]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt73usb.c
rt2x00: Properly reserve room for descriptors in skbs.
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
60 */
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 /*
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
138 */
139 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
144
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
147 }
148
149 mutex_unlock(&rt2x00dev->csr_mutex);
150 }
151
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
162 },
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
169 },
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
176 },
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
183 },
184 };
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 {
189 u32 reg;
190
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
198 {
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
210
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
219
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
224 /*
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
228 */
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
233 }
234 }
235
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
239 {
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
243
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248
249 return 0;
250 }
251
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
255 {
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265 * Configuration handlers.
266 */
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
270 {
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 int timeout;
274 u32 mask;
275 u32 reg;
276
277 if (crypto->cmd == SET_KEY) {
278 /*
279 * rt2x00lib can't determine the correct free
280 * key_idx for shared keys. We have 1 register
281 * with key valid bits. The goal is simple, read
282 * the register, if that is full we have no slots
283 * left.
284 * Note that each BSS is allowed to have up to 4
285 * shared keys, so put a mask over the allowed
286 * entries.
287 */
288 mask = (0xf << crypto->bssidx);
289
290 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
291 reg &= mask;
292
293 if (reg && reg == mask)
294 return -ENOSPC;
295
296 key->hw_key_idx += reg ? ffz(reg) : 0;
297
298 /*
299 * Upload key to hardware
300 */
301 memcpy(key_entry.key, crypto->key,
302 sizeof(key_entry.key));
303 memcpy(key_entry.tx_mic, crypto->tx_mic,
304 sizeof(key_entry.tx_mic));
305 memcpy(key_entry.rx_mic, crypto->rx_mic,
306 sizeof(key_entry.rx_mic));
307
308 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
309 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
310 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
311 USB_VENDOR_REQUEST_OUT, reg,
312 &key_entry,
313 sizeof(key_entry),
314 timeout);
315
316 /*
317 * The cipher types are stored over 2 registers.
318 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
319 * bssidx 1 and 2 keys are stored in SEC_CSR5.
320 * Using the correct defines correctly will cause overhead,
321 * so just calculate the correct offset.
322 */
323 if (key->hw_key_idx < 8) {
324 field.bit_offset = (3 * key->hw_key_idx);
325 field.bit_mask = 0x7 << field.bit_offset;
326
327 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
328 rt2x00_set_field32(&reg, field, crypto->cipher);
329 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
330 } else {
331 field.bit_offset = (3 * (key->hw_key_idx - 8));
332 field.bit_mask = 0x7 << field.bit_offset;
333
334 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
335 rt2x00_set_field32(&reg, field, crypto->cipher);
336 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
337 }
338
339 /*
340 * The driver does not support the IV/EIV generation
341 * in hardware. However it doesn't support the IV/EIV
342 * inside the ieee80211 frame either, but requires it
343 * to be provided separately for the descriptor.
344 * rt2x00lib will cut the IV/EIV data out of all frames
345 * given to us by mac80211, but we must tell mac80211
346 * to generate the IV/EIV data.
347 */
348 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
349 }
350
351 /*
352 * SEC_CSR0 contains only single-bit fields to indicate
353 * a particular key is valid. Because using the FIELD32()
354 * defines directly will cause a lot of overhead we use
355 * a calculation to determine the correct bit directly.
356 */
357 mask = 1 << key->hw_key_idx;
358
359 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
360 if (crypto->cmd == SET_KEY)
361 reg |= mask;
362 else if (crypto->cmd == DISABLE_KEY)
363 reg &= ~mask;
364 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
365
366 return 0;
367 }
368
369 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
370 struct rt2x00lib_crypto *crypto,
371 struct ieee80211_key_conf *key)
372 {
373 struct hw_pairwise_ta_entry addr_entry;
374 struct hw_key_entry key_entry;
375 int timeout;
376 u32 mask;
377 u32 reg;
378
379 if (crypto->cmd == SET_KEY) {
380 /*
381 * rt2x00lib can't determine the correct free
382 * key_idx for pairwise keys. We have 2 registers
383 * with key valid bits. The goal is simple, read
384 * the first register, if that is full move to
385 * the next register.
386 * When both registers are full, we drop the key,
387 * otherwise we use the first invalid entry.
388 */
389 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
390 if (reg && reg == ~0) {
391 key->hw_key_idx = 32;
392 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
393 if (reg && reg == ~0)
394 return -ENOSPC;
395 }
396
397 key->hw_key_idx += reg ? ffz(reg) : 0;
398
399 /*
400 * Upload key to hardware
401 */
402 memcpy(key_entry.key, crypto->key,
403 sizeof(key_entry.key));
404 memcpy(key_entry.tx_mic, crypto->tx_mic,
405 sizeof(key_entry.tx_mic));
406 memcpy(key_entry.rx_mic, crypto->rx_mic,
407 sizeof(key_entry.rx_mic));
408
409 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
410 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
411 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
412 USB_VENDOR_REQUEST_OUT, reg,
413 &key_entry,
414 sizeof(key_entry),
415 timeout);
416
417 /*
418 * Send the address and cipher type to the hardware register.
419 * This data fits within the CSR cache size, so we can use
420 * rt2x00usb_register_multiwrite() directly.
421 */
422 memset(&addr_entry, 0, sizeof(addr_entry));
423 memcpy(&addr_entry, crypto->address, ETH_ALEN);
424 addr_entry.cipher = crypto->cipher;
425
426 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
427 rt2x00usb_register_multiwrite(rt2x00dev, reg,
428 &addr_entry, sizeof(addr_entry));
429
430 /*
431 * Enable pairwise lookup table for given BSS idx,
432 * without this received frames will not be decrypted
433 * by the hardware.
434 */
435 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
436 reg |= (1 << crypto->bssidx);
437 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
438
439 /*
440 * The driver does not support the IV/EIV generation
441 * in hardware. However it doesn't support the IV/EIV
442 * inside the ieee80211 frame either, but requires it
443 * to be provided separately for the descriptor.
444 * rt2x00lib will cut the IV/EIV data out of all frames
445 * given to us by mac80211, but we must tell mac80211
446 * to generate the IV/EIV data.
447 */
448 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
449 }
450
451 /*
452 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
453 * a particular key is valid. Because using the FIELD32()
454 * defines directly will cause a lot of overhead we use
455 * a calculation to determine the correct bit directly.
456 */
457 if (key->hw_key_idx < 32) {
458 mask = 1 << key->hw_key_idx;
459
460 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
461 if (crypto->cmd == SET_KEY)
462 reg |= mask;
463 else if (crypto->cmd == DISABLE_KEY)
464 reg &= ~mask;
465 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
466 } else {
467 mask = 1 << (key->hw_key_idx - 32);
468
469 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
470 if (crypto->cmd == SET_KEY)
471 reg |= mask;
472 else if (crypto->cmd == DISABLE_KEY)
473 reg &= ~mask;
474 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
475 }
476
477 return 0;
478 }
479
480 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
481 const unsigned int filter_flags)
482 {
483 u32 reg;
484
485 /*
486 * Start configuration steps.
487 * Note that the version error will always be dropped
488 * and broadcast frames will always be accepted since
489 * there is no filter for it at this time.
490 */
491 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
493 !(filter_flags & FIF_FCSFAIL));
494 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
495 !(filter_flags & FIF_PLCPFAIL));
496 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
497 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
498 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
499 !(filter_flags & FIF_PROMISC_IN_BSS));
500 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
501 !(filter_flags & FIF_PROMISC_IN_BSS) &&
502 !rt2x00dev->intf_ap_count);
503 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
504 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
505 !(filter_flags & FIF_ALLMULTI));
506 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
507 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
508 !(filter_flags & FIF_CONTROL));
509 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
510 }
511
512 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
513 struct rt2x00_intf *intf,
514 struct rt2x00intf_conf *conf,
515 const unsigned int flags)
516 {
517 unsigned int beacon_base;
518 u32 reg;
519
520 if (flags & CONFIG_UPDATE_TYPE) {
521 /*
522 * Clear current synchronisation setup.
523 * For the Beacon base registers we only need to clear
524 * the first byte since that byte contains the VALID and OWNER
525 * bits which (when set to 0) will invalidate the entire beacon.
526 */
527 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
528 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
529
530 /*
531 * Enable synchronisation.
532 */
533 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
534 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
535 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
536 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
537 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
538 }
539
540 if (flags & CONFIG_UPDATE_MAC) {
541 reg = le32_to_cpu(conf->mac[1]);
542 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
543 conf->mac[1] = cpu_to_le32(reg);
544
545 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
546 conf->mac, sizeof(conf->mac));
547 }
548
549 if (flags & CONFIG_UPDATE_BSSID) {
550 reg = le32_to_cpu(conf->bssid[1]);
551 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
552 conf->bssid[1] = cpu_to_le32(reg);
553
554 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
555 conf->bssid, sizeof(conf->bssid));
556 }
557 }
558
559 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
560 struct rt2x00lib_erp *erp)
561 {
562 u32 reg;
563
564 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
565 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
566 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
567 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
568
569 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
570 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
571 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
572 !!erp->short_preamble);
573 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
574
575 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
576
577 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
578 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
579 erp->beacon_int * 16);
580 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
581
582 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
583 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
584 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
585
586 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
587 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
588 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
589 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
590 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
591 }
592
593 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
594 struct antenna_setup *ant)
595 {
596 u8 r3;
597 u8 r4;
598 u8 r77;
599 u8 temp;
600
601 rt73usb_bbp_read(rt2x00dev, 3, &r3);
602 rt73usb_bbp_read(rt2x00dev, 4, &r4);
603 rt73usb_bbp_read(rt2x00dev, 77, &r77);
604
605 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
606
607 /*
608 * Configure the RX antenna.
609 */
610 switch (ant->rx) {
611 case ANTENNA_HW_DIVERSITY:
612 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
613 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
614 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
615 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
616 break;
617 case ANTENNA_A:
618 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
619 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
620 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
621 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
622 else
623 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
624 break;
625 case ANTENNA_B:
626 default:
627 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
628 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
629 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
630 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
631 else
632 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
633 break;
634 }
635
636 rt73usb_bbp_write(rt2x00dev, 77, r77);
637 rt73usb_bbp_write(rt2x00dev, 3, r3);
638 rt73usb_bbp_write(rt2x00dev, 4, r4);
639 }
640
641 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
642 struct antenna_setup *ant)
643 {
644 u8 r3;
645 u8 r4;
646 u8 r77;
647
648 rt73usb_bbp_read(rt2x00dev, 3, &r3);
649 rt73usb_bbp_read(rt2x00dev, 4, &r4);
650 rt73usb_bbp_read(rt2x00dev, 77, &r77);
651
652 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
653 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
654 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
655
656 /*
657 * Configure the RX antenna.
658 */
659 switch (ant->rx) {
660 case ANTENNA_HW_DIVERSITY:
661 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
662 break;
663 case ANTENNA_A:
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
666 break;
667 case ANTENNA_B:
668 default:
669 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
670 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
671 break;
672 }
673
674 rt73usb_bbp_write(rt2x00dev, 77, r77);
675 rt73usb_bbp_write(rt2x00dev, 3, r3);
676 rt73usb_bbp_write(rt2x00dev, 4, r4);
677 }
678
679 struct antenna_sel {
680 u8 word;
681 /*
682 * value[0] -> non-LNA
683 * value[1] -> LNA
684 */
685 u8 value[2];
686 };
687
688 static const struct antenna_sel antenna_sel_a[] = {
689 { 96, { 0x58, 0x78 } },
690 { 104, { 0x38, 0x48 } },
691 { 75, { 0xfe, 0x80 } },
692 { 86, { 0xfe, 0x80 } },
693 { 88, { 0xfe, 0x80 } },
694 { 35, { 0x60, 0x60 } },
695 { 97, { 0x58, 0x58 } },
696 { 98, { 0x58, 0x58 } },
697 };
698
699 static const struct antenna_sel antenna_sel_bg[] = {
700 { 96, { 0x48, 0x68 } },
701 { 104, { 0x2c, 0x3c } },
702 { 75, { 0xfe, 0x80 } },
703 { 86, { 0xfe, 0x80 } },
704 { 88, { 0xfe, 0x80 } },
705 { 35, { 0x50, 0x50 } },
706 { 97, { 0x48, 0x48 } },
707 { 98, { 0x48, 0x48 } },
708 };
709
710 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
711 struct antenna_setup *ant)
712 {
713 const struct antenna_sel *sel;
714 unsigned int lna;
715 unsigned int i;
716 u32 reg;
717
718 /*
719 * We should never come here because rt2x00lib is supposed
720 * to catch this and send us the correct antenna explicitely.
721 */
722 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
723 ant->tx == ANTENNA_SW_DIVERSITY);
724
725 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
726 sel = antenna_sel_a;
727 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
728 } else {
729 sel = antenna_sel_bg;
730 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
731 }
732
733 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
734 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
735
736 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
737
738 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
739 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
740 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
741 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
742
743 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
744
745 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
746 rt73usb_config_antenna_5x(rt2x00dev, ant);
747 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
748 rt73usb_config_antenna_2x(rt2x00dev, ant);
749 }
750
751 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
752 struct rt2x00lib_conf *libconf)
753 {
754 u16 eeprom;
755 short lna_gain = 0;
756
757 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
758 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
759 lna_gain += 14;
760
761 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
762 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
763 } else {
764 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
765 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
766 }
767
768 rt2x00dev->lna_gain = lna_gain;
769 }
770
771 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
772 struct rf_channel *rf, const int txpower)
773 {
774 u8 r3;
775 u8 r94;
776 u8 smart;
777
778 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
779 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
780
781 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
782
783 rt73usb_bbp_read(rt2x00dev, 3, &r3);
784 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
785 rt73usb_bbp_write(rt2x00dev, 3, r3);
786
787 r94 = 6;
788 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
789 r94 += txpower - MAX_TXPOWER;
790 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
791 r94 += txpower;
792 rt73usb_bbp_write(rt2x00dev, 94, r94);
793
794 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
795 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
796 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
797 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
798
799 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
800 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
801 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
802 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
803
804 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
805 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
806 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
807 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
808
809 udelay(10);
810 }
811
812 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
813 const int txpower)
814 {
815 struct rf_channel rf;
816
817 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
818 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
819 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
820 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
821
822 rt73usb_config_channel(rt2x00dev, &rf, txpower);
823 }
824
825 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
826 struct rt2x00lib_conf *libconf)
827 {
828 u32 reg;
829
830 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
831 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
832 libconf->conf->long_frame_max_tx_count);
833 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
834 libconf->conf->short_frame_max_tx_count);
835 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
836 }
837
838 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
839 struct rt2x00lib_conf *libconf)
840 {
841 enum dev_state state =
842 (libconf->conf->flags & IEEE80211_CONF_PS) ?
843 STATE_SLEEP : STATE_AWAKE;
844 u32 reg;
845
846 if (state == STATE_SLEEP) {
847 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
848 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
849 rt2x00dev->beacon_int - 10);
850 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
851 libconf->conf->listen_interval - 1);
852 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
853
854 /* We must first disable autowake before it can be enabled */
855 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
857
858 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
859 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
860
861 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
862 USB_MODE_SLEEP, REGISTER_TIMEOUT);
863 } else {
864 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
865 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
866 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
867 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
868 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
869 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
870
871 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
872 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
873 }
874 }
875
876 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
877 struct rt2x00lib_conf *libconf,
878 const unsigned int flags)
879 {
880 /* Always recalculate LNA gain before changing configuration */
881 rt73usb_config_lna_gain(rt2x00dev, libconf);
882
883 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
884 rt73usb_config_channel(rt2x00dev, &libconf->rf,
885 libconf->conf->power_level);
886 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
887 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
888 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
889 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
890 rt73usb_config_retry_limit(rt2x00dev, libconf);
891 if (flags & IEEE80211_CONF_CHANGE_PS)
892 rt73usb_config_ps(rt2x00dev, libconf);
893 }
894
895 /*
896 * Link tuning
897 */
898 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
899 struct link_qual *qual)
900 {
901 u32 reg;
902
903 /*
904 * Update FCS error count from register.
905 */
906 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
907 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
908
909 /*
910 * Update False CCA count from register.
911 */
912 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
913 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
914 }
915
916 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
917 struct link_qual *qual, u8 vgc_level)
918 {
919 if (qual->vgc_level != vgc_level) {
920 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
921 qual->vgc_level = vgc_level;
922 qual->vgc_level_reg = vgc_level;
923 }
924 }
925
926 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
927 struct link_qual *qual)
928 {
929 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
930 }
931
932 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
933 struct link_qual *qual, const u32 count)
934 {
935 u8 up_bound;
936 u8 low_bound;
937
938 /*
939 * Determine r17 bounds.
940 */
941 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
942 low_bound = 0x28;
943 up_bound = 0x48;
944
945 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
946 low_bound += 0x10;
947 up_bound += 0x10;
948 }
949 } else {
950 if (qual->rssi > -82) {
951 low_bound = 0x1c;
952 up_bound = 0x40;
953 } else if (qual->rssi > -84) {
954 low_bound = 0x1c;
955 up_bound = 0x20;
956 } else {
957 low_bound = 0x1c;
958 up_bound = 0x1c;
959 }
960
961 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
962 low_bound += 0x14;
963 up_bound += 0x10;
964 }
965 }
966
967 /*
968 * If we are not associated, we should go straight to the
969 * dynamic CCA tuning.
970 */
971 if (!rt2x00dev->intf_associated)
972 goto dynamic_cca_tune;
973
974 /*
975 * Special big-R17 for very short distance
976 */
977 if (qual->rssi > -35) {
978 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
979 return;
980 }
981
982 /*
983 * Special big-R17 for short distance
984 */
985 if (qual->rssi >= -58) {
986 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
987 return;
988 }
989
990 /*
991 * Special big-R17 for middle-short distance
992 */
993 if (qual->rssi >= -66) {
994 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
995 return;
996 }
997
998 /*
999 * Special mid-R17 for middle distance
1000 */
1001 if (qual->rssi >= -74) {
1002 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1003 return;
1004 }
1005
1006 /*
1007 * Special case: Change up_bound based on the rssi.
1008 * Lower up_bound when rssi is weaker then -74 dBm.
1009 */
1010 up_bound -= 2 * (-74 - qual->rssi);
1011 if (low_bound > up_bound)
1012 up_bound = low_bound;
1013
1014 if (qual->vgc_level > up_bound) {
1015 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1016 return;
1017 }
1018
1019 dynamic_cca_tune:
1020
1021 /*
1022 * r17 does not yet exceed upper limit, continue and base
1023 * the r17 tuning on the false CCA count.
1024 */
1025 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1026 rt73usb_set_vgc(rt2x00dev, qual,
1027 min_t(u8, qual->vgc_level + 4, up_bound));
1028 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1029 rt73usb_set_vgc(rt2x00dev, qual,
1030 max_t(u8, qual->vgc_level - 4, low_bound));
1031 }
1032
1033 /*
1034 * Firmware functions
1035 */
1036 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1037 {
1038 return FIRMWARE_RT2571;
1039 }
1040
1041 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1042 const u8 *data, const size_t len)
1043 {
1044 u16 fw_crc;
1045 u16 crc;
1046
1047 /*
1048 * Only support 2kb firmware files.
1049 */
1050 if (len != 2048)
1051 return FW_BAD_LENGTH;
1052
1053 /*
1054 * The last 2 bytes in the firmware array are the crc checksum itself,
1055 * this means that we should never pass those 2 bytes to the crc
1056 * algorithm.
1057 */
1058 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1059
1060 /*
1061 * Use the crc itu-t algorithm.
1062 */
1063 crc = crc_itu_t(0, data, len - 2);
1064 crc = crc_itu_t_byte(crc, 0);
1065 crc = crc_itu_t_byte(crc, 0);
1066
1067 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1068 }
1069
1070 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1071 const u8 *data, const size_t len)
1072 {
1073 unsigned int i;
1074 int status;
1075 u32 reg;
1076
1077 /*
1078 * Wait for stable hardware.
1079 */
1080 for (i = 0; i < 100; i++) {
1081 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1082 if (reg)
1083 break;
1084 msleep(1);
1085 }
1086
1087 if (!reg) {
1088 ERROR(rt2x00dev, "Unstable hardware.\n");
1089 return -EBUSY;
1090 }
1091
1092 /*
1093 * Write firmware to device.
1094 */
1095 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1096 USB_VENDOR_REQUEST_OUT,
1097 FIRMWARE_IMAGE_BASE,
1098 data, len,
1099 REGISTER_TIMEOUT32(len));
1100
1101 /*
1102 * Send firmware request to device to load firmware,
1103 * we need to specify a long timeout time.
1104 */
1105 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1106 0, USB_MODE_FIRMWARE,
1107 REGISTER_TIMEOUT_FIRMWARE);
1108 if (status < 0) {
1109 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1110 return status;
1111 }
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Initialization functions.
1118 */
1119 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1120 {
1121 u32 reg;
1122
1123 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1124 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1125 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1126 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1127 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1128
1129 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1130 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1131 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1132 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1133 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1134 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1135 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1136 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1137 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1138 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1139
1140 /*
1141 * CCK TXD BBP registers
1142 */
1143 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1144 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1145 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1146 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1147 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1148 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1149 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1150 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1151 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1152 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1153
1154 /*
1155 * OFDM TXD BBP registers
1156 */
1157 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1158 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1159 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1160 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1161 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1162 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1163 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1164 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1165
1166 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1167 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1168 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1169 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1170 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1171 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1172
1173 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1174 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1175 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1176 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1177 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1178 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1179
1180 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1181 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1182 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1183 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1184 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1185 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1186 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1187 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1188
1189 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1190
1191 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1192 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1193 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1194
1195 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1196
1197 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1198 return -EBUSY;
1199
1200 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1201
1202 /*
1203 * Invalidate all Shared Keys (SEC_CSR0),
1204 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1205 */
1206 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1207 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1208 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1209
1210 reg = 0x000023b0;
1211 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1212 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1213 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1214
1215 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1216 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1217 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1218
1219 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1220 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1221 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1222
1223 /*
1224 * Clear all beacons
1225 * For the Beacon base registers we only need to clear
1226 * the first byte since that byte contains the VALID and OWNER
1227 * bits which (when set to 0) will invalidate the entire beacon.
1228 */
1229 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1230 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1231 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1232 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1233
1234 /*
1235 * We must clear the error counters.
1236 * These registers are cleared on read,
1237 * so we may pass a useless variable to store the value.
1238 */
1239 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1240 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1241 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1242
1243 /*
1244 * Reset MAC and BBP registers.
1245 */
1246 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1247 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1248 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1249 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1250
1251 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1252 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1253 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1254 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1255
1256 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1257 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1258 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260 return 0;
1261 }
1262
1263 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1264 {
1265 unsigned int i;
1266 u8 value;
1267
1268 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1269 rt73usb_bbp_read(rt2x00dev, 0, &value);
1270 if ((value != 0xff) && (value != 0x00))
1271 return 0;
1272 udelay(REGISTER_BUSY_DELAY);
1273 }
1274
1275 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1276 return -EACCES;
1277 }
1278
1279 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1280 {
1281 unsigned int i;
1282 u16 eeprom;
1283 u8 reg_id;
1284 u8 value;
1285
1286 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1287 return -EACCES;
1288
1289 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1290 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1291 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1292 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1293 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1294 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1295 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1296 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1297 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1298 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1299 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1300 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1301 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1302 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1303 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1304 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1305 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1306 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1307 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1308 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1309 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1310 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1311 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1312 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1313 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1314
1315 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1316 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1317
1318 if (eeprom != 0xffff && eeprom != 0x0000) {
1319 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1320 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1321 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1322 }
1323 }
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * Device state switch handlers.
1330 */
1331 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1332 enum dev_state state)
1333 {
1334 u32 reg;
1335
1336 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1337 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1338 (state == STATE_RADIO_RX_OFF) ||
1339 (state == STATE_RADIO_RX_OFF_LINK));
1340 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1341 }
1342
1343 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1344 {
1345 /*
1346 * Initialize all registers.
1347 */
1348 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1349 rt73usb_init_bbp(rt2x00dev)))
1350 return -EIO;
1351
1352 return 0;
1353 }
1354
1355 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1356 {
1357 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1358
1359 /*
1360 * Disable synchronisation.
1361 */
1362 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1363
1364 rt2x00usb_disable_radio(rt2x00dev);
1365 }
1366
1367 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1368 {
1369 u32 reg, reg2;
1370 unsigned int i;
1371 char put_to_sleep;
1372
1373 put_to_sleep = (state != STATE_AWAKE);
1374
1375 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1376 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1377 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1378 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1379
1380 /*
1381 * Device is not guaranteed to be in the requested state yet.
1382 * We must wait until the register indicates that the
1383 * device has entered the correct state.
1384 */
1385 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1386 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1387 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1388 if (state == !put_to_sleep)
1389 return 0;
1390 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1391 msleep(10);
1392 }
1393
1394 return -EBUSY;
1395 }
1396
1397 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1398 enum dev_state state)
1399 {
1400 int retval = 0;
1401
1402 switch (state) {
1403 case STATE_RADIO_ON:
1404 retval = rt73usb_enable_radio(rt2x00dev);
1405 break;
1406 case STATE_RADIO_OFF:
1407 rt73usb_disable_radio(rt2x00dev);
1408 break;
1409 case STATE_RADIO_RX_ON:
1410 case STATE_RADIO_RX_ON_LINK:
1411 case STATE_RADIO_RX_OFF:
1412 case STATE_RADIO_RX_OFF_LINK:
1413 rt73usb_toggle_rx(rt2x00dev, state);
1414 break;
1415 case STATE_RADIO_IRQ_ON:
1416 case STATE_RADIO_IRQ_OFF:
1417 /* No support, but no error either */
1418 break;
1419 case STATE_DEEP_SLEEP:
1420 case STATE_SLEEP:
1421 case STATE_STANDBY:
1422 case STATE_AWAKE:
1423 retval = rt73usb_set_state(rt2x00dev, state);
1424 break;
1425 default:
1426 retval = -ENOTSUPP;
1427 break;
1428 }
1429
1430 if (unlikely(retval))
1431 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1432 state, retval);
1433
1434 return retval;
1435 }
1436
1437 /*
1438 * TX descriptor initialization
1439 */
1440 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1441 struct sk_buff *skb,
1442 struct txentry_desc *txdesc)
1443 {
1444 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1445 __le32 *txd = (__le32 *) skb->data;
1446 u32 word;
1447
1448 /*
1449 * Start writing the descriptor words.
1450 */
1451 rt2x00_desc_read(txd, 0, &word);
1452 rt2x00_set_field32(&word, TXD_W0_BURST,
1453 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1454 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1455 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1456 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1457 rt2x00_set_field32(&word, TXD_W0_ACK,
1458 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1459 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1460 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1461 rt2x00_set_field32(&word, TXD_W0_OFDM,
1462 (txdesc->rate_mode == RATE_MODE_OFDM));
1463 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1464 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1465 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1466 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1467 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1469 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1470 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1471 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1472 rt2x00_set_field32(&word, TXD_W0_BURST2,
1473 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1474 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1475 rt2x00_desc_write(txd, 0, word);
1476
1477 rt2x00_desc_read(txd, 1, &word);
1478 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1479 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1480 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1481 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1482 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1483 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1484 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1485 rt2x00_desc_write(txd, 1, word);
1486
1487 rt2x00_desc_read(txd, 2, &word);
1488 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1489 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1490 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1491 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1492 rt2x00_desc_write(txd, 2, word);
1493
1494 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1495 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1496 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1497 }
1498
1499 rt2x00_desc_read(txd, 5, &word);
1500 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1501 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1502 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1503 rt2x00_desc_write(txd, 5, word);
1504
1505 /*
1506 * Register descriptor details in skb frame descriptor.
1507 */
1508 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1509 skbdesc->desc = txd;
1510 skbdesc->desc_len = TXD_DESC_SIZE;
1511 }
1512
1513 /*
1514 * TX data initialization
1515 */
1516 static void rt73usb_write_beacon(struct queue_entry *entry,
1517 struct txentry_desc *txdesc)
1518 {
1519 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1520 unsigned int beacon_base;
1521 u32 reg;
1522
1523 /*
1524 * Disable beaconing while we are reloading the beacon data,
1525 * otherwise we might be sending out invalid data.
1526 */
1527 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1528 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1529 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1530
1531 /*
1532 * Add space for the descriptor in front of the skb.
1533 */
1534 skb_push(entry->skb, TXD_DESC_SIZE);
1535 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1536
1537 /*
1538 * Write the TX descriptor for the beacon.
1539 */
1540 rt73usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1541
1542 /*
1543 * Dump beacon to userspace through debugfs.
1544 */
1545 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1546
1547 /*
1548 * Write entire beacon with descriptor to register.
1549 */
1550 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1551 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1552 USB_VENDOR_REQUEST_OUT, beacon_base,
1553 entry->skb->data, entry->skb->len,
1554 REGISTER_TIMEOUT32(entry->skb->len));
1555
1556 /*
1557 * Enable beaconing again.
1558 *
1559 * For Wi-Fi faily generated beacons between participating stations.
1560 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1561 */
1562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1563
1564 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1565 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1566 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1567 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1568
1569 /*
1570 * Clean up the beacon skb.
1571 */
1572 dev_kfree_skb(entry->skb);
1573 entry->skb = NULL;
1574 }
1575
1576 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1577 {
1578 int length;
1579
1580 /*
1581 * The length _must_ be a multiple of 4,
1582 * but it must _not_ be a multiple of the USB packet size.
1583 */
1584 length = roundup(entry->skb->len, 4);
1585 length += (4 * !(length % entry->queue->usb_maxpacket));
1586
1587 return length;
1588 }
1589
1590 /*
1591 * RX control handlers
1592 */
1593 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1594 {
1595 u8 offset = rt2x00dev->lna_gain;
1596 u8 lna;
1597
1598 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1599 switch (lna) {
1600 case 3:
1601 offset += 90;
1602 break;
1603 case 2:
1604 offset += 74;
1605 break;
1606 case 1:
1607 offset += 64;
1608 break;
1609 default:
1610 return 0;
1611 }
1612
1613 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1614 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1615 if (lna == 3 || lna == 2)
1616 offset += 10;
1617 } else {
1618 if (lna == 3)
1619 offset += 6;
1620 else if (lna == 2)
1621 offset += 8;
1622 }
1623 }
1624
1625 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1626 }
1627
1628 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1629 struct rxdone_entry_desc *rxdesc)
1630 {
1631 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1632 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1633 __le32 *rxd = (__le32 *)entry->skb->data;
1634 u32 word0;
1635 u32 word1;
1636
1637 /*
1638 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1639 * frame data in rt2x00usb.
1640 */
1641 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1642 rxd = (__le32 *)skbdesc->desc;
1643
1644 /*
1645 * It is now safe to read the descriptor on all architectures.
1646 */
1647 rt2x00_desc_read(rxd, 0, &word0);
1648 rt2x00_desc_read(rxd, 1, &word1);
1649
1650 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1651 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1652
1653 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1654 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1655
1656 if (rxdesc->cipher != CIPHER_NONE) {
1657 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1658 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1659 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1660
1661 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1662 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1663
1664 /*
1665 * Hardware has stripped IV/EIV data from 802.11 frame during
1666 * decryption. It has provided the data separately but rt2x00lib
1667 * should decide if it should be reinserted.
1668 */
1669 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1670
1671 /*
1672 * FIXME: Legacy driver indicates that the frame does
1673 * contain the Michael Mic. Unfortunately, in rt2x00
1674 * the MIC seems to be missing completely...
1675 */
1676 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1677
1678 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1679 rxdesc->flags |= RX_FLAG_DECRYPTED;
1680 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1681 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1682 }
1683
1684 /*
1685 * Obtain the status about this packet.
1686 * When frame was received with an OFDM bitrate,
1687 * the signal is the PLCP value. If it was received with
1688 * a CCK bitrate the signal is the rate in 100kbit/s.
1689 */
1690 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1691 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1692 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1693
1694 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1695 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1696 else
1697 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1698 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1699 rxdesc->dev_flags |= RXDONE_MY_BSS;
1700
1701 /*
1702 * Set skb pointers, and update frame information.
1703 */
1704 skb_pull(entry->skb, entry->queue->desc_size);
1705 skb_trim(entry->skb, rxdesc->size);
1706 }
1707
1708 /*
1709 * Device probe functions.
1710 */
1711 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1712 {
1713 u16 word;
1714 u8 *mac;
1715 s8 value;
1716
1717 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1718
1719 /*
1720 * Start validation of the data that has been read.
1721 */
1722 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1723 if (!is_valid_ether_addr(mac)) {
1724 random_ether_addr(mac);
1725 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1726 }
1727
1728 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1729 if (word == 0xffff) {
1730 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1731 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1732 ANTENNA_B);
1733 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1734 ANTENNA_B);
1735 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1736 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1737 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1738 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1739 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1740 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1741 }
1742
1743 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1744 if (word == 0xffff) {
1745 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1746 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1747 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1748 }
1749
1750 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1751 if (word == 0xffff) {
1752 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1753 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1754 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1755 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1756 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1757 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1758 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1759 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1760 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1761 LED_MODE_DEFAULT);
1762 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1763 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1764 }
1765
1766 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1767 if (word == 0xffff) {
1768 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1769 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1770 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1771 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1772 }
1773
1774 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1775 if (word == 0xffff) {
1776 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1777 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1778 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1779 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1780 } else {
1781 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1782 if (value < -10 || value > 10)
1783 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1784 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1785 if (value < -10 || value > 10)
1786 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1787 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1788 }
1789
1790 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1791 if (word == 0xffff) {
1792 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1793 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1794 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1795 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1796 } else {
1797 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1798 if (value < -10 || value > 10)
1799 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1800 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1801 if (value < -10 || value > 10)
1802 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1803 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1804 }
1805
1806 return 0;
1807 }
1808
1809 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1810 {
1811 u32 reg;
1812 u16 value;
1813 u16 eeprom;
1814
1815 /*
1816 * Read EEPROM word for configuration.
1817 */
1818 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1819
1820 /*
1821 * Identify RF chipset.
1822 */
1823 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1824 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1825 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1826 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1827
1828 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1829 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1830 return -ENODEV;
1831 }
1832
1833 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1834 !rt2x00_rf(rt2x00dev, RF2528) &&
1835 !rt2x00_rf(rt2x00dev, RF5225) &&
1836 !rt2x00_rf(rt2x00dev, RF2527)) {
1837 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1838 return -ENODEV;
1839 }
1840
1841 /*
1842 * Identify default antenna configuration.
1843 */
1844 rt2x00dev->default_ant.tx =
1845 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1846 rt2x00dev->default_ant.rx =
1847 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1848
1849 /*
1850 * Read the Frame type.
1851 */
1852 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1853 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1854
1855 /*
1856 * Detect if this device has an hardware controlled radio.
1857 */
1858 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1859 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1860
1861 /*
1862 * Read frequency offset.
1863 */
1864 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1865 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1866
1867 /*
1868 * Read external LNA informations.
1869 */
1870 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1871
1872 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1873 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1874 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1875 }
1876
1877 /*
1878 * Store led settings, for correct led behaviour.
1879 */
1880 #ifdef CONFIG_RT2X00_LIB_LEDS
1881 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1882
1883 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1884 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1885 if (value == LED_MODE_SIGNAL_STRENGTH)
1886 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1887 LED_TYPE_QUALITY);
1888
1889 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1890 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1891 rt2x00_get_field16(eeprom,
1892 EEPROM_LED_POLARITY_GPIO_0));
1893 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1894 rt2x00_get_field16(eeprom,
1895 EEPROM_LED_POLARITY_GPIO_1));
1896 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1897 rt2x00_get_field16(eeprom,
1898 EEPROM_LED_POLARITY_GPIO_2));
1899 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1900 rt2x00_get_field16(eeprom,
1901 EEPROM_LED_POLARITY_GPIO_3));
1902 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1903 rt2x00_get_field16(eeprom,
1904 EEPROM_LED_POLARITY_GPIO_4));
1905 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1906 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1907 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1908 rt2x00_get_field16(eeprom,
1909 EEPROM_LED_POLARITY_RDY_G));
1910 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1911 rt2x00_get_field16(eeprom,
1912 EEPROM_LED_POLARITY_RDY_A));
1913 #endif /* CONFIG_RT2X00_LIB_LEDS */
1914
1915 return 0;
1916 }
1917
1918 /*
1919 * RF value list for RF2528
1920 * Supports: 2.4 GHz
1921 */
1922 static const struct rf_channel rf_vals_bg_2528[] = {
1923 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1924 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1925 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1926 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1927 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1928 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1929 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1930 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1931 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1932 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1933 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1934 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1935 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1936 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1937 };
1938
1939 /*
1940 * RF value list for RF5226
1941 * Supports: 2.4 GHz & 5.2 GHz
1942 */
1943 static const struct rf_channel rf_vals_5226[] = {
1944 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1945 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1946 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1947 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1948 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1949 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1950 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1951 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1952 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1953 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1954 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1955 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1956 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1957 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1958
1959 /* 802.11 UNI / HyperLan 2 */
1960 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1961 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1962 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1963 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1964 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1965 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1966 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1967 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1968
1969 /* 802.11 HyperLan 2 */
1970 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1971 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1972 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1973 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1974 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1975 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1976 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1977 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1978 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1979 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1980
1981 /* 802.11 UNII */
1982 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1983 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1984 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1985 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1986 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1987 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1988
1989 /* MMAC(Japan)J52 ch 34,38,42,46 */
1990 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1991 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1992 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1993 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1994 };
1995
1996 /*
1997 * RF value list for RF5225 & RF2527
1998 * Supports: 2.4 GHz & 5.2 GHz
1999 */
2000 static const struct rf_channel rf_vals_5225_2527[] = {
2001 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2002 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2003 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2004 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2005 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2006 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2007 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2008 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2009 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2010 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2011 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2012 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2013 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2014 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2015
2016 /* 802.11 UNI / HyperLan 2 */
2017 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2018 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2019 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2020 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2021 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2022 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2023 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2024 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2025
2026 /* 802.11 HyperLan 2 */
2027 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2028 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2029 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2030 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2031 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2032 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2033 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2034 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2035 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2036 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2037
2038 /* 802.11 UNII */
2039 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2040 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2041 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2042 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2043 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2044 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2045
2046 /* MMAC(Japan)J52 ch 34,38,42,46 */
2047 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2048 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2049 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2050 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2051 };
2052
2053
2054 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2055 {
2056 struct hw_mode_spec *spec = &rt2x00dev->spec;
2057 struct channel_info *info;
2058 char *tx_power;
2059 unsigned int i;
2060
2061 /*
2062 * Initialize all hw fields.
2063 */
2064 rt2x00dev->hw->flags =
2065 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2066 IEEE80211_HW_SIGNAL_DBM |
2067 IEEE80211_HW_SUPPORTS_PS |
2068 IEEE80211_HW_PS_NULLFUNC_STACK;
2069
2070 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2071 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2072 rt2x00_eeprom_addr(rt2x00dev,
2073 EEPROM_MAC_ADDR_0));
2074
2075 /*
2076 * Initialize hw_mode information.
2077 */
2078 spec->supported_bands = SUPPORT_BAND_2GHZ;
2079 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2080
2081 if (rt2x00_rf(rt2x00dev, RF2528)) {
2082 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2083 spec->channels = rf_vals_bg_2528;
2084 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2085 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2086 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2087 spec->channels = rf_vals_5226;
2088 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2089 spec->num_channels = 14;
2090 spec->channels = rf_vals_5225_2527;
2091 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2092 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2093 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2094 spec->channels = rf_vals_5225_2527;
2095 }
2096
2097 /*
2098 * Create channel information array
2099 */
2100 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2101 if (!info)
2102 return -ENOMEM;
2103
2104 spec->channels_info = info;
2105
2106 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2107 for (i = 0; i < 14; i++)
2108 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2109
2110 if (spec->num_channels > 14) {
2111 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2112 for (i = 14; i < spec->num_channels; i++)
2113 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2114 }
2115
2116 return 0;
2117 }
2118
2119 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2120 {
2121 int retval;
2122
2123 /*
2124 * Allocate eeprom data.
2125 */
2126 retval = rt73usb_validate_eeprom(rt2x00dev);
2127 if (retval)
2128 return retval;
2129
2130 retval = rt73usb_init_eeprom(rt2x00dev);
2131 if (retval)
2132 return retval;
2133
2134 /*
2135 * Initialize hw specifications.
2136 */
2137 retval = rt73usb_probe_hw_mode(rt2x00dev);
2138 if (retval)
2139 return retval;
2140
2141 /*
2142 * This device has multiple filters for control frames,
2143 * but has no a separate filter for PS Poll frames.
2144 */
2145 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2146
2147 /*
2148 * This device requires firmware.
2149 */
2150 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2151 if (!modparam_nohwcrypt)
2152 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2153
2154 /*
2155 * Set the rssi offset.
2156 */
2157 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2158
2159 return 0;
2160 }
2161
2162 /*
2163 * IEEE80211 stack callback functions.
2164 */
2165 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2166 const struct ieee80211_tx_queue_params *params)
2167 {
2168 struct rt2x00_dev *rt2x00dev = hw->priv;
2169 struct data_queue *queue;
2170 struct rt2x00_field32 field;
2171 int retval;
2172 u32 reg;
2173 u32 offset;
2174
2175 /*
2176 * First pass the configuration through rt2x00lib, that will
2177 * update the queue settings and validate the input. After that
2178 * we are free to update the registers based on the value
2179 * in the queue parameter.
2180 */
2181 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2182 if (retval)
2183 return retval;
2184
2185 /*
2186 * We only need to perform additional register initialization
2187 * for WMM queues/
2188 */
2189 if (queue_idx >= 4)
2190 return 0;
2191
2192 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2193
2194 /* Update WMM TXOP register */
2195 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2196 field.bit_offset = (queue_idx & 1) * 16;
2197 field.bit_mask = 0xffff << field.bit_offset;
2198
2199 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2200 rt2x00_set_field32(&reg, field, queue->txop);
2201 rt2x00usb_register_write(rt2x00dev, offset, reg);
2202
2203 /* Update WMM registers */
2204 field.bit_offset = queue_idx * 4;
2205 field.bit_mask = 0xf << field.bit_offset;
2206
2207 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2208 rt2x00_set_field32(&reg, field, queue->aifs);
2209 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2210
2211 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2212 rt2x00_set_field32(&reg, field, queue->cw_min);
2213 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2214
2215 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2216 rt2x00_set_field32(&reg, field, queue->cw_max);
2217 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2218
2219 return 0;
2220 }
2221
2222 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2223 {
2224 struct rt2x00_dev *rt2x00dev = hw->priv;
2225 u64 tsf;
2226 u32 reg;
2227
2228 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2229 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2230 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2231 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2232
2233 return tsf;
2234 }
2235
2236 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2237 .tx = rt2x00mac_tx,
2238 .start = rt2x00mac_start,
2239 .stop = rt2x00mac_stop,
2240 .add_interface = rt2x00mac_add_interface,
2241 .remove_interface = rt2x00mac_remove_interface,
2242 .config = rt2x00mac_config,
2243 .configure_filter = rt2x00mac_configure_filter,
2244 .set_tim = rt2x00mac_set_tim,
2245 .set_key = rt2x00mac_set_key,
2246 .get_stats = rt2x00mac_get_stats,
2247 .bss_info_changed = rt2x00mac_bss_info_changed,
2248 .conf_tx = rt73usb_conf_tx,
2249 .get_tsf = rt73usb_get_tsf,
2250 .rfkill_poll = rt2x00mac_rfkill_poll,
2251 };
2252
2253 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2254 .probe_hw = rt73usb_probe_hw,
2255 .get_firmware_name = rt73usb_get_firmware_name,
2256 .check_firmware = rt73usb_check_firmware,
2257 .load_firmware = rt73usb_load_firmware,
2258 .initialize = rt2x00usb_initialize,
2259 .uninitialize = rt2x00usb_uninitialize,
2260 .clear_entry = rt2x00usb_clear_entry,
2261 .set_device_state = rt73usb_set_device_state,
2262 .rfkill_poll = rt73usb_rfkill_poll,
2263 .link_stats = rt73usb_link_stats,
2264 .reset_tuner = rt73usb_reset_tuner,
2265 .link_tuner = rt73usb_link_tuner,
2266 .write_tx_desc = rt73usb_write_tx_desc,
2267 .write_tx_data = rt2x00usb_write_tx_data,
2268 .write_beacon = rt73usb_write_beacon,
2269 .get_tx_data_len = rt73usb_get_tx_data_len,
2270 .kick_tx_queue = rt2x00usb_kick_tx_queue,
2271 .kill_tx_queue = rt2x00usb_kill_tx_queue,
2272 .fill_rxdone = rt73usb_fill_rxdone,
2273 .config_shared_key = rt73usb_config_shared_key,
2274 .config_pairwise_key = rt73usb_config_pairwise_key,
2275 .config_filter = rt73usb_config_filter,
2276 .config_intf = rt73usb_config_intf,
2277 .config_erp = rt73usb_config_erp,
2278 .config_ant = rt73usb_config_ant,
2279 .config = rt73usb_config,
2280 };
2281
2282 static const struct data_queue_desc rt73usb_queue_rx = {
2283 .entry_num = RX_ENTRIES,
2284 .data_size = DATA_FRAME_SIZE,
2285 .desc_size = RXD_DESC_SIZE,
2286 .priv_size = sizeof(struct queue_entry_priv_usb),
2287 };
2288
2289 static const struct data_queue_desc rt73usb_queue_tx = {
2290 .entry_num = TX_ENTRIES,
2291 .data_size = DATA_FRAME_SIZE,
2292 .desc_size = TXD_DESC_SIZE,
2293 .priv_size = sizeof(struct queue_entry_priv_usb),
2294 };
2295
2296 static const struct data_queue_desc rt73usb_queue_bcn = {
2297 .entry_num = 4 * BEACON_ENTRIES,
2298 .data_size = MGMT_FRAME_SIZE,
2299 .desc_size = TXINFO_SIZE,
2300 .priv_size = sizeof(struct queue_entry_priv_usb),
2301 };
2302
2303 static const struct rt2x00_ops rt73usb_ops = {
2304 .name = KBUILD_MODNAME,
2305 .max_sta_intf = 1,
2306 .max_ap_intf = 4,
2307 .eeprom_size = EEPROM_SIZE,
2308 .rf_size = RF_SIZE,
2309 .tx_queues = NUM_TX_QUEUES,
2310 .extra_tx_headroom = TXD_DESC_SIZE,
2311 .rx = &rt73usb_queue_rx,
2312 .tx = &rt73usb_queue_tx,
2313 .bcn = &rt73usb_queue_bcn,
2314 .lib = &rt73usb_rt2x00_ops,
2315 .hw = &rt73usb_mac80211_ops,
2316 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2317 .debugfs = &rt73usb_rt2x00debug,
2318 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2319 };
2320
2321 /*
2322 * rt73usb module information.
2323 */
2324 static struct usb_device_id rt73usb_device_table[] = {
2325 /* AboCom */
2326 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2327 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2328 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2329 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2330 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2331 /* AL */
2332 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2333 /* Amigo */
2334 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2335 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2336 /* AMIT */
2337 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2338 /* Askey */
2339 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2340 /* ASUS */
2341 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2342 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2343 /* Belkin */
2344 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2345 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2346 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2347 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2348 /* Billionton */
2349 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2350 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2351 /* Buffalo */
2352 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2353 { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops) },
2354 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2355 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2356 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2357 /* CEIVA */
2358 { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops) },
2359 /* CNet */
2360 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2361 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2362 /* Conceptronic */
2363 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2364 /* Corega */
2365 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2366 /* D-Link */
2367 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2368 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2369 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2370 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2371 /* Edimax */
2372 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2373 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2374 /* EnGenius */
2375 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2376 /* Gemtek */
2377 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2378 /* Gigabyte */
2379 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2380 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* Huawei-3Com */
2382 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2383 /* Hercules */
2384 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2385 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2386 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2387 /* Linksys */
2388 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2389 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2390 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2391 /* MSI */
2392 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2393 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2394 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2395 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2396 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2397 /* Ovislink */
2398 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2399 /* Ralink */
2400 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2401 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2402 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2403 /* Qcom */
2404 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2405 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2406 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2407 /* Samsung */
2408 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2409 /* Senao */
2410 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2411 /* Sitecom */
2412 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2413 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2414 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2415 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2416 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2417 /* Surecom */
2418 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2419 /* Tilgin */
2420 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2421 /* Philips */
2422 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2423 /* Planex */
2424 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2425 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2426 /* WideTell */
2427 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2428 /* Zcom */
2429 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2430 /* ZyXEL */
2431 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2432 { 0, }
2433 };
2434
2435 MODULE_AUTHOR(DRV_PROJECT);
2436 MODULE_VERSION(DRV_VERSION);
2437 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2438 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2439 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2440 MODULE_FIRMWARE(FIRMWARE_RT2571);
2441 MODULE_LICENSE("GPL");
2442
2443 static struct usb_driver rt73usb_driver = {
2444 .name = KBUILD_MODNAME,
2445 .id_table = rt73usb_device_table,
2446 .probe = rt2x00usb_probe,
2447 .disconnect = rt2x00usb_disconnect,
2448 .suspend = rt2x00usb_suspend,
2449 .resume = rt2x00usb_resume,
2450 };
2451
2452 static int __init rt73usb_init(void)
2453 {
2454 return usb_register(&rt73usb_driver);
2455 }
2456
2457 static void __exit rt73usb_exit(void)
2458 {
2459 usb_deregister(&rt73usb_driver);
2460 }
2461
2462 module_init(rt73usb_init);
2463 module_exit(rt73usb_exit);