]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/rtlwifi/base.c
mac80211: make beacon filtering per virtual interface
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / rtlwifi / base.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2012 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/ip.h>
33 #include <linux/module.h>
34 #include "wifi.h"
35 #include "rc.h"
36 #include "base.h"
37 #include "efuse.h"
38 #include "cam.h"
39 #include "ps.h"
40 #include "regd.h"
41
42 /*
43 *NOTICE!!!: This file will be very big, we hsould
44 *keep it clear under follwing roles:
45 *
46 *This file include follwing part, so, if you add new
47 *functions into this file, please check which part it
48 *should includes. or check if you should add new part
49 *for this file:
50 *
51 *1) mac80211 init functions
52 *2) tx information functions
53 *3) functions called by core.c
54 *4) wq & timer callback functions
55 *5) frame process functions
56 *6) IOT functions
57 *7) sysfs functions
58 *8) ...
59 */
60
61 /*********************************************************
62 *
63 * mac80211 init functions
64 *
65 *********************************************************/
66 static struct ieee80211_channel rtl_channeltable_2g[] = {
67 {.center_freq = 2412, .hw_value = 1,},
68 {.center_freq = 2417, .hw_value = 2,},
69 {.center_freq = 2422, .hw_value = 3,},
70 {.center_freq = 2427, .hw_value = 4,},
71 {.center_freq = 2432, .hw_value = 5,},
72 {.center_freq = 2437, .hw_value = 6,},
73 {.center_freq = 2442, .hw_value = 7,},
74 {.center_freq = 2447, .hw_value = 8,},
75 {.center_freq = 2452, .hw_value = 9,},
76 {.center_freq = 2457, .hw_value = 10,},
77 {.center_freq = 2462, .hw_value = 11,},
78 {.center_freq = 2467, .hw_value = 12,},
79 {.center_freq = 2472, .hw_value = 13,},
80 {.center_freq = 2484, .hw_value = 14,},
81 };
82
83 static struct ieee80211_channel rtl_channeltable_5g[] = {
84 {.center_freq = 5180, .hw_value = 36,},
85 {.center_freq = 5200, .hw_value = 40,},
86 {.center_freq = 5220, .hw_value = 44,},
87 {.center_freq = 5240, .hw_value = 48,},
88 {.center_freq = 5260, .hw_value = 52,},
89 {.center_freq = 5280, .hw_value = 56,},
90 {.center_freq = 5300, .hw_value = 60,},
91 {.center_freq = 5320, .hw_value = 64,},
92 {.center_freq = 5500, .hw_value = 100,},
93 {.center_freq = 5520, .hw_value = 104,},
94 {.center_freq = 5540, .hw_value = 108,},
95 {.center_freq = 5560, .hw_value = 112,},
96 {.center_freq = 5580, .hw_value = 116,},
97 {.center_freq = 5600, .hw_value = 120,},
98 {.center_freq = 5620, .hw_value = 124,},
99 {.center_freq = 5640, .hw_value = 128,},
100 {.center_freq = 5660, .hw_value = 132,},
101 {.center_freq = 5680, .hw_value = 136,},
102 {.center_freq = 5700, .hw_value = 140,},
103 {.center_freq = 5745, .hw_value = 149,},
104 {.center_freq = 5765, .hw_value = 153,},
105 {.center_freq = 5785, .hw_value = 157,},
106 {.center_freq = 5805, .hw_value = 161,},
107 {.center_freq = 5825, .hw_value = 165,},
108 };
109
110 static struct ieee80211_rate rtl_ratetable_2g[] = {
111 {.bitrate = 10, .hw_value = 0x00,},
112 {.bitrate = 20, .hw_value = 0x01,},
113 {.bitrate = 55, .hw_value = 0x02,},
114 {.bitrate = 110, .hw_value = 0x03,},
115 {.bitrate = 60, .hw_value = 0x04,},
116 {.bitrate = 90, .hw_value = 0x05,},
117 {.bitrate = 120, .hw_value = 0x06,},
118 {.bitrate = 180, .hw_value = 0x07,},
119 {.bitrate = 240, .hw_value = 0x08,},
120 {.bitrate = 360, .hw_value = 0x09,},
121 {.bitrate = 480, .hw_value = 0x0a,},
122 {.bitrate = 540, .hw_value = 0x0b,},
123 };
124
125 static struct ieee80211_rate rtl_ratetable_5g[] = {
126 {.bitrate = 60, .hw_value = 0x04,},
127 {.bitrate = 90, .hw_value = 0x05,},
128 {.bitrate = 120, .hw_value = 0x06,},
129 {.bitrate = 180, .hw_value = 0x07,},
130 {.bitrate = 240, .hw_value = 0x08,},
131 {.bitrate = 360, .hw_value = 0x09,},
132 {.bitrate = 480, .hw_value = 0x0a,},
133 {.bitrate = 540, .hw_value = 0x0b,},
134 };
135
136 static const struct ieee80211_supported_band rtl_band_2ghz = {
137 .band = IEEE80211_BAND_2GHZ,
138
139 .channels = rtl_channeltable_2g,
140 .n_channels = ARRAY_SIZE(rtl_channeltable_2g),
141
142 .bitrates = rtl_ratetable_2g,
143 .n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
144
145 .ht_cap = {0},
146 };
147
148 static struct ieee80211_supported_band rtl_band_5ghz = {
149 .band = IEEE80211_BAND_5GHZ,
150
151 .channels = rtl_channeltable_5g,
152 .n_channels = ARRAY_SIZE(rtl_channeltable_5g),
153
154 .bitrates = rtl_ratetable_5g,
155 .n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
156
157 .ht_cap = {0},
158 };
159
160 static const u8 tid_to_ac[] = {
161 2, /* IEEE80211_AC_BE */
162 3, /* IEEE80211_AC_BK */
163 3, /* IEEE80211_AC_BK */
164 2, /* IEEE80211_AC_BE */
165 1, /* IEEE80211_AC_VI */
166 1, /* IEEE80211_AC_VI */
167 0, /* IEEE80211_AC_VO */
168 0, /* IEEE80211_AC_VO */
169 };
170
171 u8 rtl_tid_to_ac(struct ieee80211_hw *hw, u8 tid)
172 {
173 return tid_to_ac[tid];
174 }
175
176 static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
177 struct ieee80211_sta_ht_cap *ht_cap)
178 {
179 struct rtl_priv *rtlpriv = rtl_priv(hw);
180 struct rtl_phy *rtlphy = &(rtlpriv->phy);
181
182 ht_cap->ht_supported = true;
183 ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
184 IEEE80211_HT_CAP_SGI_40 |
185 IEEE80211_HT_CAP_SGI_20 |
186 IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
187
188 if (rtlpriv->rtlhal.disable_amsdu_8k)
189 ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
190
191 /*
192 *Maximum length of AMPDU that the STA can receive.
193 *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
194 */
195 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
196
197 /*Minimum MPDU start spacing , */
198 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
199
200 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
201
202 /*
203 *hw->wiphy->bands[IEEE80211_BAND_2GHZ]
204 *base on ant_num
205 *rx_mask: RX mask
206 *if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7
207 *if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15
208 *if rx_ant >=3 rx_mask[2]=0xff;
209 *if BW_40 rx_mask[4]=0x01;
210 *highest supported RX rate
211 */
212 if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) {
213
214 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T2R or 2T2R\n");
215
216 ht_cap->mcs.rx_mask[0] = 0xFF;
217 ht_cap->mcs.rx_mask[1] = 0xFF;
218 ht_cap->mcs.rx_mask[4] = 0x01;
219
220 ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
221 } else if (get_rf_type(rtlphy) == RF_1T1R) {
222
223 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n");
224
225 ht_cap->mcs.rx_mask[0] = 0xFF;
226 ht_cap->mcs.rx_mask[1] = 0x00;
227 ht_cap->mcs.rx_mask[4] = 0x01;
228
229 ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7);
230 }
231 }
232
233 static void _rtl_init_mac80211(struct ieee80211_hw *hw)
234 {
235 struct rtl_priv *rtlpriv = rtl_priv(hw);
236 struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
237 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
238 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239 struct ieee80211_supported_band *sband;
240
241
242 if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset ==
243 BAND_ON_BOTH) {
244 /* 1: 2.4 G bands */
245 /* <1> use mac->bands as mem for hw->wiphy->bands */
246 sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
247
248 /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
249 * to default value(1T1R) */
250 memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
251 sizeof(struct ieee80211_supported_band));
252
253 /* <3> init ht cap base on ant_num */
254 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
255
256 /* <4> set mac->sband to wiphy->sband */
257 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
258
259 /* 2: 5 G bands */
260 /* <1> use mac->bands as mem for hw->wiphy->bands */
261 sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
262
263 /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
264 * to default value(1T1R) */
265 memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
266 sizeof(struct ieee80211_supported_band));
267
268 /* <3> init ht cap base on ant_num */
269 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
270
271 /* <4> set mac->sband to wiphy->sband */
272 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
273 } else {
274 if (rtlhal->current_bandtype == BAND_ON_2_4G) {
275 /* <1> use mac->bands as mem for hw->wiphy->bands */
276 sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
277
278 /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
279 * to default value(1T1R) */
280 memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
281 &rtl_band_2ghz,
282 sizeof(struct ieee80211_supported_band));
283
284 /* <3> init ht cap base on ant_num */
285 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
286
287 /* <4> set mac->sband to wiphy->sband */
288 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
289 } else if (rtlhal->current_bandtype == BAND_ON_5G) {
290 /* <1> use mac->bands as mem for hw->wiphy->bands */
291 sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
292
293 /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
294 * to default value(1T1R) */
295 memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
296 &rtl_band_5ghz,
297 sizeof(struct ieee80211_supported_band));
298
299 /* <3> init ht cap base on ant_num */
300 _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
301
302 /* <4> set mac->sband to wiphy->sband */
303 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
304 } else {
305 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Err BAND %d\n",
306 rtlhal->current_bandtype);
307 }
308 }
309 /* <5> set hw caps */
310 hw->flags = IEEE80211_HW_SIGNAL_DBM |
311 IEEE80211_HW_RX_INCLUDES_FCS |
312 IEEE80211_HW_AMPDU_AGGREGATION |
313 IEEE80211_HW_CONNECTION_MONITOR |
314 /* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
315 IEEE80211_HW_REPORTS_TX_ACK_STATUS | 0;
316
317 /* swlps or hwlps has been set in diff chip in init_sw_vars */
318 if (rtlpriv->psc.swctrl_lps)
319 hw->flags |= IEEE80211_HW_SUPPORTS_PS |
320 IEEE80211_HW_PS_NULLFUNC_STACK |
321 /* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
322 0;
323
324 hw->wiphy->interface_modes =
325 BIT(NL80211_IFTYPE_AP) |
326 BIT(NL80211_IFTYPE_STATION) |
327 BIT(NL80211_IFTYPE_ADHOC);
328
329 hw->wiphy->rts_threshold = 2347;
330
331 hw->queues = AC_MAX;
332 hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;
333
334 /* TODO: Correct this value for our hw */
335 /* TODO: define these hard code value */
336 hw->channel_change_time = 100;
337 hw->max_listen_interval = 10;
338 hw->max_rate_tries = 4;
339 /* hw->max_rates = 1; */
340 hw->sta_data_size = sizeof(struct rtl_sta_info);
341
342 /* <6> mac address */
343 if (is_valid_ether_addr(rtlefuse->dev_addr)) {
344 SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
345 } else {
346 u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
347 get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
348 SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
349 }
350
351 }
352
353 static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
354 {
355 struct rtl_priv *rtlpriv = rtl_priv(hw);
356
357 /* <1> timer */
358 init_timer(&rtlpriv->works.watchdog_timer);
359 setup_timer(&rtlpriv->works.watchdog_timer,
360 rtl_watch_dog_timer_callback, (unsigned long)hw);
361
362 /* <2> work queue */
363 rtlpriv->works.hw = hw;
364 rtlpriv->works.rtl_wq = alloc_workqueue(rtlpriv->cfg->name, 0, 0);
365 INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
366 (void *)rtl_watchdog_wq_callback);
367 INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
368 (void *)rtl_ips_nic_off_wq_callback);
369 INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
370 (void *)rtl_swlps_wq_callback);
371 INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
372 (void *)rtl_swlps_rfon_wq_callback);
373
374 }
375
376 void rtl_deinit_deferred_work(struct ieee80211_hw *hw)
377 {
378 struct rtl_priv *rtlpriv = rtl_priv(hw);
379
380 del_timer_sync(&rtlpriv->works.watchdog_timer);
381
382 cancel_delayed_work(&rtlpriv->works.watchdog_wq);
383 cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
384 cancel_delayed_work(&rtlpriv->works.ps_work);
385 cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
386 }
387
388 void rtl_init_rfkill(struct ieee80211_hw *hw)
389 {
390 struct rtl_priv *rtlpriv = rtl_priv(hw);
391
392 bool radio_state;
393 bool blocked;
394 u8 valid = 0;
395
396 /*set init state to on */
397 rtlpriv->rfkill.rfkill_state = true;
398 wiphy_rfkill_set_hw_state(hw->wiphy, 0);
399
400 radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
401
402 if (valid) {
403 pr_info("wireless switch is %s\n",
404 rtlpriv->rfkill.rfkill_state ? "on" : "off");
405
406 rtlpriv->rfkill.rfkill_state = radio_state;
407
408 blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
409 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
410 }
411
412 wiphy_rfkill_start_polling(hw->wiphy);
413 }
414
415 void rtl_deinit_rfkill(struct ieee80211_hw *hw)
416 {
417 wiphy_rfkill_stop_polling(hw->wiphy);
418 }
419
420 int rtl_init_core(struct ieee80211_hw *hw)
421 {
422 struct rtl_priv *rtlpriv = rtl_priv(hw);
423 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
424
425 /* <1> init mac80211 */
426 _rtl_init_mac80211(hw);
427 rtlmac->hw = hw;
428
429 /* <2> rate control register */
430 hw->rate_control_algorithm = "rtl_rc";
431
432 /*
433 * <3> init CRDA must come after init
434 * mac80211 hw in _rtl_init_mac80211.
435 */
436 if (rtl_regd_init(hw, rtl_reg_notifier)) {
437 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "REGD init failed\n");
438 return 1;
439 } else {
440 /* CRDA regd hint must after init CRDA */
441 if (regulatory_hint(hw->wiphy, rtlpriv->regd.alpha2)) {
442 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
443 "regulatory_hint fail\n");
444 }
445 }
446
447 /* <4> locks */
448 mutex_init(&rtlpriv->locks.conf_mutex);
449 mutex_init(&rtlpriv->locks.ps_mutex);
450 spin_lock_init(&rtlpriv->locks.ips_lock);
451 spin_lock_init(&rtlpriv->locks.irq_th_lock);
452 spin_lock_init(&rtlpriv->locks.h2c_lock);
453 spin_lock_init(&rtlpriv->locks.rf_ps_lock);
454 spin_lock_init(&rtlpriv->locks.rf_lock);
455 spin_lock_init(&rtlpriv->locks.waitq_lock);
456 spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
457
458 rtlmac->link_state = MAC80211_NOLINK;
459
460 /* <5> init deferred work */
461 _rtl_init_deferred_work(hw);
462
463 return 0;
464 }
465
466 void rtl_deinit_core(struct ieee80211_hw *hw)
467 {
468 }
469
470 void rtl_init_rx_config(struct ieee80211_hw *hw)
471 {
472 struct rtl_priv *rtlpriv = rtl_priv(hw);
473 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
474
475 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
476 }
477
478 /*********************************************************
479 *
480 * tx information functions
481 *
482 *********************************************************/
483 static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
484 struct rtl_tcb_desc *tcb_desc,
485 struct ieee80211_tx_info *info)
486 {
487 struct rtl_priv *rtlpriv = rtl_priv(hw);
488 u8 rate_flag = info->control.rates[0].flags;
489
490 tcb_desc->use_shortpreamble = false;
491
492 /* 1M can only use Long Preamble. 11B spec */
493 if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
494 return;
495 else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
496 tcb_desc->use_shortpreamble = true;
497
498 return;
499 }
500
501 static void _rtl_query_shortgi(struct ieee80211_hw *hw,
502 struct ieee80211_sta *sta,
503 struct rtl_tcb_desc *tcb_desc,
504 struct ieee80211_tx_info *info)
505 {
506 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
507 u8 rate_flag = info->control.rates[0].flags;
508 u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
509 tcb_desc->use_shortgi = false;
510
511 if (sta == NULL)
512 return;
513
514 sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
515 sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
516
517 if (!(sta->ht_cap.ht_supported))
518 return;
519
520 if (!sgi_40 && !sgi_20)
521 return;
522
523 if (mac->opmode == NL80211_IFTYPE_STATION)
524 bw_40 = mac->bw_40;
525 else if (mac->opmode == NL80211_IFTYPE_AP ||
526 mac->opmode == NL80211_IFTYPE_ADHOC)
527 bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
528
529 if (bw_40 && sgi_40)
530 tcb_desc->use_shortgi = true;
531 else if ((bw_40 == false) && sgi_20)
532 tcb_desc->use_shortgi = true;
533
534 if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
535 tcb_desc->use_shortgi = false;
536 }
537
538 static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
539 struct rtl_tcb_desc *tcb_desc,
540 struct ieee80211_tx_info *info)
541 {
542 struct rtl_priv *rtlpriv = rtl_priv(hw);
543 u8 rate_flag = info->control.rates[0].flags;
544
545 /* Common Settings */
546 tcb_desc->rts_stbc = false;
547 tcb_desc->cts_enable = false;
548 tcb_desc->rts_sc = 0;
549 tcb_desc->rts_bw = false;
550 tcb_desc->rts_use_shortpreamble = false;
551 tcb_desc->rts_use_shortgi = false;
552
553 if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
554 /* Use CTS-to-SELF in protection mode. */
555 tcb_desc->rts_enable = true;
556 tcb_desc->cts_enable = true;
557 tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
558 } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
559 /* Use RTS-CTS in protection mode. */
560 tcb_desc->rts_enable = true;
561 tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
562 }
563 }
564
565 static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
566 struct ieee80211_sta *sta,
567 struct rtl_tcb_desc *tcb_desc)
568 {
569 struct rtl_priv *rtlpriv = rtl_priv(hw);
570 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
571 struct rtl_sta_info *sta_entry = NULL;
572 u8 ratr_index = 7;
573
574 if (sta) {
575 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
576 ratr_index = sta_entry->ratr_index;
577 }
578 if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
579 if (mac->opmode == NL80211_IFTYPE_STATION) {
580 tcb_desc->ratr_index = 0;
581 } else if (mac->opmode == NL80211_IFTYPE_ADHOC) {
582 if (tcb_desc->multicast || tcb_desc->broadcast) {
583 tcb_desc->hw_rate =
584 rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
585 tcb_desc->use_driver_rate = 1;
586 } else {
587 /* TODO */
588 }
589 tcb_desc->ratr_index = ratr_index;
590 } else if (mac->opmode == NL80211_IFTYPE_AP) {
591 tcb_desc->ratr_index = ratr_index;
592 }
593 }
594
595 if (rtlpriv->dm.useramask) {
596 /* TODO we will differentiate adhoc and station futrue */
597 if (mac->opmode == NL80211_IFTYPE_STATION) {
598 tcb_desc->mac_id = 0;
599
600 if (mac->mode == WIRELESS_MODE_N_24G)
601 tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
602 else if (mac->mode == WIRELESS_MODE_N_5G)
603 tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
604 else if (mac->mode & WIRELESS_MODE_G)
605 tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
606 else if (mac->mode & WIRELESS_MODE_B)
607 tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
608 else if (mac->mode & WIRELESS_MODE_A)
609 tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
610 } else if (mac->opmode == NL80211_IFTYPE_AP ||
611 mac->opmode == NL80211_IFTYPE_ADHOC) {
612 if (NULL != sta) {
613 if (sta->aid > 0)
614 tcb_desc->mac_id = sta->aid + 1;
615 else
616 tcb_desc->mac_id = 1;
617 } else {
618 tcb_desc->mac_id = 0;
619 }
620 }
621 }
622
623 }
624
625 static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
626 struct ieee80211_sta *sta,
627 struct rtl_tcb_desc *tcb_desc)
628 {
629 struct rtl_priv *rtlpriv = rtl_priv(hw);
630 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
631
632 tcb_desc->packet_bw = false;
633 if (!sta)
634 return;
635 if (mac->opmode == NL80211_IFTYPE_AP ||
636 mac->opmode == NL80211_IFTYPE_ADHOC) {
637 if (!(sta->ht_cap.ht_supported) ||
638 !(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40))
639 return;
640 } else if (mac->opmode == NL80211_IFTYPE_STATION) {
641 if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
642 return;
643 }
644 if (tcb_desc->multicast || tcb_desc->broadcast)
645 return;
646
647 /*use legency rate, shall use 20MHz */
648 if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
649 return;
650
651 tcb_desc->packet_bw = true;
652 }
653
654 static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw)
655 {
656 struct rtl_priv *rtlpriv = rtl_priv(hw);
657 struct rtl_phy *rtlphy = &(rtlpriv->phy);
658 u8 hw_rate;
659
660 if (get_rf_type(rtlphy) == RF_2T2R)
661 hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
662 else
663 hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
664
665 return hw_rate;
666 }
667
668 /* mac80211's rate_idx is like this:
669 *
670 * 2.4G band:rx_status->band == IEEE80211_BAND_2GHZ
671 *
672 * B/G rate:
673 * (rx_status->flag & RX_FLAG_HT) = 0,
674 * DESC92_RATE1M-->DESC92_RATE54M ==> idx is 0-->11,
675 *
676 * N rate:
677 * (rx_status->flag & RX_FLAG_HT) = 1,
678 * DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
679 *
680 * 5G band:rx_status->band == IEEE80211_BAND_5GHZ
681 * A rate:
682 * (rx_status->flag & RX_FLAG_HT) = 0,
683 * DESC92_RATE6M-->DESC92_RATE54M ==> idx is 0-->7,
684 *
685 * N rate:
686 * (rx_status->flag & RX_FLAG_HT) = 1,
687 * DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
688 */
689 int rtlwifi_rate_mapping(struct ieee80211_hw *hw,
690 bool isht, u8 desc_rate, bool first_ampdu)
691 {
692 int rate_idx;
693
694 if (false == isht) {
695 if (IEEE80211_BAND_2GHZ == hw->conf.channel->band) {
696 switch (desc_rate) {
697 case DESC92_RATE1M:
698 rate_idx = 0;
699 break;
700 case DESC92_RATE2M:
701 rate_idx = 1;
702 break;
703 case DESC92_RATE5_5M:
704 rate_idx = 2;
705 break;
706 case DESC92_RATE11M:
707 rate_idx = 3;
708 break;
709 case DESC92_RATE6M:
710 rate_idx = 4;
711 break;
712 case DESC92_RATE9M:
713 rate_idx = 5;
714 break;
715 case DESC92_RATE12M:
716 rate_idx = 6;
717 break;
718 case DESC92_RATE18M:
719 rate_idx = 7;
720 break;
721 case DESC92_RATE24M:
722 rate_idx = 8;
723 break;
724 case DESC92_RATE36M:
725 rate_idx = 9;
726 break;
727 case DESC92_RATE48M:
728 rate_idx = 10;
729 break;
730 case DESC92_RATE54M:
731 rate_idx = 11;
732 break;
733 default:
734 rate_idx = 0;
735 break;
736 }
737 } else {
738 switch (desc_rate) {
739 case DESC92_RATE6M:
740 rate_idx = 0;
741 break;
742 case DESC92_RATE9M:
743 rate_idx = 1;
744 break;
745 case DESC92_RATE12M:
746 rate_idx = 2;
747 break;
748 case DESC92_RATE18M:
749 rate_idx = 3;
750 break;
751 case DESC92_RATE24M:
752 rate_idx = 4;
753 break;
754 case DESC92_RATE36M:
755 rate_idx = 5;
756 break;
757 case DESC92_RATE48M:
758 rate_idx = 6;
759 break;
760 case DESC92_RATE54M:
761 rate_idx = 7;
762 break;
763 default:
764 rate_idx = 0;
765 break;
766 }
767 }
768
769 } else {
770
771 switch (desc_rate) {
772 case DESC92_RATEMCS0:
773 rate_idx = 0;
774 break;
775 case DESC92_RATEMCS1:
776 rate_idx = 1;
777 break;
778 case DESC92_RATEMCS2:
779 rate_idx = 2;
780 break;
781 case DESC92_RATEMCS3:
782 rate_idx = 3;
783 break;
784 case DESC92_RATEMCS4:
785 rate_idx = 4;
786 break;
787 case DESC92_RATEMCS5:
788 rate_idx = 5;
789 break;
790 case DESC92_RATEMCS6:
791 rate_idx = 6;
792 break;
793 case DESC92_RATEMCS7:
794 rate_idx = 7;
795 break;
796 case DESC92_RATEMCS8:
797 rate_idx = 8;
798 break;
799 case DESC92_RATEMCS9:
800 rate_idx = 9;
801 break;
802 case DESC92_RATEMCS10:
803 rate_idx = 10;
804 break;
805 case DESC92_RATEMCS11:
806 rate_idx = 11;
807 break;
808 case DESC92_RATEMCS12:
809 rate_idx = 12;
810 break;
811 case DESC92_RATEMCS13:
812 rate_idx = 13;
813 break;
814 case DESC92_RATEMCS14:
815 rate_idx = 14;
816 break;
817 case DESC92_RATEMCS15:
818 rate_idx = 15;
819 break;
820 default:
821 rate_idx = 0;
822 break;
823 }
824 }
825 return rate_idx;
826 }
827 EXPORT_SYMBOL(rtlwifi_rate_mapping);
828
829 void rtl_get_tcb_desc(struct ieee80211_hw *hw,
830 struct ieee80211_tx_info *info,
831 struct ieee80211_sta *sta,
832 struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
833 {
834 struct rtl_priv *rtlpriv = rtl_priv(hw);
835 struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
836 struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
837 struct ieee80211_rate *txrate;
838 __le16 fc = hdr->frame_control;
839
840 txrate = ieee80211_get_tx_rate(hw, info);
841 tcb_desc->hw_rate = txrate->hw_value;
842
843 if (ieee80211_is_data(fc)) {
844 /*
845 *we set data rate INX 0
846 *in rtl_rc.c if skb is special data or
847 *mgt which need low data rate.
848 */
849
850 /*
851 *So tcb_desc->hw_rate is just used for
852 *special data and mgt frames
853 */
854 if (info->control.rates[0].idx == 0 ||
855 ieee80211_is_nullfunc(fc)) {
856 tcb_desc->use_driver_rate = true;
857 tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
858
859 tcb_desc->disable_ratefallback = 1;
860 } else {
861 /*
862 *because hw will nerver use hw_rate
863 *when tcb_desc->use_driver_rate = false
864 *so we never set highest N rate here,
865 *and N rate will all be controlled by FW
866 *when tcb_desc->use_driver_rate = false
867 */
868 if (sta && (sta->ht_cap.ht_supported)) {
869 tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw);
870 } else {
871 if (rtlmac->mode == WIRELESS_MODE_B) {
872 tcb_desc->hw_rate =
873 rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
874 } else {
875 tcb_desc->hw_rate =
876 rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
877 }
878 }
879 }
880
881 if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
882 tcb_desc->multicast = 1;
883 else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr)))
884 tcb_desc->broadcast = 1;
885
886 _rtl_txrate_selectmode(hw, sta, tcb_desc);
887 _rtl_query_bandwidth_mode(hw, sta, tcb_desc);
888 _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
889 _rtl_query_shortgi(hw, sta, tcb_desc, info);
890 _rtl_query_protection_mode(hw, tcb_desc, info);
891 } else {
892 tcb_desc->use_driver_rate = true;
893 tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
894 tcb_desc->disable_ratefallback = 1;
895 tcb_desc->mac_id = 0;
896 tcb_desc->packet_bw = false;
897 }
898 }
899 EXPORT_SYMBOL(rtl_get_tcb_desc);
900
901 bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
902 {
903 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
904 struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
905 struct rtl_priv *rtlpriv = rtl_priv(hw);
906 __le16 fc = hdr->frame_control;
907 u8 *act = (u8 *) (((u8 *) skb->data + MAC80211_3ADDR_LEN));
908 u8 category;
909
910 if (!ieee80211_is_action(fc))
911 return true;
912
913 category = *act;
914 act++;
915 switch (category) {
916 case ACT_CAT_BA:
917 switch (*act) {
918 case ACT_ADDBAREQ:
919 if (mac->act_scanning)
920 return false;
921
922 RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
923 "%s ACT_ADDBAREQ From :%pM\n",
924 is_tx ? "Tx" : "Rx", hdr->addr2);
925 break;
926 case ACT_ADDBARSP:
927 RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
928 "%s ACT_ADDBARSP From :%pM\n",
929 is_tx ? "Tx" : "Rx", hdr->addr2);
930 break;
931 case ACT_DELBA:
932 RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
933 "ACT_ADDBADEL From :%pM\n", hdr->addr2);
934 break;
935 }
936 break;
937 default:
938 break;
939 }
940
941 return true;
942 }
943
944 /*should call before software enc*/
945 u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
946 {
947 struct rtl_priv *rtlpriv = rtl_priv(hw);
948 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
949 __le16 fc = rtl_get_fc(skb);
950 u16 ether_type;
951 u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
952 const struct iphdr *ip;
953
954 if (!ieee80211_is_data(fc))
955 return false;
956
957
958 ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len +
959 SNAP_SIZE + PROTOC_TYPE_SIZE);
960 ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE);
961 /* ether_type = ntohs(ether_type); */
962
963 if (ETH_P_IP == ether_type) {
964 if (IPPROTO_UDP == ip->protocol) {
965 struct udphdr *udp = (struct udphdr *)((u8 *) ip +
966 (ip->ihl << 2));
967 if (((((u8 *) udp)[1] == 68) &&
968 (((u8 *) udp)[3] == 67)) ||
969 ((((u8 *) udp)[1] == 67) &&
970 (((u8 *) udp)[3] == 68))) {
971 /*
972 * 68 : UDP BOOTP client
973 * 67 : UDP BOOTP server
974 */
975 RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV),
976 DBG_DMESG, "dhcp %s !!\n",
977 is_tx ? "Tx" : "Rx");
978
979 if (is_tx) {
980 rtl_lps_leave(hw);
981 ppsc->last_delaylps_stamp_jiffies =
982 jiffies;
983 }
984
985 return true;
986 }
987 }
988 } else if (ETH_P_ARP == ether_type) {
989 if (is_tx) {
990 rtl_lps_leave(hw);
991 ppsc->last_delaylps_stamp_jiffies = jiffies;
992 }
993
994 return true;
995 } else if (ETH_P_PAE == ether_type) {
996 RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
997 "802.1X %s EAPOL pkt!!\n", is_tx ? "Tx" : "Rx");
998
999 if (is_tx) {
1000 rtl_lps_leave(hw);
1001 ppsc->last_delaylps_stamp_jiffies = jiffies;
1002 }
1003
1004 return true;
1005 } else if (ETH_P_IPV6 == ether_type) {
1006 /* IPv6 */
1007 return true;
1008 }
1009
1010 return false;
1011 }
1012
1013 /*********************************************************
1014 *
1015 * functions called by core.c
1016 *
1017 *********************************************************/
1018 int rtl_tx_agg_start(struct ieee80211_hw *hw,
1019 struct ieee80211_sta *sta, u16 tid, u16 *ssn)
1020 {
1021 struct rtl_priv *rtlpriv = rtl_priv(hw);
1022 struct rtl_tid_data *tid_data;
1023 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1024 struct rtl_sta_info *sta_entry = NULL;
1025
1026 if (sta == NULL)
1027 return -EINVAL;
1028
1029 if (unlikely(tid >= MAX_TID_COUNT))
1030 return -EINVAL;
1031
1032 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1033 if (!sta_entry)
1034 return -ENXIO;
1035 tid_data = &sta_entry->tids[tid];
1036
1037 RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d seq:%d\n",
1038 sta->addr, tid, tid_data->seq_number);
1039
1040 *ssn = tid_data->seq_number;
1041 tid_data->agg.agg_state = RTL_AGG_START;
1042
1043 ieee80211_start_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
1044
1045 return 0;
1046 }
1047
1048 int rtl_tx_agg_stop(struct ieee80211_hw *hw,
1049 struct ieee80211_sta *sta, u16 tid)
1050 {
1051 struct rtl_priv *rtlpriv = rtl_priv(hw);
1052 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1053 struct rtl_sta_info *sta_entry = NULL;
1054
1055 if (sta == NULL)
1056 return -EINVAL;
1057
1058 if (!sta->addr) {
1059 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
1060 return -EINVAL;
1061 }
1062
1063 RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
1064 sta->addr, tid);
1065
1066 if (unlikely(tid >= MAX_TID_COUNT))
1067 return -EINVAL;
1068
1069 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1070 sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
1071
1072 ieee80211_stop_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
1073
1074 return 0;
1075 }
1076
1077 int rtl_tx_agg_oper(struct ieee80211_hw *hw,
1078 struct ieee80211_sta *sta, u16 tid)
1079 {
1080 struct rtl_priv *rtlpriv = rtl_priv(hw);
1081 struct rtl_sta_info *sta_entry = NULL;
1082
1083 if (sta == NULL)
1084 return -EINVAL;
1085
1086 if (!sta->addr) {
1087 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
1088 return -EINVAL;
1089 }
1090
1091 RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
1092 sta->addr, tid);
1093
1094 if (unlikely(tid >= MAX_TID_COUNT))
1095 return -EINVAL;
1096
1097 sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1098 sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
1099
1100 return 0;
1101 }
1102
1103 /*********************************************************
1104 *
1105 * wq & timer callback functions
1106 *
1107 *********************************************************/
1108 void rtl_watchdog_wq_callback(void *data)
1109 {
1110 struct rtl_works *rtlworks = container_of_dwork_rtl(data,
1111 struct rtl_works,
1112 watchdog_wq);
1113 struct ieee80211_hw *hw = rtlworks->hw;
1114 struct rtl_priv *rtlpriv = rtl_priv(hw);
1115 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1116 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1117 bool busytraffic = false;
1118 bool higher_busytraffic = false;
1119 bool higher_busyrxtraffic = false;
1120 u8 idx, tid;
1121 u32 rx_cnt_inp4eriod = 0;
1122 u32 tx_cnt_inp4eriod = 0;
1123 u32 aver_rx_cnt_inperiod = 0;
1124 u32 aver_tx_cnt_inperiod = 0;
1125 u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
1126 u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
1127 bool enter_ps = false;
1128
1129 if (is_hal_stop(rtlhal))
1130 return;
1131
1132 /* <1> Determine if action frame is allowed */
1133 if (mac->link_state > MAC80211_NOLINK) {
1134 if (mac->cnt_after_linked < 20)
1135 mac->cnt_after_linked++;
1136 } else {
1137 mac->cnt_after_linked = 0;
1138 }
1139
1140 /*
1141 *<2> to check if traffic busy, if
1142 * busytraffic we don't change channel
1143 */
1144 if (mac->link_state >= MAC80211_LINKED) {
1145
1146 /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
1147 for (idx = 0; idx <= 2; idx++) {
1148 rtlpriv->link_info.num_rx_in4period[idx] =
1149 rtlpriv->link_info.num_rx_in4period[idx + 1];
1150 rtlpriv->link_info.num_tx_in4period[idx] =
1151 rtlpriv->link_info.num_tx_in4period[idx + 1];
1152 }
1153 rtlpriv->link_info.num_rx_in4period[3] =
1154 rtlpriv->link_info.num_rx_inperiod;
1155 rtlpriv->link_info.num_tx_in4period[3] =
1156 rtlpriv->link_info.num_tx_inperiod;
1157 for (idx = 0; idx <= 3; idx++) {
1158 rx_cnt_inp4eriod +=
1159 rtlpriv->link_info.num_rx_in4period[idx];
1160 tx_cnt_inp4eriod +=
1161 rtlpriv->link_info.num_tx_in4period[idx];
1162 }
1163 aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
1164 aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
1165
1166 /* (2) check traffic busy */
1167 if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100)
1168 busytraffic = true;
1169
1170 /* Higher Tx/Rx data. */
1171 if (aver_rx_cnt_inperiod > 4000 ||
1172 aver_tx_cnt_inperiod > 4000) {
1173 higher_busytraffic = true;
1174
1175 /* Extremely high Rx data. */
1176 if (aver_rx_cnt_inperiod > 5000)
1177 higher_busyrxtraffic = true;
1178 }
1179
1180 /* check every tid's tx traffic */
1181 for (tid = 0; tid <= 7; tid++) {
1182 for (idx = 0; idx <= 2; idx++)
1183 rtlpriv->link_info.tidtx_in4period[tid][idx] =
1184 rtlpriv->link_info.tidtx_in4period[tid]
1185 [idx + 1];
1186 rtlpriv->link_info.tidtx_in4period[tid][3] =
1187 rtlpriv->link_info.tidtx_inperiod[tid];
1188
1189 for (idx = 0; idx <= 3; idx++)
1190 tidtx_inp4eriod[tid] +=
1191 rtlpriv->link_info.tidtx_in4period[tid][idx];
1192 aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
1193 if (aver_tidtx_inperiod[tid] > 5000)
1194 rtlpriv->link_info.higher_busytxtraffic[tid] =
1195 true;
1196 else
1197 rtlpriv->link_info.higher_busytxtraffic[tid] =
1198 false;
1199 }
1200
1201 if (((rtlpriv->link_info.num_rx_inperiod +
1202 rtlpriv->link_info.num_tx_inperiod) > 8) ||
1203 (rtlpriv->link_info.num_rx_inperiod > 2))
1204 enter_ps = false;
1205 else
1206 enter_ps = true;
1207
1208 /* LeisurePS only work in infra mode. */
1209 if (enter_ps)
1210 rtl_lps_enter(hw);
1211 else
1212 rtl_lps_leave(hw);
1213 }
1214
1215 rtlpriv->link_info.num_rx_inperiod = 0;
1216 rtlpriv->link_info.num_tx_inperiod = 0;
1217 for (tid = 0; tid <= 7; tid++)
1218 rtlpriv->link_info.tidtx_inperiod[tid] = 0;
1219
1220 rtlpriv->link_info.busytraffic = busytraffic;
1221 rtlpriv->link_info.higher_busytraffic = higher_busytraffic;
1222 rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic;
1223
1224 /* <3> DM */
1225 rtlpriv->cfg->ops->dm_watchdog(hw);
1226 }
1227
1228 void rtl_watch_dog_timer_callback(unsigned long data)
1229 {
1230 struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
1231 struct rtl_priv *rtlpriv = rtl_priv(hw);
1232
1233 queue_delayed_work(rtlpriv->works.rtl_wq,
1234 &rtlpriv->works.watchdog_wq, 0);
1235
1236 mod_timer(&rtlpriv->works.watchdog_timer,
1237 jiffies + MSECS(RTL_WATCH_DOG_TIME));
1238 }
1239
1240 /*********************************************************
1241 *
1242 * frame process functions
1243 *
1244 *********************************************************/
1245 u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
1246 {
1247 struct ieee80211_mgmt *mgmt = (void *)data;
1248 u8 *pos, *end;
1249
1250 pos = (u8 *)mgmt->u.beacon.variable;
1251 end = data + len;
1252 while (pos < end) {
1253 if (pos + 2 + pos[1] > end)
1254 return NULL;
1255
1256 if (pos[0] == ie)
1257 return pos;
1258
1259 pos += 2 + pos[1];
1260 }
1261 return NULL;
1262 }
1263
1264 /* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
1265 /* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
1266 static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
1267 enum ieee80211_smps_mode smps, u8 *da, u8 *bssid)
1268 {
1269 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1270 struct sk_buff *skb;
1271 struct ieee80211_mgmt *action_frame;
1272
1273 /* 27 = header + category + action + smps mode */
1274 skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
1275 if (!skb)
1276 return NULL;
1277
1278 skb_reserve(skb, hw->extra_tx_headroom);
1279 action_frame = (void *)skb_put(skb, 27);
1280 memset(action_frame, 0, 27);
1281 memcpy(action_frame->da, da, ETH_ALEN);
1282 memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
1283 memcpy(action_frame->bssid, bssid, ETH_ALEN);
1284 action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1285 IEEE80211_STYPE_ACTION);
1286 action_frame->u.action.category = WLAN_CATEGORY_HT;
1287 action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
1288 switch (smps) {
1289 case IEEE80211_SMPS_AUTOMATIC:/* 0 */
1290 case IEEE80211_SMPS_NUM_MODES:/* 4 */
1291 WARN_ON(1);
1292 case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
1293 action_frame->u.action.u.ht_smps.smps_control =
1294 WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */
1295 break;
1296 case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
1297 action_frame->u.action.u.ht_smps.smps_control =
1298 WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */
1299 break;
1300 case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
1301 action_frame->u.action.u.ht_smps.smps_control =
1302 WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */
1303 break;
1304 }
1305
1306 return skb;
1307 }
1308
1309 int rtl_send_smps_action(struct ieee80211_hw *hw,
1310 struct ieee80211_sta *sta, u8 *da, u8 *bssid,
1311 enum ieee80211_smps_mode smps)
1312 {
1313 struct rtl_priv *rtlpriv = rtl_priv(hw);
1314 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1315 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1316 struct sk_buff *skb = rtl_make_smps_action(hw, smps, da, bssid);
1317 struct rtl_tcb_desc tcb_desc;
1318 memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
1319
1320 if (rtlpriv->mac80211.act_scanning)
1321 goto err_free;
1322
1323 if (!sta)
1324 goto err_free;
1325
1326 if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
1327 goto err_free;
1328
1329 if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
1330 goto err_free;
1331
1332 /* this is a type = mgmt * stype = action frame */
1333 if (skb) {
1334 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1335 struct rtl_sta_info *sta_entry =
1336 (struct rtl_sta_info *) sta->drv_priv;
1337 sta_entry->mimo_ps = smps;
1338 rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0);
1339
1340 info->control.rates[0].idx = 0;
1341 info->control.sta = sta;
1342 info->band = hw->conf.channel->band;
1343 rtlpriv->intf_ops->adapter_tx(hw, skb, &tcb_desc);
1344 }
1345 err_free:
1346 return 0;
1347 }
1348
1349 /*********************************************************
1350 *
1351 * IOT functions
1352 *
1353 *********************************************************/
1354 static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
1355 struct octet_string vendor_ie)
1356 {
1357 struct rtl_priv *rtlpriv = rtl_priv(hw);
1358 bool matched = false;
1359 static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
1360 static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
1361 static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
1362 static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
1363 static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
1364 static u8 racap[] = { 0x00, 0x0c, 0x43 };
1365 static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
1366 static u8 marvcap[] = { 0x00, 0x50, 0x43 };
1367
1368 if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
1369 memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
1370 rtlpriv->mac80211.vendor = PEER_ATH;
1371 matched = true;
1372 } else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
1373 memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
1374 memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
1375 rtlpriv->mac80211.vendor = PEER_BROAD;
1376 matched = true;
1377 } else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
1378 rtlpriv->mac80211.vendor = PEER_RAL;
1379 matched = true;
1380 } else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
1381 rtlpriv->mac80211.vendor = PEER_CISCO;
1382 matched = true;
1383 } else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
1384 rtlpriv->mac80211.vendor = PEER_MARV;
1385 matched = true;
1386 }
1387
1388 return matched;
1389 }
1390
1391 static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
1392 unsigned int len)
1393 {
1394 struct ieee80211_mgmt *mgmt = (void *)data;
1395 struct octet_string vendor_ie;
1396 u8 *pos, *end;
1397
1398 pos = (u8 *)mgmt->u.beacon.variable;
1399 end = data + len;
1400 while (pos < end) {
1401 if (pos[0] == 221) {
1402 vendor_ie.length = pos[1];
1403 vendor_ie.octet = &pos[2];
1404 if (rtl_chk_vendor_ouisub(hw, vendor_ie))
1405 return true;
1406 }
1407
1408 if (pos + 2 + pos[1] > end)
1409 return false;
1410
1411 pos += 2 + pos[1];
1412 }
1413 return false;
1414 }
1415
1416 void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
1417 {
1418 struct rtl_priv *rtlpriv = rtl_priv(hw);
1419 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1420 struct ieee80211_hdr *hdr = (void *)data;
1421 u32 vendor = PEER_UNKNOWN;
1422
1423 static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
1424 static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
1425 static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
1426 static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
1427 static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
1428 static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
1429 static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
1430 static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
1431 static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
1432 static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
1433 static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
1434 static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
1435 static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
1436 static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
1437 static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
1438 static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
1439
1440 if (mac->opmode != NL80211_IFTYPE_STATION)
1441 return;
1442
1443 if (mac->link_state == MAC80211_NOLINK) {
1444 mac->vendor = PEER_UNKNOWN;
1445 return;
1446 }
1447
1448 if (mac->cnt_after_linked > 2)
1449 return;
1450
1451 /* check if this really is a beacon */
1452 if (!ieee80211_is_beacon(hdr->frame_control))
1453 return;
1454
1455 /* min. beacon length + FCS_LEN */
1456 if (len <= 40 + FCS_LEN)
1457 return;
1458
1459 /* and only beacons from the associated BSSID, please */
1460 if (compare_ether_addr(hdr->addr3, rtlpriv->mac80211.bssid))
1461 return;
1462
1463 if (rtl_find_221_ie(hw, data, len))
1464 vendor = mac->vendor;
1465
1466 if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
1467 (memcmp(mac->bssid, ap5_2, 3) == 0) ||
1468 (memcmp(mac->bssid, ap5_3, 3) == 0) ||
1469 (memcmp(mac->bssid, ap5_4, 3) == 0) ||
1470 (memcmp(mac->bssid, ap5_5, 3) == 0) ||
1471 (memcmp(mac->bssid, ap5_6, 3) == 0) ||
1472 vendor == PEER_ATH) {
1473 vendor = PEER_ATH;
1474 RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n");
1475 } else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
1476 (memcmp(mac->bssid, ap4_5, 3) == 0) ||
1477 (memcmp(mac->bssid, ap4_1, 3) == 0) ||
1478 (memcmp(mac->bssid, ap4_2, 3) == 0) ||
1479 (memcmp(mac->bssid, ap4_3, 3) == 0) ||
1480 vendor == PEER_RAL) {
1481 RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n");
1482 vendor = PEER_RAL;
1483 } else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
1484 vendor == PEER_CISCO) {
1485 vendor = PEER_CISCO;
1486 RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n");
1487 } else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
1488 (memcmp(mac->bssid, ap3_2, 3) == 0) ||
1489 (memcmp(mac->bssid, ap3_3, 3) == 0) ||
1490 vendor == PEER_BROAD) {
1491 RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n");
1492 vendor = PEER_BROAD;
1493 } else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
1494 vendor == PEER_MARV) {
1495 vendor = PEER_MARV;
1496 RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n");
1497 }
1498
1499 mac->vendor = vendor;
1500 }
1501
1502 /*********************************************************
1503 *
1504 * sysfs functions
1505 *
1506 *********************************************************/
1507 static ssize_t rtl_show_debug_level(struct device *d,
1508 struct device_attribute *attr, char *buf)
1509 {
1510 struct ieee80211_hw *hw = dev_get_drvdata(d);
1511 struct rtl_priv *rtlpriv = rtl_priv(hw);
1512
1513 return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel);
1514 }
1515
1516 static ssize_t rtl_store_debug_level(struct device *d,
1517 struct device_attribute *attr,
1518 const char *buf, size_t count)
1519 {
1520 struct ieee80211_hw *hw = dev_get_drvdata(d);
1521 struct rtl_priv *rtlpriv = rtl_priv(hw);
1522 unsigned long val;
1523 int ret;
1524
1525 ret = strict_strtoul(buf, 0, &val);
1526 if (ret) {
1527 printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf);
1528 } else {
1529 rtlpriv->dbg.global_debuglevel = val;
1530 printk(KERN_DEBUG "debuglevel:%x\n",
1531 rtlpriv->dbg.global_debuglevel);
1532 }
1533
1534 return strnlen(buf, count);
1535 }
1536
1537 static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO,
1538 rtl_show_debug_level, rtl_store_debug_level);
1539
1540 static struct attribute *rtl_sysfs_entries[] = {
1541
1542 &dev_attr_debug_level.attr,
1543
1544 NULL
1545 };
1546
1547 /*
1548 * "name" is folder name witch will be
1549 * put in device directory like :
1550 * sys/devices/pci0000:00/0000:00:1c.4/
1551 * 0000:06:00.0/rtl_sysfs
1552 */
1553 struct attribute_group rtl_attribute_group = {
1554 .name = "rtlsysfs",
1555 .attrs = rtl_sysfs_entries,
1556 };
1557
1558 MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
1559 MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
1560 MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
1561 MODULE_LICENSE("GPL");
1562 MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
1563
1564 static int __init rtl_core_module_init(void)
1565 {
1566 if (rtl_rate_control_register())
1567 pr_err("Unable to register rtl_rc, use default RC !!\n");
1568
1569 return 0;
1570 }
1571
1572 static void __exit rtl_core_module_exit(void)
1573 {
1574 /*RC*/
1575 rtl_rate_control_unregister();
1576 }
1577
1578 module_init(rtl_core_module_init);
1579 module_exit(rtl_core_module_exit);