]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rt2x00/rt73usb.c
rt2x00: Add module parameter to disable HW crypto
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40 * Allow hardware encryption to be disabled.
41 */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt73usb_register_read and rt73usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the usb_cache_mutex
59 */
60 static inline void rt73usb_register_read(struct rt2x00_dev *rt2x00dev,
61 const unsigned int offset, u32 *value)
62 {
63 __le32 reg;
64 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
65 USB_VENDOR_REQUEST_IN, offset,
66 &reg, sizeof(u32), REGISTER_TIMEOUT);
67 *value = le32_to_cpu(reg);
68 }
69
70 static inline void rt73usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
71 const unsigned int offset, u32 *value)
72 {
73 __le32 reg;
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 &reg, sizeof(u32), REGISTER_TIMEOUT);
77 *value = le32_to_cpu(reg);
78 }
79
80 static inline void rt73usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u32 length)
83 {
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
86 value, length,
87 REGISTER_TIMEOUT32(length));
88 }
89
90 static inline void rt73usb_register_write(struct rt2x00_dev *rt2x00dev,
91 const unsigned int offset, u32 value)
92 {
93 __le32 reg = cpu_to_le32(value);
94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 USB_VENDOR_REQUEST_OUT, offset,
96 &reg, sizeof(u32), REGISTER_TIMEOUT);
97 }
98
99 static inline void rt73usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 const unsigned int offset, u32 value)
101 {
102 __le32 reg = cpu_to_le32(value);
103 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
104 USB_VENDOR_REQUEST_OUT, offset,
105 &reg, sizeof(u32), REGISTER_TIMEOUT);
106 }
107
108 static inline void rt73usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
109 const unsigned int offset,
110 void *value, const u32 length)
111 {
112 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
113 USB_VENDOR_REQUEST_OUT, offset,
114 value, length,
115 REGISTER_TIMEOUT32(length));
116 }
117
118 static u32 rt73usb_bbp_check(struct rt2x00_dev *rt2x00dev)
119 {
120 u32 reg;
121 unsigned int i;
122
123 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
124 rt73usb_register_read_lock(rt2x00dev, PHY_CSR3, &reg);
125 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
126 break;
127 udelay(REGISTER_BUSY_DELAY);
128 }
129
130 return reg;
131 }
132
133 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u8 value)
135 {
136 u32 reg;
137
138 mutex_lock(&rt2x00dev->usb_cache_mutex);
139
140 /*
141 * Wait until the BBP becomes ready.
142 */
143 reg = rt73usb_bbp_check(rt2x00dev);
144 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
145 goto exit_fail;
146
147 /*
148 * Write the data into the BBP.
149 */
150 reg = 0;
151 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
152 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
153 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
154 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
155
156 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
157 mutex_unlock(&rt2x00dev->usb_cache_mutex);
158
159 return;
160
161 exit_fail:
162 mutex_unlock(&rt2x00dev->usb_cache_mutex);
163
164 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
165 }
166
167 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 const unsigned int word, u8 *value)
169 {
170 u32 reg;
171
172 mutex_lock(&rt2x00dev->usb_cache_mutex);
173
174 /*
175 * Wait until the BBP becomes ready.
176 */
177 reg = rt73usb_bbp_check(rt2x00dev);
178 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
179 goto exit_fail;
180
181 /*
182 * Write the request into the BBP.
183 */
184 reg = 0;
185 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
186 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
187 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
188
189 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
190
191 /*
192 * Wait until the BBP becomes ready.
193 */
194 reg = rt73usb_bbp_check(rt2x00dev);
195 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
196 goto exit_fail;
197
198 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
199 mutex_unlock(&rt2x00dev->usb_cache_mutex);
200
201 return;
202
203 exit_fail:
204 mutex_unlock(&rt2x00dev->usb_cache_mutex);
205
206 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
207 *value = 0xff;
208 }
209
210 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
211 const unsigned int word, const u32 value)
212 {
213 u32 reg;
214 unsigned int i;
215
216 if (!word)
217 return;
218
219 mutex_lock(&rt2x00dev->usb_cache_mutex);
220
221 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
222 rt73usb_register_read_lock(rt2x00dev, PHY_CSR4, &reg);
223 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
224 goto rf_write;
225 udelay(REGISTER_BUSY_DELAY);
226 }
227
228 mutex_unlock(&rt2x00dev->usb_cache_mutex);
229 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
230 return;
231
232 rf_write:
233 reg = 0;
234 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
235
236 /*
237 * RF5225 and RF2527 contain 21 bits per RF register value,
238 * all others contain 20 bits.
239 */
240 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
241 20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
242 rt2x00_rf(&rt2x00dev->chip, RF2527)));
243 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
244 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
245
246 rt73usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
247 rt2x00_rf_write(rt2x00dev, word, value);
248 mutex_unlock(&rt2x00dev->usb_cache_mutex);
249 }
250
251 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
252 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
253
254 static void rt73usb_read_csr(struct rt2x00_dev *rt2x00dev,
255 const unsigned int word, u32 *data)
256 {
257 rt73usb_register_read(rt2x00dev, CSR_OFFSET(word), data);
258 }
259
260 static void rt73usb_write_csr(struct rt2x00_dev *rt2x00dev,
261 const unsigned int word, u32 data)
262 {
263 rt73usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
264 }
265
266 static const struct rt2x00debug rt73usb_rt2x00debug = {
267 .owner = THIS_MODULE,
268 .csr = {
269 .read = rt73usb_read_csr,
270 .write = rt73usb_write_csr,
271 .word_size = sizeof(u32),
272 .word_count = CSR_REG_SIZE / sizeof(u32),
273 },
274 .eeprom = {
275 .read = rt2x00_eeprom_read,
276 .write = rt2x00_eeprom_write,
277 .word_size = sizeof(u16),
278 .word_count = EEPROM_SIZE / sizeof(u16),
279 },
280 .bbp = {
281 .read = rt73usb_bbp_read,
282 .write = rt73usb_bbp_write,
283 .word_size = sizeof(u8),
284 .word_count = BBP_SIZE / sizeof(u8),
285 },
286 .rf = {
287 .read = rt2x00_rf_read,
288 .write = rt73usb_rf_write,
289 .word_size = sizeof(u32),
290 .word_count = RF_SIZE / sizeof(u32),
291 },
292 };
293 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
294
295 #ifdef CONFIG_RT73USB_LEDS
296 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
297 enum led_brightness brightness)
298 {
299 struct rt2x00_led *led =
300 container_of(led_cdev, struct rt2x00_led, led_dev);
301 unsigned int enabled = brightness != LED_OFF;
302 unsigned int a_mode =
303 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
304 unsigned int bg_mode =
305 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
306
307 if (led->type == LED_TYPE_RADIO) {
308 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
309 MCU_LEDCS_RADIO_STATUS, enabled);
310
311 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
312 0, led->rt2x00dev->led_mcu_reg,
313 REGISTER_TIMEOUT);
314 } else if (led->type == LED_TYPE_ASSOC) {
315 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
316 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
317 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
318 MCU_LEDCS_LINK_A_STATUS, a_mode);
319
320 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
321 0, led->rt2x00dev->led_mcu_reg,
322 REGISTER_TIMEOUT);
323 } else if (led->type == LED_TYPE_QUALITY) {
324 /*
325 * The brightness is divided into 6 levels (0 - 5),
326 * this means we need to convert the brightness
327 * argument into the matching level within that range.
328 */
329 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
330 brightness / (LED_FULL / 6),
331 led->rt2x00dev->led_mcu_reg,
332 REGISTER_TIMEOUT);
333 }
334 }
335
336 static int rt73usb_blink_set(struct led_classdev *led_cdev,
337 unsigned long *delay_on,
338 unsigned long *delay_off)
339 {
340 struct rt2x00_led *led =
341 container_of(led_cdev, struct rt2x00_led, led_dev);
342 u32 reg;
343
344 rt73usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
345 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
346 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
347 rt73usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
348
349 return 0;
350 }
351
352 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
353 struct rt2x00_led *led,
354 enum led_type type)
355 {
356 led->rt2x00dev = rt2x00dev;
357 led->type = type;
358 led->led_dev.brightness_set = rt73usb_brightness_set;
359 led->led_dev.blink_set = rt73usb_blink_set;
360 led->flags = LED_INITIALIZED;
361 }
362 #endif /* CONFIG_RT73USB_LEDS */
363
364 /*
365 * Configuration handlers.
366 */
367 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
368 struct rt2x00lib_crypto *crypto,
369 struct ieee80211_key_conf *key)
370 {
371 struct hw_key_entry key_entry;
372 struct rt2x00_field32 field;
373 int timeout;
374 u32 mask;
375 u32 reg;
376
377 if (crypto->cmd == SET_KEY) {
378 /*
379 * rt2x00lib can't determine the correct free
380 * key_idx for shared keys. We have 1 register
381 * with key valid bits. The goal is simple, read
382 * the register, if that is full we have no slots
383 * left.
384 * Note that each BSS is allowed to have up to 4
385 * shared keys, so put a mask over the allowed
386 * entries.
387 */
388 mask = (0xf << crypto->bssidx);
389
390 rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
391 reg &= mask;
392
393 if (reg && reg == mask)
394 return -ENOSPC;
395
396 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
397
398 /*
399 * Upload key to hardware
400 */
401 memcpy(key_entry.key, crypto->key,
402 sizeof(key_entry.key));
403 memcpy(key_entry.tx_mic, crypto->tx_mic,
404 sizeof(key_entry.tx_mic));
405 memcpy(key_entry.rx_mic, crypto->rx_mic,
406 sizeof(key_entry.rx_mic));
407
408 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
409 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
410 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
411 USB_VENDOR_REQUEST_OUT, reg,
412 &key_entry,
413 sizeof(key_entry),
414 timeout);
415
416 /*
417 * The cipher types are stored over 2 registers.
418 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
419 * bssidx 1 and 2 keys are stored in SEC_CSR5.
420 * Using the correct defines correctly will cause overhead,
421 * so just calculate the correct offset.
422 */
423 if (key->hw_key_idx < 8) {
424 field.bit_offset = (3 * key->hw_key_idx);
425 field.bit_mask = 0x7 << field.bit_offset;
426
427 rt73usb_register_read(rt2x00dev, SEC_CSR1, &reg);
428 rt2x00_set_field32(&reg, field, crypto->cipher);
429 rt73usb_register_write(rt2x00dev, SEC_CSR1, reg);
430 } else {
431 field.bit_offset = (3 * (key->hw_key_idx - 8));
432 field.bit_mask = 0x7 << field.bit_offset;
433
434 rt73usb_register_read(rt2x00dev, SEC_CSR5, &reg);
435 rt2x00_set_field32(&reg, field, crypto->cipher);
436 rt73usb_register_write(rt2x00dev, SEC_CSR5, reg);
437 }
438
439 /*
440 * The driver does not support the IV/EIV generation
441 * in hardware. However it doesn't support the IV/EIV
442 * inside the ieee80211 frame either, but requires it
443 * to be provided seperately for the descriptor.
444 * rt2x00lib will cut the IV/EIV data out of all frames
445 * given to us by mac80211, but we must tell mac80211
446 * to generate the IV/EIV data.
447 */
448 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
449 }
450
451 /*
452 * SEC_CSR0 contains only single-bit fields to indicate
453 * a particular key is valid. Because using the FIELD32()
454 * defines directly will cause a lot of overhead we use
455 * a calculation to determine the correct bit directly.
456 */
457 mask = 1 << key->hw_key_idx;
458
459 rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
460 if (crypto->cmd == SET_KEY)
461 reg |= mask;
462 else if (crypto->cmd == DISABLE_KEY)
463 reg &= ~mask;
464 rt73usb_register_write(rt2x00dev, SEC_CSR0, reg);
465
466 return 0;
467 }
468
469 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
470 struct rt2x00lib_crypto *crypto,
471 struct ieee80211_key_conf *key)
472 {
473 struct hw_pairwise_ta_entry addr_entry;
474 struct hw_key_entry key_entry;
475 int timeout;
476 u32 mask;
477 u32 reg;
478
479 if (crypto->cmd == SET_KEY) {
480 /*
481 * rt2x00lib can't determine the correct free
482 * key_idx for pairwise keys. We have 2 registers
483 * with key valid bits. The goal is simple, read
484 * the first register, if that is full move to
485 * the next register.
486 * When both registers are full, we drop the key,
487 * otherwise we use the first invalid entry.
488 */
489 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
490 if (reg && reg == ~0) {
491 key->hw_key_idx = 32;
492 rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
493 if (reg && reg == ~0)
494 return -ENOSPC;
495 }
496
497 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
498
499 /*
500 * Upload key to hardware
501 */
502 memcpy(key_entry.key, crypto->key,
503 sizeof(key_entry.key));
504 memcpy(key_entry.tx_mic, crypto->tx_mic,
505 sizeof(key_entry.tx_mic));
506 memcpy(key_entry.rx_mic, crypto->rx_mic,
507 sizeof(key_entry.rx_mic));
508
509 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
510 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
511 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
512 USB_VENDOR_REQUEST_OUT, reg,
513 &key_entry,
514 sizeof(key_entry),
515 timeout);
516
517 /*
518 * Send the address and cipher type to the hardware register.
519 * This data fits within the CSR cache size, so we can use
520 * rt73usb_register_multiwrite() directly.
521 */
522 memset(&addr_entry, 0, sizeof(addr_entry));
523 memcpy(&addr_entry, crypto->address, ETH_ALEN);
524 addr_entry.cipher = crypto->cipher;
525
526 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
527 rt73usb_register_multiwrite(rt2x00dev, reg,
528 &addr_entry, sizeof(addr_entry));
529
530 /*
531 * Enable pairwise lookup table for given BSS idx,
532 * without this received frames will not be decrypted
533 * by the hardware.
534 */
535 rt73usb_register_read(rt2x00dev, SEC_CSR4, &reg);
536 reg |= (1 << crypto->bssidx);
537 rt73usb_register_write(rt2x00dev, SEC_CSR4, reg);
538
539 /*
540 * The driver does not support the IV/EIV generation
541 * in hardware. However it doesn't support the IV/EIV
542 * inside the ieee80211 frame either, but requires it
543 * to be provided seperately for the descriptor.
544 * rt2x00lib will cut the IV/EIV data out of all frames
545 * given to us by mac80211, but we must tell mac80211
546 * to generate the IV/EIV data.
547 */
548 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
549 }
550
551 /*
552 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
553 * a particular key is valid. Because using the FIELD32()
554 * defines directly will cause a lot of overhead we use
555 * a calculation to determine the correct bit directly.
556 */
557 if (key->hw_key_idx < 32) {
558 mask = 1 << key->hw_key_idx;
559
560 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
561 if (crypto->cmd == SET_KEY)
562 reg |= mask;
563 else if (crypto->cmd == DISABLE_KEY)
564 reg &= ~mask;
565 rt73usb_register_write(rt2x00dev, SEC_CSR2, reg);
566 } else {
567 mask = 1 << (key->hw_key_idx - 32);
568
569 rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
570 if (crypto->cmd == SET_KEY)
571 reg |= mask;
572 else if (crypto->cmd == DISABLE_KEY)
573 reg &= ~mask;
574 rt73usb_register_write(rt2x00dev, SEC_CSR3, reg);
575 }
576
577 return 0;
578 }
579
580 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
581 const unsigned int filter_flags)
582 {
583 u32 reg;
584
585 /*
586 * Start configuration steps.
587 * Note that the version error will always be dropped
588 * and broadcast frames will always be accepted since
589 * there is no filter for it at this time.
590 */
591 rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
592 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
593 !(filter_flags & FIF_FCSFAIL));
594 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
595 !(filter_flags & FIF_PLCPFAIL));
596 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
597 !(filter_flags & FIF_CONTROL));
598 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
599 !(filter_flags & FIF_PROMISC_IN_BSS));
600 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
601 !(filter_flags & FIF_PROMISC_IN_BSS) &&
602 !rt2x00dev->intf_ap_count);
603 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
604 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
605 !(filter_flags & FIF_ALLMULTI));
606 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
607 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
608 !(filter_flags & FIF_CONTROL));
609 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
610 }
611
612 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
613 struct rt2x00_intf *intf,
614 struct rt2x00intf_conf *conf,
615 const unsigned int flags)
616 {
617 unsigned int beacon_base;
618 u32 reg;
619
620 if (flags & CONFIG_UPDATE_TYPE) {
621 /*
622 * Clear current synchronisation setup.
623 * For the Beacon base registers we only need to clear
624 * the first byte since that byte contains the VALID and OWNER
625 * bits which (when set to 0) will invalidate the entire beacon.
626 */
627 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
628 rt73usb_register_write(rt2x00dev, beacon_base, 0);
629
630 /*
631 * Enable synchronisation.
632 */
633 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
634 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
635 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
636 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
637 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
638 }
639
640 if (flags & CONFIG_UPDATE_MAC) {
641 reg = le32_to_cpu(conf->mac[1]);
642 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
643 conf->mac[1] = cpu_to_le32(reg);
644
645 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR2,
646 conf->mac, sizeof(conf->mac));
647 }
648
649 if (flags & CONFIG_UPDATE_BSSID) {
650 reg = le32_to_cpu(conf->bssid[1]);
651 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
652 conf->bssid[1] = cpu_to_le32(reg);
653
654 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR4,
655 conf->bssid, sizeof(conf->bssid));
656 }
657 }
658
659 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
660 struct rt2x00lib_erp *erp)
661 {
662 u32 reg;
663
664 rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
665 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
666 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
667
668 rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
669 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
670 !!erp->short_preamble);
671 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
672 }
673
674 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
675 struct rt2x00lib_conf *libconf)
676 {
677 u16 eeprom;
678 short lna_gain = 0;
679
680 if (libconf->band == IEEE80211_BAND_2GHZ) {
681 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
682 lna_gain += 14;
683
684 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
685 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
686 } else {
687 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
688 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
689 }
690
691 rt2x00dev->lna_gain = lna_gain;
692 }
693
694 static void rt73usb_config_phymode(struct rt2x00_dev *rt2x00dev,
695 const int basic_rate_mask)
696 {
697 rt73usb_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
698 }
699
700 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
701 struct rf_channel *rf, const int txpower)
702 {
703 u8 r3;
704 u8 r94;
705 u8 smart;
706
707 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
708 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
709
710 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
711 rt2x00_rf(&rt2x00dev->chip, RF2527));
712
713 rt73usb_bbp_read(rt2x00dev, 3, &r3);
714 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
715 rt73usb_bbp_write(rt2x00dev, 3, r3);
716
717 r94 = 6;
718 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
719 r94 += txpower - MAX_TXPOWER;
720 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
721 r94 += txpower;
722 rt73usb_bbp_write(rt2x00dev, 94, r94);
723
724 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
725 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
726 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
727 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
728
729 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
730 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
731 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
732 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
733
734 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
735 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
736 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
737 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
738
739 udelay(10);
740 }
741
742 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
743 const int txpower)
744 {
745 struct rf_channel rf;
746
747 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
748 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
749 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
750 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
751
752 rt73usb_config_channel(rt2x00dev, &rf, txpower);
753 }
754
755 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
756 struct antenna_setup *ant)
757 {
758 u8 r3;
759 u8 r4;
760 u8 r77;
761 u8 temp;
762
763 rt73usb_bbp_read(rt2x00dev, 3, &r3);
764 rt73usb_bbp_read(rt2x00dev, 4, &r4);
765 rt73usb_bbp_read(rt2x00dev, 77, &r77);
766
767 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
768
769 /*
770 * Configure the RX antenna.
771 */
772 switch (ant->rx) {
773 case ANTENNA_HW_DIVERSITY:
774 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
775 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
776 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
777 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
778 break;
779 case ANTENNA_A:
780 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
781 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
782 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
783 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
784 else
785 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
786 break;
787 case ANTENNA_B:
788 default:
789 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
790 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
791 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
792 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
793 else
794 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
795 break;
796 }
797
798 rt73usb_bbp_write(rt2x00dev, 77, r77);
799 rt73usb_bbp_write(rt2x00dev, 3, r3);
800 rt73usb_bbp_write(rt2x00dev, 4, r4);
801 }
802
803 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
804 struct antenna_setup *ant)
805 {
806 u8 r3;
807 u8 r4;
808 u8 r77;
809
810 rt73usb_bbp_read(rt2x00dev, 3, &r3);
811 rt73usb_bbp_read(rt2x00dev, 4, &r4);
812 rt73usb_bbp_read(rt2x00dev, 77, &r77);
813
814 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
815 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
816 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
817
818 /*
819 * Configure the RX antenna.
820 */
821 switch (ant->rx) {
822 case ANTENNA_HW_DIVERSITY:
823 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
824 break;
825 case ANTENNA_A:
826 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
827 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
828 break;
829 case ANTENNA_B:
830 default:
831 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
832 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
833 break;
834 }
835
836 rt73usb_bbp_write(rt2x00dev, 77, r77);
837 rt73usb_bbp_write(rt2x00dev, 3, r3);
838 rt73usb_bbp_write(rt2x00dev, 4, r4);
839 }
840
841 struct antenna_sel {
842 u8 word;
843 /*
844 * value[0] -> non-LNA
845 * value[1] -> LNA
846 */
847 u8 value[2];
848 };
849
850 static const struct antenna_sel antenna_sel_a[] = {
851 { 96, { 0x58, 0x78 } },
852 { 104, { 0x38, 0x48 } },
853 { 75, { 0xfe, 0x80 } },
854 { 86, { 0xfe, 0x80 } },
855 { 88, { 0xfe, 0x80 } },
856 { 35, { 0x60, 0x60 } },
857 { 97, { 0x58, 0x58 } },
858 { 98, { 0x58, 0x58 } },
859 };
860
861 static const struct antenna_sel antenna_sel_bg[] = {
862 { 96, { 0x48, 0x68 } },
863 { 104, { 0x2c, 0x3c } },
864 { 75, { 0xfe, 0x80 } },
865 { 86, { 0xfe, 0x80 } },
866 { 88, { 0xfe, 0x80 } },
867 { 35, { 0x50, 0x50 } },
868 { 97, { 0x48, 0x48 } },
869 { 98, { 0x48, 0x48 } },
870 };
871
872 static void rt73usb_config_antenna(struct rt2x00_dev *rt2x00dev,
873 struct antenna_setup *ant)
874 {
875 const struct antenna_sel *sel;
876 unsigned int lna;
877 unsigned int i;
878 u32 reg;
879
880 /*
881 * We should never come here because rt2x00lib is supposed
882 * to catch this and send us the correct antenna explicitely.
883 */
884 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
885 ant->tx == ANTENNA_SW_DIVERSITY);
886
887 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
888 sel = antenna_sel_a;
889 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
890 } else {
891 sel = antenna_sel_bg;
892 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
893 }
894
895 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
896 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
897
898 rt73usb_register_read(rt2x00dev, PHY_CSR0, &reg);
899
900 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
901 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
902 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
903 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
904
905 rt73usb_register_write(rt2x00dev, PHY_CSR0, reg);
906
907 if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
908 rt2x00_rf(&rt2x00dev->chip, RF5225))
909 rt73usb_config_antenna_5x(rt2x00dev, ant);
910 else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
911 rt2x00_rf(&rt2x00dev->chip, RF2527))
912 rt73usb_config_antenna_2x(rt2x00dev, ant);
913 }
914
915 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
916 struct rt2x00lib_conf *libconf)
917 {
918 u32 reg;
919
920 rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
921 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
922 rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
923
924 rt73usb_register_read(rt2x00dev, MAC_CSR8, &reg);
925 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
926 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
927 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
928 rt73usb_register_write(rt2x00dev, MAC_CSR8, reg);
929
930 rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
931 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
932 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
933
934 rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
935 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
936 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
937
938 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
939 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
940 libconf->conf->beacon_int * 16);
941 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
942 }
943
944 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf,
946 const unsigned int flags)
947 {
948 /* Always recalculate LNA gain before changing configuration */
949 rt73usb_config_lna_gain(rt2x00dev, libconf);
950
951 if (flags & CONFIG_UPDATE_PHYMODE)
952 rt73usb_config_phymode(rt2x00dev, libconf->basic_rates);
953 if (flags & CONFIG_UPDATE_CHANNEL)
954 rt73usb_config_channel(rt2x00dev, &libconf->rf,
955 libconf->conf->power_level);
956 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
957 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
958 if (flags & CONFIG_UPDATE_ANTENNA)
959 rt73usb_config_antenna(rt2x00dev, &libconf->ant);
960 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
961 rt73usb_config_duration(rt2x00dev, libconf);
962 }
963
964 /*
965 * Link tuning
966 */
967 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
968 struct link_qual *qual)
969 {
970 u32 reg;
971
972 /*
973 * Update FCS error count from register.
974 */
975 rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
976 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
977
978 /*
979 * Update False CCA count from register.
980 */
981 rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
982 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
983 }
984
985 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
986 {
987 rt73usb_bbp_write(rt2x00dev, 17, 0x20);
988 rt2x00dev->link.vgc_level = 0x20;
989 }
990
991 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
992 {
993 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
994 u8 r17;
995 u8 up_bound;
996 u8 low_bound;
997
998 rt73usb_bbp_read(rt2x00dev, 17, &r17);
999
1000 /*
1001 * Determine r17 bounds.
1002 */
1003 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1004 low_bound = 0x28;
1005 up_bound = 0x48;
1006
1007 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1008 low_bound += 0x10;
1009 up_bound += 0x10;
1010 }
1011 } else {
1012 if (rssi > -82) {
1013 low_bound = 0x1c;
1014 up_bound = 0x40;
1015 } else if (rssi > -84) {
1016 low_bound = 0x1c;
1017 up_bound = 0x20;
1018 } else {
1019 low_bound = 0x1c;
1020 up_bound = 0x1c;
1021 }
1022
1023 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1024 low_bound += 0x14;
1025 up_bound += 0x10;
1026 }
1027 }
1028
1029 /*
1030 * If we are not associated, we should go straight to the
1031 * dynamic CCA tuning.
1032 */
1033 if (!rt2x00dev->intf_associated)
1034 goto dynamic_cca_tune;
1035
1036 /*
1037 * Special big-R17 for very short distance
1038 */
1039 if (rssi > -35) {
1040 if (r17 != 0x60)
1041 rt73usb_bbp_write(rt2x00dev, 17, 0x60);
1042 return;
1043 }
1044
1045 /*
1046 * Special big-R17 for short distance
1047 */
1048 if (rssi >= -58) {
1049 if (r17 != up_bound)
1050 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1051 return;
1052 }
1053
1054 /*
1055 * Special big-R17 for middle-short distance
1056 */
1057 if (rssi >= -66) {
1058 low_bound += 0x10;
1059 if (r17 != low_bound)
1060 rt73usb_bbp_write(rt2x00dev, 17, low_bound);
1061 return;
1062 }
1063
1064 /*
1065 * Special mid-R17 for middle distance
1066 */
1067 if (rssi >= -74) {
1068 if (r17 != (low_bound + 0x10))
1069 rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
1070 return;
1071 }
1072
1073 /*
1074 * Special case: Change up_bound based on the rssi.
1075 * Lower up_bound when rssi is weaker then -74 dBm.
1076 */
1077 up_bound -= 2 * (-74 - rssi);
1078 if (low_bound > up_bound)
1079 up_bound = low_bound;
1080
1081 if (r17 > up_bound) {
1082 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1083 return;
1084 }
1085
1086 dynamic_cca_tune:
1087
1088 /*
1089 * r17 does not yet exceed upper limit, continue and base
1090 * the r17 tuning on the false CCA count.
1091 */
1092 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1093 r17 += 4;
1094 if (r17 > up_bound)
1095 r17 = up_bound;
1096 rt73usb_bbp_write(rt2x00dev, 17, r17);
1097 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1098 r17 -= 4;
1099 if (r17 < low_bound)
1100 r17 = low_bound;
1101 rt73usb_bbp_write(rt2x00dev, 17, r17);
1102 }
1103 }
1104
1105 /*
1106 * Firmware functions
1107 */
1108 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1109 {
1110 return FIRMWARE_RT2571;
1111 }
1112
1113 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1114 {
1115 u16 crc;
1116
1117 /*
1118 * Use the crc itu-t algorithm.
1119 * The last 2 bytes in the firmware array are the crc checksum itself,
1120 * this means that we should never pass those 2 bytes to the crc
1121 * algorithm.
1122 */
1123 crc = crc_itu_t(0, data, len - 2);
1124 crc = crc_itu_t_byte(crc, 0);
1125 crc = crc_itu_t_byte(crc, 0);
1126
1127 return crc;
1128 }
1129
1130 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1131 const size_t len)
1132 {
1133 unsigned int i;
1134 int status;
1135 u32 reg;
1136
1137 /*
1138 * Wait for stable hardware.
1139 */
1140 for (i = 0; i < 100; i++) {
1141 rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1142 if (reg)
1143 break;
1144 msleep(1);
1145 }
1146
1147 if (!reg) {
1148 ERROR(rt2x00dev, "Unstable hardware.\n");
1149 return -EBUSY;
1150 }
1151
1152 /*
1153 * Write firmware to device.
1154 */
1155 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1156 USB_VENDOR_REQUEST_OUT,
1157 FIRMWARE_IMAGE_BASE,
1158 data, len,
1159 REGISTER_TIMEOUT32(len));
1160
1161 /*
1162 * Send firmware request to device to load firmware,
1163 * we need to specify a long timeout time.
1164 */
1165 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1166 0, USB_MODE_FIRMWARE,
1167 REGISTER_TIMEOUT_FIRMWARE);
1168 if (status < 0) {
1169 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1170 return status;
1171 }
1172
1173 return 0;
1174 }
1175
1176 /*
1177 * Initialization functions.
1178 */
1179 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1180 {
1181 u32 reg;
1182
1183 rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1184 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1185 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1186 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1187 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1188
1189 rt73usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1190 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1191 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1192 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1193 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1194 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1195 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1196 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1197 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1198 rt73usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1199
1200 /*
1201 * CCK TXD BBP registers
1202 */
1203 rt73usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1204 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1205 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1206 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1207 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1208 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1209 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1210 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1211 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1212 rt73usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1213
1214 /*
1215 * OFDM TXD BBP registers
1216 */
1217 rt73usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1218 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1219 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1220 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1221 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1222 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1223 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1224 rt73usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1225
1226 rt73usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1227 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1228 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1229 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1230 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1231 rt73usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1232
1233 rt73usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1234 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1235 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1236 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1237 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1238 rt73usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1239
1240 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1241 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1242 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1243 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1244 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1245 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1246 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1247 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1248
1249 rt73usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1250
1251 rt73usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1252 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1253 rt73usb_register_write(rt2x00dev, MAC_CSR6, reg);
1254
1255 rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1256
1257 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1258 return -EBUSY;
1259
1260 rt73usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1261
1262 /*
1263 * Invalidate all Shared Keys (SEC_CSR0),
1264 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1265 */
1266 rt73usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1267 rt73usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1268 rt73usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1269
1270 reg = 0x000023b0;
1271 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1272 rt2x00_rf(&rt2x00dev->chip, RF2527))
1273 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1274 rt73usb_register_write(rt2x00dev, PHY_CSR1, reg);
1275
1276 rt73usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1277 rt73usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1278 rt73usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1279
1280 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1281 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1282 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1283 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1284
1285 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1286 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1287 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1288 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1289
1290 rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1291 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1292 rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
1293
1294 /*
1295 * Clear all beacons
1296 * For the Beacon base registers we only need to clear
1297 * the first byte since that byte contains the VALID and OWNER
1298 * bits which (when set to 0) will invalidate the entire beacon.
1299 */
1300 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1301 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1302 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1303 rt73usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1304
1305 /*
1306 * We must clear the error counters.
1307 * These registers are cleared on read,
1308 * so we may pass a useless variable to store the value.
1309 */
1310 rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
1311 rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
1312 rt73usb_register_read(rt2x00dev, STA_CSR2, &reg);
1313
1314 /*
1315 * Reset MAC and BBP registers.
1316 */
1317 rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1318 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1319 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1320 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1321
1322 rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1323 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1324 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1325 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1326
1327 rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1328 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1329 rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1330
1331 return 0;
1332 }
1333
1334 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1335 {
1336 unsigned int i;
1337 u8 value;
1338
1339 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1340 rt73usb_bbp_read(rt2x00dev, 0, &value);
1341 if ((value != 0xff) && (value != 0x00))
1342 return 0;
1343 udelay(REGISTER_BUSY_DELAY);
1344 }
1345
1346 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1347 return -EACCES;
1348 }
1349
1350 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1351 {
1352 unsigned int i;
1353 u16 eeprom;
1354 u8 reg_id;
1355 u8 value;
1356
1357 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1358 return -EACCES;
1359
1360 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1361 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1362 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1363 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1364 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1365 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1366 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1367 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1368 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1369 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1370 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1371 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1372 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1373 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1374 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1375 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1376 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1377 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1378 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1379 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1380 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1381 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1382 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1383 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1384 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1385
1386 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1387 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1388
1389 if (eeprom != 0xffff && eeprom != 0x0000) {
1390 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1391 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1392 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1393 }
1394 }
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Device state switch handlers.
1401 */
1402 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1403 enum dev_state state)
1404 {
1405 u32 reg;
1406
1407 rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1408 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1409 (state == STATE_RADIO_RX_OFF) ||
1410 (state == STATE_RADIO_RX_OFF_LINK));
1411 rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1412 }
1413
1414 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1415 {
1416 /*
1417 * Initialize all registers.
1418 */
1419 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1420 rt73usb_init_bbp(rt2x00dev)))
1421 return -EIO;
1422
1423 return 0;
1424 }
1425
1426 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1427 {
1428 rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1429
1430 /*
1431 * Disable synchronisation.
1432 */
1433 rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1434
1435 rt2x00usb_disable_radio(rt2x00dev);
1436 }
1437
1438 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1439 {
1440 u32 reg;
1441 unsigned int i;
1442 char put_to_sleep;
1443
1444 put_to_sleep = (state != STATE_AWAKE);
1445
1446 rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1447 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1448 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1449 rt73usb_register_write(rt2x00dev, MAC_CSR12, reg);
1450
1451 /*
1452 * Device is not guaranteed to be in the requested state yet.
1453 * We must wait until the register indicates that the
1454 * device has entered the correct state.
1455 */
1456 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1457 rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1458 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1459 if (state == !put_to_sleep)
1460 return 0;
1461 msleep(10);
1462 }
1463
1464 return -EBUSY;
1465 }
1466
1467 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1468 enum dev_state state)
1469 {
1470 int retval = 0;
1471
1472 switch (state) {
1473 case STATE_RADIO_ON:
1474 retval = rt73usb_enable_radio(rt2x00dev);
1475 break;
1476 case STATE_RADIO_OFF:
1477 rt73usb_disable_radio(rt2x00dev);
1478 break;
1479 case STATE_RADIO_RX_ON:
1480 case STATE_RADIO_RX_ON_LINK:
1481 case STATE_RADIO_RX_OFF:
1482 case STATE_RADIO_RX_OFF_LINK:
1483 rt73usb_toggle_rx(rt2x00dev, state);
1484 break;
1485 case STATE_RADIO_IRQ_ON:
1486 case STATE_RADIO_IRQ_OFF:
1487 /* No support, but no error either */
1488 break;
1489 case STATE_DEEP_SLEEP:
1490 case STATE_SLEEP:
1491 case STATE_STANDBY:
1492 case STATE_AWAKE:
1493 retval = rt73usb_set_state(rt2x00dev, state);
1494 break;
1495 default:
1496 retval = -ENOTSUPP;
1497 break;
1498 }
1499
1500 if (unlikely(retval))
1501 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1502 state, retval);
1503
1504 return retval;
1505 }
1506
1507 /*
1508 * TX descriptor initialization
1509 */
1510 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1511 struct sk_buff *skb,
1512 struct txentry_desc *txdesc)
1513 {
1514 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1515 __le32 *txd = skbdesc->desc;
1516 u32 word;
1517
1518 /*
1519 * Start writing the descriptor words.
1520 */
1521 rt2x00_desc_read(txd, 1, &word);
1522 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1523 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1524 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1525 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1526 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1527 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1528 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1529 rt2x00_desc_write(txd, 1, word);
1530
1531 rt2x00_desc_read(txd, 2, &word);
1532 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1533 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1534 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1535 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1536 rt2x00_desc_write(txd, 2, word);
1537
1538 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1539 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1540 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1541 }
1542
1543 rt2x00_desc_read(txd, 5, &word);
1544 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1545 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1546 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1547 rt2x00_desc_write(txd, 5, word);
1548
1549 rt2x00_desc_read(txd, 0, &word);
1550 rt2x00_set_field32(&word, TXD_W0_BURST,
1551 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1552 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1553 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1554 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1555 rt2x00_set_field32(&word, TXD_W0_ACK,
1556 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1557 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1558 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1559 rt2x00_set_field32(&word, TXD_W0_OFDM,
1560 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1561 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1562 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1563 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1564 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1565 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1566 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1567 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1568 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1569 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT,
1570 skb->len - skbdesc->desc_len);
1571 rt2x00_set_field32(&word, TXD_W0_BURST2,
1572 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1573 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1574 rt2x00_desc_write(txd, 0, word);
1575 }
1576
1577 /*
1578 * TX data initialization
1579 */
1580 static void rt73usb_write_beacon(struct queue_entry *entry)
1581 {
1582 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1583 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1584 unsigned int beacon_base;
1585 u32 reg;
1586 u32 word, len;
1587
1588 /*
1589 * Add the descriptor in front of the skb.
1590 */
1591 skb_push(entry->skb, entry->queue->desc_size);
1592 memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1593 skbdesc->desc = entry->skb->data;
1594
1595 /*
1596 * Adjust the beacon databyte count. The current number is
1597 * calculated before this function gets called, but falsely
1598 * assumes that the descriptor was already present in the SKB.
1599 */
1600 rt2x00_desc_read(skbdesc->desc, 0, &word);
1601 len = rt2x00_get_field32(word, TXD_W0_DATABYTE_COUNT);
1602 len += skbdesc->desc_len;
1603 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, len);
1604 rt2x00_desc_write(skbdesc->desc, 0, word);
1605
1606 /*
1607 * Disable beaconing while we are reloading the beacon data,
1608 * otherwise we might be sending out invalid data.
1609 */
1610 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1611 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1612 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1613 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1614 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1615
1616 /*
1617 * Write entire beacon with descriptor to register.
1618 */
1619 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1620 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1621 USB_VENDOR_REQUEST_OUT, beacon_base,
1622 entry->skb->data, entry->skb->len,
1623 REGISTER_TIMEOUT32(entry->skb->len));
1624
1625 /*
1626 * Clean up the beacon skb.
1627 */
1628 dev_kfree_skb(entry->skb);
1629 entry->skb = NULL;
1630 }
1631
1632 static int rt73usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1633 struct sk_buff *skb)
1634 {
1635 int length;
1636
1637 /*
1638 * The length _must_ be a multiple of 4,
1639 * but it must _not_ be a multiple of the USB packet size.
1640 */
1641 length = roundup(skb->len, 4);
1642 length += (4 * !(length % rt2x00dev->usb_maxpacket));
1643
1644 return length;
1645 }
1646
1647 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1648 const enum data_queue_qid queue)
1649 {
1650 u32 reg;
1651
1652 if (queue != QID_BEACON) {
1653 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1654 return;
1655 }
1656
1657 /*
1658 * For Wi-Fi faily generated beacons between participating stations.
1659 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1660 */
1661 rt73usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1662
1663 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1664 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1665 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1666 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1667 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1668 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1669 }
1670 }
1671
1672 /*
1673 * RX control handlers
1674 */
1675 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1676 {
1677 u8 offset = rt2x00dev->lna_gain;
1678 u8 lna;
1679
1680 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1681 switch (lna) {
1682 case 3:
1683 offset += 90;
1684 break;
1685 case 2:
1686 offset += 74;
1687 break;
1688 case 1:
1689 offset += 64;
1690 break;
1691 default:
1692 return 0;
1693 }
1694
1695 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1696 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1697 if (lna == 3 || lna == 2)
1698 offset += 10;
1699 } else {
1700 if (lna == 3)
1701 offset += 6;
1702 else if (lna == 2)
1703 offset += 8;
1704 }
1705 }
1706
1707 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1708 }
1709
1710 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1711 struct rxdone_entry_desc *rxdesc)
1712 {
1713 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1714 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1715 __le32 *rxd = (__le32 *)entry->skb->data;
1716 u32 word0;
1717 u32 word1;
1718
1719 /*
1720 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1721 * frame data in rt2x00usb.
1722 */
1723 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1724 rxd = (__le32 *)skbdesc->desc;
1725
1726 /*
1727 * It is now safe to read the descriptor on all architectures.
1728 */
1729 rt2x00_desc_read(rxd, 0, &word0);
1730 rt2x00_desc_read(rxd, 1, &word1);
1731
1732 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1733 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1734
1735 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1736 rxdesc->cipher =
1737 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1738 rxdesc->cipher_status =
1739 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1740 }
1741
1742 if (rxdesc->cipher != CIPHER_NONE) {
1743 _rt2x00_desc_read(rxd, 2, &rxdesc->iv);
1744 _rt2x00_desc_read(rxd, 3, &rxdesc->eiv);
1745 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1746
1747 /*
1748 * Hardware has stripped IV/EIV data from 802.11 frame during
1749 * decryption. It has provided the data seperately but rt2x00lib
1750 * should decide if it should be reinserted.
1751 */
1752 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1753
1754 /*
1755 * FIXME: Legacy driver indicates that the frame does
1756 * contain the Michael Mic. Unfortunately, in rt2x00
1757 * the MIC seems to be missing completely...
1758 */
1759 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1760
1761 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1762 rxdesc->flags |= RX_FLAG_DECRYPTED;
1763 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1764 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1765 }
1766
1767 /*
1768 * Obtain the status about this packet.
1769 * When frame was received with an OFDM bitrate,
1770 * the signal is the PLCP value. If it was received with
1771 * a CCK bitrate the signal is the rate in 100kbit/s.
1772 */
1773 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1774 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1775 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1776
1777 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1778 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1779 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1780 rxdesc->dev_flags |= RXDONE_MY_BSS;
1781
1782 /*
1783 * Set skb pointers, and update frame information.
1784 */
1785 skb_pull(entry->skb, entry->queue->desc_size);
1786 skb_trim(entry->skb, rxdesc->size);
1787 }
1788
1789 /*
1790 * Device probe functions.
1791 */
1792 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1793 {
1794 u16 word;
1795 u8 *mac;
1796 s8 value;
1797
1798 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1799
1800 /*
1801 * Start validation of the data that has been read.
1802 */
1803 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1804 if (!is_valid_ether_addr(mac)) {
1805 DECLARE_MAC_BUF(macbuf);
1806
1807 random_ether_addr(mac);
1808 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1809 }
1810
1811 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1812 if (word == 0xffff) {
1813 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1814 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1815 ANTENNA_B);
1816 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1817 ANTENNA_B);
1818 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1819 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1820 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1821 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1822 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1823 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1824 }
1825
1826 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1827 if (word == 0xffff) {
1828 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1829 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1830 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1831 }
1832
1833 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1834 if (word == 0xffff) {
1835 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1836 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1837 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1838 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1839 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1840 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1841 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1842 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1843 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1844 LED_MODE_DEFAULT);
1845 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1846 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1847 }
1848
1849 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1850 if (word == 0xffff) {
1851 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1852 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1853 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1854 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1855 }
1856
1857 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1858 if (word == 0xffff) {
1859 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1860 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1861 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1862 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1863 } else {
1864 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1865 if (value < -10 || value > 10)
1866 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1867 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1868 if (value < -10 || value > 10)
1869 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1870 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1871 }
1872
1873 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1874 if (word == 0xffff) {
1875 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1876 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1877 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1878 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1879 } else {
1880 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1881 if (value < -10 || value > 10)
1882 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1883 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1884 if (value < -10 || value > 10)
1885 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1886 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1887 }
1888
1889 return 0;
1890 }
1891
1892 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1893 {
1894 u32 reg;
1895 u16 value;
1896 u16 eeprom;
1897
1898 /*
1899 * Read EEPROM word for configuration.
1900 */
1901 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1902
1903 /*
1904 * Identify RF chipset.
1905 */
1906 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1907 rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1908 rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1909
1910 if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1911 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1912 return -ENODEV;
1913 }
1914
1915 if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1916 !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1917 !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1918 !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1919 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1920 return -ENODEV;
1921 }
1922
1923 /*
1924 * Identify default antenna configuration.
1925 */
1926 rt2x00dev->default_ant.tx =
1927 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1928 rt2x00dev->default_ant.rx =
1929 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1930
1931 /*
1932 * Read the Frame type.
1933 */
1934 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1935 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1936
1937 /*
1938 * Read frequency offset.
1939 */
1940 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1941 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1942
1943 /*
1944 * Read external LNA informations.
1945 */
1946 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1947
1948 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1949 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1950 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1951 }
1952
1953 /*
1954 * Store led settings, for correct led behaviour.
1955 */
1956 #ifdef CONFIG_RT73USB_LEDS
1957 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1958
1959 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1960 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1961 if (value == LED_MODE_SIGNAL_STRENGTH)
1962 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1963 LED_TYPE_QUALITY);
1964
1965 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1966 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1967 rt2x00_get_field16(eeprom,
1968 EEPROM_LED_POLARITY_GPIO_0));
1969 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1970 rt2x00_get_field16(eeprom,
1971 EEPROM_LED_POLARITY_GPIO_1));
1972 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1973 rt2x00_get_field16(eeprom,
1974 EEPROM_LED_POLARITY_GPIO_2));
1975 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1976 rt2x00_get_field16(eeprom,
1977 EEPROM_LED_POLARITY_GPIO_3));
1978 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1979 rt2x00_get_field16(eeprom,
1980 EEPROM_LED_POLARITY_GPIO_4));
1981 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1982 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1983 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1984 rt2x00_get_field16(eeprom,
1985 EEPROM_LED_POLARITY_RDY_G));
1986 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1987 rt2x00_get_field16(eeprom,
1988 EEPROM_LED_POLARITY_RDY_A));
1989 #endif /* CONFIG_RT73USB_LEDS */
1990
1991 return 0;
1992 }
1993
1994 /*
1995 * RF value list for RF2528
1996 * Supports: 2.4 GHz
1997 */
1998 static const struct rf_channel rf_vals_bg_2528[] = {
1999 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
2000 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
2001 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
2002 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
2003 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
2004 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
2005 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2006 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2007 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2008 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2009 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2010 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2011 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2012 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2013 };
2014
2015 /*
2016 * RF value list for RF5226
2017 * Supports: 2.4 GHz & 5.2 GHz
2018 */
2019 static const struct rf_channel rf_vals_5226[] = {
2020 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
2021 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
2022 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
2023 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
2024 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
2025 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
2026 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2027 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2028 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2029 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2030 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2031 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2032 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2033 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2034
2035 /* 802.11 UNI / HyperLan 2 */
2036 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2037 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2038 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2039 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2040 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2041 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2042 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2043 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2044
2045 /* 802.11 HyperLan 2 */
2046 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2047 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2048 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2049 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2050 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2051 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2052 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2053 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2054 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2055 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2056
2057 /* 802.11 UNII */
2058 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2059 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2060 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2061 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2062 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2063 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2064
2065 /* MMAC(Japan)J52 ch 34,38,42,46 */
2066 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2067 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2068 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2069 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2070 };
2071
2072 /*
2073 * RF value list for RF5225 & RF2527
2074 * Supports: 2.4 GHz & 5.2 GHz
2075 */
2076 static const struct rf_channel rf_vals_5225_2527[] = {
2077 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2078 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2079 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2080 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2081 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2082 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2083 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2084 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2085 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2086 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2087 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2088 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2089 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2090 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2091
2092 /* 802.11 UNI / HyperLan 2 */
2093 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2094 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2095 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2096 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2097 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2098 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2099 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2100 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2101
2102 /* 802.11 HyperLan 2 */
2103 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2104 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2105 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2106 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2107 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2108 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2109 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2110 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2111 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2112 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2113
2114 /* 802.11 UNII */
2115 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2116 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2117 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2118 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2119 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2120 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2121
2122 /* MMAC(Japan)J52 ch 34,38,42,46 */
2123 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2124 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2125 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2126 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2127 };
2128
2129
2130 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2131 {
2132 struct hw_mode_spec *spec = &rt2x00dev->spec;
2133 struct channel_info *info;
2134 char *tx_power;
2135 unsigned int i;
2136
2137 /*
2138 * Initialize all hw fields.
2139 */
2140 rt2x00dev->hw->flags =
2141 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2142 IEEE80211_HW_SIGNAL_DBM;
2143 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2144
2145 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2146 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2147 rt2x00_eeprom_addr(rt2x00dev,
2148 EEPROM_MAC_ADDR_0));
2149
2150 /*
2151 * Initialize hw_mode information.
2152 */
2153 spec->supported_bands = SUPPORT_BAND_2GHZ;
2154 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2155
2156 if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2157 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2158 spec->channels = rf_vals_bg_2528;
2159 } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2160 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2161 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2162 spec->channels = rf_vals_5226;
2163 } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2164 spec->num_channels = 14;
2165 spec->channels = rf_vals_5225_2527;
2166 } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2167 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2168 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2169 spec->channels = rf_vals_5225_2527;
2170 }
2171
2172 /*
2173 * Create channel information array
2174 */
2175 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2176 if (!info)
2177 return -ENOMEM;
2178
2179 spec->channels_info = info;
2180
2181 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2182 for (i = 0; i < 14; i++)
2183 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2184
2185 if (spec->num_channels > 14) {
2186 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2187 for (i = 14; i < spec->num_channels; i++)
2188 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2189 }
2190
2191 return 0;
2192 }
2193
2194 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2195 {
2196 int retval;
2197
2198 /*
2199 * Allocate eeprom data.
2200 */
2201 retval = rt73usb_validate_eeprom(rt2x00dev);
2202 if (retval)
2203 return retval;
2204
2205 retval = rt73usb_init_eeprom(rt2x00dev);
2206 if (retval)
2207 return retval;
2208
2209 /*
2210 * Initialize hw specifications.
2211 */
2212 retval = rt73usb_probe_hw_mode(rt2x00dev);
2213 if (retval)
2214 return retval;
2215
2216 /*
2217 * This device requires firmware.
2218 */
2219 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2220 __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2221 if (!modparam_nohwcrypt)
2222 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2223
2224 /*
2225 * Set the rssi offset.
2226 */
2227 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2228
2229 return 0;
2230 }
2231
2232 /*
2233 * IEEE80211 stack callback functions.
2234 */
2235 static int rt73usb_set_retry_limit(struct ieee80211_hw *hw,
2236 u32 short_retry, u32 long_retry)
2237 {
2238 struct rt2x00_dev *rt2x00dev = hw->priv;
2239 u32 reg;
2240
2241 rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
2242 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2243 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2244 rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
2245
2246 return 0;
2247 }
2248
2249 #if 0
2250 /*
2251 * Mac80211 demands get_tsf must be atomic.
2252 * This is not possible for rt73usb since all register access
2253 * functions require sleeping. Untill mac80211 no longer needs
2254 * get_tsf to be atomic, this function should be disabled.
2255 */
2256 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2257 {
2258 struct rt2x00_dev *rt2x00dev = hw->priv;
2259 u64 tsf;
2260 u32 reg;
2261
2262 rt73usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2263 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2264 rt73usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2265 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2266
2267 return tsf;
2268 }
2269 #else
2270 #define rt73usb_get_tsf NULL
2271 #endif
2272
2273 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2274 .tx = rt2x00mac_tx,
2275 .start = rt2x00mac_start,
2276 .stop = rt2x00mac_stop,
2277 .add_interface = rt2x00mac_add_interface,
2278 .remove_interface = rt2x00mac_remove_interface,
2279 .config = rt2x00mac_config,
2280 .config_interface = rt2x00mac_config_interface,
2281 .configure_filter = rt2x00mac_configure_filter,
2282 .set_key = rt2x00mac_set_key,
2283 .get_stats = rt2x00mac_get_stats,
2284 .set_retry_limit = rt73usb_set_retry_limit,
2285 .bss_info_changed = rt2x00mac_bss_info_changed,
2286 .conf_tx = rt2x00mac_conf_tx,
2287 .get_tx_stats = rt2x00mac_get_tx_stats,
2288 .get_tsf = rt73usb_get_tsf,
2289 };
2290
2291 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2292 .probe_hw = rt73usb_probe_hw,
2293 .get_firmware_name = rt73usb_get_firmware_name,
2294 .get_firmware_crc = rt73usb_get_firmware_crc,
2295 .load_firmware = rt73usb_load_firmware,
2296 .initialize = rt2x00usb_initialize,
2297 .uninitialize = rt2x00usb_uninitialize,
2298 .init_rxentry = rt2x00usb_init_rxentry,
2299 .init_txentry = rt2x00usb_init_txentry,
2300 .set_device_state = rt73usb_set_device_state,
2301 .link_stats = rt73usb_link_stats,
2302 .reset_tuner = rt73usb_reset_tuner,
2303 .link_tuner = rt73usb_link_tuner,
2304 .write_tx_desc = rt73usb_write_tx_desc,
2305 .write_tx_data = rt2x00usb_write_tx_data,
2306 .write_beacon = rt73usb_write_beacon,
2307 .get_tx_data_len = rt73usb_get_tx_data_len,
2308 .kick_tx_queue = rt73usb_kick_tx_queue,
2309 .fill_rxdone = rt73usb_fill_rxdone,
2310 .config_shared_key = rt73usb_config_shared_key,
2311 .config_pairwise_key = rt73usb_config_pairwise_key,
2312 .config_filter = rt73usb_config_filter,
2313 .config_intf = rt73usb_config_intf,
2314 .config_erp = rt73usb_config_erp,
2315 .config = rt73usb_config,
2316 };
2317
2318 static const struct data_queue_desc rt73usb_queue_rx = {
2319 .entry_num = RX_ENTRIES,
2320 .data_size = DATA_FRAME_SIZE,
2321 .desc_size = RXD_DESC_SIZE,
2322 .priv_size = sizeof(struct queue_entry_priv_usb),
2323 };
2324
2325 static const struct data_queue_desc rt73usb_queue_tx = {
2326 .entry_num = TX_ENTRIES,
2327 .data_size = DATA_FRAME_SIZE,
2328 .desc_size = TXD_DESC_SIZE,
2329 .priv_size = sizeof(struct queue_entry_priv_usb),
2330 };
2331
2332 static const struct data_queue_desc rt73usb_queue_bcn = {
2333 .entry_num = 4 * BEACON_ENTRIES,
2334 .data_size = MGMT_FRAME_SIZE,
2335 .desc_size = TXINFO_SIZE,
2336 .priv_size = sizeof(struct queue_entry_priv_usb),
2337 };
2338
2339 static const struct rt2x00_ops rt73usb_ops = {
2340 .name = KBUILD_MODNAME,
2341 .max_sta_intf = 1,
2342 .max_ap_intf = 4,
2343 .eeprom_size = EEPROM_SIZE,
2344 .rf_size = RF_SIZE,
2345 .tx_queues = NUM_TX_QUEUES,
2346 .rx = &rt73usb_queue_rx,
2347 .tx = &rt73usb_queue_tx,
2348 .bcn = &rt73usb_queue_bcn,
2349 .lib = &rt73usb_rt2x00_ops,
2350 .hw = &rt73usb_mac80211_ops,
2351 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2352 .debugfs = &rt73usb_rt2x00debug,
2353 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2354 };
2355
2356 /*
2357 * rt73usb module information.
2358 */
2359 static struct usb_device_id rt73usb_device_table[] = {
2360 /* AboCom */
2361 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2362 /* Askey */
2363 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2364 /* ASUS */
2365 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2366 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2367 /* Belkin */
2368 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2369 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2370 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2371 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2372 /* Billionton */
2373 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2374 /* Buffalo */
2375 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2376 /* CNet */
2377 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2378 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2379 /* Conceptronic */
2380 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* Corega */
2382 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2383 /* D-Link */
2384 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2385 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2386 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2387 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2388 /* Gemtek */
2389 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2390 /* Gigabyte */
2391 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2392 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2393 /* Huawei-3Com */
2394 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2395 /* Hercules */
2396 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2397 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2398 /* Linksys */
2399 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2400 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2401 /* MSI */
2402 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2403 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2404 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2405 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2406 /* Ralink */
2407 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2408 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2409 /* Qcom */
2410 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2411 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2412 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2413 /* Senao */
2414 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2415 /* Sitecom */
2416 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2417 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2418 /* Surecom */
2419 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2420 /* Planex */
2421 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2422 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2423 { 0, }
2424 };
2425
2426 MODULE_AUTHOR(DRV_PROJECT);
2427 MODULE_VERSION(DRV_VERSION);
2428 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2429 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2430 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2431 MODULE_FIRMWARE(FIRMWARE_RT2571);
2432 MODULE_LICENSE("GPL");
2433
2434 static struct usb_driver rt73usb_driver = {
2435 .name = KBUILD_MODNAME,
2436 .id_table = rt73usb_device_table,
2437 .probe = rt2x00usb_probe,
2438 .disconnect = rt2x00usb_disconnect,
2439 .suspend = rt2x00usb_suspend,
2440 .resume = rt2x00usb_resume,
2441 };
2442
2443 static int __init rt73usb_init(void)
2444 {
2445 return usb_register(&rt73usb_driver);
2446 }
2447
2448 static void __exit rt73usb_exit(void)
2449 {
2450 usb_deregister(&rt73usb_driver);
2451 }
2452
2453 module_init(rt73usb_init);
2454 module_exit(rt73usb_exit);