]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: restore original beaconing state
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt61pci
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
23 */
24
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38
39 /*
40 * Allow hardware encryption to be disabled.
41 */
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47 * Register access.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
64
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 const unsigned int word, const u8 value)
67 {
68 u32 reg;
69
70 mutex_lock(&rt2x00dev->csr_mutex);
71
72 /*
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
75 */
76 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 reg = 0;
78 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82
83 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
84 }
85
86 mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88
89 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 const unsigned int word, u8 *value)
91 {
92 u32 reg;
93
94 mutex_lock(&rt2x00dev->csr_mutex);
95
96 /*
97 * Wait until the BBP becomes available, afterwards we
98 * can safely write the read request into the register.
99 * After the data has been written, we wait until hardware
100 * returns the correct value, if at any time the register
101 * doesn't become available in time, reg will be 0xffffffff
102 * which means we return 0xff to the caller.
103 */
104 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105 reg = 0;
106 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109
110 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
111
112 WAIT_FOR_BBP(rt2x00dev, &reg);
113 }
114
115 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116
117 mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119
120 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
121 const unsigned int word, const u32 value)
122 {
123 u32 reg;
124
125 mutex_lock(&rt2x00dev->csr_mutex);
126
127 /*
128 * Wait until the RF becomes available, afterwards we
129 * can safely write the new data into the register.
130 */
131 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132 reg = 0;
133 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
134 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
135 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
136 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
137
138 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
139 rt2x00_rf_write(rt2x00dev, word, value);
140 }
141
142 mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144
145 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
146 const u8 command, const u8 token,
147 const u8 arg0, const u8 arg1)
148 {
149 u32 reg;
150
151 mutex_lock(&rt2x00dev->csr_mutex);
152
153 /*
154 * Wait until the MCU becomes available, afterwards we
155 * can safely write the new data into the register.
156 */
157 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
158 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
159 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
162 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
163
164 rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
165 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
166 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
167 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
168 }
169
170 mutex_unlock(&rt2x00dev->csr_mutex);
171
172 }
173
174 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
175 {
176 struct rt2x00_dev *rt2x00dev = eeprom->data;
177 u32 reg;
178
179 rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
180
181 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
182 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
183 eeprom->reg_data_clock =
184 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
185 eeprom->reg_chip_select =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
187 }
188
189 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
190 {
191 struct rt2x00_dev *rt2x00dev = eeprom->data;
192 u32 reg = 0;
193
194 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
195 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
197 !!eeprom->reg_data_clock);
198 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
199 !!eeprom->reg_chip_select);
200
201 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
202 }
203
204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
205 static const struct rt2x00debug rt61pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2x00mmio_register_read,
209 .write = rt2x00mmio_register_write,
210 .flags = RT2X00DEBUGFS_OFFSET,
211 .word_base = CSR_REG_BASE,
212 .word_size = sizeof(u32),
213 .word_count = CSR_REG_SIZE / sizeof(u32),
214 },
215 .eeprom = {
216 .read = rt2x00_eeprom_read,
217 .write = rt2x00_eeprom_write,
218 .word_base = EEPROM_BASE,
219 .word_size = sizeof(u16),
220 .word_count = EEPROM_SIZE / sizeof(u16),
221 },
222 .bbp = {
223 .read = rt61pci_bbp_read,
224 .write = rt61pci_bbp_write,
225 .word_base = BBP_BASE,
226 .word_size = sizeof(u8),
227 .word_count = BBP_SIZE / sizeof(u8),
228 },
229 .rf = {
230 .read = rt2x00_rf_read,
231 .write = rt61pci_rf_write,
232 .word_base = RF_BASE,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
240 {
241 u32 reg;
242
243 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
244 return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
245 }
246
247 #ifdef CONFIG_RT2X00_LIB_LEDS
248 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
249 enum led_brightness brightness)
250 {
251 struct rt2x00_led *led =
252 container_of(led_cdev, struct rt2x00_led, led_dev);
253 unsigned int enabled = brightness != LED_OFF;
254 unsigned int a_mode =
255 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
256 unsigned int bg_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
258
259 if (led->type == LED_TYPE_RADIO) {
260 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
261 MCU_LEDCS_RADIO_STATUS, enabled);
262
263 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
264 (led->rt2x00dev->led_mcu_reg & 0xff),
265 ((led->rt2x00dev->led_mcu_reg >> 8)));
266 } else if (led->type == LED_TYPE_ASSOC) {
267 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
268 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_A_STATUS, a_mode);
271
272 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
273 (led->rt2x00dev->led_mcu_reg & 0xff),
274 ((led->rt2x00dev->led_mcu_reg >> 8)));
275 } else if (led->type == LED_TYPE_QUALITY) {
276 /*
277 * The brightness is divided into 6 levels (0 - 5),
278 * this means we need to convert the brightness
279 * argument into the matching level within that range.
280 */
281 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
282 brightness / (LED_FULL / 6), 0);
283 }
284 }
285
286 static int rt61pci_blink_set(struct led_classdev *led_cdev,
287 unsigned long *delay_on,
288 unsigned long *delay_off)
289 {
290 struct rt2x00_led *led =
291 container_of(led_cdev, struct rt2x00_led, led_dev);
292 u32 reg;
293
294 rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
295 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
296 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
297 rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
298
299 return 0;
300 }
301
302 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
303 struct rt2x00_led *led,
304 enum led_type type)
305 {
306 led->rt2x00dev = rt2x00dev;
307 led->type = type;
308 led->led_dev.brightness_set = rt61pci_brightness_set;
309 led->led_dev.blink_set = rt61pci_blink_set;
310 led->flags = LED_INITIALIZED;
311 }
312 #endif /* CONFIG_RT2X00_LIB_LEDS */
313
314 /*
315 * Configuration handlers.
316 */
317 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
318 struct rt2x00lib_crypto *crypto,
319 struct ieee80211_key_conf *key)
320 {
321 struct hw_key_entry key_entry;
322 struct rt2x00_field32 field;
323 u32 mask;
324 u32 reg;
325
326 if (crypto->cmd == SET_KEY) {
327 /*
328 * rt2x00lib can't determine the correct free
329 * key_idx for shared keys. We have 1 register
330 * with key valid bits. The goal is simple, read
331 * the register, if that is full we have no slots
332 * left.
333 * Note that each BSS is allowed to have up to 4
334 * shared keys, so put a mask over the allowed
335 * entries.
336 */
337 mask = (0xf << crypto->bssidx);
338
339 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
340 reg &= mask;
341
342 if (reg && reg == mask)
343 return -ENOSPC;
344
345 key->hw_key_idx += reg ? ffz(reg) : 0;
346
347 /*
348 * Upload key to hardware
349 */
350 memcpy(key_entry.key, crypto->key,
351 sizeof(key_entry.key));
352 memcpy(key_entry.tx_mic, crypto->tx_mic,
353 sizeof(key_entry.tx_mic));
354 memcpy(key_entry.rx_mic, crypto->rx_mic,
355 sizeof(key_entry.rx_mic));
356
357 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
358 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
359 &key_entry, sizeof(key_entry));
360
361 /*
362 * The cipher types are stored over 2 registers.
363 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
364 * bssidx 1 and 2 keys are stored in SEC_CSR5.
365 * Using the correct defines correctly will cause overhead,
366 * so just calculate the correct offset.
367 */
368 if (key->hw_key_idx < 8) {
369 field.bit_offset = (3 * key->hw_key_idx);
370 field.bit_mask = 0x7 << field.bit_offset;
371
372 rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
373 rt2x00_set_field32(&reg, field, crypto->cipher);
374 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
375 } else {
376 field.bit_offset = (3 * (key->hw_key_idx - 8));
377 field.bit_mask = 0x7 << field.bit_offset;
378
379 rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
380 rt2x00_set_field32(&reg, field, crypto->cipher);
381 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
382 }
383
384 /*
385 * The driver does not support the IV/EIV generation
386 * in hardware. However it doesn't support the IV/EIV
387 * inside the ieee80211 frame either, but requires it
388 * to be provided separately for the descriptor.
389 * rt2x00lib will cut the IV/EIV data out of all frames
390 * given to us by mac80211, but we must tell mac80211
391 * to generate the IV/EIV data.
392 */
393 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
394 }
395
396 /*
397 * SEC_CSR0 contains only single-bit fields to indicate
398 * a particular key is valid. Because using the FIELD32()
399 * defines directly will cause a lot of overhead, we use
400 * a calculation to determine the correct bit directly.
401 */
402 mask = 1 << key->hw_key_idx;
403
404 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
405 if (crypto->cmd == SET_KEY)
406 reg |= mask;
407 else if (crypto->cmd == DISABLE_KEY)
408 reg &= ~mask;
409 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
410
411 return 0;
412 }
413
414 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
415 struct rt2x00lib_crypto *crypto,
416 struct ieee80211_key_conf *key)
417 {
418 struct hw_pairwise_ta_entry addr_entry;
419 struct hw_key_entry key_entry;
420 u32 mask;
421 u32 reg;
422
423 if (crypto->cmd == SET_KEY) {
424 /*
425 * rt2x00lib can't determine the correct free
426 * key_idx for pairwise keys. We have 2 registers
427 * with key valid bits. The goal is simple: read
428 * the first register. If that is full, move to
429 * the next register.
430 * When both registers are full, we drop the key.
431 * Otherwise, we use the first invalid entry.
432 */
433 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
434 if (reg && reg == ~0) {
435 key->hw_key_idx = 32;
436 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
437 if (reg && reg == ~0)
438 return -ENOSPC;
439 }
440
441 key->hw_key_idx += reg ? ffz(reg) : 0;
442
443 /*
444 * Upload key to hardware
445 */
446 memcpy(key_entry.key, crypto->key,
447 sizeof(key_entry.key));
448 memcpy(key_entry.tx_mic, crypto->tx_mic,
449 sizeof(key_entry.tx_mic));
450 memcpy(key_entry.rx_mic, crypto->rx_mic,
451 sizeof(key_entry.rx_mic));
452
453 memset(&addr_entry, 0, sizeof(addr_entry));
454 memcpy(&addr_entry, crypto->address, ETH_ALEN);
455 addr_entry.cipher = crypto->cipher;
456
457 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
458 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
459 &key_entry, sizeof(key_entry));
460
461 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
462 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
463 &addr_entry, sizeof(addr_entry));
464
465 /*
466 * Enable pairwise lookup table for given BSS idx.
467 * Without this, received frames will not be decrypted
468 * by the hardware.
469 */
470 rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
471 reg |= (1 << crypto->bssidx);
472 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
473
474 /*
475 * The driver does not support the IV/EIV generation
476 * in hardware. However it doesn't support the IV/EIV
477 * inside the ieee80211 frame either, but requires it
478 * to be provided separately for the descriptor.
479 * rt2x00lib will cut the IV/EIV data out of all frames
480 * given to us by mac80211, but we must tell mac80211
481 * to generate the IV/EIV data.
482 */
483 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
484 }
485
486 /*
487 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
488 * a particular key is valid. Because using the FIELD32()
489 * defines directly will cause a lot of overhead, we use
490 * a calculation to determine the correct bit directly.
491 */
492 if (key->hw_key_idx < 32) {
493 mask = 1 << key->hw_key_idx;
494
495 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
496 if (crypto->cmd == SET_KEY)
497 reg |= mask;
498 else if (crypto->cmd == DISABLE_KEY)
499 reg &= ~mask;
500 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
501 } else {
502 mask = 1 << (key->hw_key_idx - 32);
503
504 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
505 if (crypto->cmd == SET_KEY)
506 reg |= mask;
507 else if (crypto->cmd == DISABLE_KEY)
508 reg &= ~mask;
509 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
510 }
511
512 return 0;
513 }
514
515 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
516 const unsigned int filter_flags)
517 {
518 u32 reg;
519
520 /*
521 * Start configuration steps.
522 * Note that the version error will always be dropped
523 * and broadcast frames will always be accepted since
524 * there is no filter for it at this time.
525 */
526 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
527 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
528 !(filter_flags & FIF_FCSFAIL));
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
530 !(filter_flags & FIF_PLCPFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
532 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
534 !(filter_flags & FIF_PROMISC_IN_BSS));
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
536 !(filter_flags & FIF_PROMISC_IN_BSS) &&
537 !rt2x00dev->intf_ap_count);
538 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
540 !(filter_flags & FIF_ALLMULTI));
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
543 !(filter_flags & FIF_CONTROL));
544 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
545 }
546
547 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00_intf *intf,
549 struct rt2x00intf_conf *conf,
550 const unsigned int flags)
551 {
552 u32 reg;
553
554 if (flags & CONFIG_UPDATE_TYPE) {
555 /*
556 * Enable synchronisation.
557 */
558 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
559 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
560 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
561 }
562
563 if (flags & CONFIG_UPDATE_MAC) {
564 reg = le32_to_cpu(conf->mac[1]);
565 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
566 conf->mac[1] = cpu_to_le32(reg);
567
568 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
569 conf->mac, sizeof(conf->mac));
570 }
571
572 if (flags & CONFIG_UPDATE_BSSID) {
573 reg = le32_to_cpu(conf->bssid[1]);
574 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
575 conf->bssid[1] = cpu_to_le32(reg);
576
577 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
578 conf->bssid,
579 sizeof(conf->bssid));
580 }
581 }
582
583 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
584 struct rt2x00lib_erp *erp,
585 u32 changed)
586 {
587 u32 reg;
588
589 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
590 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
591 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
592 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
593
594 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
595 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
596 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
597 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
598 !!erp->short_preamble);
599 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
600 }
601
602 if (changed & BSS_CHANGED_BASIC_RATES)
603 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
604 erp->basic_rates);
605
606 if (changed & BSS_CHANGED_BEACON_INT) {
607 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
608 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
609 erp->beacon_int * 16);
610 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
611 }
612
613 if (changed & BSS_CHANGED_ERP_SLOT) {
614 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
615 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
616 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
617
618 rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
620 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
621 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
622 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
623 }
624 }
625
626 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
627 struct antenna_setup *ant)
628 {
629 u8 r3;
630 u8 r4;
631 u8 r77;
632
633 rt61pci_bbp_read(rt2x00dev, 3, &r3);
634 rt61pci_bbp_read(rt2x00dev, 4, &r4);
635 rt61pci_bbp_read(rt2x00dev, 77, &r77);
636
637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
638
639 /*
640 * Configure the RX antenna.
641 */
642 switch (ant->rx) {
643 case ANTENNA_HW_DIVERSITY:
644 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
645 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
646 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
647 break;
648 case ANTENNA_A:
649 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
650 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
651 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
652 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
653 else
654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
655 break;
656 case ANTENNA_B:
657 default:
658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
659 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
660 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
661 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 else
663 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
664 break;
665 }
666
667 rt61pci_bbp_write(rt2x00dev, 77, r77);
668 rt61pci_bbp_write(rt2x00dev, 3, r3);
669 rt61pci_bbp_write(rt2x00dev, 4, r4);
670 }
671
672 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
673 struct antenna_setup *ant)
674 {
675 u8 r3;
676 u8 r4;
677 u8 r77;
678
679 rt61pci_bbp_read(rt2x00dev, 3, &r3);
680 rt61pci_bbp_read(rt2x00dev, 4, &r4);
681 rt61pci_bbp_read(rt2x00dev, 77, &r77);
682
683 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
684 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
685 !rt2x00_has_cap_frame_type(rt2x00dev));
686
687 /*
688 * Configure the RX antenna.
689 */
690 switch (ant->rx) {
691 case ANTENNA_HW_DIVERSITY:
692 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
693 break;
694 case ANTENNA_A:
695 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
696 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
697 break;
698 case ANTENNA_B:
699 default:
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
702 break;
703 }
704
705 rt61pci_bbp_write(rt2x00dev, 77, r77);
706 rt61pci_bbp_write(rt2x00dev, 3, r3);
707 rt61pci_bbp_write(rt2x00dev, 4, r4);
708 }
709
710 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
711 const int p1, const int p2)
712 {
713 u32 reg;
714
715 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
716
717 rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
718 rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
719
720 rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
721 rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
722
723 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
724 }
725
726 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
727 struct antenna_setup *ant)
728 {
729 u8 r3;
730 u8 r4;
731 u8 r77;
732
733 rt61pci_bbp_read(rt2x00dev, 3, &r3);
734 rt61pci_bbp_read(rt2x00dev, 4, &r4);
735 rt61pci_bbp_read(rt2x00dev, 77, &r77);
736
737 /*
738 * Configure the RX antenna.
739 */
740 switch (ant->rx) {
741 case ANTENNA_A:
742 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
743 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
744 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
745 break;
746 case ANTENNA_HW_DIVERSITY:
747 /*
748 * FIXME: Antenna selection for the rf 2529 is very confusing
749 * in the legacy driver. Just default to antenna B until the
750 * legacy code can be properly translated into rt2x00 code.
751 */
752 case ANTENNA_B:
753 default:
754 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
755 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
756 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
757 break;
758 }
759
760 rt61pci_bbp_write(rt2x00dev, 77, r77);
761 rt61pci_bbp_write(rt2x00dev, 3, r3);
762 rt61pci_bbp_write(rt2x00dev, 4, r4);
763 }
764
765 struct antenna_sel {
766 u8 word;
767 /*
768 * value[0] -> non-LNA
769 * value[1] -> LNA
770 */
771 u8 value[2];
772 };
773
774 static const struct antenna_sel antenna_sel_a[] = {
775 { 96, { 0x58, 0x78 } },
776 { 104, { 0x38, 0x48 } },
777 { 75, { 0xfe, 0x80 } },
778 { 86, { 0xfe, 0x80 } },
779 { 88, { 0xfe, 0x80 } },
780 { 35, { 0x60, 0x60 } },
781 { 97, { 0x58, 0x58 } },
782 { 98, { 0x58, 0x58 } },
783 };
784
785 static const struct antenna_sel antenna_sel_bg[] = {
786 { 96, { 0x48, 0x68 } },
787 { 104, { 0x2c, 0x3c } },
788 { 75, { 0xfe, 0x80 } },
789 { 86, { 0xfe, 0x80 } },
790 { 88, { 0xfe, 0x80 } },
791 { 35, { 0x50, 0x50 } },
792 { 97, { 0x48, 0x48 } },
793 { 98, { 0x48, 0x48 } },
794 };
795
796 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
797 struct antenna_setup *ant)
798 {
799 const struct antenna_sel *sel;
800 unsigned int lna;
801 unsigned int i;
802 u32 reg;
803
804 /*
805 * We should never come here because rt2x00lib is supposed
806 * to catch this and send us the correct antenna explicitely.
807 */
808 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
809 ant->tx == ANTENNA_SW_DIVERSITY);
810
811 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
812 sel = antenna_sel_a;
813 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
814 } else {
815 sel = antenna_sel_bg;
816 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
817 }
818
819 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
820 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
821
822 rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
823
824 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
825 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
826 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
827 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
828
829 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
830
831 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
832 rt61pci_config_antenna_5x(rt2x00dev, ant);
833 else if (rt2x00_rf(rt2x00dev, RF2527))
834 rt61pci_config_antenna_2x(rt2x00dev, ant);
835 else if (rt2x00_rf(rt2x00dev, RF2529)) {
836 if (rt2x00_has_cap_double_antenna(rt2x00dev))
837 rt61pci_config_antenna_2x(rt2x00dev, ant);
838 else
839 rt61pci_config_antenna_2529(rt2x00dev, ant);
840 }
841 }
842
843 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
844 struct rt2x00lib_conf *libconf)
845 {
846 u16 eeprom;
847 short lna_gain = 0;
848
849 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
850 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
851 lna_gain += 14;
852
853 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
854 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
855 } else {
856 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
857 lna_gain += 14;
858
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
861 }
862
863 rt2x00dev->lna_gain = lna_gain;
864 }
865
866 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
867 struct rf_channel *rf, const int txpower)
868 {
869 u8 r3;
870 u8 r94;
871 u8 smart;
872
873 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
874 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
875
876 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
877
878 rt61pci_bbp_read(rt2x00dev, 3, &r3);
879 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
880 rt61pci_bbp_write(rt2x00dev, 3, r3);
881
882 r94 = 6;
883 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
884 r94 += txpower - MAX_TXPOWER;
885 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
886 r94 += txpower;
887 rt61pci_bbp_write(rt2x00dev, 94, r94);
888
889 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
890 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
891 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
892 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
893
894 udelay(200);
895
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901 udelay(200);
902
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908 msleep(1);
909 }
910
911 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
912 const int txpower)
913 {
914 struct rf_channel rf;
915
916 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
917 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
918 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
919 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
920
921 rt61pci_config_channel(rt2x00dev, &rf, txpower);
922 }
923
924 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
925 struct rt2x00lib_conf *libconf)
926 {
927 u32 reg;
928
929 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
930 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
931 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
932 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
933 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
934 libconf->conf->long_frame_max_tx_count);
935 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
936 libconf->conf->short_frame_max_tx_count);
937 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
938 }
939
940 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
941 struct rt2x00lib_conf *libconf)
942 {
943 enum dev_state state =
944 (libconf->conf->flags & IEEE80211_CONF_PS) ?
945 STATE_SLEEP : STATE_AWAKE;
946 u32 reg;
947
948 if (state == STATE_SLEEP) {
949 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
950 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
951 rt2x00dev->beacon_int - 10);
952 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
953 libconf->conf->listen_interval - 1);
954 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
955
956 /* We must first disable autowake before it can be enabled */
957 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
958 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
959
960 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
961 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
962
963 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
964 0x00000005);
965 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967
968 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969 } else {
970 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
971 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
976
977 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
978 0x00000007);
979 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
980 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
981
982 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
983 }
984 }
985
986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
987 struct rt2x00lib_conf *libconf,
988 const unsigned int flags)
989 {
990 /* Always recalculate LNA gain before changing configuration */
991 rt61pci_config_lna_gain(rt2x00dev, libconf);
992
993 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
994 rt61pci_config_channel(rt2x00dev, &libconf->rf,
995 libconf->conf->power_level);
996 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
997 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
998 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
999 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000 rt61pci_config_retry_limit(rt2x00dev, libconf);
1001 if (flags & IEEE80211_CONF_CHANGE_PS)
1002 rt61pci_config_ps(rt2x00dev, libconf);
1003 }
1004
1005 /*
1006 * Link tuning
1007 */
1008 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009 struct link_qual *qual)
1010 {
1011 u32 reg;
1012
1013 /*
1014 * Update FCS error count from register.
1015 */
1016 rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1017 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018
1019 /*
1020 * Update False CCA count from register.
1021 */
1022 rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1023 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024 }
1025
1026 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027 struct link_qual *qual, u8 vgc_level)
1028 {
1029 if (qual->vgc_level != vgc_level) {
1030 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031 qual->vgc_level = vgc_level;
1032 qual->vgc_level_reg = vgc_level;
1033 }
1034 }
1035
1036 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037 struct link_qual *qual)
1038 {
1039 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040 }
1041
1042 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043 struct link_qual *qual, const u32 count)
1044 {
1045 u8 up_bound;
1046 u8 low_bound;
1047
1048 /*
1049 * Determine r17 bounds.
1050 */
1051 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052 low_bound = 0x28;
1053 up_bound = 0x48;
1054 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1055 low_bound += 0x10;
1056 up_bound += 0x10;
1057 }
1058 } else {
1059 low_bound = 0x20;
1060 up_bound = 0x40;
1061 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1062 low_bound += 0x10;
1063 up_bound += 0x10;
1064 }
1065 }
1066
1067 /*
1068 * If we are not associated, we should go straight to the
1069 * dynamic CCA tuning.
1070 */
1071 if (!rt2x00dev->intf_associated)
1072 goto dynamic_cca_tune;
1073
1074 /*
1075 * Special big-R17 for very short distance
1076 */
1077 if (qual->rssi >= -35) {
1078 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079 return;
1080 }
1081
1082 /*
1083 * Special big-R17 for short distance
1084 */
1085 if (qual->rssi >= -58) {
1086 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087 return;
1088 }
1089
1090 /*
1091 * Special big-R17 for middle-short distance
1092 */
1093 if (qual->rssi >= -66) {
1094 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095 return;
1096 }
1097
1098 /*
1099 * Special mid-R17 for middle distance
1100 */
1101 if (qual->rssi >= -74) {
1102 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103 return;
1104 }
1105
1106 /*
1107 * Special case: Change up_bound based on the rssi.
1108 * Lower up_bound when rssi is weaker then -74 dBm.
1109 */
1110 up_bound -= 2 * (-74 - qual->rssi);
1111 if (low_bound > up_bound)
1112 up_bound = low_bound;
1113
1114 if (qual->vgc_level > up_bound) {
1115 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116 return;
1117 }
1118
1119 dynamic_cca_tune:
1120
1121 /*
1122 * r17 does not yet exceed upper limit, continue and base
1123 * the r17 tuning on the false CCA count.
1124 */
1125 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129 }
1130
1131 /*
1132 * Queue handlers.
1133 */
1134 static void rt61pci_start_queue(struct data_queue *queue)
1135 {
1136 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137 u32 reg;
1138
1139 switch (queue->qid) {
1140 case QID_RX:
1141 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1144 break;
1145 case QID_BEACON:
1146 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1147 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1151 break;
1152 default:
1153 break;
1154 }
1155 }
1156
1157 static void rt61pci_kick_queue(struct data_queue *queue)
1158 {
1159 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160 u32 reg;
1161
1162 switch (queue->qid) {
1163 case QID_AC_VO:
1164 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167 break;
1168 case QID_AC_VI:
1169 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172 break;
1173 case QID_AC_BE:
1174 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177 break;
1178 case QID_AC_BK:
1179 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182 break;
1183 default:
1184 break;
1185 }
1186 }
1187
1188 static void rt61pci_stop_queue(struct data_queue *queue)
1189 {
1190 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191 u32 reg;
1192
1193 switch (queue->qid) {
1194 case QID_AC_VO:
1195 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198 break;
1199 case QID_AC_VI:
1200 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203 break;
1204 case QID_AC_BE:
1205 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208 break;
1209 case QID_AC_BK:
1210 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213 break;
1214 case QID_RX:
1215 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1218 break;
1219 case QID_BEACON:
1220 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1225
1226 /*
1227 * Wait for possibly running tbtt tasklets.
1228 */
1229 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230 break;
1231 default:
1232 break;
1233 }
1234 }
1235
1236 /*
1237 * Firmware functions
1238 */
1239 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240 {
1241 u16 chip;
1242 char *fw_name;
1243
1244 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245 switch (chip) {
1246 case RT2561_PCI_ID:
1247 fw_name = FIRMWARE_RT2561;
1248 break;
1249 case RT2561s_PCI_ID:
1250 fw_name = FIRMWARE_RT2561s;
1251 break;
1252 case RT2661_PCI_ID:
1253 fw_name = FIRMWARE_RT2661;
1254 break;
1255 default:
1256 fw_name = NULL;
1257 break;
1258 }
1259
1260 return fw_name;
1261 }
1262
1263 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264 const u8 *data, const size_t len)
1265 {
1266 u16 fw_crc;
1267 u16 crc;
1268
1269 /*
1270 * Only support 8kb firmware files.
1271 */
1272 if (len != 8192)
1273 return FW_BAD_LENGTH;
1274
1275 /*
1276 * The last 2 bytes in the firmware array are the crc checksum itself.
1277 * This means that we should never pass those 2 bytes to the crc
1278 * algorithm.
1279 */
1280 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281
1282 /*
1283 * Use the crc itu-t algorithm.
1284 */
1285 crc = crc_itu_t(0, data, len - 2);
1286 crc = crc_itu_t_byte(crc, 0);
1287 crc = crc_itu_t_byte(crc, 0);
1288
1289 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290 }
1291
1292 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293 const u8 *data, const size_t len)
1294 {
1295 int i;
1296 u32 reg;
1297
1298 /*
1299 * Wait for stable hardware.
1300 */
1301 for (i = 0; i < 100; i++) {
1302 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1303 if (reg)
1304 break;
1305 msleep(1);
1306 }
1307
1308 if (!reg) {
1309 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1310 return -EBUSY;
1311 }
1312
1313 /*
1314 * Prepare MCU and mailbox for firmware loading.
1315 */
1316 reg = 0;
1317 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322
1323 /*
1324 * Write firmware to device.
1325 */
1326 reg = 0;
1327 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332 data, len);
1333
1334 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340 for (i = 0; i < 100; i++) {
1341 rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343 break;
1344 msleep(1);
1345 }
1346
1347 if (i == 100) {
1348 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1349 return -EBUSY;
1350 }
1351
1352 /*
1353 * Hardware needs another millisecond before it is ready.
1354 */
1355 msleep(1);
1356
1357 /*
1358 * Reset MAC and BBP registers.
1359 */
1360 reg = 0;
1361 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1364
1365 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1366 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1369
1370 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1371 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374 return 0;
1375 }
1376
1377 /*
1378 * Initialization functions.
1379 */
1380 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381 {
1382 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1383 u32 word;
1384
1385 if (entry->queue->qid == QID_RX) {
1386 rt2x00_desc_read(entry_priv->desc, 0, &word);
1387
1388 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389 } else {
1390 rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393 rt2x00_get_field32(word, TXD_W0_VALID));
1394 }
1395 }
1396
1397 static void rt61pci_clear_entry(struct queue_entry *entry)
1398 {
1399 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1400 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401 u32 word;
1402
1403 if (entry->queue->qid == QID_RX) {
1404 rt2x00_desc_read(entry_priv->desc, 5, &word);
1405 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406 skbdesc->skb_dma);
1407 rt2x00_desc_write(entry_priv->desc, 5, word);
1408
1409 rt2x00_desc_read(entry_priv->desc, 0, &word);
1410 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411 rt2x00_desc_write(entry_priv->desc, 0, word);
1412 } else {
1413 rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416 rt2x00_desc_write(entry_priv->desc, 0, word);
1417 }
1418 }
1419
1420 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421 {
1422 struct queue_entry_priv_mmio *entry_priv;
1423 u32 reg;
1424
1425 /*
1426 * Initialize registers.
1427 */
1428 rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430 rt2x00dev->tx[0].limit);
1431 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432 rt2x00dev->tx[1].limit);
1433 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434 rt2x00dev->tx[2].limit);
1435 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436 rt2x00dev->tx[3].limit);
1437 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438
1439 rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441 rt2x00dev->tx[0].desc_size / 4);
1442 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443
1444 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445 rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447 entry_priv->desc_dma);
1448 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449
1450 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451 rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453 entry_priv->desc_dma);
1454 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455
1456 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457 rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459 entry_priv->desc_dma);
1460 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461
1462 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463 rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465 entry_priv->desc_dma);
1466 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467
1468 rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471 rt2x00dev->rx->desc_size / 4);
1472 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1474
1475 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476 rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478 entry_priv->desc_dma);
1479 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480
1481 rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487
1488 rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494
1495 rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498
1499 return 0;
1500 }
1501
1502 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503 {
1504 u32 reg;
1505
1506 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1511
1512 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1522
1523 /*
1524 * CCK TXD BBP registers
1525 */
1526 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1536
1537 /*
1538 * OFDM TXD BBP registers
1539 */
1540 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1548
1549 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1555
1556 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1562
1563 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1571
1572 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573
1574 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575
1576 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1577 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1579
1580 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581
1582 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583 return -EBUSY;
1584
1585 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586
1587 /*
1588 * Invalidate all Shared Keys (SEC_CSR0),
1589 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590 */
1591 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594
1595 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599
1600 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601
1602 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603
1604 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605
1606 /*
1607 * Clear all beacons
1608 * For the Beacon base registers we only need to clear
1609 * the first byte since that byte contains the VALID and OWNER
1610 * bits which (when set to 0) will invalidate the entire beacon.
1611 */
1612 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616
1617 /*
1618 * We must clear the error counters.
1619 * These registers are cleared on read,
1620 * so we may pass a useless variable to store the value.
1621 */
1622 rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1623 rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1624 rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1625
1626 /*
1627 * Reset MAC and BBP registers.
1628 */
1629 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1630 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1633
1634 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1635 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1638
1639 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1640 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643 return 0;
1644 }
1645
1646 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647 {
1648 unsigned int i;
1649 u8 value;
1650
1651 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652 rt61pci_bbp_read(rt2x00dev, 0, &value);
1653 if ((value != 0xff) && (value != 0x00))
1654 return 0;
1655 udelay(REGISTER_BUSY_DELAY);
1656 }
1657
1658 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1659 return -EACCES;
1660 }
1661
1662 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663 {
1664 unsigned int i;
1665 u16 eeprom;
1666 u8 reg_id;
1667 u8 value;
1668
1669 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670 return -EACCES;
1671
1672 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696
1697 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699
1700 if (eeprom != 0xffff && eeprom != 0x0000) {
1701 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704 }
1705 }
1706
1707 return 0;
1708 }
1709
1710 /*
1711 * Device state switch handlers.
1712 */
1713 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714 enum dev_state state)
1715 {
1716 int mask = (state == STATE_RADIO_IRQ_OFF);
1717 u32 reg;
1718 unsigned long flags;
1719
1720 /*
1721 * When interrupts are being enabled, the interrupt registers
1722 * should clear the register to assure a clean state.
1723 */
1724 if (state == STATE_RADIO_IRQ_ON) {
1725 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727
1728 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1730 }
1731
1732 /*
1733 * Only toggle the interrupts bits we are going to use.
1734 * Non-checked interrupt bits are disabled by default.
1735 */
1736 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737
1738 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745
1746 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757
1758 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759
1760 if (state == STATE_RADIO_IRQ_OFF) {
1761 /*
1762 * Ensure that all tasklets are finished.
1763 */
1764 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766 tasklet_kill(&rt2x00dev->autowake_tasklet);
1767 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768 }
1769 }
1770
1771 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772 {
1773 u32 reg;
1774
1775 /*
1776 * Initialize all registers.
1777 */
1778 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779 rt61pci_init_registers(rt2x00dev) ||
1780 rt61pci_init_bbp(rt2x00dev)))
1781 return -EIO;
1782
1783 /*
1784 * Enable RX.
1785 */
1786 rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789
1790 return 0;
1791 }
1792
1793 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794 {
1795 /*
1796 * Disable power
1797 */
1798 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799 }
1800
1801 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802 {
1803 u32 reg, reg2;
1804 unsigned int i;
1805 char put_to_sleep;
1806
1807 put_to_sleep = (state != STATE_AWAKE);
1808
1809 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1810 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1813
1814 /*
1815 * Device is not guaranteed to be in the requested state yet.
1816 * We must wait until the register indicates that the
1817 * device has entered the correct state.
1818 */
1819 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822 if (state == !put_to_sleep)
1823 return 0;
1824 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1825 msleep(10);
1826 }
1827
1828 return -EBUSY;
1829 }
1830
1831 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832 enum dev_state state)
1833 {
1834 int retval = 0;
1835
1836 switch (state) {
1837 case STATE_RADIO_ON:
1838 retval = rt61pci_enable_radio(rt2x00dev);
1839 break;
1840 case STATE_RADIO_OFF:
1841 rt61pci_disable_radio(rt2x00dev);
1842 break;
1843 case STATE_RADIO_IRQ_ON:
1844 case STATE_RADIO_IRQ_OFF:
1845 rt61pci_toggle_irq(rt2x00dev, state);
1846 break;
1847 case STATE_DEEP_SLEEP:
1848 case STATE_SLEEP:
1849 case STATE_STANDBY:
1850 case STATE_AWAKE:
1851 retval = rt61pci_set_state(rt2x00dev, state);
1852 break;
1853 default:
1854 retval = -ENOTSUPP;
1855 break;
1856 }
1857
1858 if (unlikely(retval))
1859 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1860 state, retval);
1861
1862 return retval;
1863 }
1864
1865 /*
1866 * TX descriptor initialization
1867 */
1868 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869 struct txentry_desc *txdesc)
1870 {
1871 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1873 __le32 *txd = entry_priv->desc;
1874 u32 word;
1875
1876 /*
1877 * Start writing the descriptor words.
1878 */
1879 rt2x00_desc_read(txd, 1, &word);
1880 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888 rt2x00_desc_write(txd, 1, word);
1889
1890 rt2x00_desc_read(txd, 2, &word);
1891 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894 txdesc->u.plcp.length_low);
1895 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896 txdesc->u.plcp.length_high);
1897 rt2x00_desc_write(txd, 2, word);
1898
1899 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902 }
1903
1904 rt2x00_desc_read(txd, 5, &word);
1905 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907 skbdesc->entry->entry_idx);
1908 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911 rt2x00_desc_write(txd, 5, word);
1912
1913 if (entry->queue->qid != QID_BEACON) {
1914 rt2x00_desc_read(txd, 6, &word);
1915 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916 skbdesc->skb_dma);
1917 rt2x00_desc_write(txd, 6, word);
1918
1919 rt2x00_desc_read(txd, 11, &word);
1920 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921 txdesc->length);
1922 rt2x00_desc_write(txd, 11, word);
1923 }
1924
1925 /*
1926 * Writing TXD word 0 must the last to prevent a race condition with
1927 * the device, whereby the device may take hold of the TXD before we
1928 * finished updating it.
1929 */
1930 rt2x00_desc_read(txd, 0, &word);
1931 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935 rt2x00_set_field32(&word, TXD_W0_ACK,
1936 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939 rt2x00_set_field32(&word, TXD_W0_OFDM,
1940 (txdesc->rate_mode == RATE_MODE_OFDM));
1941 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950 rt2x00_set_field32(&word, TXD_W0_BURST,
1951 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953 rt2x00_desc_write(txd, 0, word);
1954
1955 /*
1956 * Register descriptor details in skb frame descriptor.
1957 */
1958 skbdesc->desc = txd;
1959 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960 TXD_DESC_SIZE;
1961 }
1962
1963 /*
1964 * TX data initialization
1965 */
1966 static void rt61pci_write_beacon(struct queue_entry *entry,
1967 struct txentry_desc *txdesc)
1968 {
1969 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1971 unsigned int beacon_base;
1972 unsigned int padding_len;
1973 u32 orig_reg, reg;
1974
1975 /*
1976 * Disable beaconing while we are reloading the beacon data,
1977 * otherwise we might be sending out invalid data.
1978 */
1979 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980 orig_reg = reg;
1981 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1983
1984 /*
1985 * Write the TX descriptor for the beacon.
1986 */
1987 rt61pci_write_tx_desc(entry, txdesc);
1988
1989 /*
1990 * Dump beacon to userspace through debugfs.
1991 */
1992 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993
1994 /*
1995 * Write entire beacon with descriptor and padding to register.
1996 */
1997 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998 if (padding_len && skb_pad(entry->skb, padding_len)) {
1999 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2000 /* skb freed by skb_pad() on failure */
2001 entry->skb = NULL;
2002 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003 return;
2004 }
2005
2006 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2008 entry_priv->desc, TXINFO_SIZE);
2009 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010 entry->skb->data,
2011 entry->skb->len + padding_len);
2012
2013 /*
2014 * Enable beaconing again.
2015 *
2016 * For Wi-Fi faily generated beacons between participating
2017 * stations. Set TBTT phase adaptive adjustment step to 8us.
2018 */
2019 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020
2021 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2023
2024 /*
2025 * Clean up beacon skb.
2026 */
2027 dev_kfree_skb_any(entry->skb);
2028 entry->skb = NULL;
2029 }
2030
2031 static void rt61pci_clear_beacon(struct queue_entry *entry)
2032 {
2033 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034 u32 orig_reg, reg;
2035
2036 /*
2037 * Disable beaconing while we are reloading the beacon data,
2038 * otherwise we might be sending out invalid data.
2039 */
2040 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
2041 reg = orig_reg;
2042 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2043 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2044
2045 /*
2046 * Clear beacon.
2047 */
2048 rt2x00mmio_register_write(rt2x00dev,
2049 HW_BEACON_OFFSET(entry->entry_idx), 0);
2050
2051 /*
2052 * Restore global beaconing state.
2053 */
2054 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2055 }
2056
2057 /*
2058 * RX control handlers
2059 */
2060 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061 {
2062 u8 offset = rt2x00dev->lna_gain;
2063 u8 lna;
2064
2065 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066 switch (lna) {
2067 case 3:
2068 offset += 90;
2069 break;
2070 case 2:
2071 offset += 74;
2072 break;
2073 case 1:
2074 offset += 64;
2075 break;
2076 default:
2077 return 0;
2078 }
2079
2080 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081 if (lna == 3 || lna == 2)
2082 offset += 10;
2083 }
2084
2085 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086 }
2087
2088 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089 struct rxdone_entry_desc *rxdesc)
2090 {
2091 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2093 u32 word0;
2094 u32 word1;
2095
2096 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097 rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098
2099 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101
2102 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104
2105 if (rxdesc->cipher != CIPHER_NONE) {
2106 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109
2110 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112
2113 /*
2114 * Hardware has stripped IV/EIV data from 802.11 frame during
2115 * decryption. It has provided the data separately but rt2x00lib
2116 * should decide if it should be reinserted.
2117 */
2118 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119
2120 /*
2121 * The hardware has already checked the Michael Mic and has
2122 * stripped it from the frame. Signal this to mac80211.
2123 */
2124 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125
2126 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127 rxdesc->flags |= RX_FLAG_DECRYPTED;
2128 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130 }
2131
2132 /*
2133 * Obtain the status about this packet.
2134 * When frame was received with an OFDM bitrate,
2135 * the signal is the PLCP value. If it was received with
2136 * a CCK bitrate the signal is the rate in 100kbit/s.
2137 */
2138 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141
2142 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144 else
2145 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147 rxdesc->dev_flags |= RXDONE_MY_BSS;
2148 }
2149
2150 /*
2151 * Interrupt functions.
2152 */
2153 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154 {
2155 struct data_queue *queue;
2156 struct queue_entry *entry;
2157 struct queue_entry *entry_done;
2158 struct queue_entry_priv_mmio *entry_priv;
2159 struct txdone_entry_desc txdesc;
2160 u32 word;
2161 u32 reg;
2162 int type;
2163 int index;
2164 int i;
2165
2166 /*
2167 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169 * flag is not set anymore.
2170 *
2171 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173 * tx ring size for now.
2174 */
2175 for (i = 0; i < rt2x00dev->tx->limit; i++) {
2176 rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2177 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178 break;
2179
2180 /*
2181 * Skip this entry when it contains an invalid
2182 * queue identication number.
2183 */
2184 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186 if (unlikely(!queue))
2187 continue;
2188
2189 /*
2190 * Skip this entry when it contains an invalid
2191 * index number.
2192 */
2193 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194 if (unlikely(index >= queue->limit))
2195 continue;
2196
2197 entry = &queue->entries[index];
2198 entry_priv = entry->priv_data;
2199 rt2x00_desc_read(entry_priv->desc, 0, &word);
2200
2201 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202 !rt2x00_get_field32(word, TXD_W0_VALID))
2203 return;
2204
2205 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206 while (entry != entry_done) {
2207 /* Catch up.
2208 * Just report any entries we missed as failed.
2209 */
2210 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2211 entry_done->entry_idx);
2212
2213 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215 }
2216
2217 /*
2218 * Obtain the status about this packet.
2219 */
2220 txdesc.flags = 0;
2221 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222 case 0: /* Success, maybe with retry */
2223 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224 break;
2225 case 6: /* Failure, excessive retries */
2226 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227 /* Don't break, this is a failed frame! */
2228 default: /* Failure */
2229 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2230 }
2231 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232
2233 /*
2234 * the frame was retried at least once
2235 * -> hw used fallback rates
2236 */
2237 if (txdesc.retry)
2238 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239
2240 rt2x00lib_txdone(entry, &txdesc);
2241 }
2242 }
2243
2244 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245 {
2246 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2247
2248 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2249 }
2250
2251 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2252 struct rt2x00_field32 irq_field)
2253 {
2254 u32 reg;
2255
2256 /*
2257 * Enable a single interrupt. The interrupt mask register
2258 * access needs locking.
2259 */
2260 spin_lock_irq(&rt2x00dev->irqmask_lock);
2261
2262 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2263 rt2x00_set_field32(&reg, irq_field, 0);
2264 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2265
2266 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2267 }
2268
2269 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2270 struct rt2x00_field32 irq_field)
2271 {
2272 u32 reg;
2273
2274 /*
2275 * Enable a single MCU interrupt. The interrupt mask register
2276 * access needs locking.
2277 */
2278 spin_lock_irq(&rt2x00dev->irqmask_lock);
2279
2280 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2281 rt2x00_set_field32(&reg, irq_field, 0);
2282 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2283
2284 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2285 }
2286
2287 static void rt61pci_txstatus_tasklet(unsigned long data)
2288 {
2289 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2290 rt61pci_txdone(rt2x00dev);
2291 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2292 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2293 }
2294
2295 static void rt61pci_tbtt_tasklet(unsigned long data)
2296 {
2297 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2298 rt2x00lib_beacondone(rt2x00dev);
2299 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2300 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2301 }
2302
2303 static void rt61pci_rxdone_tasklet(unsigned long data)
2304 {
2305 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2306 if (rt2x00mmio_rxdone(rt2x00dev))
2307 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2308 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2309 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2310 }
2311
2312 static void rt61pci_autowake_tasklet(unsigned long data)
2313 {
2314 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2315 rt61pci_wakeup(rt2x00dev);
2316 rt2x00mmio_register_write(rt2x00dev,
2317 M2H_CMD_DONE_CSR, 0xffffffff);
2318 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2319 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2320 }
2321
2322 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2323 {
2324 struct rt2x00_dev *rt2x00dev = dev_instance;
2325 u32 reg_mcu, mask_mcu;
2326 u32 reg, mask;
2327
2328 /*
2329 * Get the interrupt sources & saved to local variable.
2330 * Write register value back to clear pending interrupts.
2331 */
2332 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2333 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2334
2335 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2336 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2337
2338 if (!reg && !reg_mcu)
2339 return IRQ_NONE;
2340
2341 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2342 return IRQ_HANDLED;
2343
2344 /*
2345 * Schedule tasklets for interrupt handling.
2346 */
2347 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2348 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2349
2350 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2351 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2352
2353 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2354 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2355
2356 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2357 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2358
2359 /*
2360 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2361 * for interrupts and interrupt masks we can just use the value of
2362 * INT_SOURCE_CSR to create the interrupt mask.
2363 */
2364 mask = reg;
2365 mask_mcu = reg_mcu;
2366
2367 /*
2368 * Disable all interrupts for which a tasklet was scheduled right now,
2369 * the tasklet will reenable the appropriate interrupts.
2370 */
2371 spin_lock(&rt2x00dev->irqmask_lock);
2372
2373 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2374 reg |= mask;
2375 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2376
2377 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2378 reg |= mask_mcu;
2379 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2380
2381 spin_unlock(&rt2x00dev->irqmask_lock);
2382
2383 return IRQ_HANDLED;
2384 }
2385
2386 /*
2387 * Device probe functions.
2388 */
2389 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2390 {
2391 struct eeprom_93cx6 eeprom;
2392 u32 reg;
2393 u16 word;
2394 u8 *mac;
2395 s8 value;
2396
2397 rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2398
2399 eeprom.data = rt2x00dev;
2400 eeprom.register_read = rt61pci_eepromregister_read;
2401 eeprom.register_write = rt61pci_eepromregister_write;
2402 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2403 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2404 eeprom.reg_data_in = 0;
2405 eeprom.reg_data_out = 0;
2406 eeprom.reg_data_clock = 0;
2407 eeprom.reg_chip_select = 0;
2408
2409 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2410 EEPROM_SIZE / sizeof(u16));
2411
2412 /*
2413 * Start validation of the data that has been read.
2414 */
2415 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2416 if (!is_valid_ether_addr(mac)) {
2417 eth_random_addr(mac);
2418 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2419 }
2420
2421 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2422 if (word == 0xffff) {
2423 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2424 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2425 ANTENNA_B);
2426 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2427 ANTENNA_B);
2428 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2429 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2430 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2431 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2432 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2433 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2434 }
2435
2436 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2437 if (word == 0xffff) {
2438 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2439 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2440 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2441 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2442 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2443 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2444 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2445 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2446 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2447 }
2448
2449 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2450 if (word == 0xffff) {
2451 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2452 LED_MODE_DEFAULT);
2453 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2454 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2455 }
2456
2457 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2458 if (word == 0xffff) {
2459 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2460 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2461 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2462 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2463 }
2464
2465 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2466 if (word == 0xffff) {
2467 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2468 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2469 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2470 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2471 } else {
2472 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2473 if (value < -10 || value > 10)
2474 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2475 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2476 if (value < -10 || value > 10)
2477 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479 }
2480
2481 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2482 if (word == 0xffff) {
2483 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2484 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2485 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2486 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2487 } else {
2488 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2489 if (value < -10 || value > 10)
2490 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2491 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2492 if (value < -10 || value > 10)
2493 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495 }
2496
2497 return 0;
2498 }
2499
2500 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501 {
2502 u32 reg;
2503 u16 value;
2504 u16 eeprom;
2505
2506 /*
2507 * Read EEPROM word for configuration.
2508 */
2509 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2510
2511 /*
2512 * Identify RF chipset.
2513 */
2514 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2515 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2516 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2517 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518
2519 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2520 !rt2x00_rf(rt2x00dev, RF5325) &&
2521 !rt2x00_rf(rt2x00dev, RF2527) &&
2522 !rt2x00_rf(rt2x00dev, RF2529)) {
2523 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2524 return -ENODEV;
2525 }
2526
2527 /*
2528 * Determine number of antennas.
2529 */
2530 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2531 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2532
2533 /*
2534 * Identify default antenna configuration.
2535 */
2536 rt2x00dev->default_ant.tx =
2537 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2538 rt2x00dev->default_ant.rx =
2539 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2540
2541 /*
2542 * Read the Frame type.
2543 */
2544 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2545 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2546
2547 /*
2548 * Detect if this device has a hardware controlled radio.
2549 */
2550 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2551 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2552
2553 /*
2554 * Read frequency offset and RF programming sequence.
2555 */
2556 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2557 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2558 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559
2560 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2561
2562 /*
2563 * Read external LNA informations.
2564 */
2565 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2566
2567 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2568 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2569 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2570 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2571
2572 /*
2573 * When working with a RF2529 chip without double antenna,
2574 * the antenna settings should be gathered from the NIC
2575 * eeprom word.
2576 */
2577 if (rt2x00_rf(rt2x00dev, RF2529) &&
2578 !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2579 rt2x00dev->default_ant.rx =
2580 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2581 rt2x00dev->default_ant.tx =
2582 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583
2584 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2585 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2586 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2587 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2588 }
2589
2590 /*
2591 * Store led settings, for correct led behaviour.
2592 * If the eeprom value is invalid,
2593 * switch to default led mode.
2594 */
2595 #ifdef CONFIG_RT2X00_LIB_LEDS
2596 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2597 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598
2599 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2600 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2601 if (value == LED_MODE_SIGNAL_STRENGTH)
2602 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2603 LED_TYPE_QUALITY);
2604
2605 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2606 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2607 rt2x00_get_field16(eeprom,
2608 EEPROM_LED_POLARITY_GPIO_0));
2609 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2610 rt2x00_get_field16(eeprom,
2611 EEPROM_LED_POLARITY_GPIO_1));
2612 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2613 rt2x00_get_field16(eeprom,
2614 EEPROM_LED_POLARITY_GPIO_2));
2615 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2616 rt2x00_get_field16(eeprom,
2617 EEPROM_LED_POLARITY_GPIO_3));
2618 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2619 rt2x00_get_field16(eeprom,
2620 EEPROM_LED_POLARITY_GPIO_4));
2621 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2622 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2623 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2624 rt2x00_get_field16(eeprom,
2625 EEPROM_LED_POLARITY_RDY_G));
2626 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2627 rt2x00_get_field16(eeprom,
2628 EEPROM_LED_POLARITY_RDY_A));
2629 #endif /* CONFIG_RT2X00_LIB_LEDS */
2630
2631 return 0;
2632 }
2633
2634 /*
2635 * RF value list for RF5225 & RF5325
2636 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637 */
2638 static const struct rf_channel rf_vals_noseq[] = {
2639 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2640 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2641 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2642 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2643 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2644 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2645 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2646 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2647 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2648 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2649 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2650 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2651 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2652 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653
2654 /* 802.11 UNI / HyperLan 2 */
2655 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2656 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2657 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2658 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2659 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2660 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2661 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2662 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663
2664 /* 802.11 HyperLan 2 */
2665 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2666 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2667 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2668 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2669 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2670 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2671 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2672 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2673 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2674 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675
2676 /* 802.11 UNII */
2677 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2678 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2679 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2680 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2681 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2682 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683
2684 /* MMAC(Japan)J52 ch 34,38,42,46 */
2685 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2686 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2687 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2688 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2689 };
2690
2691 /*
2692 * RF value list for RF5225 & RF5325
2693 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694 */
2695 static const struct rf_channel rf_vals_seq[] = {
2696 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2697 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2698 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2699 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2700 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2701 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2702 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2703 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2704 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2705 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2706 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2707 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2708 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2709 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710
2711 /* 802.11 UNI / HyperLan 2 */
2712 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2713 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2714 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2715 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2716 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2717 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2718 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2719 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720
2721 /* 802.11 HyperLan 2 */
2722 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2723 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2724 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2725 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2726 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2727 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2728 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2729 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2730 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2731 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732
2733 /* 802.11 UNII */
2734 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2735 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2736 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2737 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2738 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2739 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740
2741 /* MMAC(Japan)J52 ch 34,38,42,46 */
2742 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2743 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2744 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2745 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746 };
2747
2748 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749 {
2750 struct hw_mode_spec *spec = &rt2x00dev->spec;
2751 struct channel_info *info;
2752 char *tx_power;
2753 unsigned int i;
2754
2755 /*
2756 * Disable powersaving as default.
2757 */
2758 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2759
2760 /*
2761 * Initialize all hw fields.
2762 */
2763 rt2x00dev->hw->flags =
2764 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2765 IEEE80211_HW_SIGNAL_DBM |
2766 IEEE80211_HW_SUPPORTS_PS |
2767 IEEE80211_HW_PS_NULLFUNC_STACK;
2768
2769 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2770 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2771 rt2x00_eeprom_addr(rt2x00dev,
2772 EEPROM_MAC_ADDR_0));
2773
2774 /*
2775 * As rt61 has a global fallback table we cannot specify
2776 * more then one tx rate per frame but since the hw will
2777 * try several rates (based on the fallback table) we should
2778 * initialize max_report_rates to the maximum number of rates
2779 * we are going to try. Otherwise mac80211 will truncate our
2780 * reported tx rates and the rc algortihm will end up with
2781 * incorrect data.
2782 */
2783 rt2x00dev->hw->max_rates = 1;
2784 rt2x00dev->hw->max_report_rates = 7;
2785 rt2x00dev->hw->max_rate_tries = 1;
2786
2787 /*
2788 * Initialize hw_mode information.
2789 */
2790 spec->supported_bands = SUPPORT_BAND_2GHZ;
2791 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2792
2793 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2794 spec->num_channels = 14;
2795 spec->channels = rf_vals_noseq;
2796 } else {
2797 spec->num_channels = 14;
2798 spec->channels = rf_vals_seq;
2799 }
2800
2801 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2802 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2803 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2804 }
2805
2806 /*
2807 * Create channel information array
2808 */
2809 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2810 if (!info)
2811 return -ENOMEM;
2812
2813 spec->channels_info = info;
2814
2815 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2816 for (i = 0; i < 14; i++) {
2817 info[i].max_power = MAX_TXPOWER;
2818 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2819 }
2820
2821 if (spec->num_channels > 14) {
2822 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2823 for (i = 14; i < spec->num_channels; i++) {
2824 info[i].max_power = MAX_TXPOWER;
2825 info[i].default_power1 =
2826 TXPOWER_FROM_DEV(tx_power[i - 14]);
2827 }
2828 }
2829
2830 return 0;
2831 }
2832
2833 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2834 {
2835 int retval;
2836 u32 reg;
2837
2838 /*
2839 * Disable power saving.
2840 */
2841 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2842
2843 /*
2844 * Allocate eeprom data.
2845 */
2846 retval = rt61pci_validate_eeprom(rt2x00dev);
2847 if (retval)
2848 return retval;
2849
2850 retval = rt61pci_init_eeprom(rt2x00dev);
2851 if (retval)
2852 return retval;
2853
2854 /*
2855 * Enable rfkill polling by setting GPIO direction of the
2856 * rfkill switch GPIO pin correctly.
2857 */
2858 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2859 rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2860 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2861
2862 /*
2863 * Initialize hw specifications.
2864 */
2865 retval = rt61pci_probe_hw_mode(rt2x00dev);
2866 if (retval)
2867 return retval;
2868
2869 /*
2870 * This device has multiple filters for control frames,
2871 * but has no a separate filter for PS Poll frames.
2872 */
2873 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2874
2875 /*
2876 * This device requires firmware and DMA mapped skbs.
2877 */
2878 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2879 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2880 if (!modparam_nohwcrypt)
2881 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2882 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2883
2884 /*
2885 * Set the rssi offset.
2886 */
2887 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2888
2889 return 0;
2890 }
2891
2892 /*
2893 * IEEE80211 stack callback functions.
2894 */
2895 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2896 struct ieee80211_vif *vif, u16 queue_idx,
2897 const struct ieee80211_tx_queue_params *params)
2898 {
2899 struct rt2x00_dev *rt2x00dev = hw->priv;
2900 struct data_queue *queue;
2901 struct rt2x00_field32 field;
2902 int retval;
2903 u32 reg;
2904 u32 offset;
2905
2906 /*
2907 * First pass the configuration through rt2x00lib, that will
2908 * update the queue settings and validate the input. After that
2909 * we are free to update the registers based on the value
2910 * in the queue parameter.
2911 */
2912 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2913 if (retval)
2914 return retval;
2915
2916 /*
2917 * We only need to perform additional register initialization
2918 * for WMM queues.
2919 */
2920 if (queue_idx >= 4)
2921 return 0;
2922
2923 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2924
2925 /* Update WMM TXOP register */
2926 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2927 field.bit_offset = (queue_idx & 1) * 16;
2928 field.bit_mask = 0xffff << field.bit_offset;
2929
2930 rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2931 rt2x00_set_field32(&reg, field, queue->txop);
2932 rt2x00mmio_register_write(rt2x00dev, offset, reg);
2933
2934 /* Update WMM registers */
2935 field.bit_offset = queue_idx * 4;
2936 field.bit_mask = 0xf << field.bit_offset;
2937
2938 rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2939 rt2x00_set_field32(&reg, field, queue->aifs);
2940 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2941
2942 rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2943 rt2x00_set_field32(&reg, field, queue->cw_min);
2944 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2945
2946 rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2947 rt2x00_set_field32(&reg, field, queue->cw_max);
2948 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2949
2950 return 0;
2951 }
2952
2953 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2954 {
2955 struct rt2x00_dev *rt2x00dev = hw->priv;
2956 u64 tsf;
2957 u32 reg;
2958
2959 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2960 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2961 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2962 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2963
2964 return tsf;
2965 }
2966
2967 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2968 .tx = rt2x00mac_tx,
2969 .start = rt2x00mac_start,
2970 .stop = rt2x00mac_stop,
2971 .add_interface = rt2x00mac_add_interface,
2972 .remove_interface = rt2x00mac_remove_interface,
2973 .config = rt2x00mac_config,
2974 .configure_filter = rt2x00mac_configure_filter,
2975 .set_key = rt2x00mac_set_key,
2976 .sw_scan_start = rt2x00mac_sw_scan_start,
2977 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2978 .get_stats = rt2x00mac_get_stats,
2979 .bss_info_changed = rt2x00mac_bss_info_changed,
2980 .conf_tx = rt61pci_conf_tx,
2981 .get_tsf = rt61pci_get_tsf,
2982 .rfkill_poll = rt2x00mac_rfkill_poll,
2983 .flush = rt2x00mac_flush,
2984 .set_antenna = rt2x00mac_set_antenna,
2985 .get_antenna = rt2x00mac_get_antenna,
2986 .get_ringparam = rt2x00mac_get_ringparam,
2987 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2988 };
2989
2990 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2991 .irq_handler = rt61pci_interrupt,
2992 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2993 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2994 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2995 .autowake_tasklet = rt61pci_autowake_tasklet,
2996 .probe_hw = rt61pci_probe_hw,
2997 .get_firmware_name = rt61pci_get_firmware_name,
2998 .check_firmware = rt61pci_check_firmware,
2999 .load_firmware = rt61pci_load_firmware,
3000 .initialize = rt2x00mmio_initialize,
3001 .uninitialize = rt2x00mmio_uninitialize,
3002 .get_entry_state = rt61pci_get_entry_state,
3003 .clear_entry = rt61pci_clear_entry,
3004 .set_device_state = rt61pci_set_device_state,
3005 .rfkill_poll = rt61pci_rfkill_poll,
3006 .link_stats = rt61pci_link_stats,
3007 .reset_tuner = rt61pci_reset_tuner,
3008 .link_tuner = rt61pci_link_tuner,
3009 .start_queue = rt61pci_start_queue,
3010 .kick_queue = rt61pci_kick_queue,
3011 .stop_queue = rt61pci_stop_queue,
3012 .flush_queue = rt2x00mmio_flush_queue,
3013 .write_tx_desc = rt61pci_write_tx_desc,
3014 .write_beacon = rt61pci_write_beacon,
3015 .clear_beacon = rt61pci_clear_beacon,
3016 .fill_rxdone = rt61pci_fill_rxdone,
3017 .config_shared_key = rt61pci_config_shared_key,
3018 .config_pairwise_key = rt61pci_config_pairwise_key,
3019 .config_filter = rt61pci_config_filter,
3020 .config_intf = rt61pci_config_intf,
3021 .config_erp = rt61pci_config_erp,
3022 .config_ant = rt61pci_config_ant,
3023 .config = rt61pci_config,
3024 };
3025
3026 static void rt61pci_queue_init(struct data_queue *queue)
3027 {
3028 switch (queue->qid) {
3029 case QID_RX:
3030 queue->limit = 32;
3031 queue->data_size = DATA_FRAME_SIZE;
3032 queue->desc_size = RXD_DESC_SIZE;
3033 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3034 break;
3035
3036 case QID_AC_VO:
3037 case QID_AC_VI:
3038 case QID_AC_BE:
3039 case QID_AC_BK:
3040 queue->limit = 32;
3041 queue->data_size = DATA_FRAME_SIZE;
3042 queue->desc_size = TXD_DESC_SIZE;
3043 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3044 break;
3045
3046 case QID_BEACON:
3047 queue->limit = 4;
3048 queue->data_size = 0; /* No DMA required for beacons */
3049 queue->desc_size = TXINFO_SIZE;
3050 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3051 break;
3052
3053 case QID_ATIM:
3054 /* fallthrough */
3055 default:
3056 BUG();
3057 break;
3058 }
3059 }
3060
3061 static const struct rt2x00_ops rt61pci_ops = {
3062 .name = KBUILD_MODNAME,
3063 .max_ap_intf = 4,
3064 .eeprom_size = EEPROM_SIZE,
3065 .rf_size = RF_SIZE,
3066 .tx_queues = NUM_TX_QUEUES,
3067 .queue_init = rt61pci_queue_init,
3068 .lib = &rt61pci_rt2x00_ops,
3069 .hw = &rt61pci_mac80211_ops,
3070 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3071 .debugfs = &rt61pci_rt2x00debug,
3072 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3073 };
3074
3075 /*
3076 * RT61pci module information.
3077 */
3078 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3079 /* RT2561s */
3080 { PCI_DEVICE(0x1814, 0x0301) },
3081 /* RT2561 v2 */
3082 { PCI_DEVICE(0x1814, 0x0302) },
3083 /* RT2661 */
3084 { PCI_DEVICE(0x1814, 0x0401) },
3085 { 0, }
3086 };
3087
3088 MODULE_AUTHOR(DRV_PROJECT);
3089 MODULE_VERSION(DRV_VERSION);
3090 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3091 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3092 "PCI & PCMCIA chipset based cards");
3093 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3094 MODULE_FIRMWARE(FIRMWARE_RT2561);
3095 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3096 MODULE_FIRMWARE(FIRMWARE_RT2661);
3097 MODULE_LICENSE("GPL");
3098
3099 static int rt61pci_probe(struct pci_dev *pci_dev,
3100 const struct pci_device_id *id)
3101 {
3102 return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3103 }
3104
3105 static struct pci_driver rt61pci_driver = {
3106 .name = KBUILD_MODNAME,
3107 .id_table = rt61pci_device_table,
3108 .probe = rt61pci_probe,
3109 .remove = rt2x00pci_remove,
3110 .suspend = rt2x00pci_suspend,
3111 .resume = rt2x00pci_resume,
3112 };
3113
3114 module_pci_driver(rt61pci_driver);