]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attempt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140 rt2x00_rf_write(rt2x00dev, word, value);
141 }
142
143 mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147 const u8 command, const u8 token,
148 const u8 arg0, const u8 arg1)
149 {
150 u32 reg;
151
152 mutex_lock(&rt2x00dev->csr_mutex);
153
154 /*
155 * Wait until the MCU becomes available, afterwards we
156 * can safely write the new data into the register.
157 */
158 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169 }
170
171 mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg;
179
180 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184 eeprom->reg_data_clock =
185 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186 eeprom->reg_chip_select =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
193 u32 reg = 0;
194
195 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198 !!eeprom->reg_data_clock);
199 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200 !!eeprom->reg_chip_select);
201
202 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207 .owner = THIS_MODULE,
208 .csr = {
209 .read = rt2x00pci_register_read,
210 .write = rt2x00pci_register_write,
211 .flags = RT2X00DEBUGFS_OFFSET,
212 .word_base = CSR_REG_BASE,
213 .word_size = sizeof(u32),
214 .word_count = CSR_REG_SIZE / sizeof(u32),
215 },
216 .eeprom = {
217 .read = rt2x00_eeprom_read,
218 .write = rt2x00_eeprom_write,
219 .word_base = EEPROM_BASE,
220 .word_size = sizeof(u16),
221 .word_count = EEPROM_SIZE / sizeof(u16),
222 },
223 .bbp = {
224 .read = rt61pci_bbp_read,
225 .write = rt61pci_bbp_write,
226 .word_base = BBP_BASE,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt61pci_rf_write,
233 .word_base = RF_BASE,
234 .word_size = sizeof(u32),
235 .word_count = RF_SIZE / sizeof(u32),
236 },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
245 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
246 }
247
248 #ifdef CONFIG_RT2X00_LIB_LEDS
249 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
250 enum led_brightness brightness)
251 {
252 struct rt2x00_led *led =
253 container_of(led_cdev, struct rt2x00_led, led_dev);
254 unsigned int enabled = brightness != LED_OFF;
255 unsigned int a_mode =
256 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
257 unsigned int bg_mode =
258 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
259
260 if (led->type == LED_TYPE_RADIO) {
261 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262 MCU_LEDCS_RADIO_STATUS, enabled);
263
264 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265 (led->rt2x00dev->led_mcu_reg & 0xff),
266 ((led->rt2x00dev->led_mcu_reg >> 8)));
267 } else if (led->type == LED_TYPE_ASSOC) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
270 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 MCU_LEDCS_LINK_A_STATUS, a_mode);
272
273 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
274 (led->rt2x00dev->led_mcu_reg & 0xff),
275 ((led->rt2x00dev->led_mcu_reg >> 8)));
276 } else if (led->type == LED_TYPE_QUALITY) {
277 /*
278 * The brightness is divided into 6 levels (0 - 5),
279 * this means we need to convert the brightness
280 * argument into the matching level within that range.
281 */
282 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
283 brightness / (LED_FULL / 6), 0);
284 }
285 }
286
287 static int rt61pci_blink_set(struct led_classdev *led_cdev,
288 unsigned long *delay_on,
289 unsigned long *delay_off)
290 {
291 struct rt2x00_led *led =
292 container_of(led_cdev, struct rt2x00_led, led_dev);
293 u32 reg;
294
295 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
296 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
297 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
298 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
299
300 return 0;
301 }
302
303 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
304 struct rt2x00_led *led,
305 enum led_type type)
306 {
307 led->rt2x00dev = rt2x00dev;
308 led->type = type;
309 led->led_dev.brightness_set = rt61pci_brightness_set;
310 led->led_dev.blink_set = rt61pci_blink_set;
311 led->flags = LED_INITIALIZED;
312 }
313 #endif /* CONFIG_RT2X00_LIB_LEDS */
314
315 /*
316 * Configuration handlers.
317 */
318 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
319 struct rt2x00lib_crypto *crypto,
320 struct ieee80211_key_conf *key)
321 {
322 struct hw_key_entry key_entry;
323 struct rt2x00_field32 field;
324 u32 mask;
325 u32 reg;
326
327 if (crypto->cmd == SET_KEY) {
328 /*
329 * rt2x00lib can't determine the correct free
330 * key_idx for shared keys. We have 1 register
331 * with key valid bits. The goal is simple, read
332 * the register, if that is full we have no slots
333 * left.
334 * Note that each BSS is allowed to have up to 4
335 * shared keys, so put a mask over the allowed
336 * entries.
337 */
338 mask = (0xf << crypto->bssidx);
339
340 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
341 reg &= mask;
342
343 if (reg && reg == mask)
344 return -ENOSPC;
345
346 key->hw_key_idx += reg ? ffz(reg) : 0;
347
348 /*
349 * Upload key to hardware
350 */
351 memcpy(key_entry.key, crypto->key,
352 sizeof(key_entry.key));
353 memcpy(key_entry.tx_mic, crypto->tx_mic,
354 sizeof(key_entry.tx_mic));
355 memcpy(key_entry.rx_mic, crypto->rx_mic,
356 sizeof(key_entry.rx_mic));
357
358 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
359 rt2x00pci_register_multiwrite(rt2x00dev, reg,
360 &key_entry, sizeof(key_entry));
361
362 /*
363 * The cipher types are stored over 2 registers.
364 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
365 * bssidx 1 and 2 keys are stored in SEC_CSR5.
366 * Using the correct defines correctly will cause overhead,
367 * so just calculate the correct offset.
368 */
369 if (key->hw_key_idx < 8) {
370 field.bit_offset = (3 * key->hw_key_idx);
371 field.bit_mask = 0x7 << field.bit_offset;
372
373 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
374 rt2x00_set_field32(&reg, field, crypto->cipher);
375 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
376 } else {
377 field.bit_offset = (3 * (key->hw_key_idx - 8));
378 field.bit_mask = 0x7 << field.bit_offset;
379
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
381 rt2x00_set_field32(&reg, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
383 }
384
385 /*
386 * The driver does not support the IV/EIV generation
387 * in hardware. However it doesn't support the IV/EIV
388 * inside the ieee80211 frame either, but requires it
389 * to be provided separately for the descriptor.
390 * rt2x00lib will cut the IV/EIV data out of all frames
391 * given to us by mac80211, but we must tell mac80211
392 * to generate the IV/EIV data.
393 */
394 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
395 }
396
397 /*
398 * SEC_CSR0 contains only single-bit fields to indicate
399 * a particular key is valid. Because using the FIELD32()
400 * defines directly will cause a lot of overhead, we use
401 * a calculation to determine the correct bit directly.
402 */
403 mask = 1 << key->hw_key_idx;
404
405 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
406 if (crypto->cmd == SET_KEY)
407 reg |= mask;
408 else if (crypto->cmd == DISABLE_KEY)
409 reg &= ~mask;
410 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
411
412 return 0;
413 }
414
415 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
416 struct rt2x00lib_crypto *crypto,
417 struct ieee80211_key_conf *key)
418 {
419 struct hw_pairwise_ta_entry addr_entry;
420 struct hw_key_entry key_entry;
421 u32 mask;
422 u32 reg;
423
424 if (crypto->cmd == SET_KEY) {
425 /*
426 * rt2x00lib can't determine the correct free
427 * key_idx for pairwise keys. We have 2 registers
428 * with key valid bits. The goal is simple: read
429 * the first register. If that is full, move to
430 * the next register.
431 * When both registers are full, we drop the key.
432 * Otherwise, we use the first invalid entry.
433 */
434 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
435 if (reg && reg == ~0) {
436 key->hw_key_idx = 32;
437 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
438 if (reg && reg == ~0)
439 return -ENOSPC;
440 }
441
442 key->hw_key_idx += reg ? ffz(reg) : 0;
443
444 /*
445 * Upload key to hardware
446 */
447 memcpy(key_entry.key, crypto->key,
448 sizeof(key_entry.key));
449 memcpy(key_entry.tx_mic, crypto->tx_mic,
450 sizeof(key_entry.tx_mic));
451 memcpy(key_entry.rx_mic, crypto->rx_mic,
452 sizeof(key_entry.rx_mic));
453
454 memset(&addr_entry, 0, sizeof(addr_entry));
455 memcpy(&addr_entry, crypto->address, ETH_ALEN);
456 addr_entry.cipher = crypto->cipher;
457
458 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
459 rt2x00pci_register_multiwrite(rt2x00dev, reg,
460 &key_entry, sizeof(key_entry));
461
462 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
463 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464 &addr_entry, sizeof(addr_entry));
465
466 /*
467 * Enable pairwise lookup table for given BSS idx.
468 * Without this, received frames will not be decrypted
469 * by the hardware.
470 */
471 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
472 reg |= (1 << crypto->bssidx);
473 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
474
475 /*
476 * The driver does not support the IV/EIV generation
477 * in hardware. However it doesn't support the IV/EIV
478 * inside the ieee80211 frame either, but requires it
479 * to be provided seperately for the descriptor.
480 * rt2x00lib will cut the IV/EIV data out of all frames
481 * given to us by mac80211, but we must tell mac80211
482 * to generate the IV/EIV data.
483 */
484 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
485 }
486
487 /*
488 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
489 * a particular key is valid. Because using the FIELD32()
490 * defines directly will cause a lot of overhead, we use
491 * a calculation to determine the correct bit directly.
492 */
493 if (key->hw_key_idx < 32) {
494 mask = 1 << key->hw_key_idx;
495
496 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
497 if (crypto->cmd == SET_KEY)
498 reg |= mask;
499 else if (crypto->cmd == DISABLE_KEY)
500 reg &= ~mask;
501 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
502 } else {
503 mask = 1 << (key->hw_key_idx - 32);
504
505 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
506 if (crypto->cmd == SET_KEY)
507 reg |= mask;
508 else if (crypto->cmd == DISABLE_KEY)
509 reg &= ~mask;
510 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
511 }
512
513 return 0;
514 }
515
516 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
517 const unsigned int filter_flags)
518 {
519 u32 reg;
520
521 /*
522 * Start configuration steps.
523 * Note that the version error will always be dropped
524 * and broadcast frames will always be accepted since
525 * there is no filter for it at this time.
526 */
527 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
528 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
529 !(filter_flags & FIF_FCSFAIL));
530 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
531 !(filter_flags & FIF_PLCPFAIL));
532 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
533 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
534 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
535 !(filter_flags & FIF_PROMISC_IN_BSS));
536 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
537 !(filter_flags & FIF_PROMISC_IN_BSS) &&
538 !rt2x00dev->intf_ap_count);
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
541 !(filter_flags & FIF_ALLMULTI));
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
544 !(filter_flags & FIF_CONTROL));
545 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
546 }
547
548 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
549 struct rt2x00_intf *intf,
550 struct rt2x00intf_conf *conf,
551 const unsigned int flags)
552 {
553 unsigned int beacon_base;
554 u32 reg;
555
556 if (flags & CONFIG_UPDATE_TYPE) {
557 /*
558 * Clear current synchronisation setup.
559 * For the Beacon base registers, we only need to clear
560 * the first byte since that byte contains the VALID and OWNER
561 * bits which (when set to 0) will invalidate the entire beacon.
562 */
563 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
564 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
565
566 /*
567 * Enable synchronisation.
568 */
569 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
570 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
572 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
573 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
574 }
575
576 if (flags & CONFIG_UPDATE_MAC) {
577 reg = le32_to_cpu(conf->mac[1]);
578 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
579 conf->mac[1] = cpu_to_le32(reg);
580
581 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
582 conf->mac, sizeof(conf->mac));
583 }
584
585 if (flags & CONFIG_UPDATE_BSSID) {
586 reg = le32_to_cpu(conf->bssid[1]);
587 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
588 conf->bssid[1] = cpu_to_le32(reg);
589
590 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
591 conf->bssid, sizeof(conf->bssid));
592 }
593 }
594
595 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
596 struct rt2x00lib_erp *erp)
597 {
598 u32 reg;
599
600 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
601 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
602 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
603 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
604
605 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
606 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
607 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
608 !!erp->short_preamble);
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
610
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
612
613 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
614 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
615 erp->beacon_int * 16);
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
617
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
621
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
631 {
632 u8 r3;
633 u8 r4;
634 u8 r77;
635
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641 rt2x00_rf(&rt2x00dev->chip, RF5325));
642
643 /*
644 * Configure the RX antenna.
645 */
646 switch (ant->rx) {
647 case ANTENNA_HW_DIVERSITY:
648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651 break;
652 case ANTENNA_A:
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 else
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659 break;
660 case ANTENNA_B:
661 default:
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668 break;
669 }
670
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677 struct antenna_setup *ant)
678 {
679 u8 r3;
680 u8 r4;
681 u8 r77;
682
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688 rt2x00_rf(&rt2x00dev->chip, RF2529));
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
691
692 /*
693 * Configure the RX antenna.
694 */
695 switch (ant->rx) {
696 case ANTENNA_HW_DIVERSITY:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
698 break;
699 case ANTENNA_A:
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
702 break;
703 case ANTENNA_B:
704 default:
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707 break;
708 }
709
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
713 }
714
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
717 {
718 u32 reg;
719
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724
725 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
729 }
730
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732 struct antenna_setup *ant)
733 {
734 u8 r3;
735 u8 r4;
736 u8 r77;
737
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
741
742 /*
743 * Configure the RX antenna.
744 */
745 switch (ant->rx) {
746 case ANTENNA_A:
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
750 break;
751 case ANTENNA_HW_DIVERSITY:
752 /*
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
756 */
757 case ANTENNA_B:
758 default:
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
762 break;
763 }
764
765 rt61pci_bbp_write(rt2x00dev, 77, r77);
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
768 }
769
770 struct antenna_sel {
771 u8 word;
772 /*
773 * value[0] -> non-LNA
774 * value[1] -> LNA
775 */
776 u8 value[2];
777 };
778
779 static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
788 };
789
790 static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
799 };
800
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
803 {
804 const struct antenna_sel *sel;
805 unsigned int lna;
806 unsigned int i;
807 u32 reg;
808
809 /*
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
812 */
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
815
816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
817 sel = antenna_sel_a;
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
819 } else {
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
822 }
823
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828
829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
833
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
838 rt61pci_config_antenna_5x(rt2x00dev, ant);
839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843 rt61pci_config_antenna_2x(rt2x00dev, ant);
844 else
845 rt61pci_config_antenna_2529(rt2x00dev, ant);
846 }
847 }
848
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
851 {
852 u16 eeprom;
853 short lna_gain = 0;
854
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857 lna_gain += 14;
858
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861 } else {
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863 lna_gain += 14;
864
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867 }
868
869 rt2x00dev->lna_gain = lna_gain;
870 }
871
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
874 {
875 u8 r3;
876 u8 r94;
877 u8 smart;
878
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
881
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
884
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
888
889 r94 = 6;
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893 r94 += txpower;
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
895
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901 udelay(200);
902
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908 udelay(200);
909
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915 msleep(1);
916 }
917
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919 const int txpower)
920 {
921 struct rf_channel rf;
922
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
927
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
929 }
930
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932 struct rt2x00lib_conf *libconf)
933 {
934 u32 reg;
935
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942 }
943
944 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
946 {
947 enum dev_state state =
948 (libconf->conf->flags & IEEE80211_CONF_PS) ?
949 STATE_SLEEP : STATE_AWAKE;
950 u32 reg;
951
952 if (state == STATE_SLEEP) {
953 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
954 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
955 rt2x00dev->beacon_int - 10);
956 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
957 libconf->conf->listen_interval - 1);
958 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
959
960 /* We must first disable autowake before it can be enabled */
961 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
962 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
965 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
966
967 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
968 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
970
971 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972 } else {
973 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
974 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
979
980 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
981 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
982 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
983
984 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
985 }
986 }
987
988 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
989 struct rt2x00lib_conf *libconf,
990 const unsigned int flags)
991 {
992 /* Always recalculate LNA gain before changing configuration */
993 rt61pci_config_lna_gain(rt2x00dev, libconf);
994
995 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
996 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997 libconf->conf->power_level);
998 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
999 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1002 rt61pci_config_retry_limit(rt2x00dev, libconf);
1003 if (flags & IEEE80211_CONF_CHANGE_PS)
1004 rt61pci_config_ps(rt2x00dev, libconf);
1005 }
1006
1007 /*
1008 * Link tuning
1009 */
1010 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1011 struct link_qual *qual)
1012 {
1013 u32 reg;
1014
1015 /*
1016 * Update FCS error count from register.
1017 */
1018 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1020
1021 /*
1022 * Update False CCA count from register.
1023 */
1024 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1026 }
1027
1028 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1029 struct link_qual *qual, u8 vgc_level)
1030 {
1031 if (qual->vgc_level != vgc_level) {
1032 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033 qual->vgc_level = vgc_level;
1034 qual->vgc_level_reg = vgc_level;
1035 }
1036 }
1037
1038 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1039 struct link_qual *qual)
1040 {
1041 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1042 }
1043
1044 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1045 struct link_qual *qual, const u32 count)
1046 {
1047 u8 up_bound;
1048 u8 low_bound;
1049
1050 /*
1051 * Determine r17 bounds.
1052 */
1053 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054 low_bound = 0x28;
1055 up_bound = 0x48;
1056 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1057 low_bound += 0x10;
1058 up_bound += 0x10;
1059 }
1060 } else {
1061 low_bound = 0x20;
1062 up_bound = 0x40;
1063 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1064 low_bound += 0x10;
1065 up_bound += 0x10;
1066 }
1067 }
1068
1069 /*
1070 * If we are not associated, we should go straight to the
1071 * dynamic CCA tuning.
1072 */
1073 if (!rt2x00dev->intf_associated)
1074 goto dynamic_cca_tune;
1075
1076 /*
1077 * Special big-R17 for very short distance
1078 */
1079 if (qual->rssi >= -35) {
1080 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081 return;
1082 }
1083
1084 /*
1085 * Special big-R17 for short distance
1086 */
1087 if (qual->rssi >= -58) {
1088 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089 return;
1090 }
1091
1092 /*
1093 * Special big-R17 for middle-short distance
1094 */
1095 if (qual->rssi >= -66) {
1096 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097 return;
1098 }
1099
1100 /*
1101 * Special mid-R17 for middle distance
1102 */
1103 if (qual->rssi >= -74) {
1104 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105 return;
1106 }
1107
1108 /*
1109 * Special case: Change up_bound based on the rssi.
1110 * Lower up_bound when rssi is weaker then -74 dBm.
1111 */
1112 up_bound -= 2 * (-74 - qual->rssi);
1113 if (low_bound > up_bound)
1114 up_bound = low_bound;
1115
1116 if (qual->vgc_level > up_bound) {
1117 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118 return;
1119 }
1120
1121 dynamic_cca_tune:
1122
1123 /*
1124 * r17 does not yet exceed upper limit, continue and base
1125 * the r17 tuning on the false CCA count.
1126 */
1127 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1128 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1129 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1130 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1131 }
1132
1133 /*
1134 * Firmware functions
1135 */
1136 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1137 {
1138 char *fw_name;
1139
1140 switch (rt2x00dev->chip.rt) {
1141 case RT2561:
1142 fw_name = FIRMWARE_RT2561;
1143 break;
1144 case RT2561s:
1145 fw_name = FIRMWARE_RT2561s;
1146 break;
1147 case RT2661:
1148 fw_name = FIRMWARE_RT2661;
1149 break;
1150 default:
1151 fw_name = NULL;
1152 break;
1153 }
1154
1155 return fw_name;
1156 }
1157
1158 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1159 const u8 *data, const size_t len)
1160 {
1161 u16 fw_crc;
1162 u16 crc;
1163
1164 /*
1165 * Only support 8kb firmware files.
1166 */
1167 if (len != 8192)
1168 return FW_BAD_LENGTH;
1169
1170 /*
1171 * The last 2 bytes in the firmware array are the crc checksum itself.
1172 * This means that we should never pass those 2 bytes to the crc
1173 * algorithm.
1174 */
1175 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1176
1177 /*
1178 * Use the crc itu-t algorithm.
1179 */
1180 crc = crc_itu_t(0, data, len - 2);
1181 crc = crc_itu_t_byte(crc, 0);
1182 crc = crc_itu_t_byte(crc, 0);
1183
1184 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1185 }
1186
1187 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1188 const u8 *data, const size_t len)
1189 {
1190 int i;
1191 u32 reg;
1192
1193 /*
1194 * Wait for stable hardware.
1195 */
1196 for (i = 0; i < 100; i++) {
1197 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1198 if (reg)
1199 break;
1200 msleep(1);
1201 }
1202
1203 if (!reg) {
1204 ERROR(rt2x00dev, "Unstable hardware.\n");
1205 return -EBUSY;
1206 }
1207
1208 /*
1209 * Prepare MCU and mailbox for firmware loading.
1210 */
1211 reg = 0;
1212 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1213 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1214 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1215 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1216 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1217
1218 /*
1219 * Write firmware to device.
1220 */
1221 reg = 0;
1222 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1223 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1224 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225
1226 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1227 data, len);
1228
1229 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1230 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1231
1232 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1233 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234
1235 for (i = 0; i < 100; i++) {
1236 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1237 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1238 break;
1239 msleep(1);
1240 }
1241
1242 if (i == 100) {
1243 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1244 return -EBUSY;
1245 }
1246
1247 /*
1248 * Hardware needs another millisecond before it is ready.
1249 */
1250 msleep(1);
1251
1252 /*
1253 * Reset MAC and BBP registers.
1254 */
1255 reg = 0;
1256 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1257 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1258 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1261 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1262 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1263 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1264
1265 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1266 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1267 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Initialization functions.
1274 */
1275 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1276 {
1277 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1278 u32 word;
1279
1280 if (entry->queue->qid == QID_RX) {
1281 rt2x00_desc_read(entry_priv->desc, 0, &word);
1282
1283 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1284 } else {
1285 rt2x00_desc_read(entry_priv->desc, 0, &word);
1286
1287 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1288 rt2x00_get_field32(word, TXD_W0_VALID));
1289 }
1290 }
1291
1292 static void rt61pci_clear_entry(struct queue_entry *entry)
1293 {
1294 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1295 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1296 u32 word;
1297
1298 if (entry->queue->qid == QID_RX) {
1299 rt2x00_desc_read(entry_priv->desc, 5, &word);
1300 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1301 skbdesc->skb_dma);
1302 rt2x00_desc_write(entry_priv->desc, 5, word);
1303
1304 rt2x00_desc_read(entry_priv->desc, 0, &word);
1305 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1306 rt2x00_desc_write(entry_priv->desc, 0, word);
1307 } else {
1308 rt2x00_desc_read(entry_priv->desc, 0, &word);
1309 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1310 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1311 rt2x00_desc_write(entry_priv->desc, 0, word);
1312 }
1313 }
1314
1315 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1316 {
1317 struct queue_entry_priv_pci *entry_priv;
1318 u32 reg;
1319
1320 /*
1321 * Initialize registers.
1322 */
1323 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1324 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1325 rt2x00dev->tx[0].limit);
1326 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1327 rt2x00dev->tx[1].limit);
1328 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1329 rt2x00dev->tx[2].limit);
1330 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1331 rt2x00dev->tx[3].limit);
1332 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1333
1334 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1335 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1336 rt2x00dev->tx[0].desc_size / 4);
1337 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1338
1339 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1340 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1341 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1342 entry_priv->desc_dma);
1343 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1344
1345 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1346 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1347 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1348 entry_priv->desc_dma);
1349 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1350
1351 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1352 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1353 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1354 entry_priv->desc_dma);
1355 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1356
1357 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1358 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1359 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1360 entry_priv->desc_dma);
1361 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1362
1363 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1364 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1365 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1366 rt2x00dev->rx->desc_size / 4);
1367 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1368 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1369
1370 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1371 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1372 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1373 entry_priv->desc_dma);
1374 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1375
1376 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1377 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1378 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1379 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1380 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1381 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1382
1383 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1384 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1385 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1386 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1387 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1388 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1389
1390 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1391 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1392 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1393
1394 return 0;
1395 }
1396
1397 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1398 {
1399 u32 reg;
1400
1401 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1402 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1403 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1404 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1405 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1406
1407 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1408 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1409 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1410 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1411 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1412 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1413 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1414 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1415 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1416 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1417
1418 /*
1419 * CCK TXD BBP registers
1420 */
1421 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1422 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1423 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1424 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1425 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1426 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1427 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1428 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1429 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1430 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1431
1432 /*
1433 * OFDM TXD BBP registers
1434 */
1435 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1436 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1437 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1438 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1439 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1440 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1441 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1442 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1443
1444 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1445 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1446 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1447 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1448 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1449 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1450
1451 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1452 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1453 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1454 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1455 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1456 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1457
1458 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1459 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1460 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1461 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1462 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1463 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1464 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1465 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1466
1467 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1468
1469 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1470
1471 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1472 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1473 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1474
1475 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1476
1477 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1478 return -EBUSY;
1479
1480 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1481
1482 /*
1483 * Invalidate all Shared Keys (SEC_CSR0),
1484 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1485 */
1486 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1487 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1488 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1489
1490 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1491 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1492 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1493 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1494
1495 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1496
1497 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1498
1499 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1500
1501 /*
1502 * Clear all beacons
1503 * For the Beacon base registers we only need to clear
1504 * the first byte since that byte contains the VALID and OWNER
1505 * bits which (when set to 0) will invalidate the entire beacon.
1506 */
1507 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1508 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1509 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1510 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1511
1512 /*
1513 * We must clear the error counters.
1514 * These registers are cleared on read,
1515 * so we may pass a useless variable to store the value.
1516 */
1517 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1518 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1519 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1520
1521 /*
1522 * Reset MAC and BBP registers.
1523 */
1524 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1525 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1526 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1527 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1528
1529 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1530 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1531 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1532 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1533
1534 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1535 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1536 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538 return 0;
1539 }
1540
1541 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1542 {
1543 unsigned int i;
1544 u8 value;
1545
1546 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1547 rt61pci_bbp_read(rt2x00dev, 0, &value);
1548 if ((value != 0xff) && (value != 0x00))
1549 return 0;
1550 udelay(REGISTER_BUSY_DELAY);
1551 }
1552
1553 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1554 return -EACCES;
1555 }
1556
1557 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1558 {
1559 unsigned int i;
1560 u16 eeprom;
1561 u8 reg_id;
1562 u8 value;
1563
1564 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1565 return -EACCES;
1566
1567 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1568 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1569 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1570 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1571 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1572 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1573 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1574 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1575 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1576 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1577 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1578 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1579 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1580 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1581 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1582 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1583 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1584 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1585 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1586 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1587 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1588 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1589 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1590 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1591
1592 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1593 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1594
1595 if (eeprom != 0xffff && eeprom != 0x0000) {
1596 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1597 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1598 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1599 }
1600 }
1601
1602 return 0;
1603 }
1604
1605 /*
1606 * Device state switch handlers.
1607 */
1608 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1609 enum dev_state state)
1610 {
1611 u32 reg;
1612
1613 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1614 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1615 (state == STATE_RADIO_RX_OFF) ||
1616 (state == STATE_RADIO_RX_OFF_LINK));
1617 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1618 }
1619
1620 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621 enum dev_state state)
1622 {
1623 int mask = (state == STATE_RADIO_IRQ_OFF);
1624 u32 reg;
1625
1626 /*
1627 * When interrupts are being enabled, the interrupt registers
1628 * should clear the register to assure a clean state.
1629 */
1630 if (state == STATE_RADIO_IRQ_ON) {
1631 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1632 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1633
1634 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1635 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1636 }
1637
1638 /*
1639 * Only toggle the interrupts bits we are going to use.
1640 * Non-checked interrupt bits are disabled by default.
1641 */
1642 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1643 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1644 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1645 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1646 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1647 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1648
1649 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1650 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1651 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1652 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1653 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1654 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1655 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1656 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1657 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1658 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1659 }
1660
1661 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1662 {
1663 u32 reg;
1664
1665 /*
1666 * Initialize all registers.
1667 */
1668 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1669 rt61pci_init_registers(rt2x00dev) ||
1670 rt61pci_init_bbp(rt2x00dev)))
1671 return -EIO;
1672
1673 /*
1674 * Enable RX.
1675 */
1676 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1677 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1678 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1679
1680 return 0;
1681 }
1682
1683 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1684 {
1685 /*
1686 * Disable power
1687 */
1688 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1689 }
1690
1691 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1692 {
1693 u32 reg;
1694 unsigned int i;
1695 char put_to_sleep;
1696
1697 put_to_sleep = (state != STATE_AWAKE);
1698
1699 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1700 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1701 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1702 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1703
1704 /*
1705 * Device is not guaranteed to be in the requested state yet.
1706 * We must wait until the register indicates that the
1707 * device has entered the correct state.
1708 */
1709 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1710 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1711 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1712 if (state == !put_to_sleep)
1713 return 0;
1714 msleep(10);
1715 }
1716
1717 return -EBUSY;
1718 }
1719
1720 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1721 enum dev_state state)
1722 {
1723 int retval = 0;
1724
1725 switch (state) {
1726 case STATE_RADIO_ON:
1727 retval = rt61pci_enable_radio(rt2x00dev);
1728 break;
1729 case STATE_RADIO_OFF:
1730 rt61pci_disable_radio(rt2x00dev);
1731 break;
1732 case STATE_RADIO_RX_ON:
1733 case STATE_RADIO_RX_ON_LINK:
1734 case STATE_RADIO_RX_OFF:
1735 case STATE_RADIO_RX_OFF_LINK:
1736 rt61pci_toggle_rx(rt2x00dev, state);
1737 break;
1738 case STATE_RADIO_IRQ_ON:
1739 case STATE_RADIO_IRQ_OFF:
1740 rt61pci_toggle_irq(rt2x00dev, state);
1741 break;
1742 case STATE_DEEP_SLEEP:
1743 case STATE_SLEEP:
1744 case STATE_STANDBY:
1745 case STATE_AWAKE:
1746 retval = rt61pci_set_state(rt2x00dev, state);
1747 break;
1748 default:
1749 retval = -ENOTSUPP;
1750 break;
1751 }
1752
1753 if (unlikely(retval))
1754 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1755 state, retval);
1756
1757 return retval;
1758 }
1759
1760 /*
1761 * TX descriptor initialization
1762 */
1763 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1764 struct sk_buff *skb,
1765 struct txentry_desc *txdesc)
1766 {
1767 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1768 __le32 *txd = skbdesc->desc;
1769 u32 word;
1770
1771 /*
1772 * Start writing the descriptor words.
1773 */
1774 rt2x00_desc_read(txd, 1, &word);
1775 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1776 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1777 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1778 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1779 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1780 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1781 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1782 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1783 rt2x00_desc_write(txd, 1, word);
1784
1785 rt2x00_desc_read(txd, 2, &word);
1786 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1787 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1788 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1789 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1790 rt2x00_desc_write(txd, 2, word);
1791
1792 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1793 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1794 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1795 }
1796
1797 rt2x00_desc_read(txd, 5, &word);
1798 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1799 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1800 skbdesc->entry->entry_idx);
1801 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1802 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1803 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1804 rt2x00_desc_write(txd, 5, word);
1805
1806 rt2x00_desc_read(txd, 6, &word);
1807 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1808 skbdesc->skb_dma);
1809 rt2x00_desc_write(txd, 6, word);
1810
1811 if (skbdesc->desc_len > TXINFO_SIZE) {
1812 rt2x00_desc_read(txd, 11, &word);
1813 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1814 rt2x00_desc_write(txd, 11, word);
1815 }
1816
1817 rt2x00_desc_read(txd, 0, &word);
1818 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1819 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1820 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1821 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1822 rt2x00_set_field32(&word, TXD_W0_ACK,
1823 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1824 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1825 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1826 rt2x00_set_field32(&word, TXD_W0_OFDM,
1827 (txdesc->rate_mode == RATE_MODE_OFDM));
1828 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1829 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1830 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1831 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1832 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1833 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1834 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1835 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1836 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1837 rt2x00_set_field32(&word, TXD_W0_BURST,
1838 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1839 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1840 rt2x00_desc_write(txd, 0, word);
1841 }
1842
1843 /*
1844 * TX data initialization
1845 */
1846 static void rt61pci_write_beacon(struct queue_entry *entry)
1847 {
1848 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1849 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1850 unsigned int beacon_base;
1851 u32 reg;
1852
1853 /*
1854 * Disable beaconing while we are reloading the beacon data,
1855 * otherwise we might be sending out invalid data.
1856 */
1857 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1858 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1859 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1860
1861 /*
1862 * Write entire beacon with descriptor to register.
1863 */
1864 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1865 rt2x00pci_register_multiwrite(rt2x00dev,
1866 beacon_base,
1867 skbdesc->desc, skbdesc->desc_len);
1868 rt2x00pci_register_multiwrite(rt2x00dev,
1869 beacon_base + skbdesc->desc_len,
1870 entry->skb->data, entry->skb->len);
1871
1872 /*
1873 * Clean up beacon skb.
1874 */
1875 dev_kfree_skb_any(entry->skb);
1876 entry->skb = NULL;
1877 }
1878
1879 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1880 const enum data_queue_qid queue)
1881 {
1882 u32 reg;
1883
1884 if (queue == QID_BEACON) {
1885 /*
1886 * For Wi-Fi faily generated beacons between participating
1887 * stations. Set TBTT phase adaptive adjustment step to 8us.
1888 */
1889 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1890
1891 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1892 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1893 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1894 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1895 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1896 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1897 }
1898 return;
1899 }
1900
1901 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1902 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1903 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1904 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1905 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1906 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1907 }
1908
1909 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1910 const enum data_queue_qid qid)
1911 {
1912 u32 reg;
1913
1914 if (qid == QID_BEACON) {
1915 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1916 return;
1917 }
1918
1919 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1920 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1921 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1922 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1923 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1924 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1925 }
1926
1927 /*
1928 * RX control handlers
1929 */
1930 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1931 {
1932 u8 offset = rt2x00dev->lna_gain;
1933 u8 lna;
1934
1935 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1936 switch (lna) {
1937 case 3:
1938 offset += 90;
1939 break;
1940 case 2:
1941 offset += 74;
1942 break;
1943 case 1:
1944 offset += 64;
1945 break;
1946 default:
1947 return 0;
1948 }
1949
1950 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1951 if (lna == 3 || lna == 2)
1952 offset += 10;
1953 }
1954
1955 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1956 }
1957
1958 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1959 struct rxdone_entry_desc *rxdesc)
1960 {
1961 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963 u32 word0;
1964 u32 word1;
1965
1966 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1967 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1968
1969 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1970 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1971
1972 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1973 rxdesc->cipher =
1974 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1975 rxdesc->cipher_status =
1976 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1977 }
1978
1979 if (rxdesc->cipher != CIPHER_NONE) {
1980 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1981 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1982 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1983
1984 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1985 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1986
1987 /*
1988 * Hardware has stripped IV/EIV data from 802.11 frame during
1989 * decryption. It has provided the data separately but rt2x00lib
1990 * should decide if it should be reinserted.
1991 */
1992 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1993
1994 /*
1995 * FIXME: Legacy driver indicates that the frame does
1996 * contain the Michael Mic. Unfortunately, in rt2x00
1997 * the MIC seems to be missing completely...
1998 */
1999 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2000
2001 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2002 rxdesc->flags |= RX_FLAG_DECRYPTED;
2003 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2004 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2005 }
2006
2007 /*
2008 * Obtain the status about this packet.
2009 * When frame was received with an OFDM bitrate,
2010 * the signal is the PLCP value. If it was received with
2011 * a CCK bitrate the signal is the rate in 100kbit/s.
2012 */
2013 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2014 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2015 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2016
2017 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2018 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2019 else
2020 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2021 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2022 rxdesc->dev_flags |= RXDONE_MY_BSS;
2023 }
2024
2025 /*
2026 * Interrupt functions.
2027 */
2028 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2029 {
2030 struct data_queue *queue;
2031 struct queue_entry *entry;
2032 struct queue_entry *entry_done;
2033 struct queue_entry_priv_pci *entry_priv;
2034 struct txdone_entry_desc txdesc;
2035 u32 word;
2036 u32 reg;
2037 u32 old_reg;
2038 int type;
2039 int index;
2040
2041 /*
2042 * During each loop we will compare the freshly read
2043 * STA_CSR4 register value with the value read from
2044 * the previous loop. If the 2 values are equal then
2045 * we should stop processing because the chance is
2046 * quite big that the device has been unplugged and
2047 * we risk going into an endless loop.
2048 */
2049 old_reg = 0;
2050
2051 while (1) {
2052 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2053 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2054 break;
2055
2056 if (old_reg == reg)
2057 break;
2058 old_reg = reg;
2059
2060 /*
2061 * Skip this entry when it contains an invalid
2062 * queue identication number.
2063 */
2064 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2065 queue = rt2x00queue_get_queue(rt2x00dev, type);
2066 if (unlikely(!queue))
2067 continue;
2068
2069 /*
2070 * Skip this entry when it contains an invalid
2071 * index number.
2072 */
2073 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2074 if (unlikely(index >= queue->limit))
2075 continue;
2076
2077 entry = &queue->entries[index];
2078 entry_priv = entry->priv_data;
2079 rt2x00_desc_read(entry_priv->desc, 0, &word);
2080
2081 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2082 !rt2x00_get_field32(word, TXD_W0_VALID))
2083 return;
2084
2085 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2086 while (entry != entry_done) {
2087 /* Catch up.
2088 * Just report any entries we missed as failed.
2089 */
2090 WARNING(rt2x00dev,
2091 "TX status report missed for entry %d\n",
2092 entry_done->entry_idx);
2093
2094 txdesc.flags = 0;
2095 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2096 txdesc.retry = 0;
2097
2098 rt2x00lib_txdone(entry_done, &txdesc);
2099 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2100 }
2101
2102 /*
2103 * Obtain the status about this packet.
2104 */
2105 txdesc.flags = 0;
2106 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2107 case 0: /* Success, maybe with retry */
2108 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2109 break;
2110 case 6: /* Failure, excessive retries */
2111 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2112 /* Don't break, this is a failed frame! */
2113 default: /* Failure */
2114 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2115 }
2116 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2117
2118 rt2x00lib_txdone(entry, &txdesc);
2119 }
2120 }
2121
2122 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2123 {
2124 struct rt2x00_dev *rt2x00dev = dev_instance;
2125 u32 reg_mcu;
2126 u32 reg;
2127
2128 /*
2129 * Get the interrupt sources & saved to local variable.
2130 * Write register value back to clear pending interrupts.
2131 */
2132 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2133 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2134
2135 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2136 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2137
2138 if (!reg && !reg_mcu)
2139 return IRQ_NONE;
2140
2141 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2142 return IRQ_HANDLED;
2143
2144 /*
2145 * Handle interrupts, walk through all bits
2146 * and run the tasks, the bits are checked in order of
2147 * priority.
2148 */
2149
2150 /*
2151 * 1 - Rx ring done interrupt.
2152 */
2153 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2154 rt2x00pci_rxdone(rt2x00dev);
2155
2156 /*
2157 * 2 - Tx ring done interrupt.
2158 */
2159 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2160 rt61pci_txdone(rt2x00dev);
2161
2162 /*
2163 * 3 - Handle MCU command done.
2164 */
2165 if (reg_mcu)
2166 rt2x00pci_register_write(rt2x00dev,
2167 M2H_CMD_DONE_CSR, 0xffffffff);
2168
2169 return IRQ_HANDLED;
2170 }
2171
2172 /*
2173 * Device probe functions.
2174 */
2175 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2176 {
2177 struct eeprom_93cx6 eeprom;
2178 u32 reg;
2179 u16 word;
2180 u8 *mac;
2181 s8 value;
2182
2183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2184
2185 eeprom.data = rt2x00dev;
2186 eeprom.register_read = rt61pci_eepromregister_read;
2187 eeprom.register_write = rt61pci_eepromregister_write;
2188 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2189 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2190 eeprom.reg_data_in = 0;
2191 eeprom.reg_data_out = 0;
2192 eeprom.reg_data_clock = 0;
2193 eeprom.reg_chip_select = 0;
2194
2195 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2196 EEPROM_SIZE / sizeof(u16));
2197
2198 /*
2199 * Start validation of the data that has been read.
2200 */
2201 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2202 if (!is_valid_ether_addr(mac)) {
2203 random_ether_addr(mac);
2204 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2205 }
2206
2207 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2208 if (word == 0xffff) {
2209 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2210 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2211 ANTENNA_B);
2212 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2213 ANTENNA_B);
2214 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2215 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2216 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2217 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2218 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2219 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2220 }
2221
2222 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2223 if (word == 0xffff) {
2224 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2225 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2226 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2227 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2228 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2229 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2230 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2231 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2232 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2233 }
2234
2235 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2236 if (word == 0xffff) {
2237 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2238 LED_MODE_DEFAULT);
2239 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2240 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2241 }
2242
2243 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2244 if (word == 0xffff) {
2245 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2246 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2247 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2248 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2249 }
2250
2251 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2252 if (word == 0xffff) {
2253 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2254 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2255 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2256 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2257 } else {
2258 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2259 if (value < -10 || value > 10)
2260 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2261 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2262 if (value < -10 || value > 10)
2263 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2264 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2265 }
2266
2267 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2268 if (word == 0xffff) {
2269 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2270 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2271 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2272 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2273 } else {
2274 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2275 if (value < -10 || value > 10)
2276 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2277 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2278 if (value < -10 || value > 10)
2279 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2280 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2281 }
2282
2283 return 0;
2284 }
2285
2286 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2287 {
2288 u32 reg;
2289 u16 value;
2290 u16 eeprom;
2291
2292 /*
2293 * Read EEPROM word for configuration.
2294 */
2295 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2296
2297 /*
2298 * Identify RF chipset.
2299 */
2300 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2301 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2302 rt2x00_set_chip_rf(rt2x00dev, value, reg);
2303 rt2x00_print_chip(rt2x00dev);
2304
2305 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2306 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2307 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2308 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2309 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2310 return -ENODEV;
2311 }
2312
2313 /*
2314 * Determine number of antennas.
2315 */
2316 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2317 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2318
2319 /*
2320 * Identify default antenna configuration.
2321 */
2322 rt2x00dev->default_ant.tx =
2323 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2324 rt2x00dev->default_ant.rx =
2325 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2326
2327 /*
2328 * Read the Frame type.
2329 */
2330 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2331 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2332
2333 /*
2334 * Detect if this device has a hardware controlled radio.
2335 */
2336 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2337 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2338
2339 /*
2340 * Read frequency offset and RF programming sequence.
2341 */
2342 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2343 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2344 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2345
2346 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2347
2348 /*
2349 * Read external LNA informations.
2350 */
2351 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2352
2353 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2354 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2355 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2356 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2357
2358 /*
2359 * When working with a RF2529 chip without double antenna,
2360 * the antenna settings should be gathered from the NIC
2361 * eeprom word.
2362 */
2363 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2364 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2365 rt2x00dev->default_ant.rx =
2366 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2367 rt2x00dev->default_ant.tx =
2368 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2369
2370 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2371 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2372 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2373 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2374 }
2375
2376 /*
2377 * Store led settings, for correct led behaviour.
2378 * If the eeprom value is invalid,
2379 * switch to default led mode.
2380 */
2381 #ifdef CONFIG_RT2X00_LIB_LEDS
2382 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2383 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2384
2385 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2386 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2387 if (value == LED_MODE_SIGNAL_STRENGTH)
2388 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2389 LED_TYPE_QUALITY);
2390
2391 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2392 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2393 rt2x00_get_field16(eeprom,
2394 EEPROM_LED_POLARITY_GPIO_0));
2395 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2396 rt2x00_get_field16(eeprom,
2397 EEPROM_LED_POLARITY_GPIO_1));
2398 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2399 rt2x00_get_field16(eeprom,
2400 EEPROM_LED_POLARITY_GPIO_2));
2401 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2402 rt2x00_get_field16(eeprom,
2403 EEPROM_LED_POLARITY_GPIO_3));
2404 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2405 rt2x00_get_field16(eeprom,
2406 EEPROM_LED_POLARITY_GPIO_4));
2407 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2408 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2409 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2410 rt2x00_get_field16(eeprom,
2411 EEPROM_LED_POLARITY_RDY_G));
2412 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2413 rt2x00_get_field16(eeprom,
2414 EEPROM_LED_POLARITY_RDY_A));
2415 #endif /* CONFIG_RT2X00_LIB_LEDS */
2416
2417 return 0;
2418 }
2419
2420 /*
2421 * RF value list for RF5225 & RF5325
2422 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2423 */
2424 static const struct rf_channel rf_vals_noseq[] = {
2425 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2426 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2427 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2428 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2429 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2430 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2431 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2432 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2433 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2434 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2435 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2436 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2437 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2438 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2439
2440 /* 802.11 UNI / HyperLan 2 */
2441 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2442 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2443 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2444 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2445 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2446 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2447 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2448 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2449
2450 /* 802.11 HyperLan 2 */
2451 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2452 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2453 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2454 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2455 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2456 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2457 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2458 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2459 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2460 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2461
2462 /* 802.11 UNII */
2463 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2464 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2465 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2466 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2467 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2468 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2469
2470 /* MMAC(Japan)J52 ch 34,38,42,46 */
2471 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2472 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2473 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2474 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2475 };
2476
2477 /*
2478 * RF value list for RF5225 & RF5325
2479 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2480 */
2481 static const struct rf_channel rf_vals_seq[] = {
2482 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2483 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2484 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2485 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2486 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2487 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2488 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2489 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2490 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2491 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2492 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2493 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2494 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2495 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2496
2497 /* 802.11 UNI / HyperLan 2 */
2498 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2499 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2500 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2501 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2502 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2503 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2504 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2505 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2506
2507 /* 802.11 HyperLan 2 */
2508 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2509 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2510 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2511 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2512 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2513 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2514 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2515 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2516 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2517 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2518
2519 /* 802.11 UNII */
2520 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2521 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2522 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2523 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2524 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2525 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2526
2527 /* MMAC(Japan)J52 ch 34,38,42,46 */
2528 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2529 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2530 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2531 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2532 };
2533
2534 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2535 {
2536 struct hw_mode_spec *spec = &rt2x00dev->spec;
2537 struct channel_info *info;
2538 char *tx_power;
2539 unsigned int i;
2540
2541 /*
2542 * Disable powersaving as default.
2543 */
2544 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2545
2546 /*
2547 * Initialize all hw fields.
2548 */
2549 rt2x00dev->hw->flags =
2550 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2551 IEEE80211_HW_SIGNAL_DBM |
2552 IEEE80211_HW_SUPPORTS_PS |
2553 IEEE80211_HW_PS_NULLFUNC_STACK;
2554
2555 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2556 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2557 rt2x00_eeprom_addr(rt2x00dev,
2558 EEPROM_MAC_ADDR_0));
2559
2560 /*
2561 * Initialize hw_mode information.
2562 */
2563 spec->supported_bands = SUPPORT_BAND_2GHZ;
2564 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2565
2566 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2567 spec->num_channels = 14;
2568 spec->channels = rf_vals_noseq;
2569 } else {
2570 spec->num_channels = 14;
2571 spec->channels = rf_vals_seq;
2572 }
2573
2574 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2575 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2576 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2577 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2578 }
2579
2580 /*
2581 * Create channel information array
2582 */
2583 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2584 if (!info)
2585 return -ENOMEM;
2586
2587 spec->channels_info = info;
2588
2589 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2590 for (i = 0; i < 14; i++)
2591 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2592
2593 if (spec->num_channels > 14) {
2594 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2595 for (i = 14; i < spec->num_channels; i++)
2596 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2597 }
2598
2599 return 0;
2600 }
2601
2602 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2603 {
2604 int retval;
2605
2606 /*
2607 * Disable power saving.
2608 */
2609 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2610
2611 /*
2612 * Allocate eeprom data.
2613 */
2614 retval = rt61pci_validate_eeprom(rt2x00dev);
2615 if (retval)
2616 return retval;
2617
2618 retval = rt61pci_init_eeprom(rt2x00dev);
2619 if (retval)
2620 return retval;
2621
2622 /*
2623 * Initialize hw specifications.
2624 */
2625 retval = rt61pci_probe_hw_mode(rt2x00dev);
2626 if (retval)
2627 return retval;
2628
2629 /*
2630 * This device has multiple filters for control frames,
2631 * but has no a separate filter for PS Poll frames.
2632 */
2633 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2634
2635 /*
2636 * This device requires firmware and DMA mapped skbs.
2637 */
2638 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2639 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2640 if (!modparam_nohwcrypt)
2641 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2642
2643 /*
2644 * Set the rssi offset.
2645 */
2646 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2647
2648 return 0;
2649 }
2650
2651 /*
2652 * IEEE80211 stack callback functions.
2653 */
2654 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2655 const struct ieee80211_tx_queue_params *params)
2656 {
2657 struct rt2x00_dev *rt2x00dev = hw->priv;
2658 struct data_queue *queue;
2659 struct rt2x00_field32 field;
2660 int retval;
2661 u32 reg;
2662 u32 offset;
2663
2664 /*
2665 * First pass the configuration through rt2x00lib, that will
2666 * update the queue settings and validate the input. After that
2667 * we are free to update the registers based on the value
2668 * in the queue parameter.
2669 */
2670 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2671 if (retval)
2672 return retval;
2673
2674 /*
2675 * We only need to perform additional register initialization
2676 * for WMM queues.
2677 */
2678 if (queue_idx >= 4)
2679 return 0;
2680
2681 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2682
2683 /* Update WMM TXOP register */
2684 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2685 field.bit_offset = (queue_idx & 1) * 16;
2686 field.bit_mask = 0xffff << field.bit_offset;
2687
2688 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2689 rt2x00_set_field32(&reg, field, queue->txop);
2690 rt2x00pci_register_write(rt2x00dev, offset, reg);
2691
2692 /* Update WMM registers */
2693 field.bit_offset = queue_idx * 4;
2694 field.bit_mask = 0xf << field.bit_offset;
2695
2696 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2697 rt2x00_set_field32(&reg, field, queue->aifs);
2698 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2699
2700 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2701 rt2x00_set_field32(&reg, field, queue->cw_min);
2702 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2703
2704 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2705 rt2x00_set_field32(&reg, field, queue->cw_max);
2706 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2707
2708 return 0;
2709 }
2710
2711 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2712 {
2713 struct rt2x00_dev *rt2x00dev = hw->priv;
2714 u64 tsf;
2715 u32 reg;
2716
2717 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2718 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2719 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2720 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2721
2722 return tsf;
2723 }
2724
2725 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2726 .tx = rt2x00mac_tx,
2727 .start = rt2x00mac_start,
2728 .stop = rt2x00mac_stop,
2729 .add_interface = rt2x00mac_add_interface,
2730 .remove_interface = rt2x00mac_remove_interface,
2731 .config = rt2x00mac_config,
2732 .configure_filter = rt2x00mac_configure_filter,
2733 .set_tim = rt2x00mac_set_tim,
2734 .set_key = rt2x00mac_set_key,
2735 .get_stats = rt2x00mac_get_stats,
2736 .bss_info_changed = rt2x00mac_bss_info_changed,
2737 .conf_tx = rt61pci_conf_tx,
2738 .get_tx_stats = rt2x00mac_get_tx_stats,
2739 .get_tsf = rt61pci_get_tsf,
2740 .rfkill_poll = rt2x00mac_rfkill_poll,
2741 };
2742
2743 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2744 .irq_handler = rt61pci_interrupt,
2745 .probe_hw = rt61pci_probe_hw,
2746 .get_firmware_name = rt61pci_get_firmware_name,
2747 .check_firmware = rt61pci_check_firmware,
2748 .load_firmware = rt61pci_load_firmware,
2749 .initialize = rt2x00pci_initialize,
2750 .uninitialize = rt2x00pci_uninitialize,
2751 .get_entry_state = rt61pci_get_entry_state,
2752 .clear_entry = rt61pci_clear_entry,
2753 .set_device_state = rt61pci_set_device_state,
2754 .rfkill_poll = rt61pci_rfkill_poll,
2755 .link_stats = rt61pci_link_stats,
2756 .reset_tuner = rt61pci_reset_tuner,
2757 .link_tuner = rt61pci_link_tuner,
2758 .write_tx_desc = rt61pci_write_tx_desc,
2759 .write_tx_data = rt2x00pci_write_tx_data,
2760 .write_beacon = rt61pci_write_beacon,
2761 .kick_tx_queue = rt61pci_kick_tx_queue,
2762 .kill_tx_queue = rt61pci_kill_tx_queue,
2763 .fill_rxdone = rt61pci_fill_rxdone,
2764 .config_shared_key = rt61pci_config_shared_key,
2765 .config_pairwise_key = rt61pci_config_pairwise_key,
2766 .config_filter = rt61pci_config_filter,
2767 .config_intf = rt61pci_config_intf,
2768 .config_erp = rt61pci_config_erp,
2769 .config_ant = rt61pci_config_ant,
2770 .config = rt61pci_config,
2771 };
2772
2773 static const struct data_queue_desc rt61pci_queue_rx = {
2774 .entry_num = RX_ENTRIES,
2775 .data_size = DATA_FRAME_SIZE,
2776 .desc_size = RXD_DESC_SIZE,
2777 .priv_size = sizeof(struct queue_entry_priv_pci),
2778 };
2779
2780 static const struct data_queue_desc rt61pci_queue_tx = {
2781 .entry_num = TX_ENTRIES,
2782 .data_size = DATA_FRAME_SIZE,
2783 .desc_size = TXD_DESC_SIZE,
2784 .priv_size = sizeof(struct queue_entry_priv_pci),
2785 };
2786
2787 static const struct data_queue_desc rt61pci_queue_bcn = {
2788 .entry_num = 4 * BEACON_ENTRIES,
2789 .data_size = 0, /* No DMA required for beacons */
2790 .desc_size = TXINFO_SIZE,
2791 .priv_size = sizeof(struct queue_entry_priv_pci),
2792 };
2793
2794 static const struct rt2x00_ops rt61pci_ops = {
2795 .name = KBUILD_MODNAME,
2796 .max_sta_intf = 1,
2797 .max_ap_intf = 4,
2798 .eeprom_size = EEPROM_SIZE,
2799 .rf_size = RF_SIZE,
2800 .tx_queues = NUM_TX_QUEUES,
2801 .extra_tx_headroom = 0,
2802 .rx = &rt61pci_queue_rx,
2803 .tx = &rt61pci_queue_tx,
2804 .bcn = &rt61pci_queue_bcn,
2805 .lib = &rt61pci_rt2x00_ops,
2806 .hw = &rt61pci_mac80211_ops,
2807 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2808 .debugfs = &rt61pci_rt2x00debug,
2809 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2810 };
2811
2812 /*
2813 * RT61pci module information.
2814 */
2815 static struct pci_device_id rt61pci_device_table[] = {
2816 /* RT2561s */
2817 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2818 /* RT2561 v2 */
2819 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2820 /* RT2661 */
2821 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2822 { 0, }
2823 };
2824
2825 MODULE_AUTHOR(DRV_PROJECT);
2826 MODULE_VERSION(DRV_VERSION);
2827 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2828 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2829 "PCI & PCMCIA chipset based cards");
2830 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2831 MODULE_FIRMWARE(FIRMWARE_RT2561);
2832 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2833 MODULE_FIRMWARE(FIRMWARE_RT2661);
2834 MODULE_LICENSE("GPL");
2835
2836 static struct pci_driver rt61pci_driver = {
2837 .name = KBUILD_MODNAME,
2838 .id_table = rt61pci_device_table,
2839 .probe = rt2x00pci_probe,
2840 .remove = __devexit_p(rt2x00pci_remove),
2841 .suspend = rt2x00pci_suspend,
2842 .resume = rt2x00pci_resume,
2843 };
2844
2845 static int __init rt61pci_init(void)
2846 {
2847 return pci_register_driver(&rt61pci_driver);
2848 }
2849
2850 static void __exit rt61pci_exit(void)
2851 {
2852 pci_unregister_driver(&rt61pci_driver);
2853 }
2854
2855 module_init(rt61pci_init);
2856 module_exit(rt61pci_exit);