]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: Determine MY_BSS from descriptor
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38
39 /*
40 * Register access.
41 * BBP and RF register require indirect register access,
42 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
43 * These indirect registers work with busy bits,
44 * and we will try maximal REGISTER_BUSY_COUNT times to access
45 * the register while taking a REGISTER_BUSY_DELAY us delay
46 * between each attampt. When the busy bit is still set at that time,
47 * the access attempt is considered to have failed,
48 * and we will print an error.
49 */
50 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
51 {
52 u32 reg;
53 unsigned int i;
54
55 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
56 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
57 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
58 break;
59 udelay(REGISTER_BUSY_DELAY);
60 }
61
62 return reg;
63 }
64
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 const unsigned int word, const u8 value)
67 {
68 u32 reg;
69
70 /*
71 * Wait until the BBP becomes ready.
72 */
73 reg = rt61pci_bbp_check(rt2x00dev);
74 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
75 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
76 return;
77 }
78
79 /*
80 * Write the data into the BBP.
81 */
82 reg = 0;
83 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
84 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
85 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
86 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
87
88 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 const unsigned int word, u8 *value)
93 {
94 u32 reg;
95
96 /*
97 * Wait until the BBP becomes ready.
98 */
99 reg = rt61pci_bbp_check(rt2x00dev);
100 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
101 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
102 return;
103 }
104
105 /*
106 * Write the request into the BBP.
107 */
108 reg = 0;
109 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
110 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
111 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112
113 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
114
115 /*
116 * Wait until the BBP becomes ready.
117 */
118 reg = rt61pci_bbp_check(rt2x00dev);
119 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
120 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
121 *value = 0xff;
122 return;
123 }
124
125 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
126 }
127
128 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
129 const unsigned int word, const u32 value)
130 {
131 u32 reg;
132 unsigned int i;
133
134 if (!word)
135 return;
136
137 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
138 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
139 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
140 goto rf_write;
141 udelay(REGISTER_BUSY_DELAY);
142 }
143
144 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
145 return;
146
147 rf_write:
148 reg = 0;
149 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
150 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
151 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
152 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
153
154 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
155 rt2x00_rf_write(rt2x00dev, word, value);
156 }
157
158 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
159 const u8 command, const u8 token,
160 const u8 arg0, const u8 arg1)
161 {
162 u32 reg;
163
164 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
165
166 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
167 ERROR(rt2x00dev, "mcu request error. "
168 "Request 0x%02x failed for token 0x%02x.\n",
169 command, token);
170 return;
171 }
172
173 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
174 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
175 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
176 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
177 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
178
179 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
180 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
181 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
182 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
183 }
184
185 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
186 {
187 struct rt2x00_dev *rt2x00dev = eeprom->data;
188 u32 reg;
189
190 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
191
192 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
193 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
194 eeprom->reg_data_clock =
195 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
196 eeprom->reg_chip_select =
197 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
198 }
199
200 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
201 {
202 struct rt2x00_dev *rt2x00dev = eeprom->data;
203 u32 reg = 0;
204
205 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
206 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
207 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
208 !!eeprom->reg_data_clock);
209 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
210 !!eeprom->reg_chip_select);
211
212 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
213 }
214
215 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
216 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
217
218 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
219 const unsigned int word, u32 *data)
220 {
221 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
222 }
223
224 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
225 const unsigned int word, u32 data)
226 {
227 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
228 }
229
230 static const struct rt2x00debug rt61pci_rt2x00debug = {
231 .owner = THIS_MODULE,
232 .csr = {
233 .read = rt61pci_read_csr,
234 .write = rt61pci_write_csr,
235 .word_size = sizeof(u32),
236 .word_count = CSR_REG_SIZE / sizeof(u32),
237 },
238 .eeprom = {
239 .read = rt2x00_eeprom_read,
240 .write = rt2x00_eeprom_write,
241 .word_size = sizeof(u16),
242 .word_count = EEPROM_SIZE / sizeof(u16),
243 },
244 .bbp = {
245 .read = rt61pci_bbp_read,
246 .write = rt61pci_bbp_write,
247 .word_size = sizeof(u8),
248 .word_count = BBP_SIZE / sizeof(u8),
249 },
250 .rf = {
251 .read = rt2x00_rf_read,
252 .write = rt61pci_rf_write,
253 .word_size = sizeof(u32),
254 .word_count = RF_SIZE / sizeof(u32),
255 },
256 };
257 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
258
259 #ifdef CONFIG_RT61PCI_RFKILL
260 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
261 {
262 u32 reg;
263
264 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
265 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
266 }
267 #else
268 #define rt61pci_rfkill_poll NULL
269 #endif /* CONFIG_RT61PCI_RFKILL */
270
271 /*
272 * Configuration handlers.
273 */
274 static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, __le32 *mac)
275 {
276 u32 tmp;
277
278 tmp = le32_to_cpu(mac[1]);
279 rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
280 mac[1] = cpu_to_le32(tmp);
281
282 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
283 (2 * sizeof(__le32)));
284 }
285
286 static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, __le32 *bssid)
287 {
288 u32 tmp;
289
290 tmp = le32_to_cpu(bssid[1]);
291 rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
292 bssid[1] = cpu_to_le32(tmp);
293
294 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, bssid,
295 (2 * sizeof(__le32)));
296 }
297
298 static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
299 const int tsf_sync)
300 {
301 u32 reg;
302
303 /*
304 * Clear current synchronisation setup.
305 * For the Beacon base registers we only need to clear
306 * the first byte since that byte contains the VALID and OWNER
307 * bits which (when set to 0) will invalidate the entire beacon.
308 */
309 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
310 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
311 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
312 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
313 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
314
315 /*
316 * Enable synchronisation.
317 */
318 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
319 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
320 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE,
321 (tsf_sync == TSF_SYNC_BEACON));
322 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
323 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, tsf_sync);
324 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
325 }
326
327 static void rt61pci_config_preamble(struct rt2x00_dev *rt2x00dev,
328 const int short_preamble,
329 const int ack_timeout,
330 const int ack_consume_time)
331 {
332 u32 reg;
333
334 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
335 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout);
336 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
337
338 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
339 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
340 !!short_preamble);
341 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
342 }
343
344 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
345 const int basic_rate_mask)
346 {
347 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
348 }
349
350 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
351 struct rf_channel *rf, const int txpower)
352 {
353 u8 r3;
354 u8 r94;
355 u8 smart;
356
357 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
358 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
359
360 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
361 rt2x00_rf(&rt2x00dev->chip, RF2527));
362
363 rt61pci_bbp_read(rt2x00dev, 3, &r3);
364 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
365 rt61pci_bbp_write(rt2x00dev, 3, r3);
366
367 r94 = 6;
368 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
369 r94 += txpower - MAX_TXPOWER;
370 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
371 r94 += txpower;
372 rt61pci_bbp_write(rt2x00dev, 94, r94);
373
374 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
375 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
376 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
377 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
378
379 udelay(200);
380
381 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
382 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
383 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
384 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
385
386 udelay(200);
387
388 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
389 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
390 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
391 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
392
393 msleep(1);
394 }
395
396 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
397 const int txpower)
398 {
399 struct rf_channel rf;
400
401 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
402 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
403 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
404 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
405
406 rt61pci_config_channel(rt2x00dev, &rf, txpower);
407 }
408
409 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
410 struct antenna_setup *ant)
411 {
412 u8 r3;
413 u8 r4;
414 u8 r77;
415
416 rt61pci_bbp_read(rt2x00dev, 3, &r3);
417 rt61pci_bbp_read(rt2x00dev, 4, &r4);
418 rt61pci_bbp_read(rt2x00dev, 77, &r77);
419
420 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
421 rt2x00_rf(&rt2x00dev->chip, RF5325));
422
423 /*
424 * Configure the RX antenna.
425 */
426 switch (ant->rx) {
427 case ANTENNA_HW_DIVERSITY:
428 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
429 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
430 (rt2x00dev->curr_hwmode != HWMODE_A));
431 break;
432 case ANTENNA_A:
433 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
434 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
435 if (rt2x00dev->curr_hwmode == HWMODE_A)
436 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
437 else
438 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
439 break;
440 case ANTENNA_SW_DIVERSITY:
441 /*
442 * NOTE: We should never come here because rt2x00lib is
443 * supposed to catch this and send us the correct antenna
444 * explicitely. However we are nog going to bug about this.
445 * Instead, just default to antenna B.
446 */
447 case ANTENNA_B:
448 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
449 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
450 if (rt2x00dev->curr_hwmode == HWMODE_A)
451 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
452 else
453 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
454 break;
455 }
456
457 rt61pci_bbp_write(rt2x00dev, 77, r77);
458 rt61pci_bbp_write(rt2x00dev, 3, r3);
459 rt61pci_bbp_write(rt2x00dev, 4, r4);
460 }
461
462 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
463 struct antenna_setup *ant)
464 {
465 u8 r3;
466 u8 r4;
467 u8 r77;
468
469 rt61pci_bbp_read(rt2x00dev, 3, &r3);
470 rt61pci_bbp_read(rt2x00dev, 4, &r4);
471 rt61pci_bbp_read(rt2x00dev, 77, &r77);
472
473 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
474 rt2x00_rf(&rt2x00dev->chip, RF2529));
475 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
476 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
477
478 /*
479 * Configure the RX antenna.
480 */
481 switch (ant->rx) {
482 case ANTENNA_HW_DIVERSITY:
483 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
484 break;
485 case ANTENNA_A:
486 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
487 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
488 break;
489 case ANTENNA_SW_DIVERSITY:
490 /*
491 * NOTE: We should never come here because rt2x00lib is
492 * supposed to catch this and send us the correct antenna
493 * explicitely. However we are nog going to bug about this.
494 * Instead, just default to antenna B.
495 */
496 case ANTENNA_B:
497 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
498 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
499 break;
500 }
501
502 rt61pci_bbp_write(rt2x00dev, 77, r77);
503 rt61pci_bbp_write(rt2x00dev, 3, r3);
504 rt61pci_bbp_write(rt2x00dev, 4, r4);
505 }
506
507 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
508 const int p1, const int p2)
509 {
510 u32 reg;
511
512 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
513
514 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
515 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
516
517 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
518 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
519
520 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
521 }
522
523 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
524 struct antenna_setup *ant)
525 {
526 u8 r3;
527 u8 r4;
528 u8 r77;
529
530 rt61pci_bbp_read(rt2x00dev, 3, &r3);
531 rt61pci_bbp_read(rt2x00dev, 4, &r4);
532 rt61pci_bbp_read(rt2x00dev, 77, &r77);
533
534 /* FIXME: Antenna selection for the rf 2529 is very confusing in the
535 * legacy driver. The code below should be ok for non-diversity setups.
536 */
537
538 /*
539 * Configure the RX antenna.
540 */
541 switch (ant->rx) {
542 case ANTENNA_A:
543 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
544 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
545 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
546 break;
547 case ANTENNA_SW_DIVERSITY:
548 case ANTENNA_HW_DIVERSITY:
549 /*
550 * NOTE: We should never come here because rt2x00lib is
551 * supposed to catch this and send us the correct antenna
552 * explicitely. However we are nog going to bug about this.
553 * Instead, just default to antenna B.
554 */
555 case ANTENNA_B:
556 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
557 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
558 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
559 break;
560 }
561
562 rt61pci_bbp_write(rt2x00dev, 77, r77);
563 rt61pci_bbp_write(rt2x00dev, 3, r3);
564 rt61pci_bbp_write(rt2x00dev, 4, r4);
565 }
566
567 struct antenna_sel {
568 u8 word;
569 /*
570 * value[0] -> non-LNA
571 * value[1] -> LNA
572 */
573 u8 value[2];
574 };
575
576 static const struct antenna_sel antenna_sel_a[] = {
577 { 96, { 0x58, 0x78 } },
578 { 104, { 0x38, 0x48 } },
579 { 75, { 0xfe, 0x80 } },
580 { 86, { 0xfe, 0x80 } },
581 { 88, { 0xfe, 0x80 } },
582 { 35, { 0x60, 0x60 } },
583 { 97, { 0x58, 0x58 } },
584 { 98, { 0x58, 0x58 } },
585 };
586
587 static const struct antenna_sel antenna_sel_bg[] = {
588 { 96, { 0x48, 0x68 } },
589 { 104, { 0x2c, 0x3c } },
590 { 75, { 0xfe, 0x80 } },
591 { 86, { 0xfe, 0x80 } },
592 { 88, { 0xfe, 0x80 } },
593 { 35, { 0x50, 0x50 } },
594 { 97, { 0x48, 0x48 } },
595 { 98, { 0x48, 0x48 } },
596 };
597
598 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
599 struct antenna_setup *ant)
600 {
601 const struct antenna_sel *sel;
602 unsigned int lna;
603 unsigned int i;
604 u32 reg;
605
606 if (rt2x00dev->curr_hwmode == HWMODE_A) {
607 sel = antenna_sel_a;
608 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
609 } else {
610 sel = antenna_sel_bg;
611 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
612 }
613
614 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
615 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
616
617 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
618
619 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
620 (rt2x00dev->curr_hwmode == HWMODE_B ||
621 rt2x00dev->curr_hwmode == HWMODE_G));
622 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
623 (rt2x00dev->curr_hwmode == HWMODE_A));
624
625 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
626
627 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
628 rt2x00_rf(&rt2x00dev->chip, RF5325))
629 rt61pci_config_antenna_5x(rt2x00dev, ant);
630 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
631 rt61pci_config_antenna_2x(rt2x00dev, ant);
632 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
633 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
634 rt61pci_config_antenna_2x(rt2x00dev, ant);
635 else
636 rt61pci_config_antenna_2529(rt2x00dev, ant);
637 }
638 }
639
640 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
641 struct rt2x00lib_conf *libconf)
642 {
643 u32 reg;
644
645 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
646 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
647 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
648
649 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
650 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
651 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
652 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
653 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
654
655 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
656 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
657 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
658
659 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
660 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
661 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
662
663 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
664 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
665 libconf->conf->beacon_int * 16);
666 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
667 }
668
669 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
670 const unsigned int flags,
671 struct rt2x00lib_conf *libconf)
672 {
673 if (flags & CONFIG_UPDATE_PHYMODE)
674 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
675 if (flags & CONFIG_UPDATE_CHANNEL)
676 rt61pci_config_channel(rt2x00dev, &libconf->rf,
677 libconf->conf->power_level);
678 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
679 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
680 if (flags & CONFIG_UPDATE_ANTENNA)
681 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
682 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
683 rt61pci_config_duration(rt2x00dev, libconf);
684 }
685
686 /*
687 * LED functions.
688 */
689 static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
690 {
691 u32 reg;
692 u8 arg0;
693 u8 arg1;
694
695 rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
696 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
697 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
698 rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
699
700 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_RADIO_STATUS, 1);
701 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LINK_A_STATUS,
702 (rt2x00dev->rx_status.phymode == MODE_IEEE80211A));
703 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LINK_BG_STATUS,
704 (rt2x00dev->rx_status.phymode != MODE_IEEE80211A));
705
706 arg0 = rt2x00dev->led_reg & 0xff;
707 arg1 = (rt2x00dev->led_reg >> 8) & 0xff;
708
709 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
710 }
711
712 static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
713 {
714 u16 led_reg;
715 u8 arg0;
716 u8 arg1;
717
718 led_reg = rt2x00dev->led_reg;
719 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
720 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
721 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
722
723 arg0 = led_reg & 0xff;
724 arg1 = (led_reg >> 8) & 0xff;
725
726 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
727 }
728
729 static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
730 {
731 u8 led;
732
733 if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
734 return;
735
736 /*
737 * Led handling requires a positive value for the rssi,
738 * to do that correctly we need to add the correction.
739 */
740 rssi += rt2x00dev->rssi_offset;
741
742 if (rssi <= 30)
743 led = 0;
744 else if (rssi <= 39)
745 led = 1;
746 else if (rssi <= 49)
747 led = 2;
748 else if (rssi <= 53)
749 led = 3;
750 else if (rssi <= 63)
751 led = 4;
752 else
753 led = 5;
754
755 rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
756 }
757
758 /*
759 * Link tuning
760 */
761 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
762 struct link_qual *qual)
763 {
764 u32 reg;
765
766 /*
767 * Update FCS error count from register.
768 */
769 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
770 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
771
772 /*
773 * Update False CCA count from register.
774 */
775 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
776 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
777 }
778
779 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
780 {
781 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
782 rt2x00dev->link.vgc_level = 0x20;
783 }
784
785 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
786 {
787 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
788 u8 r17;
789 u8 up_bound;
790 u8 low_bound;
791
792 /*
793 * Update Led strength
794 */
795 rt61pci_activity_led(rt2x00dev, rssi);
796
797 rt61pci_bbp_read(rt2x00dev, 17, &r17);
798
799 /*
800 * Determine r17 bounds.
801 */
802 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
803 low_bound = 0x28;
804 up_bound = 0x48;
805 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
806 low_bound += 0x10;
807 up_bound += 0x10;
808 }
809 } else {
810 low_bound = 0x20;
811 up_bound = 0x40;
812 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
813 low_bound += 0x10;
814 up_bound += 0x10;
815 }
816 }
817
818 /*
819 * Special big-R17 for very short distance
820 */
821 if (rssi >= -35) {
822 if (r17 != 0x60)
823 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
824 return;
825 }
826
827 /*
828 * Special big-R17 for short distance
829 */
830 if (rssi >= -58) {
831 if (r17 != up_bound)
832 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
833 return;
834 }
835
836 /*
837 * Special big-R17 for middle-short distance
838 */
839 if (rssi >= -66) {
840 low_bound += 0x10;
841 if (r17 != low_bound)
842 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
843 return;
844 }
845
846 /*
847 * Special mid-R17 for middle distance
848 */
849 if (rssi >= -74) {
850 low_bound += 0x08;
851 if (r17 != low_bound)
852 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
853 return;
854 }
855
856 /*
857 * Special case: Change up_bound based on the rssi.
858 * Lower up_bound when rssi is weaker then -74 dBm.
859 */
860 up_bound -= 2 * (-74 - rssi);
861 if (low_bound > up_bound)
862 up_bound = low_bound;
863
864 if (r17 > up_bound) {
865 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
866 return;
867 }
868
869 /*
870 * r17 does not yet exceed upper limit, continue and base
871 * the r17 tuning on the false CCA count.
872 */
873 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
874 if (++r17 > up_bound)
875 r17 = up_bound;
876 rt61pci_bbp_write(rt2x00dev, 17, r17);
877 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
878 if (--r17 < low_bound)
879 r17 = low_bound;
880 rt61pci_bbp_write(rt2x00dev, 17, r17);
881 }
882 }
883
884 /*
885 * Firmware name function.
886 */
887 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
888 {
889 char *fw_name;
890
891 switch (rt2x00dev->chip.rt) {
892 case RT2561:
893 fw_name = FIRMWARE_RT2561;
894 break;
895 case RT2561s:
896 fw_name = FIRMWARE_RT2561s;
897 break;
898 case RT2661:
899 fw_name = FIRMWARE_RT2661;
900 break;
901 default:
902 fw_name = NULL;
903 break;
904 }
905
906 return fw_name;
907 }
908
909 /*
910 * Initialization functions.
911 */
912 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
913 const size_t len)
914 {
915 int i;
916 u32 reg;
917
918 /*
919 * Wait for stable hardware.
920 */
921 for (i = 0; i < 100; i++) {
922 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
923 if (reg)
924 break;
925 msleep(1);
926 }
927
928 if (!reg) {
929 ERROR(rt2x00dev, "Unstable hardware.\n");
930 return -EBUSY;
931 }
932
933 /*
934 * Prepare MCU and mailbox for firmware loading.
935 */
936 reg = 0;
937 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
938 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
939 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
940 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
941 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
942
943 /*
944 * Write firmware to device.
945 */
946 reg = 0;
947 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
948 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
949 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
950
951 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
952 data, len);
953
954 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
955 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
956
957 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
958 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
959
960 for (i = 0; i < 100; i++) {
961 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
962 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
963 break;
964 msleep(1);
965 }
966
967 if (i == 100) {
968 ERROR(rt2x00dev, "MCU Control register not ready.\n");
969 return -EBUSY;
970 }
971
972 /*
973 * Reset MAC and BBP registers.
974 */
975 reg = 0;
976 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
977 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
978 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
979
980 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
981 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
982 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
983 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
984
985 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
986 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
987 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
988
989 return 0;
990 }
991
992 static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
993 {
994 struct data_ring *ring = rt2x00dev->rx;
995 __le32 *rxd;
996 unsigned int i;
997 u32 word;
998
999 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1000
1001 for (i = 0; i < ring->stats.limit; i++) {
1002 rxd = ring->entry[i].priv;
1003
1004 rt2x00_desc_read(rxd, 5, &word);
1005 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1006 ring->entry[i].data_dma);
1007 rt2x00_desc_write(rxd, 5, word);
1008
1009 rt2x00_desc_read(rxd, 0, &word);
1010 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1011 rt2x00_desc_write(rxd, 0, word);
1012 }
1013
1014 rt2x00_ring_index_clear(rt2x00dev->rx);
1015 }
1016
1017 static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
1018 {
1019 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1020 __le32 *txd;
1021 unsigned int i;
1022 u32 word;
1023
1024 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1025
1026 for (i = 0; i < ring->stats.limit; i++) {
1027 txd = ring->entry[i].priv;
1028
1029 rt2x00_desc_read(txd, 1, &word);
1030 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1031 rt2x00_desc_write(txd, 1, word);
1032
1033 rt2x00_desc_read(txd, 5, &word);
1034 rt2x00_set_field32(&word, TXD_W5_PID_TYPE,
1035 ring->queue_idx);
1036 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1037 ring->entry[i].entry_idx);
1038 rt2x00_desc_write(txd, 5, word);
1039
1040 rt2x00_desc_read(txd, 6, &word);
1041 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1042 ring->entry[i].data_dma);
1043 rt2x00_desc_write(txd, 6, word);
1044
1045 rt2x00_desc_read(txd, 0, &word);
1046 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1047 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1048 rt2x00_desc_write(txd, 0, word);
1049 }
1050
1051 rt2x00_ring_index_clear(ring);
1052 }
1053
1054 static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
1055 {
1056 u32 reg;
1057
1058 /*
1059 * Initialize rings.
1060 */
1061 rt61pci_init_rxring(rt2x00dev);
1062 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1063 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1064 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
1065 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
1066 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
1067
1068 /*
1069 * Initialize registers.
1070 */
1071 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1072 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1073 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
1074 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1075 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
1076 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1077 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
1078 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1079 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
1080 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1081
1082 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1083 rt2x00_set_field32(&reg, TX_RING_CSR1_MGMT_RING_SIZE,
1084 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
1085 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1086 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
1087 4);
1088 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1089
1090 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1091 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1092 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
1093 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1094
1095 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1096 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1097 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
1098 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1099
1100 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1101 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1102 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
1103 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1104
1105 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1106 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1107 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
1108 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1109
1110 rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, &reg);
1111 rt2x00_set_field32(&reg, MGMT_BASE_CSR_RING_REGISTER,
1112 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
1113 rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
1114
1115 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1116 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE,
1117 rt2x00dev->rx->stats.limit);
1118 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1119 rt2x00dev->rx->desc_size / 4);
1120 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1121 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1122
1123 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1124 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1125 rt2x00dev->rx->data_dma);
1126 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1127
1128 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1129 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1130 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1131 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1132 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1133 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_MGMT, 0);
1134 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1135
1136 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1137 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1138 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1139 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1140 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1141 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
1142 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1143
1144 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1145 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1146 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1147
1148 return 0;
1149 }
1150
1151 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1152 {
1153 u32 reg;
1154
1155 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1156 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1157 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1158 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1159 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1160
1161 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1162 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1163 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1164 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1165 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1166 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1167 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1168 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1169 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1170 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1171
1172 /*
1173 * CCK TXD BBP registers
1174 */
1175 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1176 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1177 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1178 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1179 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1180 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1181 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1182 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1183 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1184 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1185
1186 /*
1187 * OFDM TXD BBP registers
1188 */
1189 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1190 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1191 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1192 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1193 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1194 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1195 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1196 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1197
1198 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1199 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1200 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1201 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1202 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1203 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1204
1205 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1206 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1207 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1208 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1209 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1210 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1211
1212 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1213
1214 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1215
1216 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1217 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1218 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1219
1220 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1221
1222 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1223 return -EBUSY;
1224
1225 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1226
1227 /*
1228 * Invalidate all Shared Keys (SEC_CSR0),
1229 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1230 */
1231 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1232 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1233 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1234
1235 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1236 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1237 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1238 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1239
1240 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1241
1242 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1243
1244 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1245
1246 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1247 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1248 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1249 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1250
1251 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1252 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1253 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1254 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1255
1256 /*
1257 * We must clear the error counters.
1258 * These registers are cleared on read,
1259 * so we may pass a useless variable to store the value.
1260 */
1261 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1262 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1263 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1264
1265 /*
1266 * Reset MAC and BBP registers.
1267 */
1268 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1269 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1270 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1271 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1272
1273 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1274 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1275 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1276 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1279 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1280 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1281
1282 return 0;
1283 }
1284
1285 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1286 {
1287 unsigned int i;
1288 u16 eeprom;
1289 u8 reg_id;
1290 u8 value;
1291
1292 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1293 rt61pci_bbp_read(rt2x00dev, 0, &value);
1294 if ((value != 0xff) && (value != 0x00))
1295 goto continue_csr_init;
1296 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1297 udelay(REGISTER_BUSY_DELAY);
1298 }
1299
1300 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1301 return -EACCES;
1302
1303 continue_csr_init:
1304 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1305 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1306 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1307 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1308 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1309 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1310 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1311 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1312 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1313 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1314 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1315 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1316 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1317 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1318 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1319 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1320 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1321 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1322 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1323 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1324 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1325 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1326 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1327 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1328
1329 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1330 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1331 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1332
1333 if (eeprom != 0xffff && eeprom != 0x0000) {
1334 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1335 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1336 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1337 reg_id, value);
1338 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1339 }
1340 }
1341 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1342
1343 return 0;
1344 }
1345
1346 /*
1347 * Device state switch handlers.
1348 */
1349 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1350 enum dev_state state)
1351 {
1352 u32 reg;
1353
1354 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1355 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1356 state == STATE_RADIO_RX_OFF);
1357 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1358 }
1359
1360 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1361 enum dev_state state)
1362 {
1363 int mask = (state == STATE_RADIO_IRQ_OFF);
1364 u32 reg;
1365
1366 /*
1367 * When interrupts are being enabled, the interrupt registers
1368 * should clear the register to assure a clean state.
1369 */
1370 if (state == STATE_RADIO_IRQ_ON) {
1371 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1372 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1373
1374 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1375 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1376 }
1377
1378 /*
1379 * Only toggle the interrupts bits we are going to use.
1380 * Non-checked interrupt bits are disabled by default.
1381 */
1382 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1383 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1384 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1385 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1386 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1387 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1388
1389 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1390 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1391 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1392 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1393 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1394 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1395 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1396 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1397 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1398 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1399 }
1400
1401 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1402 {
1403 u32 reg;
1404
1405 /*
1406 * Initialize all registers.
1407 */
1408 if (rt61pci_init_rings(rt2x00dev) ||
1409 rt61pci_init_registers(rt2x00dev) ||
1410 rt61pci_init_bbp(rt2x00dev)) {
1411 ERROR(rt2x00dev, "Register initialization failed.\n");
1412 return -EIO;
1413 }
1414
1415 /*
1416 * Enable interrupts.
1417 */
1418 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1419
1420 /*
1421 * Enable RX.
1422 */
1423 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1424 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1425 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1426
1427 /*
1428 * Enable LED
1429 */
1430 rt61pci_enable_led(rt2x00dev);
1431
1432 return 0;
1433 }
1434
1435 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1436 {
1437 u32 reg;
1438
1439 /*
1440 * Disable LED
1441 */
1442 rt61pci_disable_led(rt2x00dev);
1443
1444 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1445
1446 /*
1447 * Disable synchronisation.
1448 */
1449 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1450
1451 /*
1452 * Cancel RX and TX.
1453 */
1454 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1455 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1456 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1457 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1458 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1459 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
1460 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1461
1462 /*
1463 * Disable interrupts.
1464 */
1465 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1466 }
1467
1468 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1469 {
1470 u32 reg;
1471 unsigned int i;
1472 char put_to_sleep;
1473 char current_state;
1474
1475 put_to_sleep = (state != STATE_AWAKE);
1476
1477 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1478 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1479 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1480 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1481
1482 /*
1483 * Device is not guaranteed to be in the requested state yet.
1484 * We must wait until the register indicates that the
1485 * device has entered the correct state.
1486 */
1487 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1488 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1489 current_state =
1490 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1491 if (current_state == !put_to_sleep)
1492 return 0;
1493 msleep(10);
1494 }
1495
1496 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1497 "current device state %d.\n", !put_to_sleep, current_state);
1498
1499 return -EBUSY;
1500 }
1501
1502 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1503 enum dev_state state)
1504 {
1505 int retval = 0;
1506
1507 switch (state) {
1508 case STATE_RADIO_ON:
1509 retval = rt61pci_enable_radio(rt2x00dev);
1510 break;
1511 case STATE_RADIO_OFF:
1512 rt61pci_disable_radio(rt2x00dev);
1513 break;
1514 case STATE_RADIO_RX_ON:
1515 case STATE_RADIO_RX_OFF:
1516 rt61pci_toggle_rx(rt2x00dev, state);
1517 break;
1518 case STATE_DEEP_SLEEP:
1519 case STATE_SLEEP:
1520 case STATE_STANDBY:
1521 case STATE_AWAKE:
1522 retval = rt61pci_set_state(rt2x00dev, state);
1523 break;
1524 default:
1525 retval = -ENOTSUPP;
1526 break;
1527 }
1528
1529 return retval;
1530 }
1531
1532 /*
1533 * TX descriptor initialization
1534 */
1535 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1536 struct sk_buff *skb,
1537 struct txdata_entry_desc *desc,
1538 struct ieee80211_tx_control *control)
1539 {
1540 struct skb_desc *skbdesc = get_skb_desc(skb);
1541 __le32 *txd = skbdesc->desc;
1542 u32 word;
1543
1544 /*
1545 * Start writing the descriptor words.
1546 */
1547 rt2x00_desc_read(txd, 1, &word);
1548 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
1549 rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
1550 rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
1551 rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
1552 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1553 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1554 rt2x00_desc_write(txd, 1, word);
1555
1556 rt2x00_desc_read(txd, 2, &word);
1557 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
1558 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
1559 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
1560 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
1561 rt2x00_desc_write(txd, 2, word);
1562
1563 rt2x00_desc_read(txd, 5, &word);
1564 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1565 TXPOWER_TO_DEV(control->power_level));
1566 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1567 rt2x00_desc_write(txd, 5, word);
1568
1569 rt2x00_desc_read(txd, 11, &word);
1570 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
1571 rt2x00_desc_write(txd, 11, word);
1572
1573 rt2x00_desc_read(txd, 0, &word);
1574 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1575 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1576 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1577 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1578 rt2x00_set_field32(&word, TXD_W0_ACK,
1579 test_bit(ENTRY_TXD_ACK, &desc->flags));
1580 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1581 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1582 rt2x00_set_field32(&word, TXD_W0_OFDM,
1583 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1584 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1585 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1586 !!(control->flags &
1587 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1588 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1589 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1590 rt2x00_set_field32(&word, TXD_W0_BURST,
1591 test_bit(ENTRY_TXD_BURST, &desc->flags));
1592 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1593 rt2x00_desc_write(txd, 0, word);
1594 }
1595
1596 /*
1597 * TX data initialization
1598 */
1599 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1600 unsigned int queue)
1601 {
1602 u32 reg;
1603
1604 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1605 /*
1606 * For Wi-Fi faily generated beacons between participating
1607 * stations. Set TBTT phase adaptive adjustment step to 8us.
1608 */
1609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1610
1611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1612 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1613 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1615 }
1616 return;
1617 }
1618
1619 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1620 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0,
1621 (queue == IEEE80211_TX_QUEUE_DATA0));
1622 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1,
1623 (queue == IEEE80211_TX_QUEUE_DATA1));
1624 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2,
1625 (queue == IEEE80211_TX_QUEUE_DATA2));
1626 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3,
1627 (queue == IEEE80211_TX_QUEUE_DATA3));
1628 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_MGMT,
1629 (queue == IEEE80211_TX_QUEUE_DATA4));
1630 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1631 }
1632
1633 /*
1634 * RX control handlers
1635 */
1636 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1637 {
1638 u16 eeprom;
1639 u8 offset;
1640 u8 lna;
1641
1642 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1643 switch (lna) {
1644 case 3:
1645 offset = 90;
1646 break;
1647 case 2:
1648 offset = 74;
1649 break;
1650 case 1:
1651 offset = 64;
1652 break;
1653 default:
1654 return 0;
1655 }
1656
1657 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
1658 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1659 offset += 14;
1660
1661 if (lna == 3 || lna == 2)
1662 offset += 10;
1663
1664 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1665 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1666 } else {
1667 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1668 offset += 14;
1669
1670 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1671 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1672 }
1673
1674 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1675 }
1676
1677 static void rt61pci_fill_rxdone(struct data_entry *entry,
1678 struct rxdata_entry_desc *desc)
1679 {
1680 __le32 *rxd = entry->priv;
1681 u32 word0;
1682 u32 word1;
1683
1684 rt2x00_desc_read(rxd, 0, &word0);
1685 rt2x00_desc_read(rxd, 1, &word1);
1686
1687 desc->flags = 0;
1688 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1689 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1690
1691 /*
1692 * Obtain the status about this packet.
1693 */
1694 desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1695 desc->rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
1696 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1697 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1698 desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1699 }
1700
1701 /*
1702 * Interrupt functions.
1703 */
1704 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1705 {
1706 struct data_ring *ring;
1707 struct data_entry *entry;
1708 struct data_entry *entry_done;
1709 __le32 *txd;
1710 u32 word;
1711 u32 reg;
1712 u32 old_reg;
1713 int type;
1714 int index;
1715 int tx_status;
1716 int retry;
1717
1718 /*
1719 * During each loop we will compare the freshly read
1720 * STA_CSR4 register value with the value read from
1721 * the previous loop. If the 2 values are equal then
1722 * we should stop processing because the chance it
1723 * quite big that the device has been unplugged and
1724 * we risk going into an endless loop.
1725 */
1726 old_reg = 0;
1727
1728 while (1) {
1729 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1730 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1731 break;
1732
1733 if (old_reg == reg)
1734 break;
1735 old_reg = reg;
1736
1737 /*
1738 * Skip this entry when it contains an invalid
1739 * ring identication number.
1740 */
1741 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1742 ring = rt2x00lib_get_ring(rt2x00dev, type);
1743 if (unlikely(!ring))
1744 continue;
1745
1746 /*
1747 * Skip this entry when it contains an invalid
1748 * index number.
1749 */
1750 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1751 if (unlikely(index >= ring->stats.limit))
1752 continue;
1753
1754 entry = &ring->entry[index];
1755 txd = entry->priv;
1756 rt2x00_desc_read(txd, 0, &word);
1757
1758 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1759 !rt2x00_get_field32(word, TXD_W0_VALID))
1760 return;
1761
1762 entry_done = rt2x00_get_data_entry_done(ring);
1763 while (entry != entry_done) {
1764 /* Catch up. Just report any entries we missed as
1765 * failed. */
1766 WARNING(rt2x00dev,
1767 "TX status report missed for entry %p\n",
1768 entry_done);
1769 rt2x00lib_txdone(entry_done, TX_FAIL_OTHER, 0);
1770 entry_done = rt2x00_get_data_entry_done(ring);
1771 }
1772
1773 /*
1774 * Obtain the status about this packet.
1775 */
1776 tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1777 retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1778
1779 rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1780 }
1781 }
1782
1783 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1784 {
1785 struct rt2x00_dev *rt2x00dev = dev_instance;
1786 u32 reg_mcu;
1787 u32 reg;
1788
1789 /*
1790 * Get the interrupt sources & saved to local variable.
1791 * Write register value back to clear pending interrupts.
1792 */
1793 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1794 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1795
1796 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1797 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1798
1799 if (!reg && !reg_mcu)
1800 return IRQ_NONE;
1801
1802 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1803 return IRQ_HANDLED;
1804
1805 /*
1806 * Handle interrupts, walk through all bits
1807 * and run the tasks, the bits are checked in order of
1808 * priority.
1809 */
1810
1811 /*
1812 * 1 - Rx ring done interrupt.
1813 */
1814 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1815 rt2x00pci_rxdone(rt2x00dev);
1816
1817 /*
1818 * 2 - Tx ring done interrupt.
1819 */
1820 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1821 rt61pci_txdone(rt2x00dev);
1822
1823 /*
1824 * 3 - Handle MCU command done.
1825 */
1826 if (reg_mcu)
1827 rt2x00pci_register_write(rt2x00dev,
1828 M2H_CMD_DONE_CSR, 0xffffffff);
1829
1830 return IRQ_HANDLED;
1831 }
1832
1833 /*
1834 * Device probe functions.
1835 */
1836 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1837 {
1838 struct eeprom_93cx6 eeprom;
1839 u32 reg;
1840 u16 word;
1841 u8 *mac;
1842 s8 value;
1843
1844 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1845
1846 eeprom.data = rt2x00dev;
1847 eeprom.register_read = rt61pci_eepromregister_read;
1848 eeprom.register_write = rt61pci_eepromregister_write;
1849 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1850 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1851 eeprom.reg_data_in = 0;
1852 eeprom.reg_data_out = 0;
1853 eeprom.reg_data_clock = 0;
1854 eeprom.reg_chip_select = 0;
1855
1856 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1857 EEPROM_SIZE / sizeof(u16));
1858
1859 /*
1860 * Start validation of the data that has been read.
1861 */
1862 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1863 if (!is_valid_ether_addr(mac)) {
1864 DECLARE_MAC_BUF(macbuf);
1865
1866 random_ether_addr(mac);
1867 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1868 }
1869
1870 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1871 if (word == 0xffff) {
1872 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1873 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1874 ANTENNA_B);
1875 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1876 ANTENNA_B);
1877 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1878 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1879 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1880 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1881 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1882 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1883 }
1884
1885 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1886 if (word == 0xffff) {
1887 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1888 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1889 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1890 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1891 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1892 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1893 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1894 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1895 }
1896
1897 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1898 if (word == 0xffff) {
1899 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1900 LED_MODE_DEFAULT);
1901 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1902 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1903 }
1904
1905 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1906 if (word == 0xffff) {
1907 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1908 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1909 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1910 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1911 }
1912
1913 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1914 if (word == 0xffff) {
1915 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1916 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1917 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1918 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1919 } else {
1920 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1921 if (value < -10 || value > 10)
1922 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1923 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1924 if (value < -10 || value > 10)
1925 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1926 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1927 }
1928
1929 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1930 if (word == 0xffff) {
1931 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1932 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1933 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1934 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1935 } else {
1936 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1937 if (value < -10 || value > 10)
1938 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1939 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1940 if (value < -10 || value > 10)
1941 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1942 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1943 }
1944
1945 return 0;
1946 }
1947
1948 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1949 {
1950 u32 reg;
1951 u16 value;
1952 u16 eeprom;
1953 u16 device;
1954
1955 /*
1956 * Read EEPROM word for configuration.
1957 */
1958 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1959
1960 /*
1961 * Identify RF chipset.
1962 * To determine the RT chip we have to read the
1963 * PCI header of the device.
1964 */
1965 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1966 PCI_CONFIG_HEADER_DEVICE, &device);
1967 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1968 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1969 rt2x00_set_chip(rt2x00dev, device, value, reg);
1970
1971 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1972 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1973 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1974 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1975 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1976 return -ENODEV;
1977 }
1978
1979 /*
1980 * Determine number of antenna's.
1981 */
1982 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
1983 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
1984
1985 /*
1986 * Identify default antenna configuration.
1987 */
1988 rt2x00dev->default_ant.tx =
1989 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1990 rt2x00dev->default_ant.rx =
1991 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1992
1993 /*
1994 * Read the Frame type.
1995 */
1996 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1997 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1998
1999 /*
2000 * Detect if this device has an hardware controlled radio.
2001 */
2002 #ifdef CONFIG_RT61PCI_RFKILL
2003 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2004 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2005 #endif /* CONFIG_RT61PCI_RFKILL */
2006
2007 /*
2008 * Read frequency offset and RF programming sequence.
2009 */
2010 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2011 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2012 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2013
2014 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2015
2016 /*
2017 * Read external LNA informations.
2018 */
2019 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2020
2021 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2022 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2023 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2024 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2025
2026 /*
2027 * When working with a RF2529 chip without double antenna
2028 * the antenna settings should be gathered from the NIC
2029 * eeprom word.
2030 */
2031 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2032 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2033 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2034 case 0:
2035 rt2x00dev->default_ant.tx = ANTENNA_B;
2036 rt2x00dev->default_ant.rx = ANTENNA_A;
2037 break;
2038 case 1:
2039 rt2x00dev->default_ant.tx = ANTENNA_B;
2040 rt2x00dev->default_ant.rx = ANTENNA_B;
2041 break;
2042 case 2:
2043 rt2x00dev->default_ant.tx = ANTENNA_A;
2044 rt2x00dev->default_ant.rx = ANTENNA_A;
2045 break;
2046 case 3:
2047 rt2x00dev->default_ant.tx = ANTENNA_A;
2048 rt2x00dev->default_ant.rx = ANTENNA_B;
2049 break;
2050 }
2051
2052 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2053 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2054 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2055 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2056 }
2057
2058 /*
2059 * Store led settings, for correct led behaviour.
2060 * If the eeprom value is invalid,
2061 * switch to default led mode.
2062 */
2063 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2064
2065 rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2066
2067 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
2068 rt2x00dev->led_mode);
2069 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
2070 rt2x00_get_field16(eeprom,
2071 EEPROM_LED_POLARITY_GPIO_0));
2072 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
2073 rt2x00_get_field16(eeprom,
2074 EEPROM_LED_POLARITY_GPIO_1));
2075 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
2076 rt2x00_get_field16(eeprom,
2077 EEPROM_LED_POLARITY_GPIO_2));
2078 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
2079 rt2x00_get_field16(eeprom,
2080 EEPROM_LED_POLARITY_GPIO_3));
2081 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
2082 rt2x00_get_field16(eeprom,
2083 EEPROM_LED_POLARITY_GPIO_4));
2084 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
2085 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2086 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
2087 rt2x00_get_field16(eeprom,
2088 EEPROM_LED_POLARITY_RDY_G));
2089 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
2090 rt2x00_get_field16(eeprom,
2091 EEPROM_LED_POLARITY_RDY_A));
2092
2093 return 0;
2094 }
2095
2096 /*
2097 * RF value list for RF5225 & RF5325
2098 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2099 */
2100 static const struct rf_channel rf_vals_noseq[] = {
2101 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2102 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2103 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2104 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2105 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2106 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2107 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2108 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2109 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2110 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2111 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2112 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2113 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2114 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2115
2116 /* 802.11 UNI / HyperLan 2 */
2117 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2118 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2119 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2120 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2121 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2122 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2123 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2124 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2125
2126 /* 802.11 HyperLan 2 */
2127 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2128 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2129 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2130 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2131 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2132 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2133 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2134 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2135 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2136 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2137
2138 /* 802.11 UNII */
2139 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2140 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2141 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2142 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2143 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2144 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2145
2146 /* MMAC(Japan)J52 ch 34,38,42,46 */
2147 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2148 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2149 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2150 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2151 };
2152
2153 /*
2154 * RF value list for RF5225 & RF5325
2155 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2156 */
2157 static const struct rf_channel rf_vals_seq[] = {
2158 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2159 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2160 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2161 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2162 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2163 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2164 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2165 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2166 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2167 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2168 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2169 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2170 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2171 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2172
2173 /* 802.11 UNI / HyperLan 2 */
2174 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2175 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2176 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2177 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2178 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2179 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2180 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2181 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2182
2183 /* 802.11 HyperLan 2 */
2184 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2185 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2186 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2187 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2188 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2189 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2190 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2191 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2192 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2193 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2194
2195 /* 802.11 UNII */
2196 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2197 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2198 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2199 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2200 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2201 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2202
2203 /* MMAC(Japan)J52 ch 34,38,42,46 */
2204 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2205 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2206 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2207 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2208 };
2209
2210 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2211 {
2212 struct hw_mode_spec *spec = &rt2x00dev->spec;
2213 u8 *txpower;
2214 unsigned int i;
2215
2216 /*
2217 * Initialize all hw fields.
2218 */
2219 rt2x00dev->hw->flags =
2220 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2221 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
2222 rt2x00dev->hw->extra_tx_headroom = 0;
2223 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2224 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2225 rt2x00dev->hw->queues = 5;
2226
2227 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2228 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2229 rt2x00_eeprom_addr(rt2x00dev,
2230 EEPROM_MAC_ADDR_0));
2231
2232 /*
2233 * Convert tx_power array in eeprom.
2234 */
2235 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2236 for (i = 0; i < 14; i++)
2237 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2238
2239 /*
2240 * Initialize hw_mode information.
2241 */
2242 spec->num_modes = 2;
2243 spec->num_rates = 12;
2244 spec->tx_power_a = NULL;
2245 spec->tx_power_bg = txpower;
2246 spec->tx_power_default = DEFAULT_TXPOWER;
2247
2248 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2249 spec->num_channels = 14;
2250 spec->channels = rf_vals_noseq;
2251 } else {
2252 spec->num_channels = 14;
2253 spec->channels = rf_vals_seq;
2254 }
2255
2256 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2257 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2258 spec->num_modes = 3;
2259 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2260
2261 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2262 for (i = 0; i < 14; i++)
2263 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2264
2265 spec->tx_power_a = txpower;
2266 }
2267 }
2268
2269 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2270 {
2271 int retval;
2272
2273 /*
2274 * Allocate eeprom data.
2275 */
2276 retval = rt61pci_validate_eeprom(rt2x00dev);
2277 if (retval)
2278 return retval;
2279
2280 retval = rt61pci_init_eeprom(rt2x00dev);
2281 if (retval)
2282 return retval;
2283
2284 /*
2285 * Initialize hw specifications.
2286 */
2287 rt61pci_probe_hw_mode(rt2x00dev);
2288
2289 /*
2290 * This device requires firmware
2291 */
2292 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2293
2294 /*
2295 * Set the rssi offset.
2296 */
2297 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2298
2299 return 0;
2300 }
2301
2302 /*
2303 * IEEE80211 stack callback functions.
2304 */
2305 static void rt61pci_configure_filter(struct ieee80211_hw *hw,
2306 unsigned int changed_flags,
2307 unsigned int *total_flags,
2308 int mc_count,
2309 struct dev_addr_list *mc_list)
2310 {
2311 struct rt2x00_dev *rt2x00dev = hw->priv;
2312 u32 reg;
2313
2314 /*
2315 * Mask off any flags we are going to ignore from
2316 * the total_flags field.
2317 */
2318 *total_flags &=
2319 FIF_ALLMULTI |
2320 FIF_FCSFAIL |
2321 FIF_PLCPFAIL |
2322 FIF_CONTROL |
2323 FIF_OTHER_BSS |
2324 FIF_PROMISC_IN_BSS;
2325
2326 /*
2327 * Apply some rules to the filters:
2328 * - Some filters imply different filters to be set.
2329 * - Some things we can't filter out at all.
2330 */
2331 if (mc_count)
2332 *total_flags |= FIF_ALLMULTI;
2333 if (*total_flags & FIF_OTHER_BSS ||
2334 *total_flags & FIF_PROMISC_IN_BSS)
2335 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
2336
2337 /*
2338 * Check if there is any work left for us.
2339 */
2340 if (rt2x00dev->packet_filter == *total_flags)
2341 return;
2342 rt2x00dev->packet_filter = *total_flags;
2343
2344 /*
2345 * Start configuration steps.
2346 * Note that the version error will always be dropped
2347 * and broadcast frames will always be accepted since
2348 * there is no filter for it at this time.
2349 */
2350 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
2351 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
2352 !(*total_flags & FIF_FCSFAIL));
2353 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
2354 !(*total_flags & FIF_PLCPFAIL));
2355 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
2356 !(*total_flags & FIF_CONTROL));
2357 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
2358 !(*total_flags & FIF_PROMISC_IN_BSS));
2359 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
2360 !(*total_flags & FIF_PROMISC_IN_BSS));
2361 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
2362 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
2363 !(*total_flags & FIF_ALLMULTI));
2364 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BORADCAST, 0);
2365 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS, 1);
2366 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
2367 }
2368
2369 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2370 u32 short_retry, u32 long_retry)
2371 {
2372 struct rt2x00_dev *rt2x00dev = hw->priv;
2373 u32 reg;
2374
2375 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2376 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2377 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2378 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2379
2380 return 0;
2381 }
2382
2383 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2384 {
2385 struct rt2x00_dev *rt2x00dev = hw->priv;
2386 u64 tsf;
2387 u32 reg;
2388
2389 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2390 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2391 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2392 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2393
2394 return tsf;
2395 }
2396
2397 static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
2398 {
2399 struct rt2x00_dev *rt2x00dev = hw->priv;
2400
2401 rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
2402 rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
2403 }
2404
2405 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2406 struct ieee80211_tx_control *control)
2407 {
2408 struct rt2x00_dev *rt2x00dev = hw->priv;
2409 struct skb_desc *desc;
2410 struct data_ring *ring;
2411 struct data_entry *entry;
2412
2413 /*
2414 * Just in case the ieee80211 doesn't set this,
2415 * but we need this queue set for the descriptor
2416 * initialization.
2417 */
2418 control->queue = IEEE80211_TX_QUEUE_BEACON;
2419 ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
2420 entry = rt2x00_get_data_entry(ring);
2421
2422 /*
2423 * We need to append the descriptor in front of the
2424 * beacon frame.
2425 */
2426 if (skb_headroom(skb) < TXD_DESC_SIZE) {
2427 if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
2428 dev_kfree_skb(skb);
2429 return -ENOMEM;
2430 }
2431 }
2432
2433 /*
2434 * Add the descriptor in front of the skb.
2435 */
2436 skb_push(skb, ring->desc_size);
2437 memset(skb->data, 0, ring->desc_size);
2438
2439 /*
2440 * Fill in skb descriptor
2441 */
2442 desc = get_skb_desc(skb);
2443 desc->desc_len = ring->desc_size;
2444 desc->data_len = skb->len - ring->desc_size;
2445 desc->desc = skb->data;
2446 desc->data = skb->data + ring->desc_size;
2447 desc->ring = ring;
2448 desc->entry = entry;
2449
2450 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
2451
2452 /*
2453 * Write entire beacon with descriptor to register,
2454 * and kick the beacon generator.
2455 */
2456 rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0,
2457 skb->data, skb->len);
2458 rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
2459
2460 return 0;
2461 }
2462
2463 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2464 .tx = rt2x00mac_tx,
2465 .start = rt2x00mac_start,
2466 .stop = rt2x00mac_stop,
2467 .add_interface = rt2x00mac_add_interface,
2468 .remove_interface = rt2x00mac_remove_interface,
2469 .config = rt2x00mac_config,
2470 .config_interface = rt2x00mac_config_interface,
2471 .configure_filter = rt61pci_configure_filter,
2472 .get_stats = rt2x00mac_get_stats,
2473 .set_retry_limit = rt61pci_set_retry_limit,
2474 .erp_ie_changed = rt2x00mac_erp_ie_changed,
2475 .conf_tx = rt2x00mac_conf_tx,
2476 .get_tx_stats = rt2x00mac_get_tx_stats,
2477 .get_tsf = rt61pci_get_tsf,
2478 .reset_tsf = rt61pci_reset_tsf,
2479 .beacon_update = rt61pci_beacon_update,
2480 };
2481
2482 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2483 .irq_handler = rt61pci_interrupt,
2484 .probe_hw = rt61pci_probe_hw,
2485 .get_firmware_name = rt61pci_get_firmware_name,
2486 .load_firmware = rt61pci_load_firmware,
2487 .initialize = rt2x00pci_initialize,
2488 .uninitialize = rt2x00pci_uninitialize,
2489 .set_device_state = rt61pci_set_device_state,
2490 .rfkill_poll = rt61pci_rfkill_poll,
2491 .link_stats = rt61pci_link_stats,
2492 .reset_tuner = rt61pci_reset_tuner,
2493 .link_tuner = rt61pci_link_tuner,
2494 .write_tx_desc = rt61pci_write_tx_desc,
2495 .write_tx_data = rt2x00pci_write_tx_data,
2496 .kick_tx_queue = rt61pci_kick_tx_queue,
2497 .fill_rxdone = rt61pci_fill_rxdone,
2498 .config_mac_addr = rt61pci_config_mac_addr,
2499 .config_bssid = rt61pci_config_bssid,
2500 .config_type = rt61pci_config_type,
2501 .config_preamble = rt61pci_config_preamble,
2502 .config = rt61pci_config,
2503 };
2504
2505 static const struct rt2x00_ops rt61pci_ops = {
2506 .name = KBUILD_MODNAME,
2507 .rxd_size = RXD_DESC_SIZE,
2508 .txd_size = TXD_DESC_SIZE,
2509 .eeprom_size = EEPROM_SIZE,
2510 .rf_size = RF_SIZE,
2511 .lib = &rt61pci_rt2x00_ops,
2512 .hw = &rt61pci_mac80211_ops,
2513 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2514 .debugfs = &rt61pci_rt2x00debug,
2515 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2516 };
2517
2518 /*
2519 * RT61pci module information.
2520 */
2521 static struct pci_device_id rt61pci_device_table[] = {
2522 /* RT2561s */
2523 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2524 /* RT2561 v2 */
2525 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2526 /* RT2661 */
2527 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2528 { 0, }
2529 };
2530
2531 MODULE_AUTHOR(DRV_PROJECT);
2532 MODULE_VERSION(DRV_VERSION);
2533 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2534 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2535 "PCI & PCMCIA chipset based cards");
2536 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2537 MODULE_FIRMWARE(FIRMWARE_RT2561);
2538 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2539 MODULE_FIRMWARE(FIRMWARE_RT2661);
2540 MODULE_LICENSE("GPL");
2541
2542 static struct pci_driver rt61pci_driver = {
2543 .name = KBUILD_MODNAME,
2544 .id_table = rt61pci_device_table,
2545 .probe = rt2x00pci_probe,
2546 .remove = __devexit_p(rt2x00pci_remove),
2547 .suspend = rt2x00pci_suspend,
2548 .resume = rt2x00pci_resume,
2549 };
2550
2551 static int __init rt61pci_init(void)
2552 {
2553 return pci_register_driver(&rt61pci_driver);
2554 }
2555
2556 static void __exit rt61pci_exit(void)
2557 {
2558 pci_unregister_driver(&rt61pci_driver);
2559 }
2560
2561 module_init(rt61pci_init);
2562 module_exit(rt61pci_exit);