]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge remote-tracking branch 'regulator/topic/palmas' into v3.9-rc8
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00mmio.h"
39 #include "rt2x00pci.h"
40 #include "rt61pci.h"
41
42 /*
43 * Allow hardware encryption to be disabled.
44 */
45 static bool modparam_nohwcrypt = false;
46 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
47 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48
49 /*
50 * Register access.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attempt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64 #define WAIT_FOR_MCU(__dev, __reg) \
65 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
66 H2M_MAILBOX_CSR_OWNER, (__reg))
67
68 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
69 const unsigned int word, const u8 value)
70 {
71 u32 reg;
72
73 mutex_lock(&rt2x00dev->csr_mutex);
74
75 /*
76 * Wait until the BBP becomes available, afterwards we
77 * can safely write the new data into the register.
78 */
79 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
80 reg = 0;
81 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
82 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
83 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
84 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
85
86 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
87 }
88
89 mutex_unlock(&rt2x00dev->csr_mutex);
90 }
91
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 const unsigned int word, u8 *value)
94 {
95 u32 reg;
96
97 mutex_lock(&rt2x00dev->csr_mutex);
98
99 /*
100 * Wait until the BBP becomes available, afterwards we
101 * can safely write the read request into the register.
102 * After the data has been written, we wait until hardware
103 * returns the correct value, if at any time the register
104 * doesn't become available in time, reg will be 0xffffffff
105 * which means we return 0xff to the caller.
106 */
107 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
108 reg = 0;
109 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
110 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
111 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112
113 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
114
115 WAIT_FOR_BBP(rt2x00dev, &reg);
116 }
117
118 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
119
120 mutex_unlock(&rt2x00dev->csr_mutex);
121 }
122
123 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
124 const unsigned int word, const u32 value)
125 {
126 u32 reg;
127
128 mutex_lock(&rt2x00dev->csr_mutex);
129
130 /*
131 * Wait until the RF becomes available, afterwards we
132 * can safely write the new data into the register.
133 */
134 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135 reg = 0;
136 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
138 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
139 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
140
141 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
142 rt2x00_rf_write(rt2x00dev, word, value);
143 }
144
145 mutex_unlock(&rt2x00dev->csr_mutex);
146 }
147
148 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
149 const u8 command, const u8 token,
150 const u8 arg0, const u8 arg1)
151 {
152 u32 reg;
153
154 mutex_lock(&rt2x00dev->csr_mutex);
155
156 /*
157 * Wait until the MCU becomes available, afterwards we
158 * can safely write the new data into the register.
159 */
160 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
165 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
166
167 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
170 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
171 }
172
173 mutex_unlock(&rt2x00dev->csr_mutex);
174
175 }
176
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
178 {
179 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 u32 reg;
181
182 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
183
184 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
185 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
186 eeprom->reg_data_clock =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
188 eeprom->reg_chip_select =
189 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
190 }
191
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
193 {
194 struct rt2x00_dev *rt2x00dev = eeprom->data;
195 u32 reg = 0;
196
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
200 !!eeprom->reg_data_clock);
201 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
202 !!eeprom->reg_chip_select);
203
204 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
205 }
206
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug = {
209 .owner = THIS_MODULE,
210 .csr = {
211 .read = rt2x00pci_register_read,
212 .write = rt2x00pci_register_write,
213 .flags = RT2X00DEBUGFS_OFFSET,
214 .word_base = CSR_REG_BASE,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_base = EEPROM_BASE,
222 .word_size = sizeof(u16),
223 .word_count = EEPROM_SIZE / sizeof(u16),
224 },
225 .bbp = {
226 .read = rt61pci_bbp_read,
227 .write = rt61pci_bbp_write,
228 .word_base = BBP_BASE,
229 .word_size = sizeof(u8),
230 .word_count = BBP_SIZE / sizeof(u8),
231 },
232 .rf = {
233 .read = rt2x00_rf_read,
234 .write = rt61pci_rf_write,
235 .word_base = RF_BASE,
236 .word_size = sizeof(u32),
237 .word_count = RF_SIZE / sizeof(u32),
238 },
239 };
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241
242 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
243 {
244 u32 reg;
245
246 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
247 return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
248 }
249
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
252 enum led_brightness brightness)
253 {
254 struct rt2x00_led *led =
255 container_of(led_cdev, struct rt2x00_led, led_dev);
256 unsigned int enabled = brightness != LED_OFF;
257 unsigned int a_mode =
258 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
259 unsigned int bg_mode =
260 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
261
262 if (led->type == LED_TYPE_RADIO) {
263 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
264 MCU_LEDCS_RADIO_STATUS, enabled);
265
266 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
267 (led->rt2x00dev->led_mcu_reg & 0xff),
268 ((led->rt2x00dev->led_mcu_reg >> 8)));
269 } else if (led->type == LED_TYPE_ASSOC) {
270 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
272 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273 MCU_LEDCS_LINK_A_STATUS, a_mode);
274
275 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
276 (led->rt2x00dev->led_mcu_reg & 0xff),
277 ((led->rt2x00dev->led_mcu_reg >> 8)));
278 } else if (led->type == LED_TYPE_QUALITY) {
279 /*
280 * The brightness is divided into 6 levels (0 - 5),
281 * this means we need to convert the brightness
282 * argument into the matching level within that range.
283 */
284 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
285 brightness / (LED_FULL / 6), 0);
286 }
287 }
288
289 static int rt61pci_blink_set(struct led_classdev *led_cdev,
290 unsigned long *delay_on,
291 unsigned long *delay_off)
292 {
293 struct rt2x00_led *led =
294 container_of(led_cdev, struct rt2x00_led, led_dev);
295 u32 reg;
296
297 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
298 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
299 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
300 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
301
302 return 0;
303 }
304
305 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
306 struct rt2x00_led *led,
307 enum led_type type)
308 {
309 led->rt2x00dev = rt2x00dev;
310 led->type = type;
311 led->led_dev.brightness_set = rt61pci_brightness_set;
312 led->led_dev.blink_set = rt61pci_blink_set;
313 led->flags = LED_INITIALIZED;
314 }
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
316
317 /*
318 * Configuration handlers.
319 */
320 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
321 struct rt2x00lib_crypto *crypto,
322 struct ieee80211_key_conf *key)
323 {
324 struct hw_key_entry key_entry;
325 struct rt2x00_field32 field;
326 u32 mask;
327 u32 reg;
328
329 if (crypto->cmd == SET_KEY) {
330 /*
331 * rt2x00lib can't determine the correct free
332 * key_idx for shared keys. We have 1 register
333 * with key valid bits. The goal is simple, read
334 * the register, if that is full we have no slots
335 * left.
336 * Note that each BSS is allowed to have up to 4
337 * shared keys, so put a mask over the allowed
338 * entries.
339 */
340 mask = (0xf << crypto->bssidx);
341
342 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
343 reg &= mask;
344
345 if (reg && reg == mask)
346 return -ENOSPC;
347
348 key->hw_key_idx += reg ? ffz(reg) : 0;
349
350 /*
351 * Upload key to hardware
352 */
353 memcpy(key_entry.key, crypto->key,
354 sizeof(key_entry.key));
355 memcpy(key_entry.tx_mic, crypto->tx_mic,
356 sizeof(key_entry.tx_mic));
357 memcpy(key_entry.rx_mic, crypto->rx_mic,
358 sizeof(key_entry.rx_mic));
359
360 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
361 rt2x00pci_register_multiwrite(rt2x00dev, reg,
362 &key_entry, sizeof(key_entry));
363
364 /*
365 * The cipher types are stored over 2 registers.
366 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
367 * bssidx 1 and 2 keys are stored in SEC_CSR5.
368 * Using the correct defines correctly will cause overhead,
369 * so just calculate the correct offset.
370 */
371 if (key->hw_key_idx < 8) {
372 field.bit_offset = (3 * key->hw_key_idx);
373 field.bit_mask = 0x7 << field.bit_offset;
374
375 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
376 rt2x00_set_field32(&reg, field, crypto->cipher);
377 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
378 } else {
379 field.bit_offset = (3 * (key->hw_key_idx - 8));
380 field.bit_mask = 0x7 << field.bit_offset;
381
382 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
383 rt2x00_set_field32(&reg, field, crypto->cipher);
384 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
385 }
386
387 /*
388 * The driver does not support the IV/EIV generation
389 * in hardware. However it doesn't support the IV/EIV
390 * inside the ieee80211 frame either, but requires it
391 * to be provided separately for the descriptor.
392 * rt2x00lib will cut the IV/EIV data out of all frames
393 * given to us by mac80211, but we must tell mac80211
394 * to generate the IV/EIV data.
395 */
396 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397 }
398
399 /*
400 * SEC_CSR0 contains only single-bit fields to indicate
401 * a particular key is valid. Because using the FIELD32()
402 * defines directly will cause a lot of overhead, we use
403 * a calculation to determine the correct bit directly.
404 */
405 mask = 1 << key->hw_key_idx;
406
407 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
408 if (crypto->cmd == SET_KEY)
409 reg |= mask;
410 else if (crypto->cmd == DISABLE_KEY)
411 reg &= ~mask;
412 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
413
414 return 0;
415 }
416
417 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
418 struct rt2x00lib_crypto *crypto,
419 struct ieee80211_key_conf *key)
420 {
421 struct hw_pairwise_ta_entry addr_entry;
422 struct hw_key_entry key_entry;
423 u32 mask;
424 u32 reg;
425
426 if (crypto->cmd == SET_KEY) {
427 /*
428 * rt2x00lib can't determine the correct free
429 * key_idx for pairwise keys. We have 2 registers
430 * with key valid bits. The goal is simple: read
431 * the first register. If that is full, move to
432 * the next register.
433 * When both registers are full, we drop the key.
434 * Otherwise, we use the first invalid entry.
435 */
436 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
437 if (reg && reg == ~0) {
438 key->hw_key_idx = 32;
439 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
440 if (reg && reg == ~0)
441 return -ENOSPC;
442 }
443
444 key->hw_key_idx += reg ? ffz(reg) : 0;
445
446 /*
447 * Upload key to hardware
448 */
449 memcpy(key_entry.key, crypto->key,
450 sizeof(key_entry.key));
451 memcpy(key_entry.tx_mic, crypto->tx_mic,
452 sizeof(key_entry.tx_mic));
453 memcpy(key_entry.rx_mic, crypto->rx_mic,
454 sizeof(key_entry.rx_mic));
455
456 memset(&addr_entry, 0, sizeof(addr_entry));
457 memcpy(&addr_entry, crypto->address, ETH_ALEN);
458 addr_entry.cipher = crypto->cipher;
459
460 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
461 rt2x00pci_register_multiwrite(rt2x00dev, reg,
462 &key_entry, sizeof(key_entry));
463
464 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
465 rt2x00pci_register_multiwrite(rt2x00dev, reg,
466 &addr_entry, sizeof(addr_entry));
467
468 /*
469 * Enable pairwise lookup table for given BSS idx.
470 * Without this, received frames will not be decrypted
471 * by the hardware.
472 */
473 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
474 reg |= (1 << crypto->bssidx);
475 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
476
477 /*
478 * The driver does not support the IV/EIV generation
479 * in hardware. However it doesn't support the IV/EIV
480 * inside the ieee80211 frame either, but requires it
481 * to be provided separately for the descriptor.
482 * rt2x00lib will cut the IV/EIV data out of all frames
483 * given to us by mac80211, but we must tell mac80211
484 * to generate the IV/EIV data.
485 */
486 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
487 }
488
489 /*
490 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
491 * a particular key is valid. Because using the FIELD32()
492 * defines directly will cause a lot of overhead, we use
493 * a calculation to determine the correct bit directly.
494 */
495 if (key->hw_key_idx < 32) {
496 mask = 1 << key->hw_key_idx;
497
498 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
499 if (crypto->cmd == SET_KEY)
500 reg |= mask;
501 else if (crypto->cmd == DISABLE_KEY)
502 reg &= ~mask;
503 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
504 } else {
505 mask = 1 << (key->hw_key_idx - 32);
506
507 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
508 if (crypto->cmd == SET_KEY)
509 reg |= mask;
510 else if (crypto->cmd == DISABLE_KEY)
511 reg &= ~mask;
512 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
513 }
514
515 return 0;
516 }
517
518 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
519 const unsigned int filter_flags)
520 {
521 u32 reg;
522
523 /*
524 * Start configuration steps.
525 * Note that the version error will always be dropped
526 * and broadcast frames will always be accepted since
527 * there is no filter for it at this time.
528 */
529 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
530 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
531 !(filter_flags & FIF_FCSFAIL));
532 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
533 !(filter_flags & FIF_PLCPFAIL));
534 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
535 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
536 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
537 !(filter_flags & FIF_PROMISC_IN_BSS));
538 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
539 !(filter_flags & FIF_PROMISC_IN_BSS) &&
540 !rt2x00dev->intf_ap_count);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
543 !(filter_flags & FIF_ALLMULTI));
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
545 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
546 !(filter_flags & FIF_CONTROL));
547 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
548 }
549
550 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
551 struct rt2x00_intf *intf,
552 struct rt2x00intf_conf *conf,
553 const unsigned int flags)
554 {
555 u32 reg;
556
557 if (flags & CONFIG_UPDATE_TYPE) {
558 /*
559 * Enable synchronisation.
560 */
561 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
562 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
563 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
564 }
565
566 if (flags & CONFIG_UPDATE_MAC) {
567 reg = le32_to_cpu(conf->mac[1]);
568 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
569 conf->mac[1] = cpu_to_le32(reg);
570
571 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
572 conf->mac, sizeof(conf->mac));
573 }
574
575 if (flags & CONFIG_UPDATE_BSSID) {
576 reg = le32_to_cpu(conf->bssid[1]);
577 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
578 conf->bssid[1] = cpu_to_le32(reg);
579
580 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
581 conf->bssid, sizeof(conf->bssid));
582 }
583 }
584
585 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
586 struct rt2x00lib_erp *erp,
587 u32 changed)
588 {
589 u32 reg;
590
591 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
592 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
593 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
594 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
595
596 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
597 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
598 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
599 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
600 !!erp->short_preamble);
601 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
602 }
603
604 if (changed & BSS_CHANGED_BASIC_RATES)
605 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
606 erp->basic_rates);
607
608 if (changed & BSS_CHANGED_BEACON_INT) {
609 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
610 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
611 erp->beacon_int * 16);
612 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
613 }
614
615 if (changed & BSS_CHANGED_ERP_SLOT) {
616 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
617 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
618 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
619
620 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
621 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
622 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
623 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
624 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
625 }
626 }
627
628 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
629 struct antenna_setup *ant)
630 {
631 u8 r3;
632 u8 r4;
633 u8 r77;
634
635 rt61pci_bbp_read(rt2x00dev, 3, &r3);
636 rt61pci_bbp_read(rt2x00dev, 4, &r4);
637 rt61pci_bbp_read(rt2x00dev, 77, &r77);
638
639 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
640
641 /*
642 * Configure the RX antenna.
643 */
644 switch (ant->rx) {
645 case ANTENNA_HW_DIVERSITY:
646 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
647 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
648 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
649 break;
650 case ANTENNA_A:
651 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
652 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
653 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
655 else
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
657 break;
658 case ANTENNA_B:
659 default:
660 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
661 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
662 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
663 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
664 else
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
666 break;
667 }
668
669 rt61pci_bbp_write(rt2x00dev, 77, r77);
670 rt61pci_bbp_write(rt2x00dev, 3, r3);
671 rt61pci_bbp_write(rt2x00dev, 4, r4);
672 }
673
674 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
675 struct antenna_setup *ant)
676 {
677 u8 r3;
678 u8 r4;
679 u8 r77;
680
681 rt61pci_bbp_read(rt2x00dev, 3, &r3);
682 rt61pci_bbp_read(rt2x00dev, 4, &r4);
683 rt61pci_bbp_read(rt2x00dev, 77, &r77);
684
685 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
686 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
687 !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
688
689 /*
690 * Configure the RX antenna.
691 */
692 switch (ant->rx) {
693 case ANTENNA_HW_DIVERSITY:
694 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
695 break;
696 case ANTENNA_A:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
698 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
699 break;
700 case ANTENNA_B:
701 default:
702 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
703 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
704 break;
705 }
706
707 rt61pci_bbp_write(rt2x00dev, 77, r77);
708 rt61pci_bbp_write(rt2x00dev, 3, r3);
709 rt61pci_bbp_write(rt2x00dev, 4, r4);
710 }
711
712 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
713 const int p1, const int p2)
714 {
715 u32 reg;
716
717 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
718
719 rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
720 rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
721
722 rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
723 rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
724
725 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
726 }
727
728 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
729 struct antenna_setup *ant)
730 {
731 u8 r3;
732 u8 r4;
733 u8 r77;
734
735 rt61pci_bbp_read(rt2x00dev, 3, &r3);
736 rt61pci_bbp_read(rt2x00dev, 4, &r4);
737 rt61pci_bbp_read(rt2x00dev, 77, &r77);
738
739 /*
740 * Configure the RX antenna.
741 */
742 switch (ant->rx) {
743 case ANTENNA_A:
744 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
745 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
746 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
747 break;
748 case ANTENNA_HW_DIVERSITY:
749 /*
750 * FIXME: Antenna selection for the rf 2529 is very confusing
751 * in the legacy driver. Just default to antenna B until the
752 * legacy code can be properly translated into rt2x00 code.
753 */
754 case ANTENNA_B:
755 default:
756 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
757 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
758 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
759 break;
760 }
761
762 rt61pci_bbp_write(rt2x00dev, 77, r77);
763 rt61pci_bbp_write(rt2x00dev, 3, r3);
764 rt61pci_bbp_write(rt2x00dev, 4, r4);
765 }
766
767 struct antenna_sel {
768 u8 word;
769 /*
770 * value[0] -> non-LNA
771 * value[1] -> LNA
772 */
773 u8 value[2];
774 };
775
776 static const struct antenna_sel antenna_sel_a[] = {
777 { 96, { 0x58, 0x78 } },
778 { 104, { 0x38, 0x48 } },
779 { 75, { 0xfe, 0x80 } },
780 { 86, { 0xfe, 0x80 } },
781 { 88, { 0xfe, 0x80 } },
782 { 35, { 0x60, 0x60 } },
783 { 97, { 0x58, 0x58 } },
784 { 98, { 0x58, 0x58 } },
785 };
786
787 static const struct antenna_sel antenna_sel_bg[] = {
788 { 96, { 0x48, 0x68 } },
789 { 104, { 0x2c, 0x3c } },
790 { 75, { 0xfe, 0x80 } },
791 { 86, { 0xfe, 0x80 } },
792 { 88, { 0xfe, 0x80 } },
793 { 35, { 0x50, 0x50 } },
794 { 97, { 0x48, 0x48 } },
795 { 98, { 0x48, 0x48 } },
796 };
797
798 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
799 struct antenna_setup *ant)
800 {
801 const struct antenna_sel *sel;
802 unsigned int lna;
803 unsigned int i;
804 u32 reg;
805
806 /*
807 * We should never come here because rt2x00lib is supposed
808 * to catch this and send us the correct antenna explicitely.
809 */
810 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
811 ant->tx == ANTENNA_SW_DIVERSITY);
812
813 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
814 sel = antenna_sel_a;
815 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
816 } else {
817 sel = antenna_sel_bg;
818 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
819 }
820
821 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
822 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
823
824 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
825
826 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
827 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
828 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
829 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
830
831 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
832
833 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
834 rt61pci_config_antenna_5x(rt2x00dev, ant);
835 else if (rt2x00_rf(rt2x00dev, RF2527))
836 rt61pci_config_antenna_2x(rt2x00dev, ant);
837 else if (rt2x00_rf(rt2x00dev, RF2529)) {
838 if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
839 rt61pci_config_antenna_2x(rt2x00dev, ant);
840 else
841 rt61pci_config_antenna_2529(rt2x00dev, ant);
842 }
843 }
844
845 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
846 struct rt2x00lib_conf *libconf)
847 {
848 u16 eeprom;
849 short lna_gain = 0;
850
851 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
852 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
853 lna_gain += 14;
854
855 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
856 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
857 } else {
858 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
859 lna_gain += 14;
860
861 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
862 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
863 }
864
865 rt2x00dev->lna_gain = lna_gain;
866 }
867
868 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
869 struct rf_channel *rf, const int txpower)
870 {
871 u8 r3;
872 u8 r94;
873 u8 smart;
874
875 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
876 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
877
878 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
879
880 rt61pci_bbp_read(rt2x00dev, 3, &r3);
881 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
882 rt61pci_bbp_write(rt2x00dev, 3, r3);
883
884 r94 = 6;
885 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
886 r94 += txpower - MAX_TXPOWER;
887 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
888 r94 += txpower;
889 rt61pci_bbp_write(rt2x00dev, 94, r94);
890
891 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
892 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
893 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
894 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
895
896 udelay(200);
897
898 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
899 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
900 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
901 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
902
903 udelay(200);
904
905 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
906 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
907 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
908 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
909
910 msleep(1);
911 }
912
913 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
914 const int txpower)
915 {
916 struct rf_channel rf;
917
918 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
919 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
920 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
921 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
922
923 rt61pci_config_channel(rt2x00dev, &rf, txpower);
924 }
925
926 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
927 struct rt2x00lib_conf *libconf)
928 {
929 u32 reg;
930
931 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
932 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
933 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
934 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
935 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
936 libconf->conf->long_frame_max_tx_count);
937 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
938 libconf->conf->short_frame_max_tx_count);
939 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
940 }
941
942 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
943 struct rt2x00lib_conf *libconf)
944 {
945 enum dev_state state =
946 (libconf->conf->flags & IEEE80211_CONF_PS) ?
947 STATE_SLEEP : STATE_AWAKE;
948 u32 reg;
949
950 if (state == STATE_SLEEP) {
951 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
952 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
953 rt2x00dev->beacon_int - 10);
954 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
955 libconf->conf->listen_interval - 1);
956 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
957
958 /* We must first disable autowake before it can be enabled */
959 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
960 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
961
962 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
963 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
964
965 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
966 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
967 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
968
969 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
970 } else {
971 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
972 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
973 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
974 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
975 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
976 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
977
978 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
979 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
980 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
981
982 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
983 }
984 }
985
986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
987 struct rt2x00lib_conf *libconf,
988 const unsigned int flags)
989 {
990 /* Always recalculate LNA gain before changing configuration */
991 rt61pci_config_lna_gain(rt2x00dev, libconf);
992
993 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
994 rt61pci_config_channel(rt2x00dev, &libconf->rf,
995 libconf->conf->power_level);
996 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
997 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
998 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
999 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000 rt61pci_config_retry_limit(rt2x00dev, libconf);
1001 if (flags & IEEE80211_CONF_CHANGE_PS)
1002 rt61pci_config_ps(rt2x00dev, libconf);
1003 }
1004
1005 /*
1006 * Link tuning
1007 */
1008 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009 struct link_qual *qual)
1010 {
1011 u32 reg;
1012
1013 /*
1014 * Update FCS error count from register.
1015 */
1016 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1017 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018
1019 /*
1020 * Update False CCA count from register.
1021 */
1022 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1023 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024 }
1025
1026 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027 struct link_qual *qual, u8 vgc_level)
1028 {
1029 if (qual->vgc_level != vgc_level) {
1030 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031 qual->vgc_level = vgc_level;
1032 qual->vgc_level_reg = vgc_level;
1033 }
1034 }
1035
1036 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037 struct link_qual *qual)
1038 {
1039 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040 }
1041
1042 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043 struct link_qual *qual, const u32 count)
1044 {
1045 u8 up_bound;
1046 u8 low_bound;
1047
1048 /*
1049 * Determine r17 bounds.
1050 */
1051 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052 low_bound = 0x28;
1053 up_bound = 0x48;
1054 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1055 low_bound += 0x10;
1056 up_bound += 0x10;
1057 }
1058 } else {
1059 low_bound = 0x20;
1060 up_bound = 0x40;
1061 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1062 low_bound += 0x10;
1063 up_bound += 0x10;
1064 }
1065 }
1066
1067 /*
1068 * If we are not associated, we should go straight to the
1069 * dynamic CCA tuning.
1070 */
1071 if (!rt2x00dev->intf_associated)
1072 goto dynamic_cca_tune;
1073
1074 /*
1075 * Special big-R17 for very short distance
1076 */
1077 if (qual->rssi >= -35) {
1078 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079 return;
1080 }
1081
1082 /*
1083 * Special big-R17 for short distance
1084 */
1085 if (qual->rssi >= -58) {
1086 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087 return;
1088 }
1089
1090 /*
1091 * Special big-R17 for middle-short distance
1092 */
1093 if (qual->rssi >= -66) {
1094 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095 return;
1096 }
1097
1098 /*
1099 * Special mid-R17 for middle distance
1100 */
1101 if (qual->rssi >= -74) {
1102 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103 return;
1104 }
1105
1106 /*
1107 * Special case: Change up_bound based on the rssi.
1108 * Lower up_bound when rssi is weaker then -74 dBm.
1109 */
1110 up_bound -= 2 * (-74 - qual->rssi);
1111 if (low_bound > up_bound)
1112 up_bound = low_bound;
1113
1114 if (qual->vgc_level > up_bound) {
1115 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116 return;
1117 }
1118
1119 dynamic_cca_tune:
1120
1121 /*
1122 * r17 does not yet exceed upper limit, continue and base
1123 * the r17 tuning on the false CCA count.
1124 */
1125 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129 }
1130
1131 /*
1132 * Queue handlers.
1133 */
1134 static void rt61pci_start_queue(struct data_queue *queue)
1135 {
1136 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137 u32 reg;
1138
1139 switch (queue->qid) {
1140 case QID_RX:
1141 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1144 break;
1145 case QID_BEACON:
1146 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1147 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1151 break;
1152 default:
1153 break;
1154 }
1155 }
1156
1157 static void rt61pci_kick_queue(struct data_queue *queue)
1158 {
1159 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160 u32 reg;
1161
1162 switch (queue->qid) {
1163 case QID_AC_VO:
1164 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167 break;
1168 case QID_AC_VI:
1169 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172 break;
1173 case QID_AC_BE:
1174 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177 break;
1178 case QID_AC_BK:
1179 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182 break;
1183 default:
1184 break;
1185 }
1186 }
1187
1188 static void rt61pci_stop_queue(struct data_queue *queue)
1189 {
1190 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191 u32 reg;
1192
1193 switch (queue->qid) {
1194 case QID_AC_VO:
1195 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198 break;
1199 case QID_AC_VI:
1200 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203 break;
1204 case QID_AC_BE:
1205 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208 break;
1209 case QID_AC_BK:
1210 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213 break;
1214 case QID_RX:
1215 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1218 break;
1219 case QID_BEACON:
1220 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1225
1226 /*
1227 * Wait for possibly running tbtt tasklets.
1228 */
1229 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230 break;
1231 default:
1232 break;
1233 }
1234 }
1235
1236 /*
1237 * Firmware functions
1238 */
1239 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240 {
1241 u16 chip;
1242 char *fw_name;
1243
1244 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245 switch (chip) {
1246 case RT2561_PCI_ID:
1247 fw_name = FIRMWARE_RT2561;
1248 break;
1249 case RT2561s_PCI_ID:
1250 fw_name = FIRMWARE_RT2561s;
1251 break;
1252 case RT2661_PCI_ID:
1253 fw_name = FIRMWARE_RT2661;
1254 break;
1255 default:
1256 fw_name = NULL;
1257 break;
1258 }
1259
1260 return fw_name;
1261 }
1262
1263 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264 const u8 *data, const size_t len)
1265 {
1266 u16 fw_crc;
1267 u16 crc;
1268
1269 /*
1270 * Only support 8kb firmware files.
1271 */
1272 if (len != 8192)
1273 return FW_BAD_LENGTH;
1274
1275 /*
1276 * The last 2 bytes in the firmware array are the crc checksum itself.
1277 * This means that we should never pass those 2 bytes to the crc
1278 * algorithm.
1279 */
1280 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281
1282 /*
1283 * Use the crc itu-t algorithm.
1284 */
1285 crc = crc_itu_t(0, data, len - 2);
1286 crc = crc_itu_t_byte(crc, 0);
1287 crc = crc_itu_t_byte(crc, 0);
1288
1289 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290 }
1291
1292 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293 const u8 *data, const size_t len)
1294 {
1295 int i;
1296 u32 reg;
1297
1298 /*
1299 * Wait for stable hardware.
1300 */
1301 for (i = 0; i < 100; i++) {
1302 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1303 if (reg)
1304 break;
1305 msleep(1);
1306 }
1307
1308 if (!reg) {
1309 ERROR(rt2x00dev, "Unstable hardware.\n");
1310 return -EBUSY;
1311 }
1312
1313 /*
1314 * Prepare MCU and mailbox for firmware loading.
1315 */
1316 reg = 0;
1317 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322
1323 /*
1324 * Write firmware to device.
1325 */
1326 reg = 0;
1327 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332 data, len);
1333
1334 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339
1340 for (i = 0; i < 100; i++) {
1341 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343 break;
1344 msleep(1);
1345 }
1346
1347 if (i == 100) {
1348 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1349 return -EBUSY;
1350 }
1351
1352 /*
1353 * Hardware needs another millisecond before it is ready.
1354 */
1355 msleep(1);
1356
1357 /*
1358 * Reset MAC and BBP registers.
1359 */
1360 reg = 0;
1361 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1364
1365 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1366 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1369
1370 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1371 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374 return 0;
1375 }
1376
1377 /*
1378 * Initialization functions.
1379 */
1380 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381 {
1382 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1383 u32 word;
1384
1385 if (entry->queue->qid == QID_RX) {
1386 rt2x00_desc_read(entry_priv->desc, 0, &word);
1387
1388 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389 } else {
1390 rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393 rt2x00_get_field32(word, TXD_W0_VALID));
1394 }
1395 }
1396
1397 static void rt61pci_clear_entry(struct queue_entry *entry)
1398 {
1399 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1400 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401 u32 word;
1402
1403 if (entry->queue->qid == QID_RX) {
1404 rt2x00_desc_read(entry_priv->desc, 5, &word);
1405 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406 skbdesc->skb_dma);
1407 rt2x00_desc_write(entry_priv->desc, 5, word);
1408
1409 rt2x00_desc_read(entry_priv->desc, 0, &word);
1410 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411 rt2x00_desc_write(entry_priv->desc, 0, word);
1412 } else {
1413 rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416 rt2x00_desc_write(entry_priv->desc, 0, word);
1417 }
1418 }
1419
1420 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421 {
1422 struct queue_entry_priv_pci *entry_priv;
1423 u32 reg;
1424
1425 /*
1426 * Initialize registers.
1427 */
1428 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430 rt2x00dev->tx[0].limit);
1431 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432 rt2x00dev->tx[1].limit);
1433 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434 rt2x00dev->tx[2].limit);
1435 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436 rt2x00dev->tx[3].limit);
1437 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438
1439 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441 rt2x00dev->tx[0].desc_size / 4);
1442 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443
1444 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447 entry_priv->desc_dma);
1448 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449
1450 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453 entry_priv->desc_dma);
1454 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455
1456 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459 entry_priv->desc_dma);
1460 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461
1462 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465 entry_priv->desc_dma);
1466 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467
1468 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471 rt2x00dev->rx->desc_size / 4);
1472 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1474
1475 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478 entry_priv->desc_dma);
1479 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480
1481 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487
1488 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494
1495 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498
1499 return 0;
1500 }
1501
1502 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503 {
1504 u32 reg;
1505
1506 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1511
1512 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1522
1523 /*
1524 * CCK TXD BBP registers
1525 */
1526 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1536
1537 /*
1538 * OFDM TXD BBP registers
1539 */
1540 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1548
1549 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1555
1556 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1562
1563 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1571
1572 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573
1574 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575
1576 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1577 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1579
1580 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581
1582 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583 return -EBUSY;
1584
1585 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586
1587 /*
1588 * Invalidate all Shared Keys (SEC_CSR0),
1589 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590 */
1591 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594
1595 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599
1600 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601
1602 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603
1604 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605
1606 /*
1607 * Clear all beacons
1608 * For the Beacon base registers we only need to clear
1609 * the first byte since that byte contains the VALID and OWNER
1610 * bits which (when set to 0) will invalidate the entire beacon.
1611 */
1612 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616
1617 /*
1618 * We must clear the error counters.
1619 * These registers are cleared on read,
1620 * so we may pass a useless variable to store the value.
1621 */
1622 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1623 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1624 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1625
1626 /*
1627 * Reset MAC and BBP registers.
1628 */
1629 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1630 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1633
1634 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1635 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1638
1639 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1640 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643 return 0;
1644 }
1645
1646 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647 {
1648 unsigned int i;
1649 u8 value;
1650
1651 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652 rt61pci_bbp_read(rt2x00dev, 0, &value);
1653 if ((value != 0xff) && (value != 0x00))
1654 return 0;
1655 udelay(REGISTER_BUSY_DELAY);
1656 }
1657
1658 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1659 return -EACCES;
1660 }
1661
1662 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663 {
1664 unsigned int i;
1665 u16 eeprom;
1666 u8 reg_id;
1667 u8 value;
1668
1669 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670 return -EACCES;
1671
1672 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696
1697 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699
1700 if (eeprom != 0xffff && eeprom != 0x0000) {
1701 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704 }
1705 }
1706
1707 return 0;
1708 }
1709
1710 /*
1711 * Device state switch handlers.
1712 */
1713 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714 enum dev_state state)
1715 {
1716 int mask = (state == STATE_RADIO_IRQ_OFF);
1717 u32 reg;
1718 unsigned long flags;
1719
1720 /*
1721 * When interrupts are being enabled, the interrupt registers
1722 * should clear the register to assure a clean state.
1723 */
1724 if (state == STATE_RADIO_IRQ_ON) {
1725 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727
1728 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1730 }
1731
1732 /*
1733 * Only toggle the interrupts bits we are going to use.
1734 * Non-checked interrupt bits are disabled by default.
1735 */
1736 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737
1738 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745
1746 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757
1758 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759
1760 if (state == STATE_RADIO_IRQ_OFF) {
1761 /*
1762 * Ensure that all tasklets are finished.
1763 */
1764 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766 tasklet_kill(&rt2x00dev->autowake_tasklet);
1767 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768 }
1769 }
1770
1771 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772 {
1773 u32 reg;
1774
1775 /*
1776 * Initialize all registers.
1777 */
1778 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779 rt61pci_init_registers(rt2x00dev) ||
1780 rt61pci_init_bbp(rt2x00dev)))
1781 return -EIO;
1782
1783 /*
1784 * Enable RX.
1785 */
1786 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789
1790 return 0;
1791 }
1792
1793 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794 {
1795 /*
1796 * Disable power
1797 */
1798 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799 }
1800
1801 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802 {
1803 u32 reg, reg2;
1804 unsigned int i;
1805 char put_to_sleep;
1806
1807 put_to_sleep = (state != STATE_AWAKE);
1808
1809 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1810 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1813
1814 /*
1815 * Device is not guaranteed to be in the requested state yet.
1816 * We must wait until the register indicates that the
1817 * device has entered the correct state.
1818 */
1819 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822 if (state == !put_to_sleep)
1823 return 0;
1824 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1825 msleep(10);
1826 }
1827
1828 return -EBUSY;
1829 }
1830
1831 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832 enum dev_state state)
1833 {
1834 int retval = 0;
1835
1836 switch (state) {
1837 case STATE_RADIO_ON:
1838 retval = rt61pci_enable_radio(rt2x00dev);
1839 break;
1840 case STATE_RADIO_OFF:
1841 rt61pci_disable_radio(rt2x00dev);
1842 break;
1843 case STATE_RADIO_IRQ_ON:
1844 case STATE_RADIO_IRQ_OFF:
1845 rt61pci_toggle_irq(rt2x00dev, state);
1846 break;
1847 case STATE_DEEP_SLEEP:
1848 case STATE_SLEEP:
1849 case STATE_STANDBY:
1850 case STATE_AWAKE:
1851 retval = rt61pci_set_state(rt2x00dev, state);
1852 break;
1853 default:
1854 retval = -ENOTSUPP;
1855 break;
1856 }
1857
1858 if (unlikely(retval))
1859 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1860 state, retval);
1861
1862 return retval;
1863 }
1864
1865 /*
1866 * TX descriptor initialization
1867 */
1868 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869 struct txentry_desc *txdesc)
1870 {
1871 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1873 __le32 *txd = entry_priv->desc;
1874 u32 word;
1875
1876 /*
1877 * Start writing the descriptor words.
1878 */
1879 rt2x00_desc_read(txd, 1, &word);
1880 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888 rt2x00_desc_write(txd, 1, word);
1889
1890 rt2x00_desc_read(txd, 2, &word);
1891 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894 txdesc->u.plcp.length_low);
1895 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896 txdesc->u.plcp.length_high);
1897 rt2x00_desc_write(txd, 2, word);
1898
1899 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902 }
1903
1904 rt2x00_desc_read(txd, 5, &word);
1905 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907 skbdesc->entry->entry_idx);
1908 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911 rt2x00_desc_write(txd, 5, word);
1912
1913 if (entry->queue->qid != QID_BEACON) {
1914 rt2x00_desc_read(txd, 6, &word);
1915 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916 skbdesc->skb_dma);
1917 rt2x00_desc_write(txd, 6, word);
1918
1919 rt2x00_desc_read(txd, 11, &word);
1920 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921 txdesc->length);
1922 rt2x00_desc_write(txd, 11, word);
1923 }
1924
1925 /*
1926 * Writing TXD word 0 must the last to prevent a race condition with
1927 * the device, whereby the device may take hold of the TXD before we
1928 * finished updating it.
1929 */
1930 rt2x00_desc_read(txd, 0, &word);
1931 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935 rt2x00_set_field32(&word, TXD_W0_ACK,
1936 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939 rt2x00_set_field32(&word, TXD_W0_OFDM,
1940 (txdesc->rate_mode == RATE_MODE_OFDM));
1941 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950 rt2x00_set_field32(&word, TXD_W0_BURST,
1951 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953 rt2x00_desc_write(txd, 0, word);
1954
1955 /*
1956 * Register descriptor details in skb frame descriptor.
1957 */
1958 skbdesc->desc = txd;
1959 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960 TXD_DESC_SIZE;
1961 }
1962
1963 /*
1964 * TX data initialization
1965 */
1966 static void rt61pci_write_beacon(struct queue_entry *entry,
1967 struct txentry_desc *txdesc)
1968 {
1969 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1971 unsigned int beacon_base;
1972 unsigned int padding_len;
1973 u32 orig_reg, reg;
1974
1975 /*
1976 * Disable beaconing while we are reloading the beacon data,
1977 * otherwise we might be sending out invalid data.
1978 */
1979 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980 orig_reg = reg;
1981 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1983
1984 /*
1985 * Write the TX descriptor for the beacon.
1986 */
1987 rt61pci_write_tx_desc(entry, txdesc);
1988
1989 /*
1990 * Dump beacon to userspace through debugfs.
1991 */
1992 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993
1994 /*
1995 * Write entire beacon with descriptor and padding to register.
1996 */
1997 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998 if (padding_len && skb_pad(entry->skb, padding_len)) {
1999 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
2000 /* skb freed by skb_pad() on failure */
2001 entry->skb = NULL;
2002 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003 return;
2004 }
2005
2006 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2008 entry_priv->desc, TXINFO_SIZE);
2009 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010 entry->skb->data,
2011 entry->skb->len + padding_len);
2012
2013 /*
2014 * Enable beaconing again.
2015 *
2016 * For Wi-Fi faily generated beacons between participating
2017 * stations. Set TBTT phase adaptive adjustment step to 8us.
2018 */
2019 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020
2021 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2023
2024 /*
2025 * Clean up beacon skb.
2026 */
2027 dev_kfree_skb_any(entry->skb);
2028 entry->skb = NULL;
2029 }
2030
2031 static void rt61pci_clear_beacon(struct queue_entry *entry)
2032 {
2033 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034 u32 reg;
2035
2036 /*
2037 * Disable beaconing while we are reloading the beacon data,
2038 * otherwise we might be sending out invalid data.
2039 */
2040 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2041 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2042 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2043
2044 /*
2045 * Clear beacon.
2046 */
2047 rt2x00pci_register_write(rt2x00dev,
2048 HW_BEACON_OFFSET(entry->entry_idx), 0);
2049
2050 /*
2051 * Enable beaconing again.
2052 */
2053 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2054 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2055 }
2056
2057 /*
2058 * RX control handlers
2059 */
2060 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061 {
2062 u8 offset = rt2x00dev->lna_gain;
2063 u8 lna;
2064
2065 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066 switch (lna) {
2067 case 3:
2068 offset += 90;
2069 break;
2070 case 2:
2071 offset += 74;
2072 break;
2073 case 1:
2074 offset += 64;
2075 break;
2076 default:
2077 return 0;
2078 }
2079
2080 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081 if (lna == 3 || lna == 2)
2082 offset += 10;
2083 }
2084
2085 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086 }
2087
2088 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089 struct rxdone_entry_desc *rxdesc)
2090 {
2091 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2093 u32 word0;
2094 u32 word1;
2095
2096 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097 rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098
2099 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101
2102 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104
2105 if (rxdesc->cipher != CIPHER_NONE) {
2106 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109
2110 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112
2113 /*
2114 * Hardware has stripped IV/EIV data from 802.11 frame during
2115 * decryption. It has provided the data separately but rt2x00lib
2116 * should decide if it should be reinserted.
2117 */
2118 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119
2120 /*
2121 * The hardware has already checked the Michael Mic and has
2122 * stripped it from the frame. Signal this to mac80211.
2123 */
2124 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125
2126 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127 rxdesc->flags |= RX_FLAG_DECRYPTED;
2128 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130 }
2131
2132 /*
2133 * Obtain the status about this packet.
2134 * When frame was received with an OFDM bitrate,
2135 * the signal is the PLCP value. If it was received with
2136 * a CCK bitrate the signal is the rate in 100kbit/s.
2137 */
2138 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141
2142 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144 else
2145 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147 rxdesc->dev_flags |= RXDONE_MY_BSS;
2148 }
2149
2150 /*
2151 * Interrupt functions.
2152 */
2153 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154 {
2155 struct data_queue *queue;
2156 struct queue_entry *entry;
2157 struct queue_entry *entry_done;
2158 struct queue_entry_priv_pci *entry_priv;
2159 struct txdone_entry_desc txdesc;
2160 u32 word;
2161 u32 reg;
2162 int type;
2163 int index;
2164 int i;
2165
2166 /*
2167 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169 * flag is not set anymore.
2170 *
2171 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173 * tx ring size for now.
2174 */
2175 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2176 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2177 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178 break;
2179
2180 /*
2181 * Skip this entry when it contains an invalid
2182 * queue identication number.
2183 */
2184 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186 if (unlikely(!queue))
2187 continue;
2188
2189 /*
2190 * Skip this entry when it contains an invalid
2191 * index number.
2192 */
2193 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194 if (unlikely(index >= queue->limit))
2195 continue;
2196
2197 entry = &queue->entries[index];
2198 entry_priv = entry->priv_data;
2199 rt2x00_desc_read(entry_priv->desc, 0, &word);
2200
2201 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202 !rt2x00_get_field32(word, TXD_W0_VALID))
2203 return;
2204
2205 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206 while (entry != entry_done) {
2207 /* Catch up.
2208 * Just report any entries we missed as failed.
2209 */
2210 WARNING(rt2x00dev,
2211 "TX status report missed for entry %d\n",
2212 entry_done->entry_idx);
2213
2214 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2215 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216 }
2217
2218 /*
2219 * Obtain the status about this packet.
2220 */
2221 txdesc.flags = 0;
2222 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2223 case 0: /* Success, maybe with retry */
2224 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2225 break;
2226 case 6: /* Failure, excessive retries */
2227 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2228 /* Don't break, this is a failed frame! */
2229 default: /* Failure */
2230 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2231 }
2232 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2233
2234 /*
2235 * the frame was retried at least once
2236 * -> hw used fallback rates
2237 */
2238 if (txdesc.retry)
2239 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2240
2241 rt2x00lib_txdone(entry, &txdesc);
2242 }
2243 }
2244
2245 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2246 {
2247 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2248
2249 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2250 }
2251
2252 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2253 struct rt2x00_field32 irq_field)
2254 {
2255 u32 reg;
2256
2257 /*
2258 * Enable a single interrupt. The interrupt mask register
2259 * access needs locking.
2260 */
2261 spin_lock_irq(&rt2x00dev->irqmask_lock);
2262
2263 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2264 rt2x00_set_field32(&reg, irq_field, 0);
2265 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2266
2267 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2268 }
2269
2270 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2271 struct rt2x00_field32 irq_field)
2272 {
2273 u32 reg;
2274
2275 /*
2276 * Enable a single MCU interrupt. The interrupt mask register
2277 * access needs locking.
2278 */
2279 spin_lock_irq(&rt2x00dev->irqmask_lock);
2280
2281 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2282 rt2x00_set_field32(&reg, irq_field, 0);
2283 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2284
2285 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2286 }
2287
2288 static void rt61pci_txstatus_tasklet(unsigned long data)
2289 {
2290 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2291 rt61pci_txdone(rt2x00dev);
2292 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2293 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2294 }
2295
2296 static void rt61pci_tbtt_tasklet(unsigned long data)
2297 {
2298 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2299 rt2x00lib_beacondone(rt2x00dev);
2300 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2301 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2302 }
2303
2304 static void rt61pci_rxdone_tasklet(unsigned long data)
2305 {
2306 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2307 if (rt2x00pci_rxdone(rt2x00dev))
2308 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2309 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2310 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2311 }
2312
2313 static void rt61pci_autowake_tasklet(unsigned long data)
2314 {
2315 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316 rt61pci_wakeup(rt2x00dev);
2317 rt2x00pci_register_write(rt2x00dev,
2318 M2H_CMD_DONE_CSR, 0xffffffff);
2319 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2320 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2321 }
2322
2323 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2324 {
2325 struct rt2x00_dev *rt2x00dev = dev_instance;
2326 u32 reg_mcu, mask_mcu;
2327 u32 reg, mask;
2328
2329 /*
2330 * Get the interrupt sources & saved to local variable.
2331 * Write register value back to clear pending interrupts.
2332 */
2333 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2334 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2335
2336 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2337 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2338
2339 if (!reg && !reg_mcu)
2340 return IRQ_NONE;
2341
2342 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2343 return IRQ_HANDLED;
2344
2345 /*
2346 * Schedule tasklets for interrupt handling.
2347 */
2348 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2349 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2350
2351 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2352 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2353
2354 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2355 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2356
2357 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2358 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2359
2360 /*
2361 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2362 * for interrupts and interrupt masks we can just use the value of
2363 * INT_SOURCE_CSR to create the interrupt mask.
2364 */
2365 mask = reg;
2366 mask_mcu = reg_mcu;
2367
2368 /*
2369 * Disable all interrupts for which a tasklet was scheduled right now,
2370 * the tasklet will reenable the appropriate interrupts.
2371 */
2372 spin_lock(&rt2x00dev->irqmask_lock);
2373
2374 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2375 reg |= mask;
2376 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2377
2378 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2379 reg |= mask_mcu;
2380 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2381
2382 spin_unlock(&rt2x00dev->irqmask_lock);
2383
2384 return IRQ_HANDLED;
2385 }
2386
2387 /*
2388 * Device probe functions.
2389 */
2390 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2391 {
2392 struct eeprom_93cx6 eeprom;
2393 u32 reg;
2394 u16 word;
2395 u8 *mac;
2396 s8 value;
2397
2398 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2399
2400 eeprom.data = rt2x00dev;
2401 eeprom.register_read = rt61pci_eepromregister_read;
2402 eeprom.register_write = rt61pci_eepromregister_write;
2403 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2404 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2405 eeprom.reg_data_in = 0;
2406 eeprom.reg_data_out = 0;
2407 eeprom.reg_data_clock = 0;
2408 eeprom.reg_chip_select = 0;
2409
2410 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2411 EEPROM_SIZE / sizeof(u16));
2412
2413 /*
2414 * Start validation of the data that has been read.
2415 */
2416 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2417 if (!is_valid_ether_addr(mac)) {
2418 eth_random_addr(mac);
2419 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2420 }
2421
2422 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2423 if (word == 0xffff) {
2424 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2425 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2426 ANTENNA_B);
2427 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2428 ANTENNA_B);
2429 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2430 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2431 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2432 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2433 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2434 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2435 }
2436
2437 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2438 if (word == 0xffff) {
2439 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2440 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2441 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2442 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2443 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2444 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2445 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2446 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2447 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2448 }
2449
2450 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2451 if (word == 0xffff) {
2452 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2453 LED_MODE_DEFAULT);
2454 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2455 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2456 }
2457
2458 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2459 if (word == 0xffff) {
2460 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2461 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2462 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2463 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2464 }
2465
2466 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2467 if (word == 0xffff) {
2468 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2469 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2470 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2471 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2472 } else {
2473 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2474 if (value < -10 || value > 10)
2475 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2476 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2477 if (value < -10 || value > 10)
2478 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2479 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2480 }
2481
2482 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2483 if (word == 0xffff) {
2484 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2485 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2486 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2487 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2488 } else {
2489 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2490 if (value < -10 || value > 10)
2491 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2492 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2493 if (value < -10 || value > 10)
2494 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2495 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2496 }
2497
2498 return 0;
2499 }
2500
2501 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2502 {
2503 u32 reg;
2504 u16 value;
2505 u16 eeprom;
2506
2507 /*
2508 * Read EEPROM word for configuration.
2509 */
2510 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2511
2512 /*
2513 * Identify RF chipset.
2514 */
2515 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2516 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2517 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2518 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2519
2520 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2521 !rt2x00_rf(rt2x00dev, RF5325) &&
2522 !rt2x00_rf(rt2x00dev, RF2527) &&
2523 !rt2x00_rf(rt2x00dev, RF2529)) {
2524 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2525 return -ENODEV;
2526 }
2527
2528 /*
2529 * Determine number of antennas.
2530 */
2531 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2532 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2533
2534 /*
2535 * Identify default antenna configuration.
2536 */
2537 rt2x00dev->default_ant.tx =
2538 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2539 rt2x00dev->default_ant.rx =
2540 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2541
2542 /*
2543 * Read the Frame type.
2544 */
2545 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2546 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2547
2548 /*
2549 * Detect if this device has a hardware controlled radio.
2550 */
2551 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2552 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2553
2554 /*
2555 * Read frequency offset and RF programming sequence.
2556 */
2557 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2558 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2559 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2560
2561 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2562
2563 /*
2564 * Read external LNA informations.
2565 */
2566 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2567
2568 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2569 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2570 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2571 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2572
2573 /*
2574 * When working with a RF2529 chip without double antenna,
2575 * the antenna settings should be gathered from the NIC
2576 * eeprom word.
2577 */
2578 if (rt2x00_rf(rt2x00dev, RF2529) &&
2579 !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2580 rt2x00dev->default_ant.rx =
2581 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2582 rt2x00dev->default_ant.tx =
2583 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2584
2585 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2586 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2587 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2588 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2589 }
2590
2591 /*
2592 * Store led settings, for correct led behaviour.
2593 * If the eeprom value is invalid,
2594 * switch to default led mode.
2595 */
2596 #ifdef CONFIG_RT2X00_LIB_LEDS
2597 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2598 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2599
2600 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2601 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2602 if (value == LED_MODE_SIGNAL_STRENGTH)
2603 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2604 LED_TYPE_QUALITY);
2605
2606 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2607 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2608 rt2x00_get_field16(eeprom,
2609 EEPROM_LED_POLARITY_GPIO_0));
2610 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2611 rt2x00_get_field16(eeprom,
2612 EEPROM_LED_POLARITY_GPIO_1));
2613 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2614 rt2x00_get_field16(eeprom,
2615 EEPROM_LED_POLARITY_GPIO_2));
2616 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2617 rt2x00_get_field16(eeprom,
2618 EEPROM_LED_POLARITY_GPIO_3));
2619 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2620 rt2x00_get_field16(eeprom,
2621 EEPROM_LED_POLARITY_GPIO_4));
2622 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2623 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2624 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2625 rt2x00_get_field16(eeprom,
2626 EEPROM_LED_POLARITY_RDY_G));
2627 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2628 rt2x00_get_field16(eeprom,
2629 EEPROM_LED_POLARITY_RDY_A));
2630 #endif /* CONFIG_RT2X00_LIB_LEDS */
2631
2632 return 0;
2633 }
2634
2635 /*
2636 * RF value list for RF5225 & RF5325
2637 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2638 */
2639 static const struct rf_channel rf_vals_noseq[] = {
2640 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2641 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2642 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2643 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2644 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2645 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2646 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2647 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2648 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2649 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2650 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2651 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2652 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2653 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2654
2655 /* 802.11 UNI / HyperLan 2 */
2656 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2657 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2658 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2659 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2660 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2661 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2662 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2663 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2664
2665 /* 802.11 HyperLan 2 */
2666 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2667 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2668 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2669 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2670 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2671 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2672 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2673 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2674 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2675 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2676
2677 /* 802.11 UNII */
2678 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2679 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2680 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2681 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2682 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2683 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2684
2685 /* MMAC(Japan)J52 ch 34,38,42,46 */
2686 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2687 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2688 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2689 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2690 };
2691
2692 /*
2693 * RF value list for RF5225 & RF5325
2694 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2695 */
2696 static const struct rf_channel rf_vals_seq[] = {
2697 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2698 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2699 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2700 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2701 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2702 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2703 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2704 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2705 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2706 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2707 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2708 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2709 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2710 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2711
2712 /* 802.11 UNI / HyperLan 2 */
2713 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2714 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2715 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2716 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2717 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2718 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2719 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2720 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2721
2722 /* 802.11 HyperLan 2 */
2723 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2724 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2725 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2726 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2727 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2728 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2729 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2730 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2731 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2732 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2733
2734 /* 802.11 UNII */
2735 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2736 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2737 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2738 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2739 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2740 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2741
2742 /* MMAC(Japan)J52 ch 34,38,42,46 */
2743 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2744 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2745 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2746 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2747 };
2748
2749 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2750 {
2751 struct hw_mode_spec *spec = &rt2x00dev->spec;
2752 struct channel_info *info;
2753 char *tx_power;
2754 unsigned int i;
2755
2756 /*
2757 * Disable powersaving as default.
2758 */
2759 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2760
2761 /*
2762 * Initialize all hw fields.
2763 */
2764 rt2x00dev->hw->flags =
2765 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2766 IEEE80211_HW_SIGNAL_DBM |
2767 IEEE80211_HW_SUPPORTS_PS |
2768 IEEE80211_HW_PS_NULLFUNC_STACK;
2769
2770 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2771 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2772 rt2x00_eeprom_addr(rt2x00dev,
2773 EEPROM_MAC_ADDR_0));
2774
2775 /*
2776 * As rt61 has a global fallback table we cannot specify
2777 * more then one tx rate per frame but since the hw will
2778 * try several rates (based on the fallback table) we should
2779 * initialize max_report_rates to the maximum number of rates
2780 * we are going to try. Otherwise mac80211 will truncate our
2781 * reported tx rates and the rc algortihm will end up with
2782 * incorrect data.
2783 */
2784 rt2x00dev->hw->max_rates = 1;
2785 rt2x00dev->hw->max_report_rates = 7;
2786 rt2x00dev->hw->max_rate_tries = 1;
2787
2788 /*
2789 * Initialize hw_mode information.
2790 */
2791 spec->supported_bands = SUPPORT_BAND_2GHZ;
2792 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2793
2794 if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2795 spec->num_channels = 14;
2796 spec->channels = rf_vals_noseq;
2797 } else {
2798 spec->num_channels = 14;
2799 spec->channels = rf_vals_seq;
2800 }
2801
2802 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2803 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2804 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2805 }
2806
2807 /*
2808 * Create channel information array
2809 */
2810 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2811 if (!info)
2812 return -ENOMEM;
2813
2814 spec->channels_info = info;
2815
2816 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2817 for (i = 0; i < 14; i++) {
2818 info[i].max_power = MAX_TXPOWER;
2819 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2820 }
2821
2822 if (spec->num_channels > 14) {
2823 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2824 for (i = 14; i < spec->num_channels; i++) {
2825 info[i].max_power = MAX_TXPOWER;
2826 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2827 }
2828 }
2829
2830 return 0;
2831 }
2832
2833 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2834 {
2835 int retval;
2836 u32 reg;
2837
2838 /*
2839 * Disable power saving.
2840 */
2841 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2842
2843 /*
2844 * Allocate eeprom data.
2845 */
2846 retval = rt61pci_validate_eeprom(rt2x00dev);
2847 if (retval)
2848 return retval;
2849
2850 retval = rt61pci_init_eeprom(rt2x00dev);
2851 if (retval)
2852 return retval;
2853
2854 /*
2855 * Enable rfkill polling by setting GPIO direction of the
2856 * rfkill switch GPIO pin correctly.
2857 */
2858 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
2859 rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2860 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
2861
2862 /*
2863 * Initialize hw specifications.
2864 */
2865 retval = rt61pci_probe_hw_mode(rt2x00dev);
2866 if (retval)
2867 return retval;
2868
2869 /*
2870 * This device has multiple filters for control frames,
2871 * but has no a separate filter for PS Poll frames.
2872 */
2873 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2874
2875 /*
2876 * This device requires firmware and DMA mapped skbs.
2877 */
2878 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2879 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2880 if (!modparam_nohwcrypt)
2881 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2882 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2883
2884 /*
2885 * Set the rssi offset.
2886 */
2887 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2888
2889 return 0;
2890 }
2891
2892 /*
2893 * IEEE80211 stack callback functions.
2894 */
2895 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2896 struct ieee80211_vif *vif, u16 queue_idx,
2897 const struct ieee80211_tx_queue_params *params)
2898 {
2899 struct rt2x00_dev *rt2x00dev = hw->priv;
2900 struct data_queue *queue;
2901 struct rt2x00_field32 field;
2902 int retval;
2903 u32 reg;
2904 u32 offset;
2905
2906 /*
2907 * First pass the configuration through rt2x00lib, that will
2908 * update the queue settings and validate the input. After that
2909 * we are free to update the registers based on the value
2910 * in the queue parameter.
2911 */
2912 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2913 if (retval)
2914 return retval;
2915
2916 /*
2917 * We only need to perform additional register initialization
2918 * for WMM queues.
2919 */
2920 if (queue_idx >= 4)
2921 return 0;
2922
2923 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2924
2925 /* Update WMM TXOP register */
2926 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2927 field.bit_offset = (queue_idx & 1) * 16;
2928 field.bit_mask = 0xffff << field.bit_offset;
2929
2930 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2931 rt2x00_set_field32(&reg, field, queue->txop);
2932 rt2x00pci_register_write(rt2x00dev, offset, reg);
2933
2934 /* Update WMM registers */
2935 field.bit_offset = queue_idx * 4;
2936 field.bit_mask = 0xf << field.bit_offset;
2937
2938 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2939 rt2x00_set_field32(&reg, field, queue->aifs);
2940 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2941
2942 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2943 rt2x00_set_field32(&reg, field, queue->cw_min);
2944 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2945
2946 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2947 rt2x00_set_field32(&reg, field, queue->cw_max);
2948 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2949
2950 return 0;
2951 }
2952
2953 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2954 {
2955 struct rt2x00_dev *rt2x00dev = hw->priv;
2956 u64 tsf;
2957 u32 reg;
2958
2959 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2960 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2961 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2962 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2963
2964 return tsf;
2965 }
2966
2967 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2968 .tx = rt2x00mac_tx,
2969 .start = rt2x00mac_start,
2970 .stop = rt2x00mac_stop,
2971 .add_interface = rt2x00mac_add_interface,
2972 .remove_interface = rt2x00mac_remove_interface,
2973 .config = rt2x00mac_config,
2974 .configure_filter = rt2x00mac_configure_filter,
2975 .set_key = rt2x00mac_set_key,
2976 .sw_scan_start = rt2x00mac_sw_scan_start,
2977 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2978 .get_stats = rt2x00mac_get_stats,
2979 .bss_info_changed = rt2x00mac_bss_info_changed,
2980 .conf_tx = rt61pci_conf_tx,
2981 .get_tsf = rt61pci_get_tsf,
2982 .rfkill_poll = rt2x00mac_rfkill_poll,
2983 .flush = rt2x00mac_flush,
2984 .set_antenna = rt2x00mac_set_antenna,
2985 .get_antenna = rt2x00mac_get_antenna,
2986 .get_ringparam = rt2x00mac_get_ringparam,
2987 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2988 };
2989
2990 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2991 .irq_handler = rt61pci_interrupt,
2992 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2993 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2994 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2995 .autowake_tasklet = rt61pci_autowake_tasklet,
2996 .probe_hw = rt61pci_probe_hw,
2997 .get_firmware_name = rt61pci_get_firmware_name,
2998 .check_firmware = rt61pci_check_firmware,
2999 .load_firmware = rt61pci_load_firmware,
3000 .initialize = rt2x00pci_initialize,
3001 .uninitialize = rt2x00pci_uninitialize,
3002 .get_entry_state = rt61pci_get_entry_state,
3003 .clear_entry = rt61pci_clear_entry,
3004 .set_device_state = rt61pci_set_device_state,
3005 .rfkill_poll = rt61pci_rfkill_poll,
3006 .link_stats = rt61pci_link_stats,
3007 .reset_tuner = rt61pci_reset_tuner,
3008 .link_tuner = rt61pci_link_tuner,
3009 .start_queue = rt61pci_start_queue,
3010 .kick_queue = rt61pci_kick_queue,
3011 .stop_queue = rt61pci_stop_queue,
3012 .flush_queue = rt2x00pci_flush_queue,
3013 .write_tx_desc = rt61pci_write_tx_desc,
3014 .write_beacon = rt61pci_write_beacon,
3015 .clear_beacon = rt61pci_clear_beacon,
3016 .fill_rxdone = rt61pci_fill_rxdone,
3017 .config_shared_key = rt61pci_config_shared_key,
3018 .config_pairwise_key = rt61pci_config_pairwise_key,
3019 .config_filter = rt61pci_config_filter,
3020 .config_intf = rt61pci_config_intf,
3021 .config_erp = rt61pci_config_erp,
3022 .config_ant = rt61pci_config_ant,
3023 .config = rt61pci_config,
3024 };
3025
3026 static const struct data_queue_desc rt61pci_queue_rx = {
3027 .entry_num = 32,
3028 .data_size = DATA_FRAME_SIZE,
3029 .desc_size = RXD_DESC_SIZE,
3030 .priv_size = sizeof(struct queue_entry_priv_pci),
3031 };
3032
3033 static const struct data_queue_desc rt61pci_queue_tx = {
3034 .entry_num = 32,
3035 .data_size = DATA_FRAME_SIZE,
3036 .desc_size = TXD_DESC_SIZE,
3037 .priv_size = sizeof(struct queue_entry_priv_pci),
3038 };
3039
3040 static const struct data_queue_desc rt61pci_queue_bcn = {
3041 .entry_num = 4,
3042 .data_size = 0, /* No DMA required for beacons */
3043 .desc_size = TXINFO_SIZE,
3044 .priv_size = sizeof(struct queue_entry_priv_pci),
3045 };
3046
3047 static const struct rt2x00_ops rt61pci_ops = {
3048 .name = KBUILD_MODNAME,
3049 .max_ap_intf = 4,
3050 .eeprom_size = EEPROM_SIZE,
3051 .rf_size = RF_SIZE,
3052 .tx_queues = NUM_TX_QUEUES,
3053 .extra_tx_headroom = 0,
3054 .rx = &rt61pci_queue_rx,
3055 .tx = &rt61pci_queue_tx,
3056 .bcn = &rt61pci_queue_bcn,
3057 .lib = &rt61pci_rt2x00_ops,
3058 .hw = &rt61pci_mac80211_ops,
3059 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3060 .debugfs = &rt61pci_rt2x00debug,
3061 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3062 };
3063
3064 /*
3065 * RT61pci module information.
3066 */
3067 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3068 /* RT2561s */
3069 { PCI_DEVICE(0x1814, 0x0301) },
3070 /* RT2561 v2 */
3071 { PCI_DEVICE(0x1814, 0x0302) },
3072 /* RT2661 */
3073 { PCI_DEVICE(0x1814, 0x0401) },
3074 { 0, }
3075 };
3076
3077 MODULE_AUTHOR(DRV_PROJECT);
3078 MODULE_VERSION(DRV_VERSION);
3079 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3080 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3081 "PCI & PCMCIA chipset based cards");
3082 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3083 MODULE_FIRMWARE(FIRMWARE_RT2561);
3084 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3085 MODULE_FIRMWARE(FIRMWARE_RT2661);
3086 MODULE_LICENSE("GPL");
3087
3088 static int rt61pci_probe(struct pci_dev *pci_dev,
3089 const struct pci_device_id *id)
3090 {
3091 return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3092 }
3093
3094 static struct pci_driver rt61pci_driver = {
3095 .name = KBUILD_MODNAME,
3096 .id_table = rt61pci_device_table,
3097 .probe = rt61pci_probe,
3098 .remove = rt2x00pci_remove,
3099 .suspend = rt2x00pci_suspend,
3100 .resume = rt2x00pci_resume,
3101 };
3102
3103 module_pci_driver(rt61pci_driver);