]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt73usb.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
60 */
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 /*
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
138 */
139 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
144
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
147 }
148
149 mutex_unlock(&rt2x00dev->csr_mutex);
150 }
151
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
162 },
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
169 },
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
176 },
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
183 },
184 };
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 {
189 u32 reg;
190
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
198 {
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
210
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
219
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
224 /*
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
228 */
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
233 }
234 }
235
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
239 {
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
243
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248
249 return 0;
250 }
251
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
255 {
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265 * Configuration handlers.
266 */
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
270 {
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 u32 mask;
274 u32 reg;
275
276 if (crypto->cmd == SET_KEY) {
277 /*
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
286 */
287 mask = (0xf << crypto->bssidx);
288
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290 reg &= mask;
291
292 if (reg && reg == mask)
293 return -ENOSPC;
294
295 key->hw_key_idx += reg ? ffz(reg) : 0;
296
297 /*
298 * Upload key to hardware
299 */
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
306
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309 &key_entry, sizeof(key_entry));
310
311 /*
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
317 */
318 if (key->hw_key_idx < 8) {
319 field.bit_offset = (3 * key->hw_key_idx);
320 field.bit_mask = 0x7 << field.bit_offset;
321
322 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
323 rt2x00_set_field32(&reg, field, crypto->cipher);
324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325 } else {
326 field.bit_offset = (3 * (key->hw_key_idx - 8));
327 field.bit_mask = 0x7 << field.bit_offset;
328
329 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
330 rt2x00_set_field32(&reg, field, crypto->cipher);
331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332 }
333
334 /*
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
342 */
343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344 }
345
346 /*
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
351 */
352 mask = 1 << key->hw_key_idx;
353
354 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
355 if (crypto->cmd == SET_KEY)
356 reg |= mask;
357 else if (crypto->cmd == DISABLE_KEY)
358 reg &= ~mask;
359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
360
361 return 0;
362 }
363
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_crypto *crypto,
366 struct ieee80211_key_conf *key)
367 {
368 struct hw_pairwise_ta_entry addr_entry;
369 struct hw_key_entry key_entry;
370 u32 mask;
371 u32 reg;
372
373 if (crypto->cmd == SET_KEY) {
374 /*
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
379 * the next register.
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
382 */
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384 if (reg && reg == ~0) {
385 key->hw_key_idx = 32;
386 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387 if (reg && reg == ~0)
388 return -ENOSPC;
389 }
390
391 key->hw_key_idx += reg ? ffz(reg) : 0;
392
393 /*
394 * Upload key to hardware
395 */
396 memcpy(key_entry.key, crypto->key,
397 sizeof(key_entry.key));
398 memcpy(key_entry.tx_mic, crypto->tx_mic,
399 sizeof(key_entry.tx_mic));
400 memcpy(key_entry.rx_mic, crypto->rx_mic,
401 sizeof(key_entry.rx_mic));
402
403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &key_entry, sizeof(key_entry));
406
407 /*
408 * Send the address and cipher type to the hardware register.
409 */
410 memset(&addr_entry, 0, sizeof(addr_entry));
411 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412 addr_entry.cipher = crypto->cipher;
413
414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416 &addr_entry, sizeof(addr_entry));
417
418 /*
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
421 * by the hardware.
422 */
423 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
424 reg |= (1 << crypto->bssidx);
425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
426
427 /*
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
435 */
436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437 }
438
439 /*
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
444 */
445 if (key->hw_key_idx < 32) {
446 mask = 1 << key->hw_key_idx;
447
448 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
449 if (crypto->cmd == SET_KEY)
450 reg |= mask;
451 else if (crypto->cmd == DISABLE_KEY)
452 reg &= ~mask;
453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454 } else {
455 mask = 1 << (key->hw_key_idx - 32);
456
457 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
458 if (crypto->cmd == SET_KEY)
459 reg |= mask;
460 else if (crypto->cmd == DISABLE_KEY)
461 reg &= ~mask;
462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
463 }
464
465 return 0;
466 }
467
468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469 const unsigned int filter_flags)
470 {
471 u32 reg;
472
473 /*
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
478 */
479 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
480 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
481 !(filter_flags & FIF_FCSFAIL));
482 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
483 !(filter_flags & FIF_PLCPFAIL));
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
487 !(filter_flags & FIF_PROMISC_IN_BSS));
488 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
489 !(filter_flags & FIF_PROMISC_IN_BSS) &&
490 !rt2x00dev->intf_ap_count);
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
493 !(filter_flags & FIF_ALLMULTI));
494 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
495 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
496 !(filter_flags & FIF_CONTROL));
497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
498 }
499
500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00_intf *intf,
502 struct rt2x00intf_conf *conf,
503 const unsigned int flags)
504 {
505 unsigned int beacon_base;
506 u32 reg;
507
508 if (flags & CONFIG_UPDATE_TYPE) {
509 /*
510 * Clear current synchronisation setup.
511 * For the Beacon base registers we only need to clear
512 * the first byte since that byte contains the VALID and OWNER
513 * bits which (when set to 0) will invalidate the entire beacon.
514 */
515 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
516 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
517
518 /*
519 * Enable synchronisation.
520 */
521 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
522 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
523 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
524 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
525 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
526 }
527
528 if (flags & CONFIG_UPDATE_MAC) {
529 reg = le32_to_cpu(conf->mac[1]);
530 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
531 conf->mac[1] = cpu_to_le32(reg);
532
533 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
534 conf->mac, sizeof(conf->mac));
535 }
536
537 if (flags & CONFIG_UPDATE_BSSID) {
538 reg = le32_to_cpu(conf->bssid[1]);
539 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
540 conf->bssid[1] = cpu_to_le32(reg);
541
542 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
543 conf->bssid, sizeof(conf->bssid));
544 }
545 }
546
547 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00lib_erp *erp,
549 u32 changed)
550 {
551 u32 reg;
552
553 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
554 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
555 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
556 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
557
558 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
559 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
560 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
561 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
562 !!erp->short_preamble);
563 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
564 }
565
566 if (changed & BSS_CHANGED_BASIC_RATES)
567 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
568 erp->basic_rates);
569
570 if (changed & BSS_CHANGED_BEACON_INT) {
571 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
572 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
573 erp->beacon_int * 16);
574 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
575 }
576
577 if (changed & BSS_CHANGED_ERP_SLOT) {
578 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
579 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
580 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
581
582 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
583 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
584 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
585 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
586 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
587 }
588 }
589
590 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
591 struct antenna_setup *ant)
592 {
593 u8 r3;
594 u8 r4;
595 u8 r77;
596 u8 temp;
597
598 rt73usb_bbp_read(rt2x00dev, 3, &r3);
599 rt73usb_bbp_read(rt2x00dev, 4, &r4);
600 rt73usb_bbp_read(rt2x00dev, 77, &r77);
601
602 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
603
604 /*
605 * Configure the RX antenna.
606 */
607 switch (ant->rx) {
608 case ANTENNA_HW_DIVERSITY:
609 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
610 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
611 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
612 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
613 break;
614 case ANTENNA_A:
615 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
616 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
617 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
618 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
619 else
620 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
621 break;
622 case ANTENNA_B:
623 default:
624 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
625 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
626 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
627 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
628 else
629 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
630 break;
631 }
632
633 rt73usb_bbp_write(rt2x00dev, 77, r77);
634 rt73usb_bbp_write(rt2x00dev, 3, r3);
635 rt73usb_bbp_write(rt2x00dev, 4, r4);
636 }
637
638 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
639 struct antenna_setup *ant)
640 {
641 u8 r3;
642 u8 r4;
643 u8 r77;
644
645 rt73usb_bbp_read(rt2x00dev, 3, &r3);
646 rt73usb_bbp_read(rt2x00dev, 4, &r4);
647 rt73usb_bbp_read(rt2x00dev, 77, &r77);
648
649 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
650 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
651 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
652
653 /*
654 * Configure the RX antenna.
655 */
656 switch (ant->rx) {
657 case ANTENNA_HW_DIVERSITY:
658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
659 break;
660 case ANTENNA_A:
661 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 break;
664 case ANTENNA_B:
665 default:
666 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
668 break;
669 }
670
671 rt73usb_bbp_write(rt2x00dev, 77, r77);
672 rt73usb_bbp_write(rt2x00dev, 3, r3);
673 rt73usb_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 struct antenna_sel {
677 u8 word;
678 /*
679 * value[0] -> non-LNA
680 * value[1] -> LNA
681 */
682 u8 value[2];
683 };
684
685 static const struct antenna_sel antenna_sel_a[] = {
686 { 96, { 0x58, 0x78 } },
687 { 104, { 0x38, 0x48 } },
688 { 75, { 0xfe, 0x80 } },
689 { 86, { 0xfe, 0x80 } },
690 { 88, { 0xfe, 0x80 } },
691 { 35, { 0x60, 0x60 } },
692 { 97, { 0x58, 0x58 } },
693 { 98, { 0x58, 0x58 } },
694 };
695
696 static const struct antenna_sel antenna_sel_bg[] = {
697 { 96, { 0x48, 0x68 } },
698 { 104, { 0x2c, 0x3c } },
699 { 75, { 0xfe, 0x80 } },
700 { 86, { 0xfe, 0x80 } },
701 { 88, { 0xfe, 0x80 } },
702 { 35, { 0x50, 0x50 } },
703 { 97, { 0x48, 0x48 } },
704 { 98, { 0x48, 0x48 } },
705 };
706
707 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
708 struct antenna_setup *ant)
709 {
710 const struct antenna_sel *sel;
711 unsigned int lna;
712 unsigned int i;
713 u32 reg;
714
715 /*
716 * We should never come here because rt2x00lib is supposed
717 * to catch this and send us the correct antenna explicitely.
718 */
719 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
720 ant->tx == ANTENNA_SW_DIVERSITY);
721
722 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
723 sel = antenna_sel_a;
724 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
725 } else {
726 sel = antenna_sel_bg;
727 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
728 }
729
730 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
731 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
732
733 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
734
735 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
736 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
737 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
738 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
739
740 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
741
742 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
743 rt73usb_config_antenna_5x(rt2x00dev, ant);
744 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
745 rt73usb_config_antenna_2x(rt2x00dev, ant);
746 }
747
748 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
749 struct rt2x00lib_conf *libconf)
750 {
751 u16 eeprom;
752 short lna_gain = 0;
753
754 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
755 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
756 lna_gain += 14;
757
758 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
759 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
760 } else {
761 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
762 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
763 }
764
765 rt2x00dev->lna_gain = lna_gain;
766 }
767
768 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
769 struct rf_channel *rf, const int txpower)
770 {
771 u8 r3;
772 u8 r94;
773 u8 smart;
774
775 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
776 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
777
778 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
779
780 rt73usb_bbp_read(rt2x00dev, 3, &r3);
781 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
782 rt73usb_bbp_write(rt2x00dev, 3, r3);
783
784 r94 = 6;
785 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
786 r94 += txpower - MAX_TXPOWER;
787 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
788 r94 += txpower;
789 rt73usb_bbp_write(rt2x00dev, 94, r94);
790
791 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
792 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
793 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
794 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
795
796 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
797 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
798 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
799 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
800
801 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
802 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
803 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
804 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
805
806 udelay(10);
807 }
808
809 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
810 const int txpower)
811 {
812 struct rf_channel rf;
813
814 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
815 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
816 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
817 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
818
819 rt73usb_config_channel(rt2x00dev, &rf, txpower);
820 }
821
822 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
823 struct rt2x00lib_conf *libconf)
824 {
825 u32 reg;
826
827 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
828 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
829 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
830 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
831 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
832 libconf->conf->long_frame_max_tx_count);
833 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
834 libconf->conf->short_frame_max_tx_count);
835 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
836 }
837
838 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
839 struct rt2x00lib_conf *libconf)
840 {
841 enum dev_state state =
842 (libconf->conf->flags & IEEE80211_CONF_PS) ?
843 STATE_SLEEP : STATE_AWAKE;
844 u32 reg;
845
846 if (state == STATE_SLEEP) {
847 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
848 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
849 rt2x00dev->beacon_int - 10);
850 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
851 libconf->conf->listen_interval - 1);
852 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
853
854 /* We must first disable autowake before it can be enabled */
855 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
857
858 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
859 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
860
861 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
862 USB_MODE_SLEEP, REGISTER_TIMEOUT);
863 } else {
864 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
865 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
866 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
867 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
868 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
869 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
870
871 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
872 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
873 }
874 }
875
876 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
877 struct rt2x00lib_conf *libconf,
878 const unsigned int flags)
879 {
880 /* Always recalculate LNA gain before changing configuration */
881 rt73usb_config_lna_gain(rt2x00dev, libconf);
882
883 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
884 rt73usb_config_channel(rt2x00dev, &libconf->rf,
885 libconf->conf->power_level);
886 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
887 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
888 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
889 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
890 rt73usb_config_retry_limit(rt2x00dev, libconf);
891 if (flags & IEEE80211_CONF_CHANGE_PS)
892 rt73usb_config_ps(rt2x00dev, libconf);
893 }
894
895 /*
896 * Link tuning
897 */
898 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
899 struct link_qual *qual)
900 {
901 u32 reg;
902
903 /*
904 * Update FCS error count from register.
905 */
906 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
907 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
908
909 /*
910 * Update False CCA count from register.
911 */
912 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
913 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
914 }
915
916 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
917 struct link_qual *qual, u8 vgc_level)
918 {
919 if (qual->vgc_level != vgc_level) {
920 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
921 qual->vgc_level = vgc_level;
922 qual->vgc_level_reg = vgc_level;
923 }
924 }
925
926 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
927 struct link_qual *qual)
928 {
929 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
930 }
931
932 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
933 struct link_qual *qual, const u32 count)
934 {
935 u8 up_bound;
936 u8 low_bound;
937
938 /*
939 * Determine r17 bounds.
940 */
941 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
942 low_bound = 0x28;
943 up_bound = 0x48;
944
945 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
946 low_bound += 0x10;
947 up_bound += 0x10;
948 }
949 } else {
950 if (qual->rssi > -82) {
951 low_bound = 0x1c;
952 up_bound = 0x40;
953 } else if (qual->rssi > -84) {
954 low_bound = 0x1c;
955 up_bound = 0x20;
956 } else {
957 low_bound = 0x1c;
958 up_bound = 0x1c;
959 }
960
961 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
962 low_bound += 0x14;
963 up_bound += 0x10;
964 }
965 }
966
967 /*
968 * If we are not associated, we should go straight to the
969 * dynamic CCA tuning.
970 */
971 if (!rt2x00dev->intf_associated)
972 goto dynamic_cca_tune;
973
974 /*
975 * Special big-R17 for very short distance
976 */
977 if (qual->rssi > -35) {
978 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
979 return;
980 }
981
982 /*
983 * Special big-R17 for short distance
984 */
985 if (qual->rssi >= -58) {
986 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
987 return;
988 }
989
990 /*
991 * Special big-R17 for middle-short distance
992 */
993 if (qual->rssi >= -66) {
994 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
995 return;
996 }
997
998 /*
999 * Special mid-R17 for middle distance
1000 */
1001 if (qual->rssi >= -74) {
1002 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1003 return;
1004 }
1005
1006 /*
1007 * Special case: Change up_bound based on the rssi.
1008 * Lower up_bound when rssi is weaker then -74 dBm.
1009 */
1010 up_bound -= 2 * (-74 - qual->rssi);
1011 if (low_bound > up_bound)
1012 up_bound = low_bound;
1013
1014 if (qual->vgc_level > up_bound) {
1015 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1016 return;
1017 }
1018
1019 dynamic_cca_tune:
1020
1021 /*
1022 * r17 does not yet exceed upper limit, continue and base
1023 * the r17 tuning on the false CCA count.
1024 */
1025 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1026 rt73usb_set_vgc(rt2x00dev, qual,
1027 min_t(u8, qual->vgc_level + 4, up_bound));
1028 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1029 rt73usb_set_vgc(rt2x00dev, qual,
1030 max_t(u8, qual->vgc_level - 4, low_bound));
1031 }
1032
1033 /*
1034 * Firmware functions
1035 */
1036 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1037 {
1038 return FIRMWARE_RT2571;
1039 }
1040
1041 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1042 const u8 *data, const size_t len)
1043 {
1044 u16 fw_crc;
1045 u16 crc;
1046
1047 /*
1048 * Only support 2kb firmware files.
1049 */
1050 if (len != 2048)
1051 return FW_BAD_LENGTH;
1052
1053 /*
1054 * The last 2 bytes in the firmware array are the crc checksum itself,
1055 * this means that we should never pass those 2 bytes to the crc
1056 * algorithm.
1057 */
1058 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1059
1060 /*
1061 * Use the crc itu-t algorithm.
1062 */
1063 crc = crc_itu_t(0, data, len - 2);
1064 crc = crc_itu_t_byte(crc, 0);
1065 crc = crc_itu_t_byte(crc, 0);
1066
1067 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1068 }
1069
1070 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1071 const u8 *data, const size_t len)
1072 {
1073 unsigned int i;
1074 int status;
1075 u32 reg;
1076
1077 /*
1078 * Wait for stable hardware.
1079 */
1080 for (i = 0; i < 100; i++) {
1081 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1082 if (reg)
1083 break;
1084 msleep(1);
1085 }
1086
1087 if (!reg) {
1088 ERROR(rt2x00dev, "Unstable hardware.\n");
1089 return -EBUSY;
1090 }
1091
1092 /*
1093 * Write firmware to device.
1094 */
1095 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1096
1097 /*
1098 * Send firmware request to device to load firmware,
1099 * we need to specify a long timeout time.
1100 */
1101 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1102 0, USB_MODE_FIRMWARE,
1103 REGISTER_TIMEOUT_FIRMWARE);
1104 if (status < 0) {
1105 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1106 return status;
1107 }
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * Initialization functions.
1114 */
1115 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1116 {
1117 u32 reg;
1118
1119 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1120 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1121 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1122 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1123 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1124
1125 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1126 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1127 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1128 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1129 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1130 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1131 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1132 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1133 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1134 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1135
1136 /*
1137 * CCK TXD BBP registers
1138 */
1139 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1140 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1141 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1142 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1143 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1144 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1145 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1146 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1147 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1148 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1149
1150 /*
1151 * OFDM TXD BBP registers
1152 */
1153 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1154 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1155 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1156 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1157 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1158 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1159 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1161
1162 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1163 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1164 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1165 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1166 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1167 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1168
1169 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1170 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1171 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1172 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1173 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1174 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1175
1176 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1177 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1178 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1179 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1180 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1181 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1182 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1183 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1184
1185 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1186
1187 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1188 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1189 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1190
1191 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1192
1193 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1194 return -EBUSY;
1195
1196 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1197
1198 /*
1199 * Invalidate all Shared Keys (SEC_CSR0),
1200 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1201 */
1202 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1203 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1204 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1205
1206 reg = 0x000023b0;
1207 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1208 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1209 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1210
1211 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1212 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1213 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1214
1215 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1216 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1217 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1218
1219 /*
1220 * Clear all beacons
1221 * For the Beacon base registers we only need to clear
1222 * the first byte since that byte contains the VALID and OWNER
1223 * bits which (when set to 0) will invalidate the entire beacon.
1224 */
1225 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1226 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1227 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1228 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1229
1230 /*
1231 * We must clear the error counters.
1232 * These registers are cleared on read,
1233 * so we may pass a useless variable to store the value.
1234 */
1235 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1236 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1237 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1238
1239 /*
1240 * Reset MAC and BBP registers.
1241 */
1242 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1243 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1244 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1245 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1246
1247 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1248 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1249 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1250 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1251
1252 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1253 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1254 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1255
1256 return 0;
1257 }
1258
1259 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1260 {
1261 unsigned int i;
1262 u8 value;
1263
1264 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1265 rt73usb_bbp_read(rt2x00dev, 0, &value);
1266 if ((value != 0xff) && (value != 0x00))
1267 return 0;
1268 udelay(REGISTER_BUSY_DELAY);
1269 }
1270
1271 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1272 return -EACCES;
1273 }
1274
1275 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1276 {
1277 unsigned int i;
1278 u16 eeprom;
1279 u8 reg_id;
1280 u8 value;
1281
1282 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1283 return -EACCES;
1284
1285 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1286 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1287 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1288 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1289 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1290 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1291 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1292 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1293 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1294 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1295 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1296 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1297 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1298 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1299 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1300 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1301 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1302 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1303 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1304 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1305 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1306 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1307 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1308 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1309 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1310
1311 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1312 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1313
1314 if (eeprom != 0xffff && eeprom != 0x0000) {
1315 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1316 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1317 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
1324 /*
1325 * Device state switch handlers.
1326 */
1327 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1328 enum dev_state state)
1329 {
1330 u32 reg;
1331
1332 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1333 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1334 (state == STATE_RADIO_RX_OFF) ||
1335 (state == STATE_RADIO_RX_OFF_LINK));
1336 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1337 }
1338
1339 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1340 {
1341 /*
1342 * Initialize all registers.
1343 */
1344 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1345 rt73usb_init_bbp(rt2x00dev)))
1346 return -EIO;
1347
1348 return 0;
1349 }
1350
1351 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1352 {
1353 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1354
1355 /*
1356 * Disable synchronisation.
1357 */
1358 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1359
1360 rt2x00usb_disable_radio(rt2x00dev);
1361 }
1362
1363 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1364 {
1365 u32 reg, reg2;
1366 unsigned int i;
1367 char put_to_sleep;
1368
1369 put_to_sleep = (state != STATE_AWAKE);
1370
1371 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1372 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1373 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1374 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1375
1376 /*
1377 * Device is not guaranteed to be in the requested state yet.
1378 * We must wait until the register indicates that the
1379 * device has entered the correct state.
1380 */
1381 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1382 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1383 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1384 if (state == !put_to_sleep)
1385 return 0;
1386 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1387 msleep(10);
1388 }
1389
1390 return -EBUSY;
1391 }
1392
1393 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1394 enum dev_state state)
1395 {
1396 int retval = 0;
1397
1398 switch (state) {
1399 case STATE_RADIO_ON:
1400 retval = rt73usb_enable_radio(rt2x00dev);
1401 break;
1402 case STATE_RADIO_OFF:
1403 rt73usb_disable_radio(rt2x00dev);
1404 break;
1405 case STATE_RADIO_RX_ON:
1406 case STATE_RADIO_RX_ON_LINK:
1407 case STATE_RADIO_RX_OFF:
1408 case STATE_RADIO_RX_OFF_LINK:
1409 rt73usb_toggle_rx(rt2x00dev, state);
1410 break;
1411 case STATE_RADIO_IRQ_ON:
1412 case STATE_RADIO_IRQ_ON_ISR:
1413 case STATE_RADIO_IRQ_OFF:
1414 case STATE_RADIO_IRQ_OFF_ISR:
1415 /* No support, but no error either */
1416 break;
1417 case STATE_DEEP_SLEEP:
1418 case STATE_SLEEP:
1419 case STATE_STANDBY:
1420 case STATE_AWAKE:
1421 retval = rt73usb_set_state(rt2x00dev, state);
1422 break;
1423 default:
1424 retval = -ENOTSUPP;
1425 break;
1426 }
1427
1428 if (unlikely(retval))
1429 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1430 state, retval);
1431
1432 return retval;
1433 }
1434
1435 /*
1436 * TX descriptor initialization
1437 */
1438 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1439 struct txentry_desc *txdesc)
1440 {
1441 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1442 __le32 *txd = (__le32 *) entry->skb->data;
1443 u32 word;
1444
1445 /*
1446 * Start writing the descriptor words.
1447 */
1448 rt2x00_desc_read(txd, 0, &word);
1449 rt2x00_set_field32(&word, TXD_W0_BURST,
1450 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1451 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1452 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1453 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1454 rt2x00_set_field32(&word, TXD_W0_ACK,
1455 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1456 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1457 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1458 rt2x00_set_field32(&word, TXD_W0_OFDM,
1459 (txdesc->rate_mode == RATE_MODE_OFDM));
1460 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1461 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1462 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1463 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1464 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1465 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1466 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1467 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1468 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1469 rt2x00_set_field32(&word, TXD_W0_BURST2,
1470 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1471 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1472 rt2x00_desc_write(txd, 0, word);
1473
1474 rt2x00_desc_read(txd, 1, &word);
1475 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->qid);
1476 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1477 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1478 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1479 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1480 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1481 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1482 rt2x00_desc_write(txd, 1, word);
1483
1484 rt2x00_desc_read(txd, 2, &word);
1485 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1486 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1487 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1488 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1489 rt2x00_desc_write(txd, 2, word);
1490
1491 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1492 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1493 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1494 }
1495
1496 rt2x00_desc_read(txd, 5, &word);
1497 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1498 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1499 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1500 rt2x00_desc_write(txd, 5, word);
1501
1502 /*
1503 * Register descriptor details in skb frame descriptor.
1504 */
1505 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1506 skbdesc->desc = txd;
1507 skbdesc->desc_len = TXD_DESC_SIZE;
1508 }
1509
1510 /*
1511 * TX data initialization
1512 */
1513 static void rt73usb_write_beacon(struct queue_entry *entry,
1514 struct txentry_desc *txdesc)
1515 {
1516 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1517 unsigned int beacon_base;
1518 u32 reg;
1519
1520 /*
1521 * Disable beaconing while we are reloading the beacon data,
1522 * otherwise we might be sending out invalid data.
1523 */
1524 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1525 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1526 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1527
1528 /*
1529 * Add space for the descriptor in front of the skb.
1530 */
1531 skb_push(entry->skb, TXD_DESC_SIZE);
1532 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1533
1534 /*
1535 * Write the TX descriptor for the beacon.
1536 */
1537 rt73usb_write_tx_desc(entry, txdesc);
1538
1539 /*
1540 * Dump beacon to userspace through debugfs.
1541 */
1542 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1543
1544 /*
1545 * Write entire beacon with descriptor to register.
1546 */
1547 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1548 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base,
1549 entry->skb->data, entry->skb->len);
1550
1551 /*
1552 * Enable beaconing again.
1553 *
1554 * For Wi-Fi faily generated beacons between participating stations.
1555 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1556 */
1557 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1558
1559 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1560 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1561 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1563
1564 /*
1565 * Clean up the beacon skb.
1566 */
1567 dev_kfree_skb(entry->skb);
1568 entry->skb = NULL;
1569 }
1570
1571 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1572 {
1573 int length;
1574
1575 /*
1576 * The length _must_ be a multiple of 4,
1577 * but it must _not_ be a multiple of the USB packet size.
1578 */
1579 length = roundup(entry->skb->len, 4);
1580 length += (4 * !(length % entry->queue->usb_maxpacket));
1581
1582 return length;
1583 }
1584
1585 static void rt73usb_kill_tx_queue(struct data_queue *queue)
1586 {
1587 if (queue->qid == QID_BEACON)
1588 rt2x00usb_register_write(queue->rt2x00dev, TXRX_CSR9, 0);
1589
1590 rt2x00usb_kill_tx_queue(queue);
1591 }
1592
1593 /*
1594 * RX control handlers
1595 */
1596 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1597 {
1598 u8 offset = rt2x00dev->lna_gain;
1599 u8 lna;
1600
1601 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1602 switch (lna) {
1603 case 3:
1604 offset += 90;
1605 break;
1606 case 2:
1607 offset += 74;
1608 break;
1609 case 1:
1610 offset += 64;
1611 break;
1612 default:
1613 return 0;
1614 }
1615
1616 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1617 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1618 if (lna == 3 || lna == 2)
1619 offset += 10;
1620 } else {
1621 if (lna == 3)
1622 offset += 6;
1623 else if (lna == 2)
1624 offset += 8;
1625 }
1626 }
1627
1628 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1629 }
1630
1631 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1632 struct rxdone_entry_desc *rxdesc)
1633 {
1634 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1635 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1636 __le32 *rxd = (__le32 *)entry->skb->data;
1637 u32 word0;
1638 u32 word1;
1639
1640 /*
1641 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1642 * frame data in rt2x00usb.
1643 */
1644 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1645 rxd = (__le32 *)skbdesc->desc;
1646
1647 /*
1648 * It is now safe to read the descriptor on all architectures.
1649 */
1650 rt2x00_desc_read(rxd, 0, &word0);
1651 rt2x00_desc_read(rxd, 1, &word1);
1652
1653 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1654 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1655
1656 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1657 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1658
1659 if (rxdesc->cipher != CIPHER_NONE) {
1660 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1661 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1662 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1663
1664 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1665 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1666
1667 /*
1668 * Hardware has stripped IV/EIV data from 802.11 frame during
1669 * decryption. It has provided the data separately but rt2x00lib
1670 * should decide if it should be reinserted.
1671 */
1672 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1673
1674 /*
1675 * FIXME: Legacy driver indicates that the frame does
1676 * contain the Michael Mic. Unfortunately, in rt2x00
1677 * the MIC seems to be missing completely...
1678 */
1679 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1680
1681 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1682 rxdesc->flags |= RX_FLAG_DECRYPTED;
1683 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1684 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1685 }
1686
1687 /*
1688 * Obtain the status about this packet.
1689 * When frame was received with an OFDM bitrate,
1690 * the signal is the PLCP value. If it was received with
1691 * a CCK bitrate the signal is the rate in 100kbit/s.
1692 */
1693 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1694 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1695 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1696
1697 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1698 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1699 else
1700 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1701 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1702 rxdesc->dev_flags |= RXDONE_MY_BSS;
1703
1704 /*
1705 * Set skb pointers, and update frame information.
1706 */
1707 skb_pull(entry->skb, entry->queue->desc_size);
1708 skb_trim(entry->skb, rxdesc->size);
1709 }
1710
1711 /*
1712 * Device probe functions.
1713 */
1714 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1715 {
1716 u16 word;
1717 u8 *mac;
1718 s8 value;
1719
1720 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1721
1722 /*
1723 * Start validation of the data that has been read.
1724 */
1725 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1726 if (!is_valid_ether_addr(mac)) {
1727 random_ether_addr(mac);
1728 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1729 }
1730
1731 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1732 if (word == 0xffff) {
1733 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1734 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1735 ANTENNA_B);
1736 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1737 ANTENNA_B);
1738 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1739 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1740 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1741 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1742 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1743 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1744 }
1745
1746 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1747 if (word == 0xffff) {
1748 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1749 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1750 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1751 }
1752
1753 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1754 if (word == 0xffff) {
1755 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1756 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1757 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1758 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1759 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1760 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1761 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1762 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1763 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1764 LED_MODE_DEFAULT);
1765 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1766 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1767 }
1768
1769 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1770 if (word == 0xffff) {
1771 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1772 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1773 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1774 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1775 }
1776
1777 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1778 if (word == 0xffff) {
1779 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1780 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1781 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1782 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1783 } else {
1784 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1785 if (value < -10 || value > 10)
1786 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1787 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1788 if (value < -10 || value > 10)
1789 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1790 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1791 }
1792
1793 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1794 if (word == 0xffff) {
1795 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1796 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1797 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1798 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1799 } else {
1800 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1801 if (value < -10 || value > 10)
1802 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1803 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1804 if (value < -10 || value > 10)
1805 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1806 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1807 }
1808
1809 return 0;
1810 }
1811
1812 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1813 {
1814 u32 reg;
1815 u16 value;
1816 u16 eeprom;
1817
1818 /*
1819 * Read EEPROM word for configuration.
1820 */
1821 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1822
1823 /*
1824 * Identify RF chipset.
1825 */
1826 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1827 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1828 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1829 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1830
1831 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1832 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1833 return -ENODEV;
1834 }
1835
1836 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1837 !rt2x00_rf(rt2x00dev, RF2528) &&
1838 !rt2x00_rf(rt2x00dev, RF5225) &&
1839 !rt2x00_rf(rt2x00dev, RF2527)) {
1840 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1841 return -ENODEV;
1842 }
1843
1844 /*
1845 * Identify default antenna configuration.
1846 */
1847 rt2x00dev->default_ant.tx =
1848 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1849 rt2x00dev->default_ant.rx =
1850 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1851
1852 /*
1853 * Read the Frame type.
1854 */
1855 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1856 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1857
1858 /*
1859 * Detect if this device has an hardware controlled radio.
1860 */
1861 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1862 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1863
1864 /*
1865 * Read frequency offset.
1866 */
1867 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1868 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1869
1870 /*
1871 * Read external LNA informations.
1872 */
1873 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1874
1875 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1876 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1877 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1878 }
1879
1880 /*
1881 * Store led settings, for correct led behaviour.
1882 */
1883 #ifdef CONFIG_RT2X00_LIB_LEDS
1884 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1885
1886 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1887 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1888 if (value == LED_MODE_SIGNAL_STRENGTH)
1889 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1890 LED_TYPE_QUALITY);
1891
1892 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1893 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1894 rt2x00_get_field16(eeprom,
1895 EEPROM_LED_POLARITY_GPIO_0));
1896 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1897 rt2x00_get_field16(eeprom,
1898 EEPROM_LED_POLARITY_GPIO_1));
1899 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1900 rt2x00_get_field16(eeprom,
1901 EEPROM_LED_POLARITY_GPIO_2));
1902 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1903 rt2x00_get_field16(eeprom,
1904 EEPROM_LED_POLARITY_GPIO_3));
1905 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1906 rt2x00_get_field16(eeprom,
1907 EEPROM_LED_POLARITY_GPIO_4));
1908 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1909 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1910 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1911 rt2x00_get_field16(eeprom,
1912 EEPROM_LED_POLARITY_RDY_G));
1913 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1914 rt2x00_get_field16(eeprom,
1915 EEPROM_LED_POLARITY_RDY_A));
1916 #endif /* CONFIG_RT2X00_LIB_LEDS */
1917
1918 return 0;
1919 }
1920
1921 /*
1922 * RF value list for RF2528
1923 * Supports: 2.4 GHz
1924 */
1925 static const struct rf_channel rf_vals_bg_2528[] = {
1926 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1927 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1928 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1929 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1930 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1931 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1932 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1933 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1934 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1935 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1936 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1937 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1938 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1939 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1940 };
1941
1942 /*
1943 * RF value list for RF5226
1944 * Supports: 2.4 GHz & 5.2 GHz
1945 */
1946 static const struct rf_channel rf_vals_5226[] = {
1947 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1948 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1949 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1950 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1951 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1952 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1953 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1954 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1955 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1956 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1957 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1958 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1959 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1960 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1961
1962 /* 802.11 UNI / HyperLan 2 */
1963 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1964 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1965 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1966 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1967 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1968 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1969 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1970 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1971
1972 /* 802.11 HyperLan 2 */
1973 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1974 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1975 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1976 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1977 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1978 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1979 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1980 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1981 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1982 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1983
1984 /* 802.11 UNII */
1985 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1986 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1987 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1988 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1989 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1990 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1991
1992 /* MMAC(Japan)J52 ch 34,38,42,46 */
1993 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1994 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1995 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1996 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1997 };
1998
1999 /*
2000 * RF value list for RF5225 & RF2527
2001 * Supports: 2.4 GHz & 5.2 GHz
2002 */
2003 static const struct rf_channel rf_vals_5225_2527[] = {
2004 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2005 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2006 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2007 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2008 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2009 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2010 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2011 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2012 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2013 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2014 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2015 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2016 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2017 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2018
2019 /* 802.11 UNI / HyperLan 2 */
2020 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2021 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2022 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2023 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2024 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2025 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2026 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2027 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2028
2029 /* 802.11 HyperLan 2 */
2030 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2031 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2032 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2033 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2034 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2035 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2036 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2037 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2038 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2039 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2040
2041 /* 802.11 UNII */
2042 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2043 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2044 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2045 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2046 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2047 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2048
2049 /* MMAC(Japan)J52 ch 34,38,42,46 */
2050 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2051 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2052 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2053 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2054 };
2055
2056
2057 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2058 {
2059 struct hw_mode_spec *spec = &rt2x00dev->spec;
2060 struct channel_info *info;
2061 char *tx_power;
2062 unsigned int i;
2063
2064 /*
2065 * Initialize all hw fields.
2066 *
2067 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2068 * capable of sending the buffered frames out after the DTIM
2069 * transmission using rt2x00lib_beacondone. This will send out
2070 * multicast and broadcast traffic immediately instead of buffering it
2071 * infinitly and thus dropping it after some time.
2072 */
2073 rt2x00dev->hw->flags =
2074 IEEE80211_HW_SIGNAL_DBM |
2075 IEEE80211_HW_SUPPORTS_PS |
2076 IEEE80211_HW_PS_NULLFUNC_STACK;
2077
2078 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2079 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2080 rt2x00_eeprom_addr(rt2x00dev,
2081 EEPROM_MAC_ADDR_0));
2082
2083 /*
2084 * Initialize hw_mode information.
2085 */
2086 spec->supported_bands = SUPPORT_BAND_2GHZ;
2087 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2088
2089 if (rt2x00_rf(rt2x00dev, RF2528)) {
2090 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2091 spec->channels = rf_vals_bg_2528;
2092 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2093 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2094 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2095 spec->channels = rf_vals_5226;
2096 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2097 spec->num_channels = 14;
2098 spec->channels = rf_vals_5225_2527;
2099 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2100 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2101 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2102 spec->channels = rf_vals_5225_2527;
2103 }
2104
2105 /*
2106 * Create channel information array
2107 */
2108 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2109 if (!info)
2110 return -ENOMEM;
2111
2112 spec->channels_info = info;
2113
2114 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2115 for (i = 0; i < 14; i++) {
2116 info[i].max_power = MAX_TXPOWER;
2117 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2118 }
2119
2120 if (spec->num_channels > 14) {
2121 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2122 for (i = 14; i < spec->num_channels; i++) {
2123 info[i].max_power = MAX_TXPOWER;
2124 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2125 }
2126 }
2127
2128 return 0;
2129 }
2130
2131 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2132 {
2133 int retval;
2134
2135 /*
2136 * Allocate eeprom data.
2137 */
2138 retval = rt73usb_validate_eeprom(rt2x00dev);
2139 if (retval)
2140 return retval;
2141
2142 retval = rt73usb_init_eeprom(rt2x00dev);
2143 if (retval)
2144 return retval;
2145
2146 /*
2147 * Initialize hw specifications.
2148 */
2149 retval = rt73usb_probe_hw_mode(rt2x00dev);
2150 if (retval)
2151 return retval;
2152
2153 /*
2154 * This device has multiple filters for control frames,
2155 * but has no a separate filter for PS Poll frames.
2156 */
2157 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2158
2159 /*
2160 * This device requires firmware.
2161 */
2162 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2163 if (!modparam_nohwcrypt)
2164 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2165 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2166 __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
2167
2168 /*
2169 * Set the rssi offset.
2170 */
2171 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2172
2173 return 0;
2174 }
2175
2176 /*
2177 * IEEE80211 stack callback functions.
2178 */
2179 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2180 const struct ieee80211_tx_queue_params *params)
2181 {
2182 struct rt2x00_dev *rt2x00dev = hw->priv;
2183 struct data_queue *queue;
2184 struct rt2x00_field32 field;
2185 int retval;
2186 u32 reg;
2187 u32 offset;
2188
2189 /*
2190 * First pass the configuration through rt2x00lib, that will
2191 * update the queue settings and validate the input. After that
2192 * we are free to update the registers based on the value
2193 * in the queue parameter.
2194 */
2195 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2196 if (retval)
2197 return retval;
2198
2199 /*
2200 * We only need to perform additional register initialization
2201 * for WMM queues/
2202 */
2203 if (queue_idx >= 4)
2204 return 0;
2205
2206 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2207
2208 /* Update WMM TXOP register */
2209 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2210 field.bit_offset = (queue_idx & 1) * 16;
2211 field.bit_mask = 0xffff << field.bit_offset;
2212
2213 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2214 rt2x00_set_field32(&reg, field, queue->txop);
2215 rt2x00usb_register_write(rt2x00dev, offset, reg);
2216
2217 /* Update WMM registers */
2218 field.bit_offset = queue_idx * 4;
2219 field.bit_mask = 0xf << field.bit_offset;
2220
2221 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2222 rt2x00_set_field32(&reg, field, queue->aifs);
2223 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2224
2225 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2226 rt2x00_set_field32(&reg, field, queue->cw_min);
2227 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2228
2229 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2230 rt2x00_set_field32(&reg, field, queue->cw_max);
2231 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2232
2233 return 0;
2234 }
2235
2236 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2237 {
2238 struct rt2x00_dev *rt2x00dev = hw->priv;
2239 u64 tsf;
2240 u32 reg;
2241
2242 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2243 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2244 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2245 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2246
2247 return tsf;
2248 }
2249
2250 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2251 .tx = rt2x00mac_tx,
2252 .start = rt2x00mac_start,
2253 .stop = rt2x00mac_stop,
2254 .add_interface = rt2x00mac_add_interface,
2255 .remove_interface = rt2x00mac_remove_interface,
2256 .config = rt2x00mac_config,
2257 .configure_filter = rt2x00mac_configure_filter,
2258 .set_tim = rt2x00mac_set_tim,
2259 .set_key = rt2x00mac_set_key,
2260 .sw_scan_start = rt2x00mac_sw_scan_start,
2261 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2262 .get_stats = rt2x00mac_get_stats,
2263 .bss_info_changed = rt2x00mac_bss_info_changed,
2264 .conf_tx = rt73usb_conf_tx,
2265 .get_tsf = rt73usb_get_tsf,
2266 .rfkill_poll = rt2x00mac_rfkill_poll,
2267 };
2268
2269 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2270 .probe_hw = rt73usb_probe_hw,
2271 .get_firmware_name = rt73usb_get_firmware_name,
2272 .check_firmware = rt73usb_check_firmware,
2273 .load_firmware = rt73usb_load_firmware,
2274 .initialize = rt2x00usb_initialize,
2275 .uninitialize = rt2x00usb_uninitialize,
2276 .clear_entry = rt2x00usb_clear_entry,
2277 .set_device_state = rt73usb_set_device_state,
2278 .rfkill_poll = rt73usb_rfkill_poll,
2279 .link_stats = rt73usb_link_stats,
2280 .reset_tuner = rt73usb_reset_tuner,
2281 .link_tuner = rt73usb_link_tuner,
2282 .watchdog = rt2x00usb_watchdog,
2283 .write_tx_desc = rt73usb_write_tx_desc,
2284 .write_beacon = rt73usb_write_beacon,
2285 .get_tx_data_len = rt73usb_get_tx_data_len,
2286 .kick_tx_queue = rt2x00usb_kick_tx_queue,
2287 .kill_tx_queue = rt73usb_kill_tx_queue,
2288 .fill_rxdone = rt73usb_fill_rxdone,
2289 .config_shared_key = rt73usb_config_shared_key,
2290 .config_pairwise_key = rt73usb_config_pairwise_key,
2291 .config_filter = rt73usb_config_filter,
2292 .config_intf = rt73usb_config_intf,
2293 .config_erp = rt73usb_config_erp,
2294 .config_ant = rt73usb_config_ant,
2295 .config = rt73usb_config,
2296 };
2297
2298 static const struct data_queue_desc rt73usb_queue_rx = {
2299 .entry_num = RX_ENTRIES,
2300 .data_size = DATA_FRAME_SIZE,
2301 .desc_size = RXD_DESC_SIZE,
2302 .priv_size = sizeof(struct queue_entry_priv_usb),
2303 };
2304
2305 static const struct data_queue_desc rt73usb_queue_tx = {
2306 .entry_num = TX_ENTRIES,
2307 .data_size = DATA_FRAME_SIZE,
2308 .desc_size = TXD_DESC_SIZE,
2309 .priv_size = sizeof(struct queue_entry_priv_usb),
2310 };
2311
2312 static const struct data_queue_desc rt73usb_queue_bcn = {
2313 .entry_num = 4 * BEACON_ENTRIES,
2314 .data_size = MGMT_FRAME_SIZE,
2315 .desc_size = TXINFO_SIZE,
2316 .priv_size = sizeof(struct queue_entry_priv_usb),
2317 };
2318
2319 static const struct rt2x00_ops rt73usb_ops = {
2320 .name = KBUILD_MODNAME,
2321 .max_sta_intf = 1,
2322 .max_ap_intf = 4,
2323 .eeprom_size = EEPROM_SIZE,
2324 .rf_size = RF_SIZE,
2325 .tx_queues = NUM_TX_QUEUES,
2326 .extra_tx_headroom = TXD_DESC_SIZE,
2327 .rx = &rt73usb_queue_rx,
2328 .tx = &rt73usb_queue_tx,
2329 .bcn = &rt73usb_queue_bcn,
2330 .lib = &rt73usb_rt2x00_ops,
2331 .hw = &rt73usb_mac80211_ops,
2332 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2333 .debugfs = &rt73usb_rt2x00debug,
2334 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2335 };
2336
2337 /*
2338 * rt73usb module information.
2339 */
2340 static struct usb_device_id rt73usb_device_table[] = {
2341 /* AboCom */
2342 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2343 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2344 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2345 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2346 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2347 /* AL */
2348 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2349 /* Amigo */
2350 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2351 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2352 /* AMIT */
2353 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2354 /* Askey */
2355 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2356 /* ASUS */
2357 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2358 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2359 /* Belkin */
2360 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2361 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2362 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2363 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2364 /* Billionton */
2365 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2366 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2367 /* Buffalo */
2368 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2369 { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops) },
2370 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2371 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2372 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2373 { USB_DEVICE(0x0411, 0x0137), USB_DEVICE_DATA(&rt73usb_ops) },
2374 /* CEIVA */
2375 { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops) },
2376 /* CNet */
2377 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2378 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2379 /* Conceptronic */
2380 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* Corega */
2382 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2383 /* D-Link */
2384 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2385 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2386 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2387 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2388 /* Edimax */
2389 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2390 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2391 /* EnGenius */
2392 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2393 /* Gemtek */
2394 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2395 /* Gigabyte */
2396 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2397 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2398 /* Huawei-3Com */
2399 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2400 /* Hercules */
2401 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2402 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2403 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2404 /* Linksys */
2405 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2406 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2407 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2408 /* MSI */
2409 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2410 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2411 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2412 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2413 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2414 /* Ovislink */
2415 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2416 /* Ralink */
2417 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2418 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2419 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2420 /* Qcom */
2421 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2422 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2423 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2424 /* Samsung */
2425 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2426 /* Senao */
2427 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2428 /* Sitecom */
2429 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2430 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2431 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2432 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2433 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2434 /* Surecom */
2435 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2436 /* Tilgin */
2437 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2438 /* Philips */
2439 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2440 /* Planex */
2441 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2442 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2443 /* WideTell */
2444 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2445 /* Zcom */
2446 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2447 /* ZyXEL */
2448 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2449 { 0, }
2450 };
2451
2452 MODULE_AUTHOR(DRV_PROJECT);
2453 MODULE_VERSION(DRV_VERSION);
2454 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2455 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2456 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2457 MODULE_FIRMWARE(FIRMWARE_RT2571);
2458 MODULE_LICENSE("GPL");
2459
2460 static struct usb_driver rt73usb_driver = {
2461 .name = KBUILD_MODNAME,
2462 .id_table = rt73usb_device_table,
2463 .probe = rt2x00usb_probe,
2464 .disconnect = rt2x00usb_disconnect,
2465 .suspend = rt2x00usb_suspend,
2466 .resume = rt2x00usb_resume,
2467 };
2468
2469 static int __init rt73usb_init(void)
2470 {
2471 return usb_register(&rt73usb_driver);
2472 }
2473
2474 static void __exit rt73usb_exit(void)
2475 {
2476 usb_deregister(&rt73usb_driver);
2477 }
2478
2479 module_init(rt73usb_init);
2480 module_exit(rt73usb_exit);