
1519 */
1520 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1521 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1522 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1523 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1524
1525 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1526 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1527 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1528 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1529
1530 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1531 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1532 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1533
1534 return 0;
1535 }
1536
1537 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1538 {
1539 unsigned int i;
1540 u8 value;
1541
1542 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1543 rt61pci_bbp_read(rt2x00dev, 0, &value);
1544 if ((value != 0xff) && (value != 0x00))
1545 return 0;
1546 udelay(REGISTER_BUSY_DELAY);
1547 }
1548
1549 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1550 return -EACCES;
1551 }
1552
1553 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1554 {
1555 unsigned int i;
1556 u16 eeprom;
1557 u8 reg_id;
1558 u8 value;
1559
1560 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1561 return -EACCES;
1562
1563 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1564 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1565 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1566 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1567 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1568 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1569 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1570 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1571 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1572 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1573 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1574 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1575 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1576 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1577 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1578 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1579 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1580 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1581 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1582 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1583 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1584 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1585 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1586 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1587
1588 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1589 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1590
1591 if (eeprom != 0xffff && eeprom != 0x0000) {
1592 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1593 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1594 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1595 }
1596 }
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Device state switch handlers.
1603 */
1604 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1605 enum dev_state state)
1606 {
1607 u32 reg;
1608
1609 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1610 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1611 (state == STATE_RADIO_RX_OFF) ||
1612 (state == STATE_RADIO_RX_OFF_LINK));
1613 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1614 }
1615
1616 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1617 enum dev_state state)
1618 {
1619 int mask = (state == STATE_RADIO_IRQ_OFF);
1620 u32 reg;
1621
1622 /*
1623 * When interrupts are being enabled, the interrupt registers
1624 * should clear the register to assure a clean state.
1625 */
1626 if (state == STATE_RADIO_IRQ_ON) {
1627 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1628 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1629
1630 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1631 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1632 }
1633
1634 /*
1635 * Only toggle the interrupts bits we are going to use.
1636 * Non-checked interrupt bits are disabled by default.
1637 */
1638 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1639 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1640 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1641 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1642 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1643 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1644
1645 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1646 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1647 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1648 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1649 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1650 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1651 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1652 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1653 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1654 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1655 }
1656
1657 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1658 {
1659 u32 reg;
1660
1661 /*
1662 * Initialize all registers.
1663 */
1664 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1665 rt61pci_init_registers(rt2x00dev) ||
1666 rt61pci_init_bbp(rt2x00dev)))
1667 return -EIO;
1668
1669 /*
1670 * Enable RX.
1671 */
1672 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1673 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1674 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1675
1676 return 0;
1677 }
1678
1679 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1680 {
1681 /*
1682 * Disable power
1683 */
1684 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1685 }
1686
1687 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1688 {
1689 u32 reg;
1690 unsigned int i;
1691 char put_to_sleep;
1692
1693 put_to_sleep = (state != STATE_AWAKE);
1694
1695 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1696 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1697 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1698 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1699
1700 /*
1701 * Device is not guaranteed to be in the requested state yet.
1702 * We must wait until the register indicates that the
1703 * device has entered the correct state.
1704 */
1705 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1706 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1707 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1708 if (state == !put_to_sleep)
1709 return 0;
1710 msleep(10);
1711 }
1712
1713 return -EBUSY;
1714 }
1715
1716 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1717 enum dev_state state)
1718 {
1719 int retval = 0;
1720
1721 switch (state) {
1722 case STATE_RADIO_ON:
1723 retval = rt61pci_enable_radio(rt2x00dev);
1724 break;
1725 case STATE_RADIO_OFF:
1726 rt61pci_disable_radio(rt2x00dev);
1727 break;
1728 case STATE_RADIO_RX_ON:
1729 case STATE_RADIO_RX_ON_LINK:
1730 case STATE_RADIO_RX_OFF:
1731 case STATE_RADIO_RX_OFF_LINK:
1732 rt61pci_toggle_rx(rt2x00dev, state);
1733 break;
1734 case STATE_RADIO_IRQ_ON:
1735 case STATE_RADIO_IRQ_OFF:
1736 rt61pci_toggle_irq(rt2x00dev, state);
1737 break;
1738 case STATE_DEEP_SLEEP:
1739 case STATE_SLEEP:
1740 case STATE_STANDBY:
1741 case STATE_AWAKE:
1742 retval = rt61pci_set_state(rt2x00dev, state);
1743 break;
1744 default:
1745 retval = -ENOTSUPP;
1746 break;
1747 }
1748
1749 if (unlikely(retval))
1750 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1751 state, retval);
1752
1753 return retval;
1754 }
1755
1756 /*
1757 * TX descriptor initialization
1758 */
1759 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1760 struct sk_buff *skb,
1761 struct txentry_desc *txdesc)
1762 {
1763 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1764 __le32 *txd = skbdesc->desc;
1765 u32 word;
1766
1767 /*
1768 * Start writing the descriptor words.
1769 */
1770 rt2x00_desc_read(txd, 1, &word);
1771 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1772 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1773 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1774 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1775 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1776 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1777 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1778 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1779 rt2x00_desc_write(txd, 1, word);
1780
1781 rt2x00_desc_read(txd, 2, &word);
1782 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1783 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1784 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1785 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1786 rt2x00_desc_write(txd, 2, word);
1787
1788 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1789 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1790 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1791 }
1792
1793 rt2x00_desc_read(txd, 5, &word);
1794 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1795 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1796 skbdesc->entry->entry_idx);
1797 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1798 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1799 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1800 rt2x00_desc_write(txd, 5, word);
1801
1802 rt2x00_desc_read(txd, 6, &word);
1803 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1804 skbdesc->skb_dma);
1805 rt2x00_desc_write(txd, 6, word);
1806
1807 if (skbdesc->desc_len > TXINFO_SIZE) {
1808 rt2x00_desc_read(txd, 11, &word);
1809 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1810 rt2x00_desc_write(txd, 11, word);
1811 }
1812
1813 rt2x00_desc_read(txd, 0, &word);
1814 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1815 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1816 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1817 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1818 rt2x00_set_field32(&word, TXD_W0_ACK,
1819 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1820 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1821 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1822 rt2x00_set_field32(&word, TXD_W0_OFDM,
1823 (txdesc->rate_mode == RATE_MODE_OFDM));
1824 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1825 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1826 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1827 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1828 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1829 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1830 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1831 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1832 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1833 rt2x00_set_field32(&word, TXD_W0_BURST,
1834 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1835 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1836 rt2x00_desc_write(txd, 0, word);
1837 }
1838
1839 /*
1840 * TX data initialization
1841 */
1842 static void rt61pci_write_beacon(struct queue_entry *entry)
1843 {
1844 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1845 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1846 unsigned int beacon_base;
1847 u32 reg;
1848
1849 /*
1850 * Disable beaconing while we are reloading the beacon data,
1851 * otherwise we might be sending out invalid data.
1852 */
1853 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1854 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1855 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1856
1857 /*
1858 * Write entire beacon with descriptor to register.
1859 */
1860 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1861 rt2x00pci_register_multiwrite(rt2x00dev,
1862 beacon_base,
1863 skbdesc->desc, skbdesc->desc_len);
1864 rt2x00pci_register_multiwrite(rt2x00dev,
1865 beacon_base + skbdesc->desc_len,
1866 entry->skb->data, entry->skb->len);
1867
1868 /*
1869 * Clean up beacon skb.
1870 */
1871 dev_kfree_skb_any(entry->skb);
1872 entry->skb = NULL;
1873 }
1874
1875 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1876 const enum data_queue_qid queue)
1877 {
1878 u32 reg;
1879
1880 if (queue == QID_BEACON) {
1881 /*
1882 * For Wi-Fi faily generated beacons between participating
1883 * stations. Set TBTT phase adaptive adjustment step to 8us.
1884 */
1885 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1886
1887 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1888 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1889 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1890 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1891 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1892 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1893 }
1894 return;
1895 }
1896
1897 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1898 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1899 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1900 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1901 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1902 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1903 }
1904
1905 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1906 const enum data_queue_qid qid)
1907 {
1908 u32 reg;
1909
1910 if (qid == QID_BEACON) {
1911 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1912 return;
1913 }
1914
1915 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1916 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1917 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1918 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1919 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1920 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1921 }
1922
1923 /*
1924 * RX control handlers
1925 */
1926 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1927 {
1928 u8 offset = rt2x00dev->lna_gain;
1929 u8 lna;
1930
1931 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1932 switch (lna) {
1933 case 3:
1934 offset += 90;
1935 break;
1936 case 2:
1937 offset += 74;
1938 break;
1939 case 1:
1940 offset += 64;
1941 break;
1942 default:
1943 return 0;
1944 }
1945
1946 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1947 if (lna == 3 || lna == 2)
1948 offset += 10;
1949 }
1950
1951 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1952 }
1953
1954 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1955 struct rxdone_entry_desc *rxdesc)
1956 {
1957 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1958 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1959 u32 word0;
1960 u32 word1;
1961
1962 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1963 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1964
1965 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1966 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1967
1968 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1969 rxdesc->cipher =
1970 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1971 rxdesc->cipher_status =
1972 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1973 }
1974
1975 if (rxdesc->cipher != CIPHER_NONE) {
1976 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1977 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1978 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1979
1980 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1981 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1982
1983 /*
1984 * Hardware has stripped IV/EIV data from 802.11 frame during
1985 * decryption. It has provided the data separately but rt2x00lib
1986 * should decide if it should be reinserted.
1987 */
1988 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1989
1990 /*
1991 * FIXME: Legacy driver indicates that the frame does
1992 * contain the Michael Mic. Unfortunately, in rt2x00
1993 * the MIC seems to be missing completely...
1994 */
1995 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1996
1997 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1998 rxdesc->flags |= RX_FLAG_DECRYPTED;
1999 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2000 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2001 }
2002
2003 /*
2004 * Obtain the status about this packet.
2005 * When frame was received with an OFDM bitrate,
2006 * the signal is the PLCP value. If it was received with
2007 * a CCK bitrate the signal is the rate in 100kbit/s.
2008 */
2009 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2010 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2011 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2012
2013 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2014 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2015 else
2016 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2017 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2018 rxdesc->dev_flags |= RXDONE_MY_BSS;
2019 }
2020
2021 /*
2022 * Interrupt functions.
2023 */
2024 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2025 {
2026 struct data_queue *queue;
2027 struct queue_entry *entry;
2028 struct queue_entry *entry_done;
2029 struct queue_entry_priv_pci *entry_priv;
2030 struct txdone_entry_desc txdesc;
2031 u32 word;
2032 u32 reg;
2033 u32 old_reg;
2034 int type;
2035 int index;
2036
2037 /*
2038 * During each loop we will compare the freshly read
2039 * STA_CSR4 register value with the value read from
2040 * the previous loop. If the 2 values are equal then
2041 * we should stop processing because the chance is
2042 * quite big that the device has been unplugged and
2043 * we risk going into an endless loop.
2044 */
2045 old_reg = 0;
2046
2047 while (1) {
2048 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2049 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2050 break;
2051
2052 if (old_reg == reg)
2053 break;
2054 old_reg = reg;
2055
2056 /*
2057 * Skip this entry when it contains an invalid
2058 * queue identication number.
2059 */
2060 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2061 queue = rt2x00queue_get_queue(rt2x00dev, type);
2062 if (unlikely(!queue))
2063 continue;
2064
2065 /*
2066 * Skip this entry when it contains an invalid
2067 * index number.
2068 */
2069 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2070 if (unlikely(index >= queue->limit))
2071 continue;
2072
2073 entry = &queue->entries[index];
2074 entry_priv = entry->priv_data;
2075 rt2x00_desc_read(entry_priv->desc, 0, &word);
2076
2077 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2078 !rt2x00_get_field32(word, TXD_W0_VALID))
2079 return;
2080
2081 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2082 while (entry != entry_done) {
2083 /* Catch up.
2084 * Just report any entries we missed as failed.
2085 */
2086 WARNING(rt2x00dev,
2087 "TX status report missed for entry %d\n",
2088 entry_done->entry_idx);
2089
2090 txdesc.flags = 0;
2091 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2092 txdesc.retry = 0;
2093
2094 rt2x00lib_txdone(entry_done, &txdesc);
2095 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2096 }
2097
2098 /*
2099 * Obtain the status about this packet.
2100 */
2101 txdesc.flags = 0;
2102 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2103 case 0: /* Success, maybe with retry */
2104 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2105 break;
2106 case 6: /* Failure, excessive retries */
2107 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2108 /* Don't break, this is a failed frame! */
2109 default: /* Failure */
2110 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2111 }
2112 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2113
2114 rt2x00lib_txdone(entry, &txdesc);
2115 }
2116 }
2117
2118 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2119 {
2120 struct rt2x00_dev *rt2x00dev = dev_instance;
2121 u32 reg_mcu;
2122 u32 reg;
2123
2124 /*
2125 * Get the interrupt sources & saved to local variable.
2126 * Write register value back to clear pending interrupts.
2127 */
2128 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2129 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2130
2131 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2132 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2133
2134 if (!reg && !reg_mcu)
2135 return IRQ_NONE;
2136
2137 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2138 return IRQ_HANDLED;
2139
2140 /*
2141 * Handle interrupts, walk through all bits
2142 * and run the tasks, the bits are checked in order of
2143 * priority.
2144 */
2145
2146 /*
2147 * 1 - Rx ring done interrupt.
2148 */
2149 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2150 rt2x00pci_rxdone(rt2x00dev);
2151
2152 /*
2153 * 2 - Tx ring done interrupt.
2154 */
2155 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2156 rt61pci_txdone(rt2x00dev);
2157
2158 /*
2159 * 3 - Handle MCU command done.
2160 */
2161 if (reg_mcu)
2162 rt2x00pci_register_write(rt2x00dev,
2163 M2H_CMD_DONE_CSR, 0xffffffff);
2164
2165 return IRQ_HANDLED;
2166 }
2167
2168 /*
2169 * Device probe functions.
2170 */
2171 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2172 {
2173 struct eeprom_93cx6 eeprom;
2174 u32 reg;
2175 u16 word;
2176 u8 *mac;
2177 s8 value;
2178
2179 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2180
2181 eeprom.data = rt2x00dev;
2182 eeprom.register_read = rt61pci_eepromregister_read;
2183 eeprom.register_write = rt61pci_eepromregister_write;
2184 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2185 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2186 eeprom.reg_data_in = 0;
2187 eeprom.reg_data_out = 0;
2188 eeprom.reg_data_clock = 0;
2189 eeprom.reg_chip_select = 0;
2190
2191 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2192 EEPROM_SIZE / sizeof(u16));
2193
2194 /*
2195 * Start validation of the data that has been read.
2196 */
2197 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2198 if (!is_valid_ether_addr(mac)) {
2199 random_ether_addr(mac);
2200 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2201 }
2202
2203 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2204 if (word == 0xffff) {
2205 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2206 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2207 ANTENNA_B);
2208 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2209 ANTENNA_B);
2210 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2211 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2212 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2213 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2214 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2215 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2216 }
2217
2218 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2219 if (word == 0xffff) {
2220 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2221 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2222 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2223 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2224 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2225 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2226 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2227 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2228 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2229 }
2230
2231 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2232 if (word == 0xffff) {
2233 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2234 LED_MODE_DEFAULT);
2235 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2236 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2237 }
2238
2239 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2240 if (word == 0xffff) {
2241 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2242 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2243 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2244 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2245 }
2246
2247 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2248 if (word == 0xffff) {
2249 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2250 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2251 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2252 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2253 } else {
2254 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2255 if (value < -10 || value > 10)
2256 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2257 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2258 if (value < -10 || value > 10)
2259 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2260 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2261 }
2262
2263 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2264 if (word == 0xffff) {
2265 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2266 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2267 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2268 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2269 } else {
2270 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2271 if (value < -10 || value > 10)
2272 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2273 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2274 if (value < -10 || value > 10)
2275 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2276 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2277 }
2278
2279 return 0;
2280 }
2281
2282 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2283 {
2284 u32 reg;
2285 u16 value;
2286 u16 eeprom;
2287
2288 /*
2289 * Read EEPROM word for configuration.
2290 */
2291 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2292
2293 /*
2294 * Identify RF chipset.
2295 */
2296 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2297 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2298 rt2x00_set_chip_rf(rt2x00dev, value, reg);
2299 rt2x00_print_chip(rt2x00dev);
2300
2301 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2302 !rt2x00_rf(rt2x00dev, RF5325) &&
2303 !rt2x00_rf(rt2x00dev, RF2527) &&
2304 !rt2x00_rf(rt2x00dev, RF2529)) {
2305 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2306 return -ENODEV;
2307 }
2308
2309 /*
2310 * Determine number of antennas.
2311 */
2312 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2313 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2314
2315 /*
2316 * Identify default antenna configuration.
2317 */
2318 rt2x00dev->default_ant.tx =
2319 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2320 rt2x00dev->default_ant.rx =
2321 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2322
2323 /*
2324 * Read the Frame type.
2325 */
2326 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2327 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2328
2329 /*
2330 * Detect if this device has a hardware controlled radio.
2331 */
2332 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2333 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2334
2335 /*
2336 * Read frequency offset and RF programming sequence.
2337 */
2338 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2339 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2340 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2341
2342 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2343
2344 /*
2345 * Read external LNA informations.
2346 */
2347 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2348
2349 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2350 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2351 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2352 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2353
2354 /*
2355 * When working with a RF2529 chip without double antenna,
2356 * the antenna settings should be gathered from the NIC
2357 * eeprom word.
2358 */
2359 if (rt2x00_rf(rt2x00dev, RF2529) &&
2360 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2361 rt2x00dev->default_ant.rx =
2362 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2363 rt2x00dev->default_ant.tx =
2364 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2365
2366 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2367 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2368 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2369 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2370 }
2371
2372 /*
2373 * Store led settings, for correct led behaviour.
2374 * If the eeprom value is invalid,
2375 * switch to default led mode.
2376 */
2377 #ifdef CONFIG_RT2X00_LIB_LEDS
2378 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2379 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2380
2381 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2382 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2383 if (value == LED_MODE_SIGNAL_STRENGTH)
2384 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2385 LED_TYPE_QUALITY);
2386
2387 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2388 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2389 rt2x00_get_field16(eeprom,
2390 EEPROM_LED_POLARITY_GPIO_0));
2391 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2392 rt2x00_get_field16(eeprom,
2393 EEPROM_LED_POLARITY_GPIO_1));
2394 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2395 rt2x00_get_field16(eeprom,
2396 EEPROM_LED_POLARITY_GPIO_2));
2397 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2398 rt2x00_get_field16(eeprom,
2399 EEPROM_LED_POLARITY_GPIO_3));
2400 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2401 rt2x00_get_field16(eeprom,
2402 EEPROM_LED_POLARITY_GPIO_4));
2403 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2404 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2405 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2406 rt2x00_get_field16(eeprom,
2407 EEPROM_LED_POLARITY_RDY_G));
2408 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2409 rt2x00_get_field16(eeprom,
2410 EEPROM_LED_POLARITY_RDY_A));
2411 #endif /* CONFIG_RT2X00_LIB_LEDS */
2412
2413 return 0;
2414 }
2415
2416 /*
2417 * RF value list for RF5225 & RF5325
2418 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2419 */
2420 static const struct rf_channel rf_vals_noseq[] = {
2421 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2422 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2423 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2424 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2425 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2426 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2427 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2428 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2429 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2430 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2431 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2432 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2433 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2434 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2435
2436 /* 802.11 UNI / HyperLan 2 */
2437 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2438 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2439 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2440 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2441 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2442 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2443 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2444 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2445
2446 /* 802.11 HyperLan 2 */
2447 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2448 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2449 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2450 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2451 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2452 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2453 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2454 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2455 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2456 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2457
2458 /* 802.11 UNII */
2459 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2460 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2461 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2462 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2463 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2464 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2465
2466 /* MMAC(Japan)J52 ch 34,38,42,46 */
2467 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2468 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2469 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2470 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2471 };
2472
2473 /*
2474 * RF value list for RF5225 & RF5325
2475 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2476 */
2477 static const struct rf_channel rf_vals_seq[] = {
2478 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2479 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2480 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2481 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2482 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2483 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2484 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2485 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2486 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2487 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2488 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2489 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2490 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2491 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2492
2493 /* 802.11 UNI / HyperLan 2 */
2494 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2495 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2496 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2497 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2498 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2499 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2500 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2501 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2502
2503 /* 802.11 HyperLan 2 */
2504 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2505 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2506 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2507 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2508 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2509 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2510 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2511 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2512 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2513 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2514
2515 /* 802.11 UNII */
2516 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2517 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2518 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2519 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2520 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2521 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2522
2523 /* MMAC(Japan)J52 ch 34,38,42,46 */
2524 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2525 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2526 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2527 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2528 };
2529
2530 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2531 {
2532 struct hw_mode_spec *spec = &rt2x00dev->spec;
2533 struct channel_info *info;
2534 char *tx_power;
2535 unsigned int i;
2536
2537 /*
2538 * Disable powersaving as default.
2539 */
2540 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2541
2542 /*
2543 * Initialize all hw fields.
2544 */
2545 rt2x00dev->hw->flags =
2546 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2547 IEEE80211_HW_SIGNAL_DBM |
2548 IEEE80211_HW_SUPPORTS_PS |
2549 IEEE80211_HW_PS_NULLFUNC_STACK;
2550
2551 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2552 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2553 rt2x00_eeprom_addr(rt2x00dev,
2554 EEPROM_MAC_ADDR_0));
2555
2556 /*
2557 * Initialize hw_mode information.
2558 */
2559 spec->supported_bands = SUPPORT_BAND_2GHZ;
2560 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2561
2562 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2563 spec->num_channels = 14;
2564 spec->channels = rf_vals_noseq;
2565 } else {
2566 spec->num_channels = 14;
2567 spec->channels = rf_vals_seq;
2568 }
2569
2570 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2571 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2572 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2573 }
2574
2575 /*
2576 * Create channel information array
2577 */
2578 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2579 if (!info)
2580 return -ENOMEM;
2581
2582 spec->channels_info = info;
2583
2584 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2585 for (i = 0; i < 14; i++)
2586 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2587
2588 if (spec->num_channels > 14) {
2589 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2590 for (i = 14; i < spec->num_channels; i++)
2591 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2592 }
2593
2594 return 0;
2595 }
2596
2597 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2598 {
2599 int retval;
2600
2601 /*
2602 * Disable power saving.
2603 */
2604 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2605
2606 /*
2607 * Allocate eeprom data.
2608 */
2609 retval = rt61pci_validate_eeprom(rt2x00dev);
2610 if (retval)
2611 return retval;
2612
2613 retval = rt61pci_init_eeprom(rt2x00dev);
2614 if (retval)
2615 return retval;
2616
2617 /*
2618 * Initialize hw specifications.
2619 */
2620 retval = rt61pci_probe_hw_mode(rt2x00dev);
2621 if (retval)
2622 return retval;
2623
2624 /*
2625 * This device has multiple filters for control frames,
2626 * but has no a separate filter for PS Poll frames.
2627 */
2628 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2629
2630 /*
2631 * This device requires firmware and DMA mapped skbs.
2632 */
2633 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2634 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2635 if (!modparam_nohwcrypt)
2636 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2637
2638 /*
2639 * Set the rssi offset.
2640 */
2641 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2642
2643 return 0;
2644 }
2645
2646 /*
2647 * IEEE80211 stack callback functions.
2648 */
2649 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2650 const struct ieee80211_tx_queue_params *params)
2651 {
2652 struct rt2x00_dev *rt2x00dev = hw->priv;
2653 struct data_queue *queue;
2654 struct rt2x00_field32 field;
2655 int retval;
2656 u32 reg;
2657 u32 offset;
2658
2659 /*
2660 * First pass the configuration through rt2x00lib, that will
2661 * update the queue settings and validate the input. After that
2662 * we are free to update the registers based on the value
2663 * in the queue parameter.
2664 */
2665 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2666 if (retval)
2667 return retval;
2668
2669 /*
2670 * We only need to perform additional register initialization
2671 * for WMM queues.
2672 */
2673 if (queue_idx >= 4)
2674 return 0;
2675
2676 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2677
2678 /* Update WMM TXOP register */
2679 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2680 field.bit_offset = (queue_idx & 1) * 16;
2681 field.bit_mask = 0xffff << field.bit_offset;
2682
2683 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2684 rt2x00_set_field32(&reg, field, queue->txop);
2685 rt2x00pci_register_write(rt2x00dev, offset, reg);
2686
2687 /* Update WMM registers */
2688 field.bit_offset = queue_idx * 4;
2689 field.bit_mask = 0xf << field.bit_offset;
2690
2691 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2692 rt2x00_set_field32(&reg, field, queue->aifs);
2693 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2694
2695 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2696 rt2x00_set_field32(&reg, field, queue->cw_min);
2697 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2698
2699 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2700 rt2x00_set_field32(&reg, field, queue->cw_max);
2701 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2702
2703 return 0;
2704 }
2705
2706 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2707 {
2708 struct rt2x00_dev *rt2x00dev = hw->priv;
2709 u64 tsf;
2710 u32 reg;
2711
2712 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2713 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2714 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2715 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2716
2717 return tsf;
2718 }
2719
2720 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2721 .tx = rt2x00mac_tx,
2722 .start = rt2x00mac_start,
2723 .stop = rt2x00mac_stop,
2724 .add_interface = rt2x00mac_add_interface,
2725 .remove_interface = rt2x00mac_remove_interface,
2726 .config = rt2x00mac_config,
2727 .configure_filter = rt2x00mac_configure_filter,
2728 .set_tim = rt2x00mac_set_tim,
2729 .set_key = rt2x00mac_set_key,
2730 .get_stats = rt2x00mac_get_stats,
2731 .bss_info_changed = rt2x00mac_bss_info_changed,
2732 .conf_tx = rt61pci_conf_tx,
2733 .get_tsf = rt61pci_get_tsf,
2734 .rfkill_poll = rt2x00mac_rfkill_poll,
2735 };
2736
2737 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2738 .irq_handler = rt61pci_interrupt,
2739 .probe_hw = rt61pci_probe_hw,
2740 .get_firmware_name = rt61pci_get_firmware_name,
2741 .check_firmware = rt61pci_check_firmware,
2742 .load_firmware = rt61pci_load_firmware,
2743 .initialize = rt2x00pci_initialize,
2744 .uninitialize = rt2x00pci_uninitialize,
2745 .get_entry_state = rt61pci_get_entry_state,
2746 .clear_entry = rt61pci_clear_entry,
2747 .set_device_state = rt61pci_set_device_state,
2748 .rfkill_poll = rt61pci_rfkill_poll,
2749 .link_stats = rt61pci_link_stats,
2750 .reset_tuner = rt61pci_reset_tuner,
2751 .link_tuner = rt61pci_link_tuner,
2752 .write_tx_desc = rt61pci_write_tx_desc,
2753 .write_tx_data = rt2x00pci_write_tx_data,
2754 .write_beacon = rt61pci_write_beacon,
2755 .kick_tx_queue = rt61pci_kick_tx_queue,
2756 .kill_tx_queue = rt61pci_kill_tx_queue,
2757 .fill_rxdone = rt61pci_fill_rxdone,
2758 .config_shared_key = rt61pci_config_shared_key,
2759 .config_pairwise_key = rt61pci_config_pairwise_key,
2760 .config_filter = rt61pci_config_filter,
2761 .config_intf = rt61pci_config_intf,
2762 .config_erp = rt61pci_config_erp,
2763 .config_ant = rt61pci_config_ant,
2764 .config = rt61pci_config,
2765 };
2766
2767 static const struct data_queue_desc rt61pci_queue_rx = {
2768 .entry_num = RX_ENTRIES,
2769 .data_size = DATA_FRAME_SIZE,
2770 .desc_size = RXD_DESC_SIZE,
2771 .priv_size = sizeof(struct queue_entry_priv_pci),
2772 };
2773
2774 static const struct data_queue_desc rt61pci_queue_tx = {
2775 .entry_num = TX_ENTRIES,
2776 .data_size = DATA_FRAME_SIZE,
2777 .desc_size = TXD_DESC_SIZE,
2778 .priv_size = sizeof(struct queue_entry_priv_pci),
2779 };
2780
2781 static const struct data_queue_desc rt61pci_queue_bcn = {
2782 .entry_num = 4 * BEACON_ENTRIES,
2783 .data_size = 0, /* No DMA required for beacons */
2784 .desc_size = TXINFO_SIZE,
2785 .priv_size = sizeof(struct queue_entry_priv_pci),
2786 };
2787
2788 static const struct rt2x00_ops rt61pci_ops = {
2789 .name = KBUILD_MODNAME,
2790 .max_sta_intf = 1,
2791 .max_ap_intf = 4,
2792 .eeprom_size = EEPROM_SIZE,
2793 .rf_size = RF_SIZE,
2794 .tx_queues = NUM_TX_QUEUES,
2795 .extra_tx_headroom = 0,
2796 .rx = &rt61pci_queue_rx,
2797 .tx = &rt61pci_queue_tx,
2798 .bcn = &rt61pci_queue_bcn,
2799 .lib = &rt61pci_rt2x00_ops,
2800 .hw = &rt61pci_mac80211_ops,
2801 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2802 .debugfs = &rt61pci_rt2x00debug,
2803 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2804 };
2805
2806 /*
2807 * RT61pci module information.
2808 */
2809 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2810 /* RT2561s */
2811 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2812 /* RT2561 v2 */
2813 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2814 /* RT2661 */
2815 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2816 { 0, }
2817 };
2818
2819 MODULE_AUTHOR(DRV_PROJECT);
2820 MODULE_VERSION(DRV_VERSION);
2821 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2822 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2823 "PCI & PCMCIA chipset based cards");
2824 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2825 MODULE_FIRMWARE(FIRMWARE_RT2561);
2826 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2827 MODULE_FIRMWARE(FIRMWARE_RT2661);
2828 MODULE_LICENSE("GPL");
2829
2830 static struct pci_driver rt61pci_driver = {
2831 .name = KBUILD_MODNAME,
2832 .id_table = rt61pci_device_table,
2833 .probe = rt2x00pci_probe,
2834 .remove = __devexit_p(rt2x00pci_remove),
2835 .suspend = rt2x00pci_suspend,
2836 .resume = rt2x00pci_resume,
2837 };
2838
2839 static int __init rt61pci_init(void)
2840 {
2841 return pci_register_driver(&rt61pci_driver);
2842 }
2843
2844 static void __exit rt61pci_exit(void)
2845 {
2846 pci_unregister_driver(&rt61pci_driver);
2847 }
2848
2849 module_init(rt61pci_init);
2850 module_exit(rt61pci_exit);