]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wireless/rt2x00/rt73usb.c
Merge branch 'master' of /repos/git/net-next-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
60 */
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
65
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 /*
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
138 */
139 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
144
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
147 }
148
149 mutex_unlock(&rt2x00dev->csr_mutex);
150 }
151
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
162 },
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
169 },
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
176 },
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
183 },
184 };
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
186
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
188 {
189 u32 reg;
190
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
198 {
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
206
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
210
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
219
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
224 /*
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
228 */
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
233 }
234 }
235
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
239 {
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
243
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
248
249 return 0;
250 }
251
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
255 {
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265 * Configuration handlers.
266 */
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
270 {
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 u32 mask;
274 u32 reg;
275
276 if (crypto->cmd == SET_KEY) {
277 /*
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
286 */
287 mask = (0xf << crypto->bssidx);
288
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290 reg &= mask;
291
292 if (reg && reg == mask)
293 return -ENOSPC;
294
295 key->hw_key_idx += reg ? ffz(reg) : 0;
296
297 /*
298 * Upload key to hardware
299 */
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
306
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309 &key_entry, sizeof(key_entry));
310
311 /*
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
317 */
318 if (key->hw_key_idx < 8) {
319 field.bit_offset = (3 * key->hw_key_idx);
320 field.bit_mask = 0x7 << field.bit_offset;
321
322 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
323 rt2x00_set_field32(&reg, field, crypto->cipher);
324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325 } else {
326 field.bit_offset = (3 * (key->hw_key_idx - 8));
327 field.bit_mask = 0x7 << field.bit_offset;
328
329 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
330 rt2x00_set_field32(&reg, field, crypto->cipher);
331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332 }
333
334 /*
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
342 */
343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344 }
345
346 /*
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
351 */
352 mask = 1 << key->hw_key_idx;
353
354 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
355 if (crypto->cmd == SET_KEY)
356 reg |= mask;
357 else if (crypto->cmd == DISABLE_KEY)
358 reg &= ~mask;
359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
360
361 return 0;
362 }
363
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_crypto *crypto,
366 struct ieee80211_key_conf *key)
367 {
368 struct hw_pairwise_ta_entry addr_entry;
369 struct hw_key_entry key_entry;
370 u32 mask;
371 u32 reg;
372
373 if (crypto->cmd == SET_KEY) {
374 /*
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
379 * the next register.
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
382 */
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384 if (reg && reg == ~0) {
385 key->hw_key_idx = 32;
386 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387 if (reg && reg == ~0)
388 return -ENOSPC;
389 }
390
391 key->hw_key_idx += reg ? ffz(reg) : 0;
392
393 /*
394 * Upload key to hardware
395 */
396 memcpy(key_entry.key, crypto->key,
397 sizeof(key_entry.key));
398 memcpy(key_entry.tx_mic, crypto->tx_mic,
399 sizeof(key_entry.tx_mic));
400 memcpy(key_entry.rx_mic, crypto->rx_mic,
401 sizeof(key_entry.rx_mic));
402
403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &key_entry, sizeof(key_entry));
406
407 /*
408 * Send the address and cipher type to the hardware register.
409 */
410 memset(&addr_entry, 0, sizeof(addr_entry));
411 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412 addr_entry.cipher = crypto->cipher;
413
414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416 &addr_entry, sizeof(addr_entry));
417
418 /*
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
421 * by the hardware.
422 */
423 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
424 reg |= (1 << crypto->bssidx);
425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
426
427 /*
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
435 */
436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437 }
438
439 /*
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
444 */
445 if (key->hw_key_idx < 32) {
446 mask = 1 << key->hw_key_idx;
447
448 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
449 if (crypto->cmd == SET_KEY)
450 reg |= mask;
451 else if (crypto->cmd == DISABLE_KEY)
452 reg &= ~mask;
453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454 } else {
455 mask = 1 << (key->hw_key_idx - 32);
456
457 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
458 if (crypto->cmd == SET_KEY)
459 reg |= mask;
460 else if (crypto->cmd == DISABLE_KEY)
461 reg &= ~mask;
462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
463 }
464
465 return 0;
466 }
467
468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469 const unsigned int filter_flags)
470 {
471 u32 reg;
472
473 /*
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
478 */
479 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
480 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
481 !(filter_flags & FIF_FCSFAIL));
482 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
483 !(filter_flags & FIF_PLCPFAIL));
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
487 !(filter_flags & FIF_PROMISC_IN_BSS));
488 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
489 !(filter_flags & FIF_PROMISC_IN_BSS) &&
490 !rt2x00dev->intf_ap_count);
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
493 !(filter_flags & FIF_ALLMULTI));
494 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
495 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
496 !(filter_flags & FIF_CONTROL));
497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
498 }
499
500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00_intf *intf,
502 struct rt2x00intf_conf *conf,
503 const unsigned int flags)
504 {
505 unsigned int beacon_base;
506 u32 reg;
507
508 if (flags & CONFIG_UPDATE_TYPE) {
509 /*
510 * Clear current synchronisation setup.
511 * For the Beacon base registers we only need to clear
512 * the first byte since that byte contains the VALID and OWNER
513 * bits which (when set to 0) will invalidate the entire beacon.
514 */
515 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
516 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
517
518 /*
519 * Enable synchronisation.
520 */
521 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
522 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
523 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
524 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
525 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
526 }
527
528 if (flags & CONFIG_UPDATE_MAC) {
529 reg = le32_to_cpu(conf->mac[1]);
530 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
531 conf->mac[1] = cpu_to_le32(reg);
532
533 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
534 conf->mac, sizeof(conf->mac));
535 }
536
537 if (flags & CONFIG_UPDATE_BSSID) {
538 reg = le32_to_cpu(conf->bssid[1]);
539 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
540 conf->bssid[1] = cpu_to_le32(reg);
541
542 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
543 conf->bssid, sizeof(conf->bssid));
544 }
545 }
546
547 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00lib_erp *erp)
549 {
550 u32 reg;
551
552 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
553 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
554 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
555 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
556
557 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
558 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
559 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
560 !!erp->short_preamble);
561 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
562
563 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
564
565 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
566 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
567 erp->beacon_int * 16);
568 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
569
570 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
571 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
572 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
573
574 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
575 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
576 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
577 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
578 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
579 }
580
581 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
582 struct antenna_setup *ant)
583 {
584 u8 r3;
585 u8 r4;
586 u8 r77;
587 u8 temp;
588
589 rt73usb_bbp_read(rt2x00dev, 3, &r3);
590 rt73usb_bbp_read(rt2x00dev, 4, &r4);
591 rt73usb_bbp_read(rt2x00dev, 77, &r77);
592
593 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
594
595 /*
596 * Configure the RX antenna.
597 */
598 switch (ant->rx) {
599 case ANTENNA_HW_DIVERSITY:
600 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
601 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
602 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
603 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
604 break;
605 case ANTENNA_A:
606 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
607 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
608 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
609 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
610 else
611 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
612 break;
613 case ANTENNA_B:
614 default:
615 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
616 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
617 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
618 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
619 else
620 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
621 break;
622 }
623
624 rt73usb_bbp_write(rt2x00dev, 77, r77);
625 rt73usb_bbp_write(rt2x00dev, 3, r3);
626 rt73usb_bbp_write(rt2x00dev, 4, r4);
627 }
628
629 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
631 {
632 u8 r3;
633 u8 r4;
634 u8 r77;
635
636 rt73usb_bbp_read(rt2x00dev, 3, &r3);
637 rt73usb_bbp_read(rt2x00dev, 4, &r4);
638 rt73usb_bbp_read(rt2x00dev, 77, &r77);
639
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
641 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
642 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
643
644 /*
645 * Configure the RX antenna.
646 */
647 switch (ant->rx) {
648 case ANTENNA_HW_DIVERSITY:
649 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
650 break;
651 case ANTENNA_A:
652 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 break;
655 case ANTENNA_B:
656 default:
657 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
659 break;
660 }
661
662 rt73usb_bbp_write(rt2x00dev, 77, r77);
663 rt73usb_bbp_write(rt2x00dev, 3, r3);
664 rt73usb_bbp_write(rt2x00dev, 4, r4);
665 }
666
667 struct antenna_sel {
668 u8 word;
669 /*
670 * value[0] -> non-LNA
671 * value[1] -> LNA
672 */
673 u8 value[2];
674 };
675
676 static const struct antenna_sel antenna_sel_a[] = {
677 { 96, { 0x58, 0x78 } },
678 { 104, { 0x38, 0x48 } },
679 { 75, { 0xfe, 0x80 } },
680 { 86, { 0xfe, 0x80 } },
681 { 88, { 0xfe, 0x80 } },
682 { 35, { 0x60, 0x60 } },
683 { 97, { 0x58, 0x58 } },
684 { 98, { 0x58, 0x58 } },
685 };
686
687 static const struct antenna_sel antenna_sel_bg[] = {
688 { 96, { 0x48, 0x68 } },
689 { 104, { 0x2c, 0x3c } },
690 { 75, { 0xfe, 0x80 } },
691 { 86, { 0xfe, 0x80 } },
692 { 88, { 0xfe, 0x80 } },
693 { 35, { 0x50, 0x50 } },
694 { 97, { 0x48, 0x48 } },
695 { 98, { 0x48, 0x48 } },
696 };
697
698 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
699 struct antenna_setup *ant)
700 {
701 const struct antenna_sel *sel;
702 unsigned int lna;
703 unsigned int i;
704 u32 reg;
705
706 /*
707 * We should never come here because rt2x00lib is supposed
708 * to catch this and send us the correct antenna explicitely.
709 */
710 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
711 ant->tx == ANTENNA_SW_DIVERSITY);
712
713 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
714 sel = antenna_sel_a;
715 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
716 } else {
717 sel = antenna_sel_bg;
718 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
719 }
720
721 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
722 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
723
724 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
725
726 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
727 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
728 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
729 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
730
731 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
732
733 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
734 rt73usb_config_antenna_5x(rt2x00dev, ant);
735 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
736 rt73usb_config_antenna_2x(rt2x00dev, ant);
737 }
738
739 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
740 struct rt2x00lib_conf *libconf)
741 {
742 u16 eeprom;
743 short lna_gain = 0;
744
745 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
746 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
747 lna_gain += 14;
748
749 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
750 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
751 } else {
752 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
753 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
754 }
755
756 rt2x00dev->lna_gain = lna_gain;
757 }
758
759 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
760 struct rf_channel *rf, const int txpower)
761 {
762 u8 r3;
763 u8 r94;
764 u8 smart;
765
766 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
767 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
768
769 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
770
771 rt73usb_bbp_read(rt2x00dev, 3, &r3);
772 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
773 rt73usb_bbp_write(rt2x00dev, 3, r3);
774
775 r94 = 6;
776 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
777 r94 += txpower - MAX_TXPOWER;
778 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
779 r94 += txpower;
780 rt73usb_bbp_write(rt2x00dev, 94, r94);
781
782 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
783 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
784 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
785 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
786
787 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
788 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
789 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
790 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
791
792 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
793 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
794 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
795 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
796
797 udelay(10);
798 }
799
800 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
801 const int txpower)
802 {
803 struct rf_channel rf;
804
805 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
806 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
807 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
808 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
809
810 rt73usb_config_channel(rt2x00dev, &rf, txpower);
811 }
812
813 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
814 struct rt2x00lib_conf *libconf)
815 {
816 u32 reg;
817
818 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
819 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
820 libconf->conf->long_frame_max_tx_count);
821 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
822 libconf->conf->short_frame_max_tx_count);
823 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
824 }
825
826 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
827 struct rt2x00lib_conf *libconf)
828 {
829 enum dev_state state =
830 (libconf->conf->flags & IEEE80211_CONF_PS) ?
831 STATE_SLEEP : STATE_AWAKE;
832 u32 reg;
833
834 if (state == STATE_SLEEP) {
835 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
836 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
837 rt2x00dev->beacon_int - 10);
838 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
839 libconf->conf->listen_interval - 1);
840 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
841
842 /* We must first disable autowake before it can be enabled */
843 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
845
846 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
847 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
848
849 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
850 USB_MODE_SLEEP, REGISTER_TIMEOUT);
851 } else {
852 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
853 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
854 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
855 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
857 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
858
859 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
860 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
861 }
862 }
863
864 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
865 struct rt2x00lib_conf *libconf,
866 const unsigned int flags)
867 {
868 /* Always recalculate LNA gain before changing configuration */
869 rt73usb_config_lna_gain(rt2x00dev, libconf);
870
871 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
872 rt73usb_config_channel(rt2x00dev, &libconf->rf,
873 libconf->conf->power_level);
874 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
875 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
876 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
877 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
878 rt73usb_config_retry_limit(rt2x00dev, libconf);
879 if (flags & IEEE80211_CONF_CHANGE_PS)
880 rt73usb_config_ps(rt2x00dev, libconf);
881 }
882
883 /*
884 * Link tuning
885 */
886 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
887 struct link_qual *qual)
888 {
889 u32 reg;
890
891 /*
892 * Update FCS error count from register.
893 */
894 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
895 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
896
897 /*
898 * Update False CCA count from register.
899 */
900 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
901 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
902 }
903
904 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
905 struct link_qual *qual, u8 vgc_level)
906 {
907 if (qual->vgc_level != vgc_level) {
908 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
909 qual->vgc_level = vgc_level;
910 qual->vgc_level_reg = vgc_level;
911 }
912 }
913
914 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
915 struct link_qual *qual)
916 {
917 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
918 }
919
920 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
921 struct link_qual *qual, const u32 count)
922 {
923 u8 up_bound;
924 u8 low_bound;
925
926 /*
927 * Determine r17 bounds.
928 */
929 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
930 low_bound = 0x28;
931 up_bound = 0x48;
932
933 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
934 low_bound += 0x10;
935 up_bound += 0x10;
936 }
937 } else {
938 if (qual->rssi > -82) {
939 low_bound = 0x1c;
940 up_bound = 0x40;
941 } else if (qual->rssi > -84) {
942 low_bound = 0x1c;
943 up_bound = 0x20;
944 } else {
945 low_bound = 0x1c;
946 up_bound = 0x1c;
947 }
948
949 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
950 low_bound += 0x14;
951 up_bound += 0x10;
952 }
953 }
954
955 /*
956 * If we are not associated, we should go straight to the
957 * dynamic CCA tuning.
958 */
959 if (!rt2x00dev->intf_associated)
960 goto dynamic_cca_tune;
961
962 /*
963 * Special big-R17 for very short distance
964 */
965 if (qual->rssi > -35) {
966 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
967 return;
968 }
969
970 /*
971 * Special big-R17 for short distance
972 */
973 if (qual->rssi >= -58) {
974 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
975 return;
976 }
977
978 /*
979 * Special big-R17 for middle-short distance
980 */
981 if (qual->rssi >= -66) {
982 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
983 return;
984 }
985
986 /*
987 * Special mid-R17 for middle distance
988 */
989 if (qual->rssi >= -74) {
990 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
991 return;
992 }
993
994 /*
995 * Special case: Change up_bound based on the rssi.
996 * Lower up_bound when rssi is weaker then -74 dBm.
997 */
998 up_bound -= 2 * (-74 - qual->rssi);
999 if (low_bound > up_bound)
1000 up_bound = low_bound;
1001
1002 if (qual->vgc_level > up_bound) {
1003 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1004 return;
1005 }
1006
1007 dynamic_cca_tune:
1008
1009 /*
1010 * r17 does not yet exceed upper limit, continue and base
1011 * the r17 tuning on the false CCA count.
1012 */
1013 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1014 rt73usb_set_vgc(rt2x00dev, qual,
1015 min_t(u8, qual->vgc_level + 4, up_bound));
1016 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1017 rt73usb_set_vgc(rt2x00dev, qual,
1018 max_t(u8, qual->vgc_level - 4, low_bound));
1019 }
1020
1021 /*
1022 * Firmware functions
1023 */
1024 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1025 {
1026 return FIRMWARE_RT2571;
1027 }
1028
1029 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1030 const u8 *data, const size_t len)
1031 {
1032 u16 fw_crc;
1033 u16 crc;
1034
1035 /*
1036 * Only support 2kb firmware files.
1037 */
1038 if (len != 2048)
1039 return FW_BAD_LENGTH;
1040
1041 /*
1042 * The last 2 bytes in the firmware array are the crc checksum itself,
1043 * this means that we should never pass those 2 bytes to the crc
1044 * algorithm.
1045 */
1046 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1047
1048 /*
1049 * Use the crc itu-t algorithm.
1050 */
1051 crc = crc_itu_t(0, data, len - 2);
1052 crc = crc_itu_t_byte(crc, 0);
1053 crc = crc_itu_t_byte(crc, 0);
1054
1055 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1056 }
1057
1058 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1059 const u8 *data, const size_t len)
1060 {
1061 unsigned int i;
1062 int status;
1063 u32 reg;
1064
1065 /*
1066 * Wait for stable hardware.
1067 */
1068 for (i = 0; i < 100; i++) {
1069 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1070 if (reg)
1071 break;
1072 msleep(1);
1073 }
1074
1075 if (!reg) {
1076 ERROR(rt2x00dev, "Unstable hardware.\n");
1077 return -EBUSY;
1078 }
1079
1080 /*
1081 * Write firmware to device.
1082 */
1083 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1084
1085 /*
1086 * Send firmware request to device to load firmware,
1087 * we need to specify a long timeout time.
1088 */
1089 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1090 0, USB_MODE_FIRMWARE,
1091 REGISTER_TIMEOUT_FIRMWARE);
1092 if (status < 0) {
1093 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1094 return status;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /*
1101 * Initialization functions.
1102 */
1103 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1104 {
1105 u32 reg;
1106
1107 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1108 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1109 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1110 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1111 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1112
1113 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1114 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1115 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1116 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1117 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1118 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1119 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1120 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1121 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1122 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1123
1124 /*
1125 * CCK TXD BBP registers
1126 */
1127 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1128 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1129 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1130 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1131 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1132 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1133 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1134 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1135 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1136 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1137
1138 /*
1139 * OFDM TXD BBP registers
1140 */
1141 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1142 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1143 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1144 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1145 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1146 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1147 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1148 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1149
1150 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1151 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1152 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1153 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1154 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1155 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1156
1157 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1158 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1159 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1160 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1161 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1162 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1163
1164 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1165 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1166 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1167 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1168 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1169 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1170 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1171 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1172
1173 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1174
1175 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1176 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1177 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1178
1179 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1180
1181 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1182 return -EBUSY;
1183
1184 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1185
1186 /*
1187 * Invalidate all Shared Keys (SEC_CSR0),
1188 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1189 */
1190 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1191 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1192 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1193
1194 reg = 0x000023b0;
1195 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1196 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1197 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1198
1199 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1200 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1201 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1202
1203 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1204 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1205 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1206
1207 /*
1208 * Clear all beacons
1209 * For the Beacon base registers we only need to clear
1210 * the first byte since that byte contains the VALID and OWNER
1211 * bits which (when set to 0) will invalidate the entire beacon.
1212 */
1213 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1214 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1215 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1216 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1217
1218 /*
1219 * We must clear the error counters.
1220 * These registers are cleared on read,
1221 * so we may pass a useless variable to store the value.
1222 */
1223 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1224 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1225 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1226
1227 /*
1228 * Reset MAC and BBP registers.
1229 */
1230 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1231 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1232 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1233 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1234
1235 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1236 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1237 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1238 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1239
1240 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1241 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1242 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1243
1244 return 0;
1245 }
1246
1247 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1248 {
1249 unsigned int i;
1250 u8 value;
1251
1252 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1253 rt73usb_bbp_read(rt2x00dev, 0, &value);
1254 if ((value != 0xff) && (value != 0x00))
1255 return 0;
1256 udelay(REGISTER_BUSY_DELAY);
1257 }
1258
1259 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1260 return -EACCES;
1261 }
1262
1263 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1264 {
1265 unsigned int i;
1266 u16 eeprom;
1267 u8 reg_id;
1268 u8 value;
1269
1270 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1271 return -EACCES;
1272
1273 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1274 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1275 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1276 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1277 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1278 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1279 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1280 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1281 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1282 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1283 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1284 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1285 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1286 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1287 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1288 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1289 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1290 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1291 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1292 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1293 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1294 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1295 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1296 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1297 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1298
1299 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1300 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1301
1302 if (eeprom != 0xffff && eeprom != 0x0000) {
1303 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1304 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1305 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312 /*
1313 * Device state switch handlers.
1314 */
1315 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1316 enum dev_state state)
1317 {
1318 u32 reg;
1319
1320 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1321 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1322 (state == STATE_RADIO_RX_OFF) ||
1323 (state == STATE_RADIO_RX_OFF_LINK));
1324 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1325 }
1326
1327 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1328 {
1329 /*
1330 * Initialize all registers.
1331 */
1332 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1333 rt73usb_init_bbp(rt2x00dev)))
1334 return -EIO;
1335
1336 return 0;
1337 }
1338
1339 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1340 {
1341 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1342
1343 /*
1344 * Disable synchronisation.
1345 */
1346 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1347
1348 rt2x00usb_disable_radio(rt2x00dev);
1349 }
1350
1351 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1352 {
1353 u32 reg, reg2;
1354 unsigned int i;
1355 char put_to_sleep;
1356
1357 put_to_sleep = (state != STATE_AWAKE);
1358
1359 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1360 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1361 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1362 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1363
1364 /*
1365 * Device is not guaranteed to be in the requested state yet.
1366 * We must wait until the register indicates that the
1367 * device has entered the correct state.
1368 */
1369 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1370 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1371 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1372 if (state == !put_to_sleep)
1373 return 0;
1374 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1375 msleep(10);
1376 }
1377
1378 return -EBUSY;
1379 }
1380
1381 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1382 enum dev_state state)
1383 {
1384 int retval = 0;
1385
1386 switch (state) {
1387 case STATE_RADIO_ON:
1388 retval = rt73usb_enable_radio(rt2x00dev);
1389 break;
1390 case STATE_RADIO_OFF:
1391 rt73usb_disable_radio(rt2x00dev);
1392 break;
1393 case STATE_RADIO_RX_ON:
1394 case STATE_RADIO_RX_ON_LINK:
1395 case STATE_RADIO_RX_OFF:
1396 case STATE_RADIO_RX_OFF_LINK:
1397 rt73usb_toggle_rx(rt2x00dev, state);
1398 break;
1399 case STATE_RADIO_IRQ_ON:
1400 case STATE_RADIO_IRQ_OFF:
1401 /* No support, but no error either */
1402 break;
1403 case STATE_DEEP_SLEEP:
1404 case STATE_SLEEP:
1405 case STATE_STANDBY:
1406 case STATE_AWAKE:
1407 retval = rt73usb_set_state(rt2x00dev, state);
1408 break;
1409 default:
1410 retval = -ENOTSUPP;
1411 break;
1412 }
1413
1414 if (unlikely(retval))
1415 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1416 state, retval);
1417
1418 return retval;
1419 }
1420
1421 /*
1422 * TX descriptor initialization
1423 */
1424 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1425 struct sk_buff *skb,
1426 struct txentry_desc *txdesc)
1427 {
1428 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1429 __le32 *txd = (__le32 *) skb->data;
1430 u32 word;
1431
1432 /*
1433 * Start writing the descriptor words.
1434 */
1435 rt2x00_desc_read(txd, 0, &word);
1436 rt2x00_set_field32(&word, TXD_W0_BURST,
1437 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1438 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1439 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1440 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1441 rt2x00_set_field32(&word, TXD_W0_ACK,
1442 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1443 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1444 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1445 rt2x00_set_field32(&word, TXD_W0_OFDM,
1446 (txdesc->rate_mode == RATE_MODE_OFDM));
1447 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1448 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1449 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1450 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1451 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1452 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1453 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1454 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1455 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1456 rt2x00_set_field32(&word, TXD_W0_BURST2,
1457 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1458 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1459 rt2x00_desc_write(txd, 0, word);
1460
1461 rt2x00_desc_read(txd, 1, &word);
1462 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1463 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1464 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1465 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1466 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1467 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1468 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1469 rt2x00_desc_write(txd, 1, word);
1470
1471 rt2x00_desc_read(txd, 2, &word);
1472 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1473 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1474 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1475 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1476 rt2x00_desc_write(txd, 2, word);
1477
1478 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1479 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1480 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1481 }
1482
1483 rt2x00_desc_read(txd, 5, &word);
1484 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1485 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1486 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1487 rt2x00_desc_write(txd, 5, word);
1488
1489 /*
1490 * Register descriptor details in skb frame descriptor.
1491 */
1492 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1493 skbdesc->desc = txd;
1494 skbdesc->desc_len = TXD_DESC_SIZE;
1495 }
1496
1497 /*
1498 * TX data initialization
1499 */
1500 static void rt73usb_write_beacon(struct queue_entry *entry,
1501 struct txentry_desc *txdesc)
1502 {
1503 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1504 unsigned int beacon_base;
1505 u32 reg;
1506
1507 /*
1508 * Disable beaconing while we are reloading the beacon data,
1509 * otherwise we might be sending out invalid data.
1510 */
1511 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1512 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1513 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1514
1515 /*
1516 * Add space for the descriptor in front of the skb.
1517 */
1518 skb_push(entry->skb, TXD_DESC_SIZE);
1519 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1520
1521 /*
1522 * Write the TX descriptor for the beacon.
1523 */
1524 rt73usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1525
1526 /*
1527 * Dump beacon to userspace through debugfs.
1528 */
1529 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1530
1531 /*
1532 * Write entire beacon with descriptor to register.
1533 */
1534 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1535 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base,
1536 entry->skb->data, entry->skb->len);
1537
1538 /*
1539 * Enable beaconing again.
1540 *
1541 * For Wi-Fi faily generated beacons between participating stations.
1542 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1543 */
1544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1545
1546 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1547 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1548 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1549 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1550
1551 /*
1552 * Clean up the beacon skb.
1553 */
1554 dev_kfree_skb(entry->skb);
1555 entry->skb = NULL;
1556 }
1557
1558 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1559 {
1560 int length;
1561
1562 /*
1563 * The length _must_ be a multiple of 4,
1564 * but it must _not_ be a multiple of the USB packet size.
1565 */
1566 length = roundup(entry->skb->len, 4);
1567 length += (4 * !(length % entry->queue->usb_maxpacket));
1568
1569 return length;
1570 }
1571
1572 /*
1573 * RX control handlers
1574 */
1575 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1576 {
1577 u8 offset = rt2x00dev->lna_gain;
1578 u8 lna;
1579
1580 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1581 switch (lna) {
1582 case 3:
1583 offset += 90;
1584 break;
1585 case 2:
1586 offset += 74;
1587 break;
1588 case 1:
1589 offset += 64;
1590 break;
1591 default:
1592 return 0;
1593 }
1594
1595 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1596 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1597 if (lna == 3 || lna == 2)
1598 offset += 10;
1599 } else {
1600 if (lna == 3)
1601 offset += 6;
1602 else if (lna == 2)
1603 offset += 8;
1604 }
1605 }
1606
1607 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1608 }
1609
1610 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1611 struct rxdone_entry_desc *rxdesc)
1612 {
1613 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1614 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1615 __le32 *rxd = (__le32 *)entry->skb->data;
1616 u32 word0;
1617 u32 word1;
1618
1619 /*
1620 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1621 * frame data in rt2x00usb.
1622 */
1623 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1624 rxd = (__le32 *)skbdesc->desc;
1625
1626 /*
1627 * It is now safe to read the descriptor on all architectures.
1628 */
1629 rt2x00_desc_read(rxd, 0, &word0);
1630 rt2x00_desc_read(rxd, 1, &word1);
1631
1632 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1633 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1634
1635 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1636 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1637
1638 if (rxdesc->cipher != CIPHER_NONE) {
1639 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1640 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1641 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1642
1643 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1644 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1645
1646 /*
1647 * Hardware has stripped IV/EIV data from 802.11 frame during
1648 * decryption. It has provided the data separately but rt2x00lib
1649 * should decide if it should be reinserted.
1650 */
1651 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1652
1653 /*
1654 * FIXME: Legacy driver indicates that the frame does
1655 * contain the Michael Mic. Unfortunately, in rt2x00
1656 * the MIC seems to be missing completely...
1657 */
1658 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1659
1660 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1661 rxdesc->flags |= RX_FLAG_DECRYPTED;
1662 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1663 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1664 }
1665
1666 /*
1667 * Obtain the status about this packet.
1668 * When frame was received with an OFDM bitrate,
1669 * the signal is the PLCP value. If it was received with
1670 * a CCK bitrate the signal is the rate in 100kbit/s.
1671 */
1672 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1673 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1674 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1675
1676 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1677 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1678 else
1679 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1680 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1681 rxdesc->dev_flags |= RXDONE_MY_BSS;
1682
1683 /*
1684 * Set skb pointers, and update frame information.
1685 */
1686 skb_pull(entry->skb, entry->queue->desc_size);
1687 skb_trim(entry->skb, rxdesc->size);
1688 }
1689
1690 /*
1691 * Device probe functions.
1692 */
1693 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1694 {
1695 u16 word;
1696 u8 *mac;
1697 s8 value;
1698
1699 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1700
1701 /*
1702 * Start validation of the data that has been read.
1703 */
1704 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1705 if (!is_valid_ether_addr(mac)) {
1706 random_ether_addr(mac);
1707 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1708 }
1709
1710 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1711 if (word == 0xffff) {
1712 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1713 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1714 ANTENNA_B);
1715 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1716 ANTENNA_B);
1717 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1718 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1719 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1720 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1721 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1722 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1723 }
1724
1725 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1726 if (word == 0xffff) {
1727 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1728 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1729 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1730 }
1731
1732 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1733 if (word == 0xffff) {
1734 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1735 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1736 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1737 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1738 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1739 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1740 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1741 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1742 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1743 LED_MODE_DEFAULT);
1744 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1745 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1746 }
1747
1748 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1749 if (word == 0xffff) {
1750 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1751 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1752 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1753 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1754 }
1755
1756 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1757 if (word == 0xffff) {
1758 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1759 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1760 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1761 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1762 } else {
1763 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1764 if (value < -10 || value > 10)
1765 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1766 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1767 if (value < -10 || value > 10)
1768 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1769 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1770 }
1771
1772 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1773 if (word == 0xffff) {
1774 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1775 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1776 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1777 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1778 } else {
1779 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1780 if (value < -10 || value > 10)
1781 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1782 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1783 if (value < -10 || value > 10)
1784 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1785 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1792 {
1793 u32 reg;
1794 u16 value;
1795 u16 eeprom;
1796
1797 /*
1798 * Read EEPROM word for configuration.
1799 */
1800 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1801
1802 /*
1803 * Identify RF chipset.
1804 */
1805 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1806 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1807 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1808 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1809
1810 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1811 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1812 return -ENODEV;
1813 }
1814
1815 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1816 !rt2x00_rf(rt2x00dev, RF2528) &&
1817 !rt2x00_rf(rt2x00dev, RF5225) &&
1818 !rt2x00_rf(rt2x00dev, RF2527)) {
1819 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1820 return -ENODEV;
1821 }
1822
1823 /*
1824 * Identify default antenna configuration.
1825 */
1826 rt2x00dev->default_ant.tx =
1827 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1828 rt2x00dev->default_ant.rx =
1829 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1830
1831 /*
1832 * Read the Frame type.
1833 */
1834 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1835 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1836
1837 /*
1838 * Detect if this device has an hardware controlled radio.
1839 */
1840 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1841 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1842
1843 /*
1844 * Read frequency offset.
1845 */
1846 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1847 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1848
1849 /*
1850 * Read external LNA informations.
1851 */
1852 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1853
1854 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1855 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1856 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1857 }
1858
1859 /*
1860 * Store led settings, for correct led behaviour.
1861 */
1862 #ifdef CONFIG_RT2X00_LIB_LEDS
1863 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1864
1865 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1866 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1867 if (value == LED_MODE_SIGNAL_STRENGTH)
1868 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1869 LED_TYPE_QUALITY);
1870
1871 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1872 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1873 rt2x00_get_field16(eeprom,
1874 EEPROM_LED_POLARITY_GPIO_0));
1875 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1876 rt2x00_get_field16(eeprom,
1877 EEPROM_LED_POLARITY_GPIO_1));
1878 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1879 rt2x00_get_field16(eeprom,
1880 EEPROM_LED_POLARITY_GPIO_2));
1881 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1882 rt2x00_get_field16(eeprom,
1883 EEPROM_LED_POLARITY_GPIO_3));
1884 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1885 rt2x00_get_field16(eeprom,
1886 EEPROM_LED_POLARITY_GPIO_4));
1887 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1888 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1889 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1890 rt2x00_get_field16(eeprom,
1891 EEPROM_LED_POLARITY_RDY_G));
1892 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1893 rt2x00_get_field16(eeprom,
1894 EEPROM_LED_POLARITY_RDY_A));
1895 #endif /* CONFIG_RT2X00_LIB_LEDS */
1896
1897 return 0;
1898 }
1899
1900 /*
1901 * RF value list for RF2528
1902 * Supports: 2.4 GHz
1903 */
1904 static const struct rf_channel rf_vals_bg_2528[] = {
1905 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1906 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1907 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1908 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1909 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1910 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1911 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1912 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1913 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1914 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1915 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1916 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1917 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1918 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1919 };
1920
1921 /*
1922 * RF value list for RF5226
1923 * Supports: 2.4 GHz & 5.2 GHz
1924 */
1925 static const struct rf_channel rf_vals_5226[] = {
1926 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1927 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1928 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1929 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1930 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1931 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1932 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1933 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1934 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1935 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1936 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1937 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1938 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1939 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1940
1941 /* 802.11 UNI / HyperLan 2 */
1942 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1943 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1944 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1945 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1946 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1947 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1948 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1949 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1950
1951 /* 802.11 HyperLan 2 */
1952 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1953 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1954 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1955 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1956 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1957 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1958 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1959 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1960 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1961 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1962
1963 /* 802.11 UNII */
1964 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1965 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1966 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1967 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1968 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1969 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1970
1971 /* MMAC(Japan)J52 ch 34,38,42,46 */
1972 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1973 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1974 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1975 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1976 };
1977
1978 /*
1979 * RF value list for RF5225 & RF2527
1980 * Supports: 2.4 GHz & 5.2 GHz
1981 */
1982 static const struct rf_channel rf_vals_5225_2527[] = {
1983 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
1984 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
1985 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
1986 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
1987 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
1988 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
1989 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
1990 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
1991 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
1992 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
1993 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
1994 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
1995 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
1996 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
1997
1998 /* 802.11 UNI / HyperLan 2 */
1999 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2000 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2001 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2002 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2003 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2004 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2005 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2006 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2007
2008 /* 802.11 HyperLan 2 */
2009 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2010 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2011 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2012 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2013 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2014 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2015 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2016 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2017 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2018 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2019
2020 /* 802.11 UNII */
2021 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2022 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2023 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2024 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2025 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2026 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2027
2028 /* MMAC(Japan)J52 ch 34,38,42,46 */
2029 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2030 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2031 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2032 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2033 };
2034
2035
2036 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2037 {
2038 struct hw_mode_spec *spec = &rt2x00dev->spec;
2039 struct channel_info *info;
2040 char *tx_power;
2041 unsigned int i;
2042
2043 /*
2044 * Initialize all hw fields.
2045 */
2046 rt2x00dev->hw->flags =
2047 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2048 IEEE80211_HW_SIGNAL_DBM |
2049 IEEE80211_HW_SUPPORTS_PS |
2050 IEEE80211_HW_PS_NULLFUNC_STACK;
2051
2052 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2053 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2054 rt2x00_eeprom_addr(rt2x00dev,
2055 EEPROM_MAC_ADDR_0));
2056
2057 /*
2058 * Initialize hw_mode information.
2059 */
2060 spec->supported_bands = SUPPORT_BAND_2GHZ;
2061 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2062
2063 if (rt2x00_rf(rt2x00dev, RF2528)) {
2064 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2065 spec->channels = rf_vals_bg_2528;
2066 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2067 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2068 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2069 spec->channels = rf_vals_5226;
2070 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2071 spec->num_channels = 14;
2072 spec->channels = rf_vals_5225_2527;
2073 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2074 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2075 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2076 spec->channels = rf_vals_5225_2527;
2077 }
2078
2079 /*
2080 * Create channel information array
2081 */
2082 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2083 if (!info)
2084 return -ENOMEM;
2085
2086 spec->channels_info = info;
2087
2088 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2089 for (i = 0; i < 14; i++)
2090 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2091
2092 if (spec->num_channels > 14) {
2093 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2094 for (i = 14; i < spec->num_channels; i++)
2095 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2096 }
2097
2098 return 0;
2099 }
2100
2101 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2102 {
2103 int retval;
2104
2105 /*
2106 * Allocate eeprom data.
2107 */
2108 retval = rt73usb_validate_eeprom(rt2x00dev);
2109 if (retval)
2110 return retval;
2111
2112 retval = rt73usb_init_eeprom(rt2x00dev);
2113 if (retval)
2114 return retval;
2115
2116 /*
2117 * Initialize hw specifications.
2118 */
2119 retval = rt73usb_probe_hw_mode(rt2x00dev);
2120 if (retval)
2121 return retval;
2122
2123 /*
2124 * This device has multiple filters for control frames,
2125 * but has no a separate filter for PS Poll frames.
2126 */
2127 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2128
2129 /*
2130 * This device requires firmware.
2131 */
2132 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2133 if (!modparam_nohwcrypt)
2134 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2135
2136 /*
2137 * Set the rssi offset.
2138 */
2139 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2140
2141 return 0;
2142 }
2143
2144 /*
2145 * IEEE80211 stack callback functions.
2146 */
2147 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2148 const struct ieee80211_tx_queue_params *params)
2149 {
2150 struct rt2x00_dev *rt2x00dev = hw->priv;
2151 struct data_queue *queue;
2152 struct rt2x00_field32 field;
2153 int retval;
2154 u32 reg;
2155 u32 offset;
2156
2157 /*
2158 * First pass the configuration through rt2x00lib, that will
2159 * update the queue settings and validate the input. After that
2160 * we are free to update the registers based on the value
2161 * in the queue parameter.
2162 */
2163 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2164 if (retval)
2165 return retval;
2166
2167 /*
2168 * We only need to perform additional register initialization
2169 * for WMM queues/
2170 */
2171 if (queue_idx >= 4)
2172 return 0;
2173
2174 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2175
2176 /* Update WMM TXOP register */
2177 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2178 field.bit_offset = (queue_idx & 1) * 16;
2179 field.bit_mask = 0xffff << field.bit_offset;
2180
2181 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2182 rt2x00_set_field32(&reg, field, queue->txop);
2183 rt2x00usb_register_write(rt2x00dev, offset, reg);
2184
2185 /* Update WMM registers */
2186 field.bit_offset = queue_idx * 4;
2187 field.bit_mask = 0xf << field.bit_offset;
2188
2189 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2190 rt2x00_set_field32(&reg, field, queue->aifs);
2191 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2192
2193 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2194 rt2x00_set_field32(&reg, field, queue->cw_min);
2195 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2196
2197 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2198 rt2x00_set_field32(&reg, field, queue->cw_max);
2199 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2200
2201 return 0;
2202 }
2203
2204 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2205 {
2206 struct rt2x00_dev *rt2x00dev = hw->priv;
2207 u64 tsf;
2208 u32 reg;
2209
2210 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2211 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2212 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2213 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2214
2215 return tsf;
2216 }
2217
2218 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2219 .tx = rt2x00mac_tx,
2220 .start = rt2x00mac_start,
2221 .stop = rt2x00mac_stop,
2222 .add_interface = rt2x00mac_add_interface,
2223 .remove_interface = rt2x00mac_remove_interface,
2224 .config = rt2x00mac_config,
2225 .configure_filter = rt2x00mac_configure_filter,
2226 .set_tim = rt2x00mac_set_tim,
2227 .set_key = rt2x00mac_set_key,
2228 .get_stats = rt2x00mac_get_stats,
2229 .bss_info_changed = rt2x00mac_bss_info_changed,
2230 .conf_tx = rt73usb_conf_tx,
2231 .get_tsf = rt73usb_get_tsf,
2232 .rfkill_poll = rt2x00mac_rfkill_poll,
2233 };
2234
2235 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2236 .probe_hw = rt73usb_probe_hw,
2237 .get_firmware_name = rt73usb_get_firmware_name,
2238 .check_firmware = rt73usb_check_firmware,
2239 .load_firmware = rt73usb_load_firmware,
2240 .initialize = rt2x00usb_initialize,
2241 .uninitialize = rt2x00usb_uninitialize,
2242 .clear_entry = rt2x00usb_clear_entry,
2243 .set_device_state = rt73usb_set_device_state,
2244 .rfkill_poll = rt73usb_rfkill_poll,
2245 .link_stats = rt73usb_link_stats,
2246 .reset_tuner = rt73usb_reset_tuner,
2247 .link_tuner = rt73usb_link_tuner,
2248 .write_tx_desc = rt73usb_write_tx_desc,
2249 .write_tx_data = rt2x00usb_write_tx_data,
2250 .write_beacon = rt73usb_write_beacon,
2251 .get_tx_data_len = rt73usb_get_tx_data_len,
2252 .kick_tx_queue = rt2x00usb_kick_tx_queue,
2253 .kill_tx_queue = rt2x00usb_kill_tx_queue,
2254 .fill_rxdone = rt73usb_fill_rxdone,
2255 .config_shared_key = rt73usb_config_shared_key,
2256 .config_pairwise_key = rt73usb_config_pairwise_key,
2257 .config_filter = rt73usb_config_filter,
2258 .config_intf = rt73usb_config_intf,
2259 .config_erp = rt73usb_config_erp,
2260 .config_ant = rt73usb_config_ant,
2261 .config = rt73usb_config,
2262 };
2263
2264 static const struct data_queue_desc rt73usb_queue_rx = {
2265 .entry_num = RX_ENTRIES,
2266 .data_size = DATA_FRAME_SIZE,
2267 .desc_size = RXD_DESC_SIZE,
2268 .priv_size = sizeof(struct queue_entry_priv_usb),
2269 };
2270
2271 static const struct data_queue_desc rt73usb_queue_tx = {
2272 .entry_num = TX_ENTRIES,
2273 .data_size = DATA_FRAME_SIZE,
2274 .desc_size = TXD_DESC_SIZE,
2275 .priv_size = sizeof(struct queue_entry_priv_usb),
2276 };
2277
2278 static const struct data_queue_desc rt73usb_queue_bcn = {
2279 .entry_num = 4 * BEACON_ENTRIES,
2280 .data_size = MGMT_FRAME_SIZE,
2281 .desc_size = TXINFO_SIZE,
2282 .priv_size = sizeof(struct queue_entry_priv_usb),
2283 };
2284
2285 static const struct rt2x00_ops rt73usb_ops = {
2286 .name = KBUILD_MODNAME,
2287 .max_sta_intf = 1,
2288 .max_ap_intf = 4,
2289 .eeprom_size = EEPROM_SIZE,
2290 .rf_size = RF_SIZE,
2291 .tx_queues = NUM_TX_QUEUES,
2292 .extra_tx_headroom = TXD_DESC_SIZE,
2293 .rx = &rt73usb_queue_rx,
2294 .tx = &rt73usb_queue_tx,
2295 .bcn = &rt73usb_queue_bcn,
2296 .lib = &rt73usb_rt2x00_ops,
2297 .hw = &rt73usb_mac80211_ops,
2298 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2299 .debugfs = &rt73usb_rt2x00debug,
2300 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2301 };
2302
2303 /*
2304 * rt73usb module information.
2305 */
2306 static struct usb_device_id rt73usb_device_table[] = {
2307 /* AboCom */
2308 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2309 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2310 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2311 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2312 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2313 /* AL */
2314 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2315 /* Amigo */
2316 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2317 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2318 /* AMIT */
2319 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2320 /* Askey */
2321 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2322 /* ASUS */
2323 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2324 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2325 /* Belkin */
2326 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2327 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2328 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2329 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2330 /* Billionton */
2331 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2332 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2333 /* Buffalo */
2334 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2335 { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops) },
2336 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2337 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2338 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2339 /* CEIVA */
2340 { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops) },
2341 /* CNet */
2342 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2343 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2344 /* Conceptronic */
2345 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2346 /* Corega */
2347 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2348 /* D-Link */
2349 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2350 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2351 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2352 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2353 /* Edimax */
2354 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2355 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2356 /* EnGenius */
2357 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2358 /* Gemtek */
2359 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2360 /* Gigabyte */
2361 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2362 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2363 /* Huawei-3Com */
2364 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2365 /* Hercules */
2366 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2367 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2368 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2369 /* Linksys */
2370 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2371 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2372 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2373 /* MSI */
2374 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2375 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2376 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2377 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2378 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2379 /* Ovislink */
2380 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* Ralink */
2382 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2383 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2384 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2385 /* Qcom */
2386 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2387 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2388 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2389 /* Samsung */
2390 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2391 /* Senao */
2392 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2393 /* Sitecom */
2394 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2395 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2396 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2397 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2398 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2399 /* Surecom */
2400 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2401 /* Tilgin */
2402 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2403 /* Philips */
2404 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2405 /* Planex */
2406 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2407 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2408 /* WideTell */
2409 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2410 /* Zcom */
2411 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2412 /* ZyXEL */
2413 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2414 { 0, }
2415 };
2416
2417 MODULE_AUTHOR(DRV_PROJECT);
2418 MODULE_VERSION(DRV_VERSION);
2419 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2420 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2421 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2422 MODULE_FIRMWARE(FIRMWARE_RT2571);
2423 MODULE_LICENSE("GPL");
2424
2425 static struct usb_driver rt73usb_driver = {
2426 .name = KBUILD_MODNAME,
2427 .id_table = rt73usb_device_table,
2428 .probe = rt2x00usb_probe,
2429 .disconnect = rt2x00usb_disconnect,
2430 .suspend = rt2x00usb_suspend,
2431 .resume = rt2x00usb_resume,
2432 };
2433
2434 static int __init rt73usb_init(void)
2435 {
2436 return usb_register(&rt73usb_driver);
2437 }
2438
2439 static void __exit rt73usb_exit(void)
2440 {
2441 usb_deregister(&rt73usb_driver);
2442 }
2443
2444 module_init(rt73usb_init);
2445 module_exit(rt73usb_exit);