]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/wireless/strip.c
Remove obsolete #include <linux/config.h>
[mirror_ubuntu-jammy-kernel.git] / drivers / net / wireless / strip.c
1 /*
2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
4 *
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
12 *
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
16 *
17 * Version: @(#)strip.c 1.3 July 1997
18 *
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
20 *
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
25 *
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
29 *
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
32 *
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
36 *
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
39 *
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
42 *
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
45 *
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
48 *
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
51 *
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
55 *
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
60 *
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
63 *
64 * v1.3 July 1997 (SC)
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
69 */
70
71 #ifdef MODULE
72 static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
73 #else
74 static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
75 #endif
76
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
79
80
81 /************************************************************************/
82 /* Header files */
83
84 #include <linux/kernel.h>
85 #include <linux/module.h>
86 #include <linux/init.h>
87 #include <linux/bitops.h>
88 #include <asm/system.h>
89 #include <asm/uaccess.h>
90
91 # include <linux/ctype.h>
92 #include <linux/string.h>
93 #include <linux/mm.h>
94 #include <linux/interrupt.h>
95 #include <linux/in.h>
96 #include <linux/tty.h>
97 #include <linux/errno.h>
98 #include <linux/netdevice.h>
99 #include <linux/inetdevice.h>
100 #include <linux/etherdevice.h>
101 #include <linux/skbuff.h>
102 #include <linux/if_arp.h>
103 #include <linux/if_strip.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <linux/serial.h>
107 #include <linux/serialP.h>
108 #include <linux/rcupdate.h>
109 #include <net/arp.h>
110
111 #include <linux/ip.h>
112 #include <linux/tcp.h>
113 #include <linux/time.h>
114 #include <linux/jiffies.h>
115
116 /************************************************************************/
117 /* Useful structures and definitions */
118
119 /*
120 * A MetricomKey identifies the protocol being carried inside a Metricom
121 * Starmode packet.
122 */
123
124 typedef union {
125 __u8 c[4];
126 __u32 l;
127 } MetricomKey;
128
129 /*
130 * An IP address can be viewed as four bytes in memory (which is what it is) or as
131 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
132 */
133
134 typedef union {
135 __u8 b[4];
136 __u32 l;
137 } IPaddr;
138
139 /*
140 * A MetricomAddressString is used to hold a printable representation of
141 * a Metricom address.
142 */
143
144 typedef struct {
145 __u8 c[24];
146 } MetricomAddressString;
147
148 /* Encapsulation can expand packet of size x to 65/64x + 1
149 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
150 * 1 1 1-18 1 4 ? 1
151 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
152 * We allow 31 bytes for the stars, the key, the address and the <CR>s
153 */
154 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
155
156 /*
157 * A STRIP_Header is never really sent over the radio, but making a dummy
158 * header for internal use within the kernel that looks like an Ethernet
159 * header makes certain other software happier. For example, tcpdump
160 * already understands Ethernet headers.
161 */
162
163 typedef struct {
164 MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
165 MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
166 unsigned short protocol; /* The protocol type, using Ethernet codes */
167 } STRIP_Header;
168
169 typedef struct {
170 char c[60];
171 } MetricomNode;
172
173 #define NODE_TABLE_SIZE 32
174 typedef struct {
175 struct timeval timestamp;
176 int num_nodes;
177 MetricomNode node[NODE_TABLE_SIZE];
178 } MetricomNodeTable;
179
180 enum { FALSE = 0, TRUE = 1 };
181
182 /*
183 * Holds the radio's firmware version.
184 */
185 typedef struct {
186 char c[50];
187 } FirmwareVersion;
188
189 /*
190 * Holds the radio's serial number.
191 */
192 typedef struct {
193 char c[18];
194 } SerialNumber;
195
196 /*
197 * Holds the radio's battery voltage.
198 */
199 typedef struct {
200 char c[11];
201 } BatteryVoltage;
202
203 typedef struct {
204 char c[8];
205 } char8;
206
207 enum {
208 NoStructure = 0, /* Really old firmware */
209 StructuredMessages = 1, /* Parsable AT response msgs */
210 ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
211 };
212
213 struct strip {
214 int magic;
215 /*
216 * These are pointers to the malloc()ed frame buffers.
217 */
218
219 unsigned char *rx_buff; /* buffer for received IP packet */
220 unsigned char *sx_buff; /* buffer for received serial data */
221 int sx_count; /* received serial data counter */
222 int sx_size; /* Serial buffer size */
223 unsigned char *tx_buff; /* transmitter buffer */
224 unsigned char *tx_head; /* pointer to next byte to XMIT */
225 int tx_left; /* bytes left in XMIT queue */
226 int tx_size; /* Serial buffer size */
227
228 /*
229 * STRIP interface statistics.
230 */
231
232 unsigned long rx_packets; /* inbound frames counter */
233 unsigned long tx_packets; /* outbound frames counter */
234 unsigned long rx_errors; /* Parity, etc. errors */
235 unsigned long tx_errors; /* Planned stuff */
236 unsigned long rx_dropped; /* No memory for skb */
237 unsigned long tx_dropped; /* When MTU change */
238 unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */
239
240 unsigned long pps_timer; /* Timer to determine pps */
241 unsigned long rx_pps_count; /* Counter to determine pps */
242 unsigned long tx_pps_count; /* Counter to determine pps */
243 unsigned long sx_pps_count; /* Counter to determine pps */
244 unsigned long rx_average_pps; /* rx packets per second * 8 */
245 unsigned long tx_average_pps; /* tx packets per second * 8 */
246 unsigned long sx_average_pps; /* sent packets per second * 8 */
247
248 #ifdef EXT_COUNTERS
249 unsigned long rx_bytes; /* total received bytes */
250 unsigned long tx_bytes; /* total received bytes */
251 unsigned long rx_rbytes; /* bytes thru radio i/f */
252 unsigned long tx_rbytes; /* bytes thru radio i/f */
253 unsigned long rx_sbytes; /* tot bytes thru serial i/f */
254 unsigned long tx_sbytes; /* tot bytes thru serial i/f */
255 unsigned long rx_ebytes; /* tot stat/err bytes */
256 unsigned long tx_ebytes; /* tot stat/err bytes */
257 #endif
258
259 /*
260 * Internal variables.
261 */
262
263 struct list_head list; /* Linked list of devices */
264
265 int discard; /* Set if serial error */
266 int working; /* Is radio working correctly? */
267 int firmware_level; /* Message structuring level */
268 int next_command; /* Next periodic command */
269 unsigned int user_baud; /* The user-selected baud rate */
270 int mtu; /* Our mtu (to spot changes!) */
271 long watchdog_doprobe; /* Next time to test the radio */
272 long watchdog_doreset; /* Time to do next reset */
273 long gratuitous_arp; /* Time to send next ARP refresh */
274 long arp_interval; /* Next ARP interval */
275 struct timer_list idle_timer; /* For periodic wakeup calls */
276 MetricomAddress true_dev_addr; /* True address of radio */
277 int manual_dev_addr; /* Hack: See note below */
278
279 FirmwareVersion firmware_version; /* The radio's firmware version */
280 SerialNumber serial_number; /* The radio's serial number */
281 BatteryVoltage battery_voltage; /* The radio's battery voltage */
282
283 /*
284 * Other useful structures.
285 */
286
287 struct tty_struct *tty; /* ptr to TTY structure */
288 struct net_device *dev; /* Our device structure */
289
290 /*
291 * Neighbour radio records
292 */
293
294 MetricomNodeTable portables;
295 MetricomNodeTable poletops;
296 };
297
298 /*
299 * Note: manual_dev_addr hack
300 *
301 * It is not possible to change the hardware address of a Metricom radio,
302 * or to send packets with a user-specified hardware source address, thus
303 * trying to manually set a hardware source address is a questionable
304 * thing to do. However, if the user *does* manually set the hardware
305 * source address of a STRIP interface, then the kernel will believe it,
306 * and use it in certain places. For example, the hardware address listed
307 * by ifconfig will be the manual address, not the true one.
308 * (Both addresses are listed in /proc/net/strip.)
309 * Also, ARP packets will be sent out giving the user-specified address as
310 * the source address, not the real address. This is dangerous, because
311 * it means you won't receive any replies -- the ARP replies will go to
312 * the specified address, which will be some other radio. The case where
313 * this is useful is when that other radio is also connected to the same
314 * machine. This allows you to connect a pair of radios to one machine,
315 * and to use one exclusively for inbound traffic, and the other
316 * exclusively for outbound traffic. Pretty neat, huh?
317 *
318 * Here's the full procedure to set this up:
319 *
320 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
321 * and st1 for incoming packets
322 *
323 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
324 * which is the real hardware address of st1 (inbound radio).
325 * Now when it sends out packets, it will masquerade as st1, and
326 * replies will be sent to that radio, which is exactly what we want.
327 *
328 * 3. Set the route table entry ("route add default ..." or
329 * "route add -net ...", as appropriate) to send packets via the st0
330 * interface (outbound radio). Do not add any route which sends packets
331 * out via the st1 interface -- that radio is for inbound traffic only.
332 *
333 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
334 * This tells the STRIP driver to "shut down" that interface and not
335 * send any packets through it. In particular, it stops sending the
336 * periodic gratuitous ARP packets that a STRIP interface normally sends.
337 * Also, when packets arrive on that interface, it will search the
338 * interface list to see if there is another interface who's manual
339 * hardware address matches its own real address (i.e. st0 in this
340 * example) and if so it will transfer ownership of the skbuff to
341 * that interface, so that it looks to the kernel as if the packet
342 * arrived on that interface. This is necessary because when the
343 * kernel sends an ARP packet on st0, it expects to get a reply on
344 * st0, and if it sees the reply come from st1 then it will ignore
345 * it (to be accurate, it puts the entry in the ARP table, but
346 * labelled in such a way that st0 can't use it).
347 *
348 * Thanks to Petros Maniatis for coming up with the idea of splitting
349 * inbound and outbound traffic between two interfaces, which turned
350 * out to be really easy to implement, even if it is a bit of a hack.
351 *
352 * Having set a manual address on an interface, you can restore it
353 * to automatic operation (where the address is automatically kept
354 * consistent with the real address of the radio) by setting a manual
355 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
356 * This 'turns off' manual override mode for the device address.
357 *
358 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
359 * radio addresses the packets were sent and received from, so that you
360 * can see what is really going on with packets, and which interfaces
361 * they are really going through.
362 */
363
364
365 /************************************************************************/
366 /* Constants */
367
368 /*
369 * CommandString1 works on all radios
370 * Other CommandStrings are only used with firmware that provides structured responses.
371 *
372 * ats319=1 Enables Info message for node additions and deletions
373 * ats319=2 Enables Info message for a new best node
374 * ats319=4 Enables checksums
375 * ats319=8 Enables ACK messages
376 */
377
378 static const int MaxCommandStringLength = 32;
379 static const int CompatibilityCommand = 1;
380
381 static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
382 static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
383 static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
384 static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
385 static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
386 static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
387 typedef struct {
388 const char *string;
389 long length;
390 } StringDescriptor;
391
392 static const StringDescriptor CommandString[] = {
393 {CommandString0, sizeof(CommandString0) - 1},
394 {CommandString1, sizeof(CommandString1) - 1},
395 {CommandString2, sizeof(CommandString2) - 1},
396 {CommandString3, sizeof(CommandString3) - 1},
397 {CommandString4, sizeof(CommandString4) - 1},
398 {CommandString5, sizeof(CommandString5) - 1}
399 };
400
401 #define GOT_ALL_RADIO_INFO(S) \
402 ((S)->firmware_version.c[0] && \
403 (S)->battery_voltage.c[0] && \
404 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
405
406 static const char hextable[16] = "0123456789ABCDEF";
407
408 static const MetricomAddress zero_address;
409 static const MetricomAddress broadcast_address =
410 { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
411
412 static const MetricomKey SIP0Key = { "SIP0" };
413 static const MetricomKey ARP0Key = { "ARP0" };
414 static const MetricomKey ATR_Key = { "ATR " };
415 static const MetricomKey ACK_Key = { "ACK_" };
416 static const MetricomKey INF_Key = { "INF_" };
417 static const MetricomKey ERR_Key = { "ERR_" };
418
419 static const long MaxARPInterval = 60 * HZ; /* One minute */
420
421 /*
422 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
423 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
424 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
425 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
426 * long, including IP header, UDP header, and NFS header. Setting the STRIP
427 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
428 */
429 static const unsigned short MAX_SEND_MTU = 1152;
430 static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
431 static const unsigned short DEFAULT_STRIP_MTU = 1152;
432 static const int STRIP_MAGIC = 0x5303;
433 static const long LongTime = 0x7FFFFFFF;
434
435 /************************************************************************/
436 /* Global variables */
437
438 static LIST_HEAD(strip_list);
439 static DEFINE_SPINLOCK(strip_lock);
440
441 /************************************************************************/
442 /* Macros */
443
444 /* Returns TRUE if text T begins with prefix P */
445 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
446
447 /* Returns TRUE if text T of length L is equal to string S */
448 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
449
450 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
451 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
452 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
453
454 #define READHEX16(X) ((__u16)(READHEX(X)))
455
456 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
457
458 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
459
460 #define JIFFIE_TO_SEC(X) ((X) / HZ)
461
462
463 /************************************************************************/
464 /* Utility routines */
465
466 static int arp_query(unsigned char *haddr, u32 paddr,
467 struct net_device *dev)
468 {
469 struct neighbour *neighbor_entry;
470
471 neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
472
473 if (neighbor_entry != NULL) {
474 neighbor_entry->used = jiffies;
475 if (neighbor_entry->nud_state & NUD_VALID) {
476 memcpy(haddr, neighbor_entry->ha, dev->addr_len);
477 return 1;
478 }
479 }
480 return 0;
481 }
482
483 static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
484 __u8 * end)
485 {
486 static const int MAX_DumpData = 80;
487 __u8 pkt_text[MAX_DumpData], *p = pkt_text;
488
489 *p++ = '\"';
490
491 while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
492 if (*ptr == '\\') {
493 *p++ = '\\';
494 *p++ = '\\';
495 } else {
496 if (*ptr >= 32 && *ptr <= 126) {
497 *p++ = *ptr;
498 } else {
499 sprintf(p, "\\%02X", *ptr);
500 p += 3;
501 }
502 }
503 ptr++;
504 }
505
506 if (ptr == end)
507 *p++ = '\"';
508 *p++ = 0;
509
510 printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
511 }
512
513
514 /************************************************************************/
515 /* Byte stuffing/unstuffing routines */
516
517 /* Stuffing scheme:
518 * 00 Unused (reserved character)
519 * 01-3F Run of 2-64 different characters
520 * 40-7F Run of 1-64 different characters plus a single zero at the end
521 * 80-BF Run of 1-64 of the same character
522 * C0-FF Run of 1-64 zeroes (ASCII 0)
523 */
524
525 typedef enum {
526 Stuff_Diff = 0x00,
527 Stuff_DiffZero = 0x40,
528 Stuff_Same = 0x80,
529 Stuff_Zero = 0xC0,
530 Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
531
532 Stuff_CodeMask = 0xC0,
533 Stuff_CountMask = 0x3F,
534 Stuff_MaxCount = 0x3F,
535 Stuff_Magic = 0x0D /* The value we are eliminating */
536 } StuffingCode;
537
538 /* StuffData encodes the data starting at "src" for "length" bytes.
539 * It writes it to the buffer pointed to by "dst" (which must be at least
540 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
541 * larger than the input for pathological input, but will usually be smaller.
542 * StuffData returns the new value of the dst pointer as its result.
543 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
544 * between calls, allowing an encoded packet to be incrementally built up
545 * from small parts. On the first call, the "__u8 *" pointed to should be
546 * initialized to NULL; between subsequent calls the calling routine should
547 * leave the value alone and simply pass it back unchanged so that the
548 * encoder can recover its current state.
549 */
550
551 #define StuffData_FinishBlock(X) \
552 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
553
554 static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
555 __u8 ** code_ptr_ptr)
556 {
557 __u8 *end = src + length;
558 __u8 *code_ptr = *code_ptr_ptr;
559 __u8 code = Stuff_NoCode, count = 0;
560
561 if (!length)
562 return (dst);
563
564 if (code_ptr) {
565 /*
566 * Recover state from last call, if applicable
567 */
568 code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
569 count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
570 }
571
572 while (src < end) {
573 switch (code) {
574 /* Stuff_NoCode: If no current code, select one */
575 case Stuff_NoCode:
576 /* Record where we're going to put this code */
577 code_ptr = dst++;
578 count = 0; /* Reset the count (zero means one instance) */
579 /* Tentatively start a new block */
580 if (*src == 0) {
581 code = Stuff_Zero;
582 src++;
583 } else {
584 code = Stuff_Same;
585 *dst++ = *src++ ^ Stuff_Magic;
586 }
587 /* Note: We optimistically assume run of same -- */
588 /* which will be fixed later in Stuff_Same */
589 /* if it turns out not to be true. */
590 break;
591
592 /* Stuff_Zero: We already have at least one zero encoded */
593 case Stuff_Zero:
594 /* If another zero, count it, else finish this code block */
595 if (*src == 0) {
596 count++;
597 src++;
598 } else {
599 StuffData_FinishBlock(Stuff_Zero + count);
600 }
601 break;
602
603 /* Stuff_Same: We already have at least one byte encoded */
604 case Stuff_Same:
605 /* If another one the same, count it */
606 if ((*src ^ Stuff_Magic) == code_ptr[1]) {
607 count++;
608 src++;
609 break;
610 }
611 /* else, this byte does not match this block. */
612 /* If we already have two or more bytes encoded, finish this code block */
613 if (count) {
614 StuffData_FinishBlock(Stuff_Same + count);
615 break;
616 }
617 /* else, we only have one so far, so switch to Stuff_Diff code */
618 code = Stuff_Diff;
619 /* and fall through to Stuff_Diff case below
620 * Note cunning cleverness here: case Stuff_Diff compares
621 * the current character with the previous two to see if it
622 * has a run of three the same. Won't this be an error if
623 * there aren't two previous characters stored to compare with?
624 * No. Because we know the current character is *not* the same
625 * as the previous one, the first test below will necessarily
626 * fail and the send half of the "if" won't be executed.
627 */
628
629 /* Stuff_Diff: We have at least two *different* bytes encoded */
630 case Stuff_Diff:
631 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
632 if (*src == 0) {
633 StuffData_FinishBlock(Stuff_DiffZero +
634 count);
635 }
636 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
637 else if ((*src ^ Stuff_Magic) == dst[-1]
638 && dst[-1] == dst[-2]) {
639 /* Back off the last two characters we encoded */
640 code += count - 2;
641 /* Note: "Stuff_Diff + 0" is an illegal code */
642 if (code == Stuff_Diff + 0) {
643 code = Stuff_Same + 0;
644 }
645 StuffData_FinishBlock(code);
646 code_ptr = dst - 2;
647 /* dst[-1] already holds the correct value */
648 count = 2; /* 2 means three bytes encoded */
649 code = Stuff_Same;
650 }
651 /* else, another different byte, so add it to the block */
652 else {
653 *dst++ = *src ^ Stuff_Magic;
654 count++;
655 }
656 src++; /* Consume the byte */
657 break;
658 }
659 if (count == Stuff_MaxCount) {
660 StuffData_FinishBlock(code + count);
661 }
662 }
663 if (code == Stuff_NoCode) {
664 *code_ptr_ptr = NULL;
665 } else {
666 *code_ptr_ptr = code_ptr;
667 StuffData_FinishBlock(code + count);
668 }
669 return (dst);
670 }
671
672 /*
673 * UnStuffData decodes the data at "src", up to (but not including) "end".
674 * It writes the decoded data into the buffer pointed to by "dst", up to a
675 * maximum of "dst_length", and returns the new value of "src" so that a
676 * follow-on call can read more data, continuing from where the first left off.
677 *
678 * There are three types of results:
679 * 1. The source data runs out before extracting "dst_length" bytes:
680 * UnStuffData returns NULL to indicate failure.
681 * 2. The source data produces exactly "dst_length" bytes:
682 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
683 * 3. "dst_length" bytes are extracted, with more remaining.
684 * UnStuffData returns new_src < end to indicate that there are more bytes
685 * to be read.
686 *
687 * Note: The decoding may be destructive, in that it may alter the source
688 * data in the process of decoding it (this is necessary to allow a follow-on
689 * call to resume correctly).
690 */
691
692 static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
693 __u32 dst_length)
694 {
695 __u8 *dst_end = dst + dst_length;
696 /* Sanity check */
697 if (!src || !end || !dst || !dst_length)
698 return (NULL);
699 while (src < end && dst < dst_end) {
700 int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
701 switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
702 case Stuff_Diff:
703 if (src + 1 + count >= end)
704 return (NULL);
705 do {
706 *dst++ = *++src ^ Stuff_Magic;
707 }
708 while (--count >= 0 && dst < dst_end);
709 if (count < 0)
710 src += 1;
711 else {
712 if (count == 0)
713 *src = Stuff_Same ^ Stuff_Magic;
714 else
715 *src =
716 (Stuff_Diff +
717 count) ^ Stuff_Magic;
718 }
719 break;
720 case Stuff_DiffZero:
721 if (src + 1 + count >= end)
722 return (NULL);
723 do {
724 *dst++ = *++src ^ Stuff_Magic;
725 }
726 while (--count >= 0 && dst < dst_end);
727 if (count < 0)
728 *src = Stuff_Zero ^ Stuff_Magic;
729 else
730 *src =
731 (Stuff_DiffZero + count) ^ Stuff_Magic;
732 break;
733 case Stuff_Same:
734 if (src + 1 >= end)
735 return (NULL);
736 do {
737 *dst++ = src[1] ^ Stuff_Magic;
738 }
739 while (--count >= 0 && dst < dst_end);
740 if (count < 0)
741 src += 2;
742 else
743 *src = (Stuff_Same + count) ^ Stuff_Magic;
744 break;
745 case Stuff_Zero:
746 do {
747 *dst++ = 0;
748 }
749 while (--count >= 0 && dst < dst_end);
750 if (count < 0)
751 src += 1;
752 else
753 *src = (Stuff_Zero + count) ^ Stuff_Magic;
754 break;
755 }
756 }
757 if (dst < dst_end)
758 return (NULL);
759 else
760 return (src);
761 }
762
763
764 /************************************************************************/
765 /* General routines for STRIP */
766
767 /*
768 * get_baud returns the current baud rate, as one of the constants defined in
769 * termbits.h
770 * If the user has issued a baud rate override using the 'setserial' command
771 * and the logical current rate is set to 38.4, then the true baud rate
772 * currently in effect (57.6 or 115.2) is returned.
773 */
774 static unsigned int get_baud(struct tty_struct *tty)
775 {
776 if (!tty || !tty->termios)
777 return (0);
778 if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data) {
779 struct async_struct *info =
780 (struct async_struct *) tty->driver_data;
781 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
782 return (B57600);
783 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
784 return (B115200);
785 }
786 return (tty->termios->c_cflag & CBAUD);
787 }
788
789 /*
790 * set_baud sets the baud rate to the rate defined by baudcode
791 * Note: The rate B38400 should be avoided, because the user may have
792 * issued a 'setserial' speed override to map that to a different speed.
793 * We could achieve a true rate of 38400 if we needed to by cancelling
794 * any user speed override that is in place, but that might annoy the
795 * user, so it is simplest to just avoid using 38400.
796 */
797 static void set_baud(struct tty_struct *tty, unsigned int baudcode)
798 {
799 struct termios old_termios = *(tty->termios);
800 tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */
801 tty->termios->c_cflag |= baudcode; /* Set the new baud setting */
802 tty->driver->set_termios(tty, &old_termios);
803 }
804
805 /*
806 * Convert a string to a Metricom Address.
807 */
808
809 #define IS_RADIO_ADDRESS(p) ( \
810 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
811 (p)[4] == '-' && \
812 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
813
814 static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
815 {
816 if (!IS_RADIO_ADDRESS(p))
817 return (1);
818 addr->c[0] = 0;
819 addr->c[1] = 0;
820 addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
821 addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
822 addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
823 addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
824 return (0);
825 }
826
827 /*
828 * Convert a Metricom Address to a string.
829 */
830
831 static __u8 *radio_address_to_string(const MetricomAddress * addr,
832 MetricomAddressString * p)
833 {
834 sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
835 addr->c[4], addr->c[5]);
836 return (p->c);
837 }
838
839 /*
840 * Note: Must make sure sx_size is big enough to receive a stuffed
841 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
842 * big enough to receive a large radio neighbour list (currently 4K).
843 */
844
845 static int allocate_buffers(struct strip *strip_info, int mtu)
846 {
847 struct net_device *dev = strip_info->dev;
848 int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
849 int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
850 __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
851 __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
852 __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
853 if (r && s && t) {
854 strip_info->rx_buff = r;
855 strip_info->sx_buff = s;
856 strip_info->tx_buff = t;
857 strip_info->sx_size = sx_size;
858 strip_info->tx_size = tx_size;
859 strip_info->mtu = dev->mtu = mtu;
860 return (1);
861 }
862 kfree(r);
863 kfree(s);
864 kfree(t);
865 return (0);
866 }
867
868 /*
869 * MTU has been changed by the IP layer.
870 * We could be in
871 * an upcall from the tty driver, or in an ip packet queue.
872 */
873 static int strip_change_mtu(struct net_device *dev, int new_mtu)
874 {
875 struct strip *strip_info = netdev_priv(dev);
876 int old_mtu = strip_info->mtu;
877 unsigned char *orbuff = strip_info->rx_buff;
878 unsigned char *osbuff = strip_info->sx_buff;
879 unsigned char *otbuff = strip_info->tx_buff;
880
881 if (new_mtu > MAX_SEND_MTU) {
882 printk(KERN_ERR
883 "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
884 strip_info->dev->name, MAX_SEND_MTU);
885 return -EINVAL;
886 }
887
888 spin_lock_bh(&strip_lock);
889 if (!allocate_buffers(strip_info, new_mtu)) {
890 printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
891 strip_info->dev->name);
892 spin_unlock_bh(&strip_lock);
893 return -ENOMEM;
894 }
895
896 if (strip_info->sx_count) {
897 if (strip_info->sx_count <= strip_info->sx_size)
898 memcpy(strip_info->sx_buff, osbuff,
899 strip_info->sx_count);
900 else {
901 strip_info->discard = strip_info->sx_count;
902 strip_info->rx_over_errors++;
903 }
904 }
905
906 if (strip_info->tx_left) {
907 if (strip_info->tx_left <= strip_info->tx_size)
908 memcpy(strip_info->tx_buff, strip_info->tx_head,
909 strip_info->tx_left);
910 else {
911 strip_info->tx_left = 0;
912 strip_info->tx_dropped++;
913 }
914 }
915 strip_info->tx_head = strip_info->tx_buff;
916 spin_unlock_bh(&strip_lock);
917
918 printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
919 strip_info->dev->name, old_mtu, strip_info->mtu);
920
921 kfree(orbuff);
922 kfree(osbuff);
923 kfree(otbuff);
924 return 0;
925 }
926
927 static void strip_unlock(struct strip *strip_info)
928 {
929 /*
930 * Set the timer to go off in one second.
931 */
932 strip_info->idle_timer.expires = jiffies + 1 * HZ;
933 add_timer(&strip_info->idle_timer);
934 netif_wake_queue(strip_info->dev);
935 }
936
937
938
939 /*
940 * If the time is in the near future, time_delta prints the number of
941 * seconds to go into the buffer and returns the address of the buffer.
942 * If the time is not in the near future, it returns the address of the
943 * string "Not scheduled" The buffer must be long enough to contain the
944 * ascii representation of the number plus 9 charactes for the " seconds"
945 * and the null character.
946 */
947 #ifdef CONFIG_PROC_FS
948 static char *time_delta(char buffer[], long time)
949 {
950 time -= jiffies;
951 if (time > LongTime / 2)
952 return ("Not scheduled");
953 if (time < 0)
954 time = 0; /* Don't print negative times */
955 sprintf(buffer, "%ld seconds", time / HZ);
956 return (buffer);
957 }
958
959 /* get Nth element of the linked list */
960 static struct strip *strip_get_idx(loff_t pos)
961 {
962 struct list_head *l;
963 int i = 0;
964
965 list_for_each_rcu(l, &strip_list) {
966 if (pos == i)
967 return list_entry(l, struct strip, list);
968 ++i;
969 }
970 return NULL;
971 }
972
973 static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
974 {
975 rcu_read_lock();
976 return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
977 }
978
979 static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
980 {
981 struct list_head *l;
982 struct strip *s;
983
984 ++*pos;
985 if (v == SEQ_START_TOKEN)
986 return strip_get_idx(1);
987
988 s = v;
989 l = &s->list;
990 list_for_each_continue_rcu(l, &strip_list) {
991 return list_entry(l, struct strip, list);
992 }
993 return NULL;
994 }
995
996 static void strip_seq_stop(struct seq_file *seq, void *v)
997 {
998 rcu_read_unlock();
999 }
1000
1001 static void strip_seq_neighbours(struct seq_file *seq,
1002 const MetricomNodeTable * table,
1003 const char *title)
1004 {
1005 /* We wrap this in a do/while loop, so if the table changes */
1006 /* while we're reading it, we just go around and try again. */
1007 struct timeval t;
1008
1009 do {
1010 int i;
1011 t = table->timestamp;
1012 if (table->num_nodes)
1013 seq_printf(seq, "\n %s\n", title);
1014 for (i = 0; i < table->num_nodes; i++) {
1015 MetricomNode node;
1016
1017 spin_lock_bh(&strip_lock);
1018 node = table->node[i];
1019 spin_unlock_bh(&strip_lock);
1020 seq_printf(seq, " %s\n", node.c);
1021 }
1022 } while (table->timestamp.tv_sec != t.tv_sec
1023 || table->timestamp.tv_usec != t.tv_usec);
1024 }
1025
1026 /*
1027 * This function prints radio status information via the seq_file
1028 * interface. The interface takes care of buffer size and over
1029 * run issues.
1030 *
1031 * The buffer in seq_file is PAGESIZE (4K)
1032 * so this routine should never print more or it will get truncated.
1033 * With the maximum of 32 portables and 32 poletops
1034 * reported, the routine outputs 3107 bytes into the buffer.
1035 */
1036 static void strip_seq_status_info(struct seq_file *seq,
1037 const struct strip *strip_info)
1038 {
1039 char temp[32];
1040 MetricomAddressString addr_string;
1041
1042 /* First, we must copy all of our data to a safe place, */
1043 /* in case a serial interrupt comes in and changes it. */
1044 int tx_left = strip_info->tx_left;
1045 unsigned long rx_average_pps = strip_info->rx_average_pps;
1046 unsigned long tx_average_pps = strip_info->tx_average_pps;
1047 unsigned long sx_average_pps = strip_info->sx_average_pps;
1048 int working = strip_info->working;
1049 int firmware_level = strip_info->firmware_level;
1050 long watchdog_doprobe = strip_info->watchdog_doprobe;
1051 long watchdog_doreset = strip_info->watchdog_doreset;
1052 long gratuitous_arp = strip_info->gratuitous_arp;
1053 long arp_interval = strip_info->arp_interval;
1054 FirmwareVersion firmware_version = strip_info->firmware_version;
1055 SerialNumber serial_number = strip_info->serial_number;
1056 BatteryVoltage battery_voltage = strip_info->battery_voltage;
1057 char *if_name = strip_info->dev->name;
1058 MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1059 MetricomAddress dev_dev_addr =
1060 *(MetricomAddress *) strip_info->dev->dev_addr;
1061 int manual_dev_addr = strip_info->manual_dev_addr;
1062 #ifdef EXT_COUNTERS
1063 unsigned long rx_bytes = strip_info->rx_bytes;
1064 unsigned long tx_bytes = strip_info->tx_bytes;
1065 unsigned long rx_rbytes = strip_info->rx_rbytes;
1066 unsigned long tx_rbytes = strip_info->tx_rbytes;
1067 unsigned long rx_sbytes = strip_info->rx_sbytes;
1068 unsigned long tx_sbytes = strip_info->tx_sbytes;
1069 unsigned long rx_ebytes = strip_info->rx_ebytes;
1070 unsigned long tx_ebytes = strip_info->tx_ebytes;
1071 #endif
1072
1073 seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1074 seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1075 radio_address_to_string(&true_dev_addr, &addr_string);
1076 seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1077 if (manual_dev_addr) {
1078 radio_address_to_string(&dev_dev_addr, &addr_string);
1079 seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1080 }
1081 seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1082 !firmware_level ? "Should be upgraded" :
1083 firmware_version.c);
1084 if (firmware_level >= ChecksummedMessages)
1085 seq_printf(seq, " (Checksums Enabled)");
1086 seq_printf(seq, "\n");
1087 seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1088 seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1089 seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1090 seq_printf(seq, " Receive packet rate: %ld packets per second\n",
1091 rx_average_pps / 8);
1092 seq_printf(seq, " Transmit packet rate: %ld packets per second\n",
1093 tx_average_pps / 8);
1094 seq_printf(seq, " Sent packet rate: %ld packets per second\n",
1095 sx_average_pps / 8);
1096 seq_printf(seq, " Next watchdog probe:\t%s\n",
1097 time_delta(temp, watchdog_doprobe));
1098 seq_printf(seq, " Next watchdog reset:\t%s\n",
1099 time_delta(temp, watchdog_doreset));
1100 seq_printf(seq, " Next gratuitous ARP:\t");
1101
1102 if (!memcmp
1103 (strip_info->dev->dev_addr, zero_address.c,
1104 sizeof(zero_address)))
1105 seq_printf(seq, "Disabled\n");
1106 else {
1107 seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1108 seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1109 JIFFIE_TO_SEC(arp_interval));
1110 }
1111
1112 if (working) {
1113 #ifdef EXT_COUNTERS
1114 seq_printf(seq, "\n");
1115 seq_printf(seq,
1116 " Total bytes: \trx:\t%lu\ttx:\t%lu\n",
1117 rx_bytes, tx_bytes);
1118 seq_printf(seq,
1119 " thru radio: \trx:\t%lu\ttx:\t%lu\n",
1120 rx_rbytes, tx_rbytes);
1121 seq_printf(seq,
1122 " thru serial port: \trx:\t%lu\ttx:\t%lu\n",
1123 rx_sbytes, tx_sbytes);
1124 seq_printf(seq,
1125 " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1126 rx_ebytes, tx_ebytes);
1127 #endif
1128 strip_seq_neighbours(seq, &strip_info->poletops,
1129 "Poletops:");
1130 strip_seq_neighbours(seq, &strip_info->portables,
1131 "Portables:");
1132 }
1133 }
1134
1135 /*
1136 * This function is exports status information from the STRIP driver through
1137 * the /proc file system.
1138 */
1139 static int strip_seq_show(struct seq_file *seq, void *v)
1140 {
1141 if (v == SEQ_START_TOKEN)
1142 seq_printf(seq, "strip_version: %s\n", StripVersion);
1143 else
1144 strip_seq_status_info(seq, (const struct strip *)v);
1145 return 0;
1146 }
1147
1148
1149 static struct seq_operations strip_seq_ops = {
1150 .start = strip_seq_start,
1151 .next = strip_seq_next,
1152 .stop = strip_seq_stop,
1153 .show = strip_seq_show,
1154 };
1155
1156 static int strip_seq_open(struct inode *inode, struct file *file)
1157 {
1158 return seq_open(file, &strip_seq_ops);
1159 }
1160
1161 static struct file_operations strip_seq_fops = {
1162 .owner = THIS_MODULE,
1163 .open = strip_seq_open,
1164 .read = seq_read,
1165 .llseek = seq_lseek,
1166 .release = seq_release,
1167 };
1168 #endif
1169
1170
1171
1172 /************************************************************************/
1173 /* Sending routines */
1174
1175 static void ResetRadio(struct strip *strip_info)
1176 {
1177 struct tty_struct *tty = strip_info->tty;
1178 static const char init[] = "ate0q1dt**starmode\r**";
1179 StringDescriptor s = { init, sizeof(init) - 1 };
1180
1181 /*
1182 * If the radio isn't working anymore,
1183 * we should clear the old status information.
1184 */
1185 if (strip_info->working) {
1186 printk(KERN_INFO "%s: No response: Resetting radio.\n",
1187 strip_info->dev->name);
1188 strip_info->firmware_version.c[0] = '\0';
1189 strip_info->serial_number.c[0] = '\0';
1190 strip_info->battery_voltage.c[0] = '\0';
1191 strip_info->portables.num_nodes = 0;
1192 do_gettimeofday(&strip_info->portables.timestamp);
1193 strip_info->poletops.num_nodes = 0;
1194 do_gettimeofday(&strip_info->poletops.timestamp);
1195 }
1196
1197 strip_info->pps_timer = jiffies;
1198 strip_info->rx_pps_count = 0;
1199 strip_info->tx_pps_count = 0;
1200 strip_info->sx_pps_count = 0;
1201 strip_info->rx_average_pps = 0;
1202 strip_info->tx_average_pps = 0;
1203 strip_info->sx_average_pps = 0;
1204
1205 /* Mark radio address as unknown */
1206 *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1207 if (!strip_info->manual_dev_addr)
1208 *(MetricomAddress *) strip_info->dev->dev_addr =
1209 zero_address;
1210 strip_info->working = FALSE;
1211 strip_info->firmware_level = NoStructure;
1212 strip_info->next_command = CompatibilityCommand;
1213 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1214 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1215
1216 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1217 if (strip_info->user_baud > B38400) {
1218 /*
1219 * Subtle stuff: Pay attention :-)
1220 * If the serial port is currently at the user's selected (>38.4) rate,
1221 * then we temporarily switch to 19.2 and issue the ATS304 command
1222 * to tell the radio to switch to the user's selected rate.
1223 * If the serial port is not currently at that rate, that means we just
1224 * issued the ATS304 command last time through, so this time we restore
1225 * the user's selected rate and issue the normal starmode reset string.
1226 */
1227 if (strip_info->user_baud == get_baud(tty)) {
1228 static const char b0[] = "ate0q1s304=57600\r";
1229 static const char b1[] = "ate0q1s304=115200\r";
1230 static const StringDescriptor baudstring[2] =
1231 { {b0, sizeof(b0) - 1}
1232 , {b1, sizeof(b1) - 1}
1233 };
1234 set_baud(tty, B19200);
1235 if (strip_info->user_baud == B57600)
1236 s = baudstring[0];
1237 else if (strip_info->user_baud == B115200)
1238 s = baudstring[1];
1239 else
1240 s = baudstring[1]; /* For now */
1241 } else
1242 set_baud(tty, strip_info->user_baud);
1243 }
1244
1245 tty->driver->write(tty, s.string, s.length);
1246 #ifdef EXT_COUNTERS
1247 strip_info->tx_ebytes += s.length;
1248 #endif
1249 }
1250
1251 /*
1252 * Called by the driver when there's room for more data. If we have
1253 * more packets to send, we send them here.
1254 */
1255
1256 static void strip_write_some_more(struct tty_struct *tty)
1257 {
1258 struct strip *strip_info = (struct strip *) tty->disc_data;
1259
1260 /* First make sure we're connected. */
1261 if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1262 !netif_running(strip_info->dev))
1263 return;
1264
1265 if (strip_info->tx_left > 0) {
1266 int num_written =
1267 tty->driver->write(tty, strip_info->tx_head,
1268 strip_info->tx_left);
1269 strip_info->tx_left -= num_written;
1270 strip_info->tx_head += num_written;
1271 #ifdef EXT_COUNTERS
1272 strip_info->tx_sbytes += num_written;
1273 #endif
1274 } else { /* Else start transmission of another packet */
1275
1276 tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1277 strip_unlock(strip_info);
1278 }
1279 }
1280
1281 static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1282 {
1283 __u16 sum = 0;
1284 __u8 *p = buffer;
1285 while (p < end)
1286 sum += *p++;
1287 end[3] = hextable[sum & 0xF];
1288 sum >>= 4;
1289 end[2] = hextable[sum & 0xF];
1290 sum >>= 4;
1291 end[1] = hextable[sum & 0xF];
1292 sum >>= 4;
1293 end[0] = hextable[sum & 0xF];
1294 return (end + 4);
1295 }
1296
1297 static unsigned char *strip_make_packet(unsigned char *buffer,
1298 struct strip *strip_info,
1299 struct sk_buff *skb)
1300 {
1301 __u8 *ptr = buffer;
1302 __u8 *stuffstate = NULL;
1303 STRIP_Header *header = (STRIP_Header *) skb->data;
1304 MetricomAddress haddr = header->dst_addr;
1305 int len = skb->len - sizeof(STRIP_Header);
1306 MetricomKey key;
1307
1308 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1309
1310 if (header->protocol == htons(ETH_P_IP))
1311 key = SIP0Key;
1312 else if (header->protocol == htons(ETH_P_ARP))
1313 key = ARP0Key;
1314 else {
1315 printk(KERN_ERR
1316 "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1317 strip_info->dev->name, ntohs(header->protocol));
1318 return (NULL);
1319 }
1320
1321 if (len > strip_info->mtu) {
1322 printk(KERN_ERR
1323 "%s: Dropping oversized transmit packet: %d bytes\n",
1324 strip_info->dev->name, len);
1325 return (NULL);
1326 }
1327
1328 /*
1329 * If we're sending to ourselves, discard the packet.
1330 * (Metricom radios choke if they try to send a packet to their own address.)
1331 */
1332 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1333 printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1334 strip_info->dev->name);
1335 return (NULL);
1336 }
1337
1338 /*
1339 * If this is a broadcast packet, send it to our designated Metricom
1340 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1341 */
1342 if (haddr.c[0] == 0xFF) {
1343 u32 brd = 0;
1344 struct in_device *in_dev;
1345
1346 rcu_read_lock();
1347 in_dev = __in_dev_get_rcu(strip_info->dev);
1348 if (in_dev == NULL) {
1349 rcu_read_unlock();
1350 return NULL;
1351 }
1352 if (in_dev->ifa_list)
1353 brd = in_dev->ifa_list->ifa_broadcast;
1354 rcu_read_unlock();
1355
1356 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1357 if (!arp_query(haddr.c, brd, strip_info->dev)) {
1358 printk(KERN_ERR
1359 "%s: Unable to send packet (no broadcast hub configured)\n",
1360 strip_info->dev->name);
1361 return (NULL);
1362 }
1363 /*
1364 * If we are the broadcast hub, don't bother sending to ourselves.
1365 * (Metricom radios choke if they try to send a packet to their own address.)
1366 */
1367 if (!memcmp
1368 (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1369 return (NULL);
1370 }
1371
1372 *ptr++ = 0x0D;
1373 *ptr++ = '*';
1374 *ptr++ = hextable[haddr.c[2] >> 4];
1375 *ptr++ = hextable[haddr.c[2] & 0xF];
1376 *ptr++ = hextable[haddr.c[3] >> 4];
1377 *ptr++ = hextable[haddr.c[3] & 0xF];
1378 *ptr++ = '-';
1379 *ptr++ = hextable[haddr.c[4] >> 4];
1380 *ptr++ = hextable[haddr.c[4] & 0xF];
1381 *ptr++ = hextable[haddr.c[5] >> 4];
1382 *ptr++ = hextable[haddr.c[5] & 0xF];
1383 *ptr++ = '*';
1384 *ptr++ = key.c[0];
1385 *ptr++ = key.c[1];
1386 *ptr++ = key.c[2];
1387 *ptr++ = key.c[3];
1388
1389 ptr =
1390 StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1391 &stuffstate);
1392
1393 if (strip_info->firmware_level >= ChecksummedMessages)
1394 ptr = add_checksum(buffer + 1, ptr);
1395
1396 *ptr++ = 0x0D;
1397 return (ptr);
1398 }
1399
1400 static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1401 {
1402 MetricomAddress haddr;
1403 unsigned char *ptr = strip_info->tx_buff;
1404 int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1405 int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1406 && !doreset;
1407 u32 addr, brd;
1408
1409 /*
1410 * 1. If we have a packet, encapsulate it and put it in the buffer
1411 */
1412 if (skb) {
1413 char *newptr = strip_make_packet(ptr, strip_info, skb);
1414 strip_info->tx_pps_count++;
1415 if (!newptr)
1416 strip_info->tx_dropped++;
1417 else {
1418 ptr = newptr;
1419 strip_info->sx_pps_count++;
1420 strip_info->tx_packets++; /* Count another successful packet */
1421 #ifdef EXT_COUNTERS
1422 strip_info->tx_bytes += skb->len;
1423 strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1424 #endif
1425 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1426 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1427 }
1428 }
1429
1430 /*
1431 * 2. If it is time for another tickle, tack it on, after the packet
1432 */
1433 if (doprobe) {
1434 StringDescriptor ts = CommandString[strip_info->next_command];
1435 #if TICKLE_TIMERS
1436 {
1437 struct timeval tv;
1438 do_gettimeofday(&tv);
1439 printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
1440 strip_info->next_command, tv.tv_sec % 100,
1441 tv.tv_usec);
1442 }
1443 #endif
1444 if (ptr == strip_info->tx_buff)
1445 *ptr++ = 0x0D;
1446
1447 *ptr++ = '*'; /* First send "**" to provoke an error message */
1448 *ptr++ = '*';
1449
1450 /* Then add the command */
1451 memcpy(ptr, ts.string, ts.length);
1452
1453 /* Add a checksum ? */
1454 if (strip_info->firmware_level < ChecksummedMessages)
1455 ptr += ts.length;
1456 else
1457 ptr = add_checksum(ptr, ptr + ts.length);
1458
1459 *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1460
1461 /* Cycle to next periodic command? */
1462 if (strip_info->firmware_level >= StructuredMessages)
1463 if (++strip_info->next_command >=
1464 ARRAY_SIZE(CommandString))
1465 strip_info->next_command = 0;
1466 #ifdef EXT_COUNTERS
1467 strip_info->tx_ebytes += ts.length;
1468 #endif
1469 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1470 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1471 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1472 }
1473
1474 /*
1475 * 3. Set up the strip_info ready to send the data (if any).
1476 */
1477 strip_info->tx_head = strip_info->tx_buff;
1478 strip_info->tx_left = ptr - strip_info->tx_buff;
1479 strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1480
1481 /*
1482 * 4. Debugging check to make sure we're not overflowing the buffer.
1483 */
1484 if (strip_info->tx_size - strip_info->tx_left < 20)
1485 printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1486 strip_info->dev->name, strip_info->tx_left,
1487 strip_info->tx_size - strip_info->tx_left);
1488
1489 /*
1490 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1491 * the buffer, strip_write_some_more will send it after the reset has finished
1492 */
1493 if (doreset) {
1494 ResetRadio(strip_info);
1495 return;
1496 }
1497
1498 if (1) {
1499 struct in_device *in_dev;
1500
1501 brd = addr = 0;
1502 rcu_read_lock();
1503 in_dev = __in_dev_get_rcu(strip_info->dev);
1504 if (in_dev) {
1505 if (in_dev->ifa_list) {
1506 brd = in_dev->ifa_list->ifa_broadcast;
1507 addr = in_dev->ifa_list->ifa_local;
1508 }
1509 }
1510 rcu_read_unlock();
1511 }
1512
1513
1514 /*
1515 * 6. If it is time for a periodic ARP, queue one up to be sent.
1516 * We only do this if:
1517 * 1. The radio is working
1518 * 2. It's time to send another periodic ARP
1519 * 3. We really know what our address is (and it is not manually set to zero)
1520 * 4. We have a designated broadcast address configured
1521 * If we queue up an ARP packet when we don't have a designated broadcast
1522 * address configured, then the packet will just have to be discarded in
1523 * strip_make_packet. This is not fatal, but it causes misleading information
1524 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1525 * being sent, when in fact they are not, because they are all being dropped
1526 * in the strip_make_packet routine.
1527 */
1528 if (strip_info->working
1529 && (long) jiffies - strip_info->gratuitous_arp >= 0
1530 && memcmp(strip_info->dev->dev_addr, zero_address.c,
1531 sizeof(zero_address))
1532 && arp_query(haddr.c, brd, strip_info->dev)) {
1533 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1534 strip_info->dev->name, strip_info->arp_interval / HZ); */
1535 strip_info->gratuitous_arp =
1536 jiffies + strip_info->arp_interval;
1537 strip_info->arp_interval *= 2;
1538 if (strip_info->arp_interval > MaxARPInterval)
1539 strip_info->arp_interval = MaxARPInterval;
1540 if (addr)
1541 arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */
1542 strip_info->dev, /* Device to send packet on */
1543 addr, /* Source IP address this ARP packet comes from */
1544 NULL, /* Destination HW address is NULL (broadcast it) */
1545 strip_info->dev->dev_addr, /* Source HW address is our HW address */
1546 strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */
1547 }
1548
1549 /*
1550 * 7. All ready. Start the transmission
1551 */
1552 strip_write_some_more(strip_info->tty);
1553 }
1554
1555 /* Encapsulate a datagram and kick it into a TTY queue. */
1556 static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1557 {
1558 struct strip *strip_info = netdev_priv(dev);
1559
1560 if (!netif_running(dev)) {
1561 printk(KERN_ERR "%s: xmit call when iface is down\n",
1562 dev->name);
1563 return (1);
1564 }
1565
1566 netif_stop_queue(dev);
1567
1568 del_timer(&strip_info->idle_timer);
1569
1570
1571 if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1572 unsigned long t = jiffies - strip_info->pps_timer;
1573 unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t;
1574 unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t;
1575 unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t;
1576
1577 strip_info->pps_timer = jiffies;
1578 strip_info->rx_pps_count = 0;
1579 strip_info->tx_pps_count = 0;
1580 strip_info->sx_pps_count = 0;
1581
1582 strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1583 strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1584 strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1585
1586 if (rx_pps_count / 8 >= 10)
1587 printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1588 strip_info->dev->name, rx_pps_count / 8);
1589 if (tx_pps_count / 8 >= 10)
1590 printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
1591 strip_info->dev->name, tx_pps_count / 8);
1592 if (sx_pps_count / 8 >= 10)
1593 printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
1594 strip_info->dev->name, sx_pps_count / 8);
1595 }
1596
1597 spin_lock_bh(&strip_lock);
1598
1599 strip_send(strip_info, skb);
1600
1601 spin_unlock_bh(&strip_lock);
1602
1603 if (skb)
1604 dev_kfree_skb(skb);
1605 return 0;
1606 }
1607
1608 /*
1609 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1610 * to send for an extended period of time, the watchdog processing still gets
1611 * done to ensure that the radio stays in Starmode
1612 */
1613
1614 static void strip_IdleTask(unsigned long parameter)
1615 {
1616 strip_xmit(NULL, (struct net_device *) parameter);
1617 }
1618
1619 /*
1620 * Create the MAC header for an arbitrary protocol layer
1621 *
1622 * saddr!=NULL means use this specific address (n/a for Metricom)
1623 * saddr==NULL means use default device source address
1624 * daddr!=NULL means use this destination address
1625 * daddr==NULL means leave destination address alone
1626 * (e.g. unresolved arp -- kernel will call
1627 * rebuild_header later to fill in the address)
1628 */
1629
1630 static int strip_header(struct sk_buff *skb, struct net_device *dev,
1631 unsigned short type, void *daddr, void *saddr,
1632 unsigned len)
1633 {
1634 struct strip *strip_info = netdev_priv(dev);
1635 STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1636
1637 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1638 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1639
1640 header->src_addr = strip_info->true_dev_addr;
1641 header->protocol = htons(type);
1642
1643 /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1644
1645 if (!daddr)
1646 return (-dev->hard_header_len);
1647
1648 header->dst_addr = *(MetricomAddress *) daddr;
1649 return (dev->hard_header_len);
1650 }
1651
1652 /*
1653 * Rebuild the MAC header. This is called after an ARP
1654 * (or in future other address resolution) has completed on this
1655 * sk_buff. We now let ARP fill in the other fields.
1656 * I think this should return zero if packet is ready to send,
1657 * or non-zero if it needs more time to do an address lookup
1658 */
1659
1660 static int strip_rebuild_header(struct sk_buff *skb)
1661 {
1662 #ifdef CONFIG_INET
1663 STRIP_Header *header = (STRIP_Header *) skb->data;
1664
1665 /* Arp find returns zero if if knows the address, */
1666 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1667 return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1668 #else
1669 return 0;
1670 #endif
1671 }
1672
1673
1674 /************************************************************************/
1675 /* Receiving routines */
1676
1677 /*
1678 * This function parses the response to the ATS300? command,
1679 * extracting the radio version and serial number.
1680 */
1681 static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1682 {
1683 __u8 *p, *value_begin, *value_end;
1684 int len;
1685
1686 /* Determine the beginning of the second line of the payload */
1687 p = ptr;
1688 while (p < end && *p != 10)
1689 p++;
1690 if (p >= end)
1691 return;
1692 p++;
1693 value_begin = p;
1694
1695 /* Determine the end of line */
1696 while (p < end && *p != 10)
1697 p++;
1698 if (p >= end)
1699 return;
1700 value_end = p;
1701 p++;
1702
1703 len = value_end - value_begin;
1704 len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1705 if (strip_info->firmware_version.c[0] == 0)
1706 printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1707 strip_info->dev->name, len, value_begin);
1708 sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1709
1710 /* Look for the first colon */
1711 while (p < end && *p != ':')
1712 p++;
1713 if (p >= end)
1714 return;
1715 /* Skip over the space */
1716 p += 2;
1717 len = sizeof(SerialNumber) - 1;
1718 if (p + len <= end) {
1719 sprintf(strip_info->serial_number.c, "%.*s", len, p);
1720 } else {
1721 printk(KERN_DEBUG
1722 "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1723 end - p, len);
1724 }
1725 }
1726
1727 /*
1728 * This function parses the response to the ATS325? command,
1729 * extracting the radio battery voltage.
1730 */
1731 static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1732 {
1733 int len;
1734
1735 len = sizeof(BatteryVoltage) - 1;
1736 if (ptr + len <= end) {
1737 sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1738 } else {
1739 printk(KERN_DEBUG
1740 "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1741 end - ptr, len);
1742 }
1743 }
1744
1745 /*
1746 * This function parses the responses to the AT~LA and ATS311 commands,
1747 * which list the radio's neighbours.
1748 */
1749 static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1750 {
1751 table->num_nodes = 0;
1752 while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1753 MetricomNode *node = &table->node[table->num_nodes++];
1754 char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1755 while (ptr < end && *ptr <= 32)
1756 ptr++;
1757 while (ptr < end && dst < limit && *ptr != 10)
1758 *dst++ = *ptr++;
1759 *dst++ = 0;
1760 while (ptr < end && ptr[-1] != 10)
1761 ptr++;
1762 }
1763 do_gettimeofday(&table->timestamp);
1764 }
1765
1766 static int get_radio_address(struct strip *strip_info, __u8 * p)
1767 {
1768 MetricomAddress addr;
1769
1770 if (string_to_radio_address(&addr, p))
1771 return (1);
1772
1773 /* See if our radio address has changed */
1774 if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1775 MetricomAddressString addr_string;
1776 radio_address_to_string(&addr, &addr_string);
1777 printk(KERN_INFO "%s: Radio address = %s\n",
1778 strip_info->dev->name, addr_string.c);
1779 strip_info->true_dev_addr = addr;
1780 if (!strip_info->manual_dev_addr)
1781 *(MetricomAddress *) strip_info->dev->dev_addr =
1782 addr;
1783 /* Give the radio a few seconds to get its head straight, then send an arp */
1784 strip_info->gratuitous_arp = jiffies + 15 * HZ;
1785 strip_info->arp_interval = 1 * HZ;
1786 }
1787 return (0);
1788 }
1789
1790 static int verify_checksum(struct strip *strip_info)
1791 {
1792 __u8 *p = strip_info->sx_buff;
1793 __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1794 u_short sum =
1795 (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1796 (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1797 while (p < end)
1798 sum -= *p++;
1799 if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1800 strip_info->firmware_level = ChecksummedMessages;
1801 printk(KERN_INFO "%s: Radio provides message checksums\n",
1802 strip_info->dev->name);
1803 }
1804 return (sum == 0);
1805 }
1806
1807 static void RecvErr(char *msg, struct strip *strip_info)
1808 {
1809 __u8 *ptr = strip_info->sx_buff;
1810 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1811 DumpData(msg, strip_info, ptr, end);
1812 strip_info->rx_errors++;
1813 }
1814
1815 static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1816 const __u8 * msg, u_long len)
1817 {
1818 if (has_prefix(msg, len, "001")) { /* Not in StarMode! */
1819 RecvErr("Error Msg:", strip_info);
1820 printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1821 strip_info->dev->name, sendername);
1822 }
1823
1824 else if (has_prefix(msg, len, "002")) { /* Remap handle */
1825 /* We ignore "Remap handle" messages for now */
1826 }
1827
1828 else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1829 RecvErr("Error Msg:", strip_info);
1830 printk(KERN_INFO "%s: Destination radio name is unknown\n",
1831 strip_info->dev->name);
1832 }
1833
1834 else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1835 strip_info->watchdog_doreset = jiffies + LongTime;
1836 #if TICKLE_TIMERS
1837 {
1838 struct timeval tv;
1839 do_gettimeofday(&tv);
1840 printk(KERN_INFO
1841 "**** Got ERR_004 response at %02d.%06d\n",
1842 tv.tv_sec % 100, tv.tv_usec);
1843 }
1844 #endif
1845 if (!strip_info->working) {
1846 strip_info->working = TRUE;
1847 printk(KERN_INFO "%s: Radio now in starmode\n",
1848 strip_info->dev->name);
1849 /*
1850 * If the radio has just entered a working state, we should do our first
1851 * probe ASAP, so that we find out our radio address etc. without delay.
1852 */
1853 strip_info->watchdog_doprobe = jiffies;
1854 }
1855 if (strip_info->firmware_level == NoStructure && sendername) {
1856 strip_info->firmware_level = StructuredMessages;
1857 strip_info->next_command = 0; /* Try to enable checksums ASAP */
1858 printk(KERN_INFO
1859 "%s: Radio provides structured messages\n",
1860 strip_info->dev->name);
1861 }
1862 if (strip_info->firmware_level >= StructuredMessages) {
1863 /*
1864 * If this message has a valid checksum on the end, then the call to verify_checksum
1865 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1866 * code from verify_checksum is ignored here.)
1867 */
1868 verify_checksum(strip_info);
1869 /*
1870 * If the radio has structured messages but we don't yet have all our information about it,
1871 * we should do probes without delay, until we have gathered all the information
1872 */
1873 if (!GOT_ALL_RADIO_INFO(strip_info))
1874 strip_info->watchdog_doprobe = jiffies;
1875 }
1876 }
1877
1878 else if (has_prefix(msg, len, "005")) /* Bad count specification */
1879 RecvErr("Error Msg:", strip_info);
1880
1881 else if (has_prefix(msg, len, "006")) /* Header too big */
1882 RecvErr("Error Msg:", strip_info);
1883
1884 else if (has_prefix(msg, len, "007")) { /* Body too big */
1885 RecvErr("Error Msg:", strip_info);
1886 printk(KERN_ERR
1887 "%s: Error! Packet size too big for radio.\n",
1888 strip_info->dev->name);
1889 }
1890
1891 else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1892 RecvErr("Error Msg:", strip_info);
1893 printk(KERN_ERR
1894 "%s: Radio name contains illegal character\n",
1895 strip_info->dev->name);
1896 }
1897
1898 else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1899 RecvErr("Error Msg:", strip_info);
1900
1901 else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1902 RecvErr("Error Msg:", strip_info);
1903
1904 else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1905 RecvErr("Error Msg:", strip_info);
1906
1907 else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1908 RecvErr("Error Msg:", strip_info);
1909
1910 else
1911 RecvErr("Error Msg:", strip_info);
1912 }
1913
1914 static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1915 __u8 * end)
1916 {
1917 u_long len;
1918 __u8 *p = ptr;
1919 while (p < end && p[-1] != 10)
1920 p++; /* Skip past first newline character */
1921 /* Now ptr points to the AT command, and p points to the text of the response. */
1922 len = p - ptr;
1923
1924 #if TICKLE_TIMERS
1925 {
1926 struct timeval tv;
1927 do_gettimeofday(&tv);
1928 printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
1929 ptr, tv.tv_sec % 100, tv.tv_usec);
1930 }
1931 #endif
1932
1933 if (has_prefix(ptr, len, "ATS300?"))
1934 get_radio_version(strip_info, p, end);
1935 else if (has_prefix(ptr, len, "ATS305?"))
1936 get_radio_address(strip_info, p);
1937 else if (has_prefix(ptr, len, "ATS311?"))
1938 get_radio_neighbours(&strip_info->poletops, p, end);
1939 else if (has_prefix(ptr, len, "ATS319=7"))
1940 verify_checksum(strip_info);
1941 else if (has_prefix(ptr, len, "ATS325?"))
1942 get_radio_voltage(strip_info, p, end);
1943 else if (has_prefix(ptr, len, "AT~LA"))
1944 get_radio_neighbours(&strip_info->portables, p, end);
1945 else
1946 RecvErr("Unknown AT Response:", strip_info);
1947 }
1948
1949 static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1950 {
1951 /* Currently we don't do anything with ACKs from the radio */
1952 }
1953
1954 static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1955 {
1956 if (ptr + 16 > end)
1957 RecvErr("Bad Info Msg:", strip_info);
1958 }
1959
1960 static struct net_device *get_strip_dev(struct strip *strip_info)
1961 {
1962 /* If our hardware address is *manually set* to zero, and we know our */
1963 /* real radio hardware address, try to find another strip device that has been */
1964 /* manually set to that address that we can 'transfer ownership' of this packet to */
1965 if (strip_info->manual_dev_addr &&
1966 !memcmp(strip_info->dev->dev_addr, zero_address.c,
1967 sizeof(zero_address))
1968 && memcmp(&strip_info->true_dev_addr, zero_address.c,
1969 sizeof(zero_address))) {
1970 struct net_device *dev;
1971 read_lock_bh(&dev_base_lock);
1972 dev = dev_base;
1973 while (dev) {
1974 if (dev->type == strip_info->dev->type &&
1975 !memcmp(dev->dev_addr,
1976 &strip_info->true_dev_addr,
1977 sizeof(MetricomAddress))) {
1978 printk(KERN_INFO
1979 "%s: Transferred packet ownership to %s.\n",
1980 strip_info->dev->name, dev->name);
1981 read_unlock_bh(&dev_base_lock);
1982 return (dev);
1983 }
1984 dev = dev->next;
1985 }
1986 read_unlock_bh(&dev_base_lock);
1987 }
1988 return (strip_info->dev);
1989 }
1990
1991 /*
1992 * Send one completely decapsulated datagram to the next layer.
1993 */
1994
1995 static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1996 __u16 packetlen)
1997 {
1998 struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
1999 if (!skb) {
2000 printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
2001 strip_info->dev->name);
2002 strip_info->rx_dropped++;
2003 } else {
2004 memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
2005 sizeof(STRIP_Header));
2006 memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
2007 packetlen);
2008 skb->dev = get_strip_dev(strip_info);
2009 skb->protocol = header->protocol;
2010 skb->mac.raw = skb->data;
2011
2012 /* Having put a fake header on the front of the sk_buff for the */
2013 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
2014 /* fake header before we hand the packet up to the next layer. */
2015 skb_pull(skb, sizeof(STRIP_Header));
2016
2017 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2018 strip_info->rx_packets++;
2019 strip_info->rx_pps_count++;
2020 #ifdef EXT_COUNTERS
2021 strip_info->rx_bytes += packetlen;
2022 #endif
2023 skb->dev->last_rx = jiffies;
2024 netif_rx(skb);
2025 }
2026 }
2027
2028 static void process_IP_packet(struct strip *strip_info,
2029 STRIP_Header * header, __u8 * ptr,
2030 __u8 * end)
2031 {
2032 __u16 packetlen;
2033
2034 /* Decode start of the IP packet header */
2035 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2036 if (!ptr) {
2037 RecvErr("IP Packet too short", strip_info);
2038 return;
2039 }
2040
2041 packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2042
2043 if (packetlen > MAX_RECV_MTU) {
2044 printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2045 strip_info->dev->name, packetlen);
2046 strip_info->rx_dropped++;
2047 return;
2048 }
2049
2050 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2051
2052 /* Decode remainder of the IP packet */
2053 ptr =
2054 UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2055 if (!ptr) {
2056 RecvErr("IP Packet too short", strip_info);
2057 return;
2058 }
2059
2060 if (ptr < end) {
2061 RecvErr("IP Packet too long", strip_info);
2062 return;
2063 }
2064
2065 header->protocol = htons(ETH_P_IP);
2066
2067 deliver_packet(strip_info, header, packetlen);
2068 }
2069
2070 static void process_ARP_packet(struct strip *strip_info,
2071 STRIP_Header * header, __u8 * ptr,
2072 __u8 * end)
2073 {
2074 __u16 packetlen;
2075 struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2076
2077 /* Decode start of the ARP packet */
2078 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2079 if (!ptr) {
2080 RecvErr("ARP Packet too short", strip_info);
2081 return;
2082 }
2083
2084 packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2085
2086 if (packetlen > MAX_RECV_MTU) {
2087 printk(KERN_INFO
2088 "%s: Dropping oversized received ARP packet: %d bytes\n",
2089 strip_info->dev->name, packetlen);
2090 strip_info->rx_dropped++;
2091 return;
2092 }
2093
2094 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2095 strip_info->dev->name, packetlen,
2096 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2097
2098 /* Decode remainder of the ARP packet */
2099 ptr =
2100 UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2101 if (!ptr) {
2102 RecvErr("ARP Packet too short", strip_info);
2103 return;
2104 }
2105
2106 if (ptr < end) {
2107 RecvErr("ARP Packet too long", strip_info);
2108 return;
2109 }
2110
2111 header->protocol = htons(ETH_P_ARP);
2112
2113 deliver_packet(strip_info, header, packetlen);
2114 }
2115
2116 /*
2117 * process_text_message processes a <CR>-terminated block of data received
2118 * from the radio that doesn't begin with a '*' character. All normal
2119 * Starmode communication messages with the radio begin with a '*',
2120 * so any text that does not indicates a serial port error, a radio that
2121 * is in Hayes command mode instead of Starmode, or a radio with really
2122 * old firmware that doesn't frame its Starmode responses properly.
2123 */
2124 static void process_text_message(struct strip *strip_info)
2125 {
2126 __u8 *msg = strip_info->sx_buff;
2127 int len = strip_info->sx_count;
2128
2129 /* Check for anything that looks like it might be our radio name */
2130 /* (This is here for backwards compatibility with old firmware) */
2131 if (len == 9 && get_radio_address(strip_info, msg) == 0)
2132 return;
2133
2134 if (text_equal(msg, len, "OK"))
2135 return; /* Ignore 'OK' responses from prior commands */
2136 if (text_equal(msg, len, "ERROR"))
2137 return; /* Ignore 'ERROR' messages */
2138 if (has_prefix(msg, len, "ate0q1"))
2139 return; /* Ignore character echo back from the radio */
2140
2141 /* Catch other error messages */
2142 /* (This is here for backwards compatibility with old firmware) */
2143 if (has_prefix(msg, len, "ERR_")) {
2144 RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2145 return;
2146 }
2147
2148 RecvErr("No initial *", strip_info);
2149 }
2150
2151 /*
2152 * process_message processes a <CR>-terminated block of data received
2153 * from the radio. If the radio is not in Starmode or has old firmware,
2154 * it may be a line of text in response to an AT command. Ideally, with
2155 * a current radio that's properly in Starmode, all data received should
2156 * be properly framed and checksummed radio message blocks, containing
2157 * either a starmode packet, or a other communication from the radio
2158 * firmware, like "INF_" Info messages and &COMMAND responses.
2159 */
2160 static void process_message(struct strip *strip_info)
2161 {
2162 STRIP_Header header = { zero_address, zero_address, 0 };
2163 __u8 *ptr = strip_info->sx_buff;
2164 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2165 __u8 sendername[32], *sptr = sendername;
2166 MetricomKey key;
2167
2168 /*HexDump("Receiving", strip_info, ptr, end); */
2169
2170 /* Check for start of address marker, and then skip over it */
2171 if (*ptr == '*')
2172 ptr++;
2173 else {
2174 process_text_message(strip_info);
2175 return;
2176 }
2177
2178 /* Copy out the return address */
2179 while (ptr < end && *ptr != '*'
2180 && sptr < ARRAY_END(sendername) - 1)
2181 *sptr++ = *ptr++;
2182 *sptr = 0; /* Null terminate the sender name */
2183
2184 /* Check for end of address marker, and skip over it */
2185 if (ptr >= end || *ptr != '*') {
2186 RecvErr("No second *", strip_info);
2187 return;
2188 }
2189 ptr++; /* Skip the second '*' */
2190
2191 /* If the sender name is "&COMMAND", ignore this 'packet' */
2192 /* (This is here for backwards compatibility with old firmware) */
2193 if (!strcmp(sendername, "&COMMAND")) {
2194 strip_info->firmware_level = NoStructure;
2195 strip_info->next_command = CompatibilityCommand;
2196 return;
2197 }
2198
2199 if (ptr + 4 > end) {
2200 RecvErr("No proto key", strip_info);
2201 return;
2202 }
2203
2204 /* Get the protocol key out of the buffer */
2205 key.c[0] = *ptr++;
2206 key.c[1] = *ptr++;
2207 key.c[2] = *ptr++;
2208 key.c[3] = *ptr++;
2209
2210 /* If we're using checksums, verify the checksum at the end of the packet */
2211 if (strip_info->firmware_level >= ChecksummedMessages) {
2212 end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2213 if (ptr > end) {
2214 RecvErr("Missing Checksum", strip_info);
2215 return;
2216 }
2217 if (!verify_checksum(strip_info)) {
2218 RecvErr("Bad Checksum", strip_info);
2219 return;
2220 }
2221 }
2222
2223 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2224
2225 /*
2226 * Fill in (pseudo) source and destination addresses in the packet.
2227 * We assume that the destination address was our address (the radio does not
2228 * tell us this). If the radio supplies a source address, then we use it.
2229 */
2230 header.dst_addr = strip_info->true_dev_addr;
2231 string_to_radio_address(&header.src_addr, sendername);
2232
2233 #ifdef EXT_COUNTERS
2234 if (key.l == SIP0Key.l) {
2235 strip_info->rx_rbytes += (end - ptr);
2236 process_IP_packet(strip_info, &header, ptr, end);
2237 } else if (key.l == ARP0Key.l) {
2238 strip_info->rx_rbytes += (end - ptr);
2239 process_ARP_packet(strip_info, &header, ptr, end);
2240 } else if (key.l == ATR_Key.l) {
2241 strip_info->rx_ebytes += (end - ptr);
2242 process_AT_response(strip_info, ptr, end);
2243 } else if (key.l == ACK_Key.l) {
2244 strip_info->rx_ebytes += (end - ptr);
2245 process_ACK(strip_info, ptr, end);
2246 } else if (key.l == INF_Key.l) {
2247 strip_info->rx_ebytes += (end - ptr);
2248 process_Info(strip_info, ptr, end);
2249 } else if (key.l == ERR_Key.l) {
2250 strip_info->rx_ebytes += (end - ptr);
2251 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2252 } else
2253 RecvErr("Unrecognized protocol key", strip_info);
2254 #else
2255 if (key.l == SIP0Key.l)
2256 process_IP_packet(strip_info, &header, ptr, end);
2257 else if (key.l == ARP0Key.l)
2258 process_ARP_packet(strip_info, &header, ptr, end);
2259 else if (key.l == ATR_Key.l)
2260 process_AT_response(strip_info, ptr, end);
2261 else if (key.l == ACK_Key.l)
2262 process_ACK(strip_info, ptr, end);
2263 else if (key.l == INF_Key.l)
2264 process_Info(strip_info, ptr, end);
2265 else if (key.l == ERR_Key.l)
2266 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2267 else
2268 RecvErr("Unrecognized protocol key", strip_info);
2269 #endif
2270 }
2271
2272 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2273 (X) == TTY_FRAME ? "Framing Error" : \
2274 (X) == TTY_PARITY ? "Parity Error" : \
2275 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2276
2277 /*
2278 * Handle the 'receiver data ready' interrupt.
2279 * This function is called by the 'tty_io' module in the kernel when
2280 * a block of STRIP data has been received, which can now be decapsulated
2281 * and sent on to some IP layer for further processing.
2282 */
2283
2284 static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2285 char *fp, int count)
2286 {
2287 struct strip *strip_info = (struct strip *) tty->disc_data;
2288 const unsigned char *end = cp + count;
2289
2290 if (!strip_info || strip_info->magic != STRIP_MAGIC
2291 || !netif_running(strip_info->dev))
2292 return;
2293
2294 spin_lock_bh(&strip_lock);
2295 #if 0
2296 {
2297 struct timeval tv;
2298 do_gettimeofday(&tv);
2299 printk(KERN_INFO
2300 "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2301 count, tv.tv_sec % 100, tv.tv_usec);
2302 }
2303 #endif
2304
2305 #ifdef EXT_COUNTERS
2306 strip_info->rx_sbytes += count;
2307 #endif
2308
2309 /* Read the characters out of the buffer */
2310 while (cp < end) {
2311 if (fp && *fp)
2312 printk(KERN_INFO "%s: %s on serial port\n",
2313 strip_info->dev->name, TTYERROR(*fp));
2314 if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */
2315 /* If we have some characters in the buffer, discard them */
2316 strip_info->discard = strip_info->sx_count;
2317 strip_info->rx_errors++;
2318 }
2319
2320 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2321 if (strip_info->sx_count > 0 || *cp >= ' ') {
2322 if (*cp == 0x0D) { /* If end of packet, decide what to do with it */
2323 if (strip_info->sx_count > 3000)
2324 printk(KERN_INFO
2325 "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2326 strip_info->dev->name,
2327 strip_info->sx_count,
2328 end - cp - 1,
2329 strip_info->
2330 discard ? " (discarded)" :
2331 "");
2332 if (strip_info->sx_count >
2333 strip_info->sx_size) {
2334 strip_info->rx_over_errors++;
2335 printk(KERN_INFO
2336 "%s: sx_buff overflow (%d bytes total)\n",
2337 strip_info->dev->name,
2338 strip_info->sx_count);
2339 } else if (strip_info->discard)
2340 printk(KERN_INFO
2341 "%s: Discarding bad packet (%d/%d)\n",
2342 strip_info->dev->name,
2343 strip_info->discard,
2344 strip_info->sx_count);
2345 else
2346 process_message(strip_info);
2347 strip_info->discard = 0;
2348 strip_info->sx_count = 0;
2349 } else {
2350 /* Make sure we have space in the buffer */
2351 if (strip_info->sx_count <
2352 strip_info->sx_size)
2353 strip_info->sx_buff[strip_info->
2354 sx_count] =
2355 *cp;
2356 strip_info->sx_count++;
2357 }
2358 }
2359 cp++;
2360 }
2361 spin_unlock_bh(&strip_lock);
2362 }
2363
2364
2365 /************************************************************************/
2366 /* General control routines */
2367
2368 static int set_mac_address(struct strip *strip_info,
2369 MetricomAddress * addr)
2370 {
2371 /*
2372 * We're using a manually specified address if the address is set
2373 * to anything other than all ones. Setting the address to all ones
2374 * disables manual mode and goes back to automatic address determination
2375 * (tracking the true address that the radio has).
2376 */
2377 strip_info->manual_dev_addr =
2378 memcmp(addr->c, broadcast_address.c,
2379 sizeof(broadcast_address));
2380 if (strip_info->manual_dev_addr)
2381 *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2382 else
2383 *(MetricomAddress *) strip_info->dev->dev_addr =
2384 strip_info->true_dev_addr;
2385 return 0;
2386 }
2387
2388 static int strip_set_mac_address(struct net_device *dev, void *addr)
2389 {
2390 struct strip *strip_info = netdev_priv(dev);
2391 struct sockaddr *sa = addr;
2392 printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2393 set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2394 return 0;
2395 }
2396
2397 static struct net_device_stats *strip_get_stats(struct net_device *dev)
2398 {
2399 struct strip *strip_info = netdev_priv(dev);
2400 static struct net_device_stats stats;
2401
2402 memset(&stats, 0, sizeof(struct net_device_stats));
2403
2404 stats.rx_packets = strip_info->rx_packets;
2405 stats.tx_packets = strip_info->tx_packets;
2406 stats.rx_dropped = strip_info->rx_dropped;
2407 stats.tx_dropped = strip_info->tx_dropped;
2408 stats.tx_errors = strip_info->tx_errors;
2409 stats.rx_errors = strip_info->rx_errors;
2410 stats.rx_over_errors = strip_info->rx_over_errors;
2411 return (&stats);
2412 }
2413
2414
2415 /************************************************************************/
2416 /* Opening and closing */
2417
2418 /*
2419 * Here's the order things happen:
2420 * When the user runs "slattach -p strip ..."
2421 * 1. The TTY module calls strip_open;;
2422 * 2. strip_open calls strip_alloc
2423 * 3. strip_alloc calls register_netdev
2424 * 4. register_netdev calls strip_dev_init
2425 * 5. then strip_open finishes setting up the strip_info
2426 *
2427 * When the user runs "ifconfig st<x> up address netmask ..."
2428 * 6. strip_open_low gets called
2429 *
2430 * When the user runs "ifconfig st<x> down"
2431 * 7. strip_close_low gets called
2432 *
2433 * When the user kills the slattach process
2434 * 8. strip_close gets called
2435 * 9. strip_close calls dev_close
2436 * 10. if the device is still up, then dev_close calls strip_close_low
2437 * 11. strip_close calls strip_free
2438 */
2439
2440 /* Open the low-level part of the STRIP channel. Easy! */
2441
2442 static int strip_open_low(struct net_device *dev)
2443 {
2444 struct strip *strip_info = netdev_priv(dev);
2445
2446 if (strip_info->tty == NULL)
2447 return (-ENODEV);
2448
2449 if (!allocate_buffers(strip_info, dev->mtu))
2450 return (-ENOMEM);
2451
2452 strip_info->sx_count = 0;
2453 strip_info->tx_left = 0;
2454
2455 strip_info->discard = 0;
2456 strip_info->working = FALSE;
2457 strip_info->firmware_level = NoStructure;
2458 strip_info->next_command = CompatibilityCommand;
2459 strip_info->user_baud = get_baud(strip_info->tty);
2460
2461 printk(KERN_INFO "%s: Initializing Radio.\n",
2462 strip_info->dev->name);
2463 ResetRadio(strip_info);
2464 strip_info->idle_timer.expires = jiffies + 1 * HZ;
2465 add_timer(&strip_info->idle_timer);
2466 netif_wake_queue(dev);
2467 return (0);
2468 }
2469
2470
2471 /*
2472 * Close the low-level part of the STRIP channel. Easy!
2473 */
2474
2475 static int strip_close_low(struct net_device *dev)
2476 {
2477 struct strip *strip_info = netdev_priv(dev);
2478
2479 if (strip_info->tty == NULL)
2480 return -EBUSY;
2481 strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2482
2483 netif_stop_queue(dev);
2484
2485 /*
2486 * Free all STRIP frame buffers.
2487 */
2488 kfree(strip_info->rx_buff);
2489 strip_info->rx_buff = NULL;
2490 kfree(strip_info->sx_buff);
2491 strip_info->sx_buff = NULL;
2492 kfree(strip_info->tx_buff);
2493 strip_info->tx_buff = NULL;
2494
2495 del_timer(&strip_info->idle_timer);
2496 return 0;
2497 }
2498
2499 /*
2500 * This routine is called by DDI when the
2501 * (dynamically assigned) device is registered
2502 */
2503
2504 static void strip_dev_setup(struct net_device *dev)
2505 {
2506 /*
2507 * Finish setting up the DEVICE info.
2508 */
2509
2510 SET_MODULE_OWNER(dev);
2511
2512 dev->trans_start = 0;
2513 dev->last_rx = 0;
2514 dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2515
2516 dev->flags = 0;
2517 dev->mtu = DEFAULT_STRIP_MTU;
2518 dev->type = ARPHRD_METRICOM; /* dtang */
2519 dev->hard_header_len = sizeof(STRIP_Header);
2520 /*
2521 * dev->priv Already holds a pointer to our struct strip
2522 */
2523
2524 *(MetricomAddress *) & dev->broadcast = broadcast_address;
2525 dev->dev_addr[0] = 0;
2526 dev->addr_len = sizeof(MetricomAddress);
2527
2528 /*
2529 * Pointers to interface service routines.
2530 */
2531
2532 dev->open = strip_open_low;
2533 dev->stop = strip_close_low;
2534 dev->hard_start_xmit = strip_xmit;
2535 dev->hard_header = strip_header;
2536 dev->rebuild_header = strip_rebuild_header;
2537 dev->set_mac_address = strip_set_mac_address;
2538 dev->get_stats = strip_get_stats;
2539 dev->change_mtu = strip_change_mtu;
2540 }
2541
2542 /*
2543 * Free a STRIP channel.
2544 */
2545
2546 static void strip_free(struct strip *strip_info)
2547 {
2548 spin_lock_bh(&strip_lock);
2549 list_del_rcu(&strip_info->list);
2550 spin_unlock_bh(&strip_lock);
2551
2552 strip_info->magic = 0;
2553
2554 free_netdev(strip_info->dev);
2555 }
2556
2557
2558 /*
2559 * Allocate a new free STRIP channel
2560 */
2561 static struct strip *strip_alloc(void)
2562 {
2563 struct list_head *n;
2564 struct net_device *dev;
2565 struct strip *strip_info;
2566
2567 dev = alloc_netdev(sizeof(struct strip), "st%d",
2568 strip_dev_setup);
2569
2570 if (!dev)
2571 return NULL; /* If no more memory, return */
2572
2573
2574 strip_info = dev->priv;
2575 strip_info->dev = dev;
2576
2577 strip_info->magic = STRIP_MAGIC;
2578 strip_info->tty = NULL;
2579
2580 strip_info->gratuitous_arp = jiffies + LongTime;
2581 strip_info->arp_interval = 0;
2582 init_timer(&strip_info->idle_timer);
2583 strip_info->idle_timer.data = (long) dev;
2584 strip_info->idle_timer.function = strip_IdleTask;
2585
2586
2587 spin_lock_bh(&strip_lock);
2588 rescan:
2589 /*
2590 * Search the list to find where to put our new entry
2591 * (and in the process decide what channel number it is
2592 * going to be)
2593 */
2594 list_for_each(n, &strip_list) {
2595 struct strip *s = hlist_entry(n, struct strip, list);
2596
2597 if (s->dev->base_addr == dev->base_addr) {
2598 ++dev->base_addr;
2599 goto rescan;
2600 }
2601 }
2602
2603 sprintf(dev->name, "st%ld", dev->base_addr);
2604
2605 list_add_tail_rcu(&strip_info->list, &strip_list);
2606 spin_unlock_bh(&strip_lock);
2607
2608 return strip_info;
2609 }
2610
2611 /*
2612 * Open the high-level part of the STRIP channel.
2613 * This function is called by the TTY module when the
2614 * STRIP line discipline is called for. Because we are
2615 * sure the tty line exists, we only have to link it to
2616 * a free STRIP channel...
2617 */
2618
2619 static int strip_open(struct tty_struct *tty)
2620 {
2621 struct strip *strip_info = (struct strip *) tty->disc_data;
2622
2623 /*
2624 * First make sure we're not already connected.
2625 */
2626
2627 if (strip_info && strip_info->magic == STRIP_MAGIC)
2628 return -EEXIST;
2629
2630 /*
2631 * OK. Find a free STRIP channel to use.
2632 */
2633 if ((strip_info = strip_alloc()) == NULL)
2634 return -ENFILE;
2635
2636 /*
2637 * Register our newly created device so it can be ifconfig'd
2638 * strip_dev_init() will be called as a side-effect
2639 */
2640
2641 if (register_netdev(strip_info->dev) != 0) {
2642 printk(KERN_ERR "strip: register_netdev() failed.\n");
2643 strip_free(strip_info);
2644 return -ENFILE;
2645 }
2646
2647 strip_info->tty = tty;
2648 tty->disc_data = strip_info;
2649 tty->receive_room = 65536;
2650
2651 if (tty->driver->flush_buffer)
2652 tty->driver->flush_buffer(tty);
2653
2654 /*
2655 * Restore default settings
2656 */
2657
2658 strip_info->dev->type = ARPHRD_METRICOM; /* dtang */
2659
2660 /*
2661 * Set tty options
2662 */
2663
2664 tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */
2665 tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
2666 tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
2667
2668 printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2669 strip_info->dev->name);
2670
2671 /*
2672 * Done. We have linked the TTY line to a channel.
2673 */
2674 return (strip_info->dev->base_addr);
2675 }
2676
2677 /*
2678 * Close down a STRIP channel.
2679 * This means flushing out any pending queues, and then restoring the
2680 * TTY line discipline to what it was before it got hooked to STRIP
2681 * (which usually is TTY again).
2682 */
2683
2684 static void strip_close(struct tty_struct *tty)
2685 {
2686 struct strip *strip_info = (struct strip *) tty->disc_data;
2687
2688 /*
2689 * First make sure we're connected.
2690 */
2691
2692 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2693 return;
2694
2695 unregister_netdev(strip_info->dev);
2696
2697 tty->disc_data = NULL;
2698 strip_info->tty = NULL;
2699 printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2700 strip_info->dev->name);
2701 strip_free(strip_info);
2702 tty->disc_data = NULL;
2703 }
2704
2705
2706 /************************************************************************/
2707 /* Perform I/O control calls on an active STRIP channel. */
2708
2709 static int strip_ioctl(struct tty_struct *tty, struct file *file,
2710 unsigned int cmd, unsigned long arg)
2711 {
2712 struct strip *strip_info = (struct strip *) tty->disc_data;
2713
2714 /*
2715 * First make sure we're connected.
2716 */
2717
2718 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2719 return -EINVAL;
2720
2721 switch (cmd) {
2722 case SIOCGIFNAME:
2723 if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2724 return -EFAULT;
2725 break;
2726 case SIOCSIFHWADDR:
2727 {
2728 MetricomAddress addr;
2729 //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2730 if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2731 return -EFAULT;
2732 return set_mac_address(strip_info, &addr);
2733 }
2734 /*
2735 * Allow stty to read, but not set, the serial port
2736 */
2737
2738 case TCGETS:
2739 case TCGETA:
2740 return n_tty_ioctl(tty, file, cmd, arg);
2741 break;
2742 default:
2743 return -ENOIOCTLCMD;
2744 break;
2745 }
2746 return 0;
2747 }
2748
2749
2750 /************************************************************************/
2751 /* Initialization */
2752
2753 static struct tty_ldisc strip_ldisc = {
2754 .magic = TTY_LDISC_MAGIC,
2755 .name = "strip",
2756 .owner = THIS_MODULE,
2757 .open = strip_open,
2758 .close = strip_close,
2759 .ioctl = strip_ioctl,
2760 .receive_buf = strip_receive_buf,
2761 .write_wakeup = strip_write_some_more,
2762 };
2763
2764 /*
2765 * Initialize the STRIP driver.
2766 * This routine is called at boot time, to bootstrap the multi-channel
2767 * STRIP driver
2768 */
2769
2770 static char signon[] __initdata =
2771 KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2772
2773 static int __init strip_init_driver(void)
2774 {
2775 int status;
2776
2777 printk(signon, StripVersion);
2778
2779
2780 /*
2781 * Fill in our line protocol discipline, and register it
2782 */
2783 if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2784 printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2785 status);
2786
2787 /*
2788 * Register the status file with /proc
2789 */
2790 proc_net_fops_create("strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2791
2792 return status;
2793 }
2794
2795 module_init(strip_init_driver);
2796
2797 static const char signoff[] __exitdata =
2798 KERN_INFO "STRIP: Module Unloaded\n";
2799
2800 static void __exit strip_exit_driver(void)
2801 {
2802 int i;
2803 struct list_head *p,*n;
2804
2805 /* module ref count rules assure that all entries are unregistered */
2806 list_for_each_safe(p, n, &strip_list) {
2807 struct strip *s = list_entry(p, struct strip, list);
2808 strip_free(s);
2809 }
2810
2811 /* Unregister with the /proc/net file here. */
2812 proc_net_remove("strip");
2813
2814 if ((i = tty_unregister_ldisc(N_STRIP)))
2815 printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2816
2817 printk(signoff);
2818 }
2819
2820 module_exit(strip_exit_driver);
2821
2822 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2823 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2824 MODULE_LICENSE("Dual BSD/GPL");
2825
2826 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");