]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/wireless/zd1211rw/zd_usb.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/skbuff.h>
29 #include <linux/usb.h>
30 #include <linux/workqueue.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39 /* ZD1211 */
40 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
59 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
60 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
61 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
62 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
63 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
64 /* ZD1211B */
65 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
85 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
86 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
87 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
88 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
89 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
90 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
91 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
92 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
93 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
94 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
95 /* "Driverless" devices that need ejecting */
96 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
97 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
98 {}
99 };
100
101 MODULE_LICENSE("GPL");
102 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
103 MODULE_AUTHOR("Ulrich Kunitz");
104 MODULE_AUTHOR("Daniel Drake");
105 MODULE_VERSION("1.0");
106 MODULE_DEVICE_TABLE(usb, usb_ids);
107
108 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
109 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
110
111 /* USB device initialization */
112 static void int_urb_complete(struct urb *urb);
113
114 static int request_fw_file(
115 const struct firmware **fw, const char *name, struct device *device)
116 {
117 int r;
118
119 dev_dbg_f(device, "fw name %s\n", name);
120
121 r = request_firmware(fw, name, device);
122 if (r)
123 dev_err(device,
124 "Could not load firmware file %s. Error number %d\n",
125 name, r);
126 return r;
127 }
128
129 static inline u16 get_bcdDevice(const struct usb_device *udev)
130 {
131 return le16_to_cpu(udev->descriptor.bcdDevice);
132 }
133
134 enum upload_code_flags {
135 REBOOT = 1,
136 };
137
138 /* Ensures that MAX_TRANSFER_SIZE is even. */
139 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
140
141 static int upload_code(struct usb_device *udev,
142 const u8 *data, size_t size, u16 code_offset, int flags)
143 {
144 u8 *p;
145 int r;
146
147 /* USB request blocks need "kmalloced" buffers.
148 */
149 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
150 if (!p) {
151 dev_err(&udev->dev, "out of memory\n");
152 r = -ENOMEM;
153 goto error;
154 }
155
156 size &= ~1;
157 while (size > 0) {
158 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
159 size : MAX_TRANSFER_SIZE;
160
161 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
162
163 memcpy(p, data, transfer_size);
164 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
165 USB_REQ_FIRMWARE_DOWNLOAD,
166 USB_DIR_OUT | USB_TYPE_VENDOR,
167 code_offset, 0, p, transfer_size, 1000 /* ms */);
168 if (r < 0) {
169 dev_err(&udev->dev,
170 "USB control request for firmware upload"
171 " failed. Error number %d\n", r);
172 goto error;
173 }
174 transfer_size = r & ~1;
175
176 size -= transfer_size;
177 data += transfer_size;
178 code_offset += transfer_size/sizeof(u16);
179 }
180
181 if (flags & REBOOT) {
182 u8 ret;
183
184 /* Use "DMA-aware" buffer. */
185 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
186 USB_REQ_FIRMWARE_CONFIRM,
187 USB_DIR_IN | USB_TYPE_VENDOR,
188 0, 0, p, sizeof(ret), 5000 /* ms */);
189 if (r != sizeof(ret)) {
190 dev_err(&udev->dev,
191 "control request firmeware confirmation failed."
192 " Return value %d\n", r);
193 if (r >= 0)
194 r = -ENODEV;
195 goto error;
196 }
197 ret = p[0];
198 if (ret & 0x80) {
199 dev_err(&udev->dev,
200 "Internal error while downloading."
201 " Firmware confirm return value %#04x\n",
202 (unsigned int)ret);
203 r = -ENODEV;
204 goto error;
205 }
206 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
207 (unsigned int)ret);
208 }
209
210 r = 0;
211 error:
212 kfree(p);
213 return r;
214 }
215
216 static u16 get_word(const void *data, u16 offset)
217 {
218 const __le16 *p = data;
219 return le16_to_cpu(p[offset]);
220 }
221
222 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
223 const char* postfix)
224 {
225 scnprintf(buffer, size, "%s%s",
226 usb->is_zd1211b ?
227 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
228 postfix);
229 return buffer;
230 }
231
232 static int handle_version_mismatch(struct zd_usb *usb,
233 const struct firmware *ub_fw)
234 {
235 struct usb_device *udev = zd_usb_to_usbdev(usb);
236 const struct firmware *ur_fw = NULL;
237 int offset;
238 int r = 0;
239 char fw_name[128];
240
241 r = request_fw_file(&ur_fw,
242 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
243 &udev->dev);
244 if (r)
245 goto error;
246
247 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
248 if (r)
249 goto error;
250
251 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
252 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
253 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
254
255 /* At this point, the vendor driver downloads the whole firmware
256 * image, hacks around with version IDs, and uploads it again,
257 * completely overwriting the boot code. We do not do this here as
258 * it is not required on any tested devices, and it is suspected to
259 * cause problems. */
260 error:
261 release_firmware(ur_fw);
262 return r;
263 }
264
265 static int upload_firmware(struct zd_usb *usb)
266 {
267 int r;
268 u16 fw_bcdDevice;
269 u16 bcdDevice;
270 struct usb_device *udev = zd_usb_to_usbdev(usb);
271 const struct firmware *ub_fw = NULL;
272 const struct firmware *uph_fw = NULL;
273 char fw_name[128];
274
275 bcdDevice = get_bcdDevice(udev);
276
277 r = request_fw_file(&ub_fw,
278 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
279 &udev->dev);
280 if (r)
281 goto error;
282
283 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
284
285 if (fw_bcdDevice != bcdDevice) {
286 dev_info(&udev->dev,
287 "firmware version %#06x and device bootcode version "
288 "%#06x differ\n", fw_bcdDevice, bcdDevice);
289 if (bcdDevice <= 0x4313)
290 dev_warn(&udev->dev, "device has old bootcode, please "
291 "report success or failure\n");
292
293 r = handle_version_mismatch(usb, ub_fw);
294 if (r)
295 goto error;
296 } else {
297 dev_dbg_f(&udev->dev,
298 "firmware device id %#06x is equal to the "
299 "actual device id\n", fw_bcdDevice);
300 }
301
302
303 r = request_fw_file(&uph_fw,
304 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
305 &udev->dev);
306 if (r)
307 goto error;
308
309 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
310 if (r) {
311 dev_err(&udev->dev,
312 "Could not upload firmware code uph. Error number %d\n",
313 r);
314 }
315
316 /* FALL-THROUGH */
317 error:
318 release_firmware(ub_fw);
319 release_firmware(uph_fw);
320 return r;
321 }
322
323 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
324 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
325 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
326 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
327 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
328 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
329
330 /* Read data from device address space using "firmware interface" which does
331 * not require firmware to be loaded. */
332 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
333 {
334 int r;
335 struct usb_device *udev = zd_usb_to_usbdev(usb);
336 u8 *buf;
337
338 /* Use "DMA-aware" buffer. */
339 buf = kmalloc(len, GFP_KERNEL);
340 if (!buf)
341 return -ENOMEM;
342 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
343 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
344 buf, len, 5000);
345 if (r < 0) {
346 dev_err(&udev->dev,
347 "read over firmware interface failed: %d\n", r);
348 goto exit;
349 } else if (r != len) {
350 dev_err(&udev->dev,
351 "incomplete read over firmware interface: %d/%d\n",
352 r, len);
353 r = -EIO;
354 goto exit;
355 }
356 r = 0;
357 memcpy(data, buf, len);
358 exit:
359 kfree(buf);
360 return r;
361 }
362
363 #define urb_dev(urb) (&(urb)->dev->dev)
364
365 static inline void handle_regs_int(struct urb *urb)
366 {
367 struct zd_usb *usb = urb->context;
368 struct zd_usb_interrupt *intr = &usb->intr;
369 int len;
370 u16 int_num;
371
372 ZD_ASSERT(in_interrupt());
373 spin_lock(&intr->lock);
374
375 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
376 if (int_num == CR_INTERRUPT) {
377 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
378 memcpy(&mac->intr_buffer, urb->transfer_buffer,
379 USB_MAX_EP_INT_BUFFER);
380 schedule_work(&mac->process_intr);
381 } else if (intr->read_regs_enabled) {
382 intr->read_regs.length = len = urb->actual_length;
383
384 if (len > sizeof(intr->read_regs.buffer))
385 len = sizeof(intr->read_regs.buffer);
386 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
387 intr->read_regs_enabled = 0;
388 complete(&intr->read_regs.completion);
389 goto out;
390 }
391
392 out:
393 spin_unlock(&intr->lock);
394 }
395
396 static void int_urb_complete(struct urb *urb)
397 {
398 int r;
399 struct usb_int_header *hdr;
400
401 switch (urb->status) {
402 case 0:
403 break;
404 case -ESHUTDOWN:
405 case -EINVAL:
406 case -ENODEV:
407 case -ENOENT:
408 case -ECONNRESET:
409 case -EPIPE:
410 goto kfree;
411 default:
412 goto resubmit;
413 }
414
415 if (urb->actual_length < sizeof(hdr)) {
416 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
417 goto resubmit;
418 }
419
420 hdr = urb->transfer_buffer;
421 if (hdr->type != USB_INT_TYPE) {
422 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
423 goto resubmit;
424 }
425
426 switch (hdr->id) {
427 case USB_INT_ID_REGS:
428 handle_regs_int(urb);
429 break;
430 case USB_INT_ID_RETRY_FAILED:
431 zd_mac_tx_failed(urb);
432 break;
433 default:
434 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
435 (unsigned int)hdr->id);
436 goto resubmit;
437 }
438
439 resubmit:
440 r = usb_submit_urb(urb, GFP_ATOMIC);
441 if (r) {
442 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
443 goto kfree;
444 }
445 return;
446 kfree:
447 kfree(urb->transfer_buffer);
448 }
449
450 static inline int int_urb_interval(struct usb_device *udev)
451 {
452 switch (udev->speed) {
453 case USB_SPEED_HIGH:
454 return 4;
455 case USB_SPEED_LOW:
456 return 10;
457 case USB_SPEED_FULL:
458 default:
459 return 1;
460 }
461 }
462
463 static inline int usb_int_enabled(struct zd_usb *usb)
464 {
465 unsigned long flags;
466 struct zd_usb_interrupt *intr = &usb->intr;
467 struct urb *urb;
468
469 spin_lock_irqsave(&intr->lock, flags);
470 urb = intr->urb;
471 spin_unlock_irqrestore(&intr->lock, flags);
472 return urb != NULL;
473 }
474
475 int zd_usb_enable_int(struct zd_usb *usb)
476 {
477 int r;
478 struct usb_device *udev;
479 struct zd_usb_interrupt *intr = &usb->intr;
480 void *transfer_buffer = NULL;
481 struct urb *urb;
482
483 dev_dbg_f(zd_usb_dev(usb), "\n");
484
485 urb = usb_alloc_urb(0, GFP_KERNEL);
486 if (!urb) {
487 r = -ENOMEM;
488 goto out;
489 }
490
491 ZD_ASSERT(!irqs_disabled());
492 spin_lock_irq(&intr->lock);
493 if (intr->urb) {
494 spin_unlock_irq(&intr->lock);
495 r = 0;
496 goto error_free_urb;
497 }
498 intr->urb = urb;
499 spin_unlock_irq(&intr->lock);
500
501 /* TODO: make it a DMA buffer */
502 r = -ENOMEM;
503 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
504 if (!transfer_buffer) {
505 dev_dbg_f(zd_usb_dev(usb),
506 "couldn't allocate transfer_buffer\n");
507 goto error_set_urb_null;
508 }
509
510 udev = zd_usb_to_usbdev(usb);
511 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
512 transfer_buffer, USB_MAX_EP_INT_BUFFER,
513 int_urb_complete, usb,
514 intr->interval);
515
516 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
517 r = usb_submit_urb(urb, GFP_KERNEL);
518 if (r) {
519 dev_dbg_f(zd_usb_dev(usb),
520 "Couldn't submit urb. Error number %d\n", r);
521 goto error;
522 }
523
524 return 0;
525 error:
526 kfree(transfer_buffer);
527 error_set_urb_null:
528 spin_lock_irq(&intr->lock);
529 intr->urb = NULL;
530 spin_unlock_irq(&intr->lock);
531 error_free_urb:
532 usb_free_urb(urb);
533 out:
534 return r;
535 }
536
537 void zd_usb_disable_int(struct zd_usb *usb)
538 {
539 unsigned long flags;
540 struct zd_usb_interrupt *intr = &usb->intr;
541 struct urb *urb;
542
543 spin_lock_irqsave(&intr->lock, flags);
544 urb = intr->urb;
545 if (!urb) {
546 spin_unlock_irqrestore(&intr->lock, flags);
547 return;
548 }
549 intr->urb = NULL;
550 spin_unlock_irqrestore(&intr->lock, flags);
551
552 usb_kill_urb(urb);
553 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
554 usb_free_urb(urb);
555 }
556
557 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
558 unsigned int length)
559 {
560 int i;
561 const struct rx_length_info *length_info;
562
563 if (length < sizeof(struct rx_length_info)) {
564 /* It's not a complete packet anyhow. */
565 printk("%s: invalid, small RX packet : %d\n",
566 __func__, length);
567 return;
568 }
569 length_info = (struct rx_length_info *)
570 (buffer + length - sizeof(struct rx_length_info));
571
572 /* It might be that three frames are merged into a single URB
573 * transaction. We have to check for the length info tag.
574 *
575 * While testing we discovered that length_info might be unaligned,
576 * because if USB transactions are merged, the last packet will not
577 * be padded. Unaligned access might also happen if the length_info
578 * structure is not present.
579 */
580 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
581 {
582 unsigned int l, k, n;
583 for (i = 0, l = 0;; i++) {
584 k = get_unaligned_le16(&length_info->length[i]);
585 if (k == 0)
586 return;
587 n = l+k;
588 if (n > length)
589 return;
590 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
591 if (i >= 2)
592 return;
593 l = (n+3) & ~3;
594 }
595 } else {
596 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
597 }
598 }
599
600 static void rx_urb_complete(struct urb *urb)
601 {
602 struct zd_usb *usb;
603 struct zd_usb_rx *rx;
604 const u8 *buffer;
605 unsigned int length;
606
607 switch (urb->status) {
608 case 0:
609 break;
610 case -ESHUTDOWN:
611 case -EINVAL:
612 case -ENODEV:
613 case -ENOENT:
614 case -ECONNRESET:
615 case -EPIPE:
616 return;
617 default:
618 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
619 goto resubmit;
620 }
621
622 buffer = urb->transfer_buffer;
623 length = urb->actual_length;
624 usb = urb->context;
625 rx = &usb->rx;
626
627 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
628 /* If there is an old first fragment, we don't care. */
629 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
630 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
631 spin_lock(&rx->lock);
632 memcpy(rx->fragment, buffer, length);
633 rx->fragment_length = length;
634 spin_unlock(&rx->lock);
635 goto resubmit;
636 }
637
638 spin_lock(&rx->lock);
639 if (rx->fragment_length > 0) {
640 /* We are on a second fragment, we believe */
641 ZD_ASSERT(length + rx->fragment_length <=
642 ARRAY_SIZE(rx->fragment));
643 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
644 memcpy(rx->fragment+rx->fragment_length, buffer, length);
645 handle_rx_packet(usb, rx->fragment,
646 rx->fragment_length + length);
647 rx->fragment_length = 0;
648 spin_unlock(&rx->lock);
649 } else {
650 spin_unlock(&rx->lock);
651 handle_rx_packet(usb, buffer, length);
652 }
653
654 resubmit:
655 usb_submit_urb(urb, GFP_ATOMIC);
656 }
657
658 static struct urb *alloc_rx_urb(struct zd_usb *usb)
659 {
660 struct usb_device *udev = zd_usb_to_usbdev(usb);
661 struct urb *urb;
662 void *buffer;
663
664 urb = usb_alloc_urb(0, GFP_KERNEL);
665 if (!urb)
666 return NULL;
667 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
668 &urb->transfer_dma);
669 if (!buffer) {
670 usb_free_urb(urb);
671 return NULL;
672 }
673
674 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
675 buffer, USB_MAX_RX_SIZE,
676 rx_urb_complete, usb);
677 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
678
679 return urb;
680 }
681
682 static void free_rx_urb(struct urb *urb)
683 {
684 if (!urb)
685 return;
686 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
687 urb->transfer_buffer, urb->transfer_dma);
688 usb_free_urb(urb);
689 }
690
691 int zd_usb_enable_rx(struct zd_usb *usb)
692 {
693 int i, r;
694 struct zd_usb_rx *rx = &usb->rx;
695 struct urb **urbs;
696
697 dev_dbg_f(zd_usb_dev(usb), "\n");
698
699 r = -ENOMEM;
700 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
701 if (!urbs)
702 goto error;
703 for (i = 0; i < RX_URBS_COUNT; i++) {
704 urbs[i] = alloc_rx_urb(usb);
705 if (!urbs[i])
706 goto error;
707 }
708
709 ZD_ASSERT(!irqs_disabled());
710 spin_lock_irq(&rx->lock);
711 if (rx->urbs) {
712 spin_unlock_irq(&rx->lock);
713 r = 0;
714 goto error;
715 }
716 rx->urbs = urbs;
717 rx->urbs_count = RX_URBS_COUNT;
718 spin_unlock_irq(&rx->lock);
719
720 for (i = 0; i < RX_URBS_COUNT; i++) {
721 r = usb_submit_urb(urbs[i], GFP_KERNEL);
722 if (r)
723 goto error_submit;
724 }
725
726 return 0;
727 error_submit:
728 for (i = 0; i < RX_URBS_COUNT; i++) {
729 usb_kill_urb(urbs[i]);
730 }
731 spin_lock_irq(&rx->lock);
732 rx->urbs = NULL;
733 rx->urbs_count = 0;
734 spin_unlock_irq(&rx->lock);
735 error:
736 if (urbs) {
737 for (i = 0; i < RX_URBS_COUNT; i++)
738 free_rx_urb(urbs[i]);
739 }
740 return r;
741 }
742
743 void zd_usb_disable_rx(struct zd_usb *usb)
744 {
745 int i;
746 unsigned long flags;
747 struct urb **urbs;
748 unsigned int count;
749 struct zd_usb_rx *rx = &usb->rx;
750
751 spin_lock_irqsave(&rx->lock, flags);
752 urbs = rx->urbs;
753 count = rx->urbs_count;
754 spin_unlock_irqrestore(&rx->lock, flags);
755 if (!urbs)
756 return;
757
758 for (i = 0; i < count; i++) {
759 usb_kill_urb(urbs[i]);
760 free_rx_urb(urbs[i]);
761 }
762 kfree(urbs);
763
764 spin_lock_irqsave(&rx->lock, flags);
765 rx->urbs = NULL;
766 rx->urbs_count = 0;
767 spin_unlock_irqrestore(&rx->lock, flags);
768 }
769
770 /**
771 * zd_usb_disable_tx - disable transmission
772 * @usb: the zd1211rw-private USB structure
773 *
774 * Frees all URBs in the free list and marks the transmission as disabled.
775 */
776 void zd_usb_disable_tx(struct zd_usb *usb)
777 {
778 struct zd_usb_tx *tx = &usb->tx;
779 unsigned long flags;
780 struct list_head *pos, *n;
781
782 spin_lock_irqsave(&tx->lock, flags);
783 list_for_each_safe(pos, n, &tx->free_urb_list) {
784 list_del(pos);
785 usb_free_urb(list_entry(pos, struct urb, urb_list));
786 }
787 tx->enabled = 0;
788 tx->submitted_urbs = 0;
789 /* The stopped state is ignored, relying on ieee80211_wake_queues()
790 * in a potentionally following zd_usb_enable_tx().
791 */
792 spin_unlock_irqrestore(&tx->lock, flags);
793 }
794
795 /**
796 * zd_usb_enable_tx - enables transmission
797 * @usb: a &struct zd_usb pointer
798 *
799 * This function enables transmission and prepares the &zd_usb_tx data
800 * structure.
801 */
802 void zd_usb_enable_tx(struct zd_usb *usb)
803 {
804 unsigned long flags;
805 struct zd_usb_tx *tx = &usb->tx;
806
807 spin_lock_irqsave(&tx->lock, flags);
808 tx->enabled = 1;
809 tx->submitted_urbs = 0;
810 ieee80211_wake_queues(zd_usb_to_hw(usb));
811 tx->stopped = 0;
812 spin_unlock_irqrestore(&tx->lock, flags);
813 }
814
815 /**
816 * alloc_tx_urb - provides an tx URB
817 * @usb: a &struct zd_usb pointer
818 *
819 * Allocates a new URB. If possible takes the urb from the free list in
820 * usb->tx.
821 */
822 static struct urb *alloc_tx_urb(struct zd_usb *usb)
823 {
824 struct zd_usb_tx *tx = &usb->tx;
825 unsigned long flags;
826 struct list_head *entry;
827 struct urb *urb;
828
829 spin_lock_irqsave(&tx->lock, flags);
830 if (list_empty(&tx->free_urb_list)) {
831 urb = usb_alloc_urb(0, GFP_ATOMIC);
832 goto out;
833 }
834 entry = tx->free_urb_list.next;
835 list_del(entry);
836 urb = list_entry(entry, struct urb, urb_list);
837 out:
838 spin_unlock_irqrestore(&tx->lock, flags);
839 return urb;
840 }
841
842 /**
843 * free_tx_urb - frees a used tx URB
844 * @usb: a &struct zd_usb pointer
845 * @urb: URB to be freed
846 *
847 * Frees the the transmission URB, which means to put it on the free URB
848 * list.
849 */
850 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
851 {
852 struct zd_usb_tx *tx = &usb->tx;
853 unsigned long flags;
854
855 spin_lock_irqsave(&tx->lock, flags);
856 if (!tx->enabled) {
857 usb_free_urb(urb);
858 goto out;
859 }
860 list_add(&urb->urb_list, &tx->free_urb_list);
861 out:
862 spin_unlock_irqrestore(&tx->lock, flags);
863 }
864
865 static void tx_dec_submitted_urbs(struct zd_usb *usb)
866 {
867 struct zd_usb_tx *tx = &usb->tx;
868 unsigned long flags;
869
870 spin_lock_irqsave(&tx->lock, flags);
871 --tx->submitted_urbs;
872 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
873 ieee80211_wake_queues(zd_usb_to_hw(usb));
874 tx->stopped = 0;
875 }
876 spin_unlock_irqrestore(&tx->lock, flags);
877 }
878
879 static void tx_inc_submitted_urbs(struct zd_usb *usb)
880 {
881 struct zd_usb_tx *tx = &usb->tx;
882 unsigned long flags;
883
884 spin_lock_irqsave(&tx->lock, flags);
885 ++tx->submitted_urbs;
886 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
887 ieee80211_stop_queues(zd_usb_to_hw(usb));
888 tx->stopped = 1;
889 }
890 spin_unlock_irqrestore(&tx->lock, flags);
891 }
892
893 /**
894 * tx_urb_complete - completes the execution of an URB
895 * @urb: a URB
896 *
897 * This function is called if the URB has been transferred to a device or an
898 * error has happened.
899 */
900 static void tx_urb_complete(struct urb *urb)
901 {
902 int r;
903 struct sk_buff *skb;
904 struct ieee80211_tx_info *info;
905 struct zd_usb *usb;
906
907 switch (urb->status) {
908 case 0:
909 break;
910 case -ESHUTDOWN:
911 case -EINVAL:
912 case -ENODEV:
913 case -ENOENT:
914 case -ECONNRESET:
915 case -EPIPE:
916 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
917 break;
918 default:
919 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
920 goto resubmit;
921 }
922 free_urb:
923 skb = (struct sk_buff *)urb->context;
924 /*
925 * grab 'usb' pointer before handing off the skb (since
926 * it might be freed by zd_mac_tx_to_dev or mac80211)
927 */
928 info = IEEE80211_SKB_CB(skb);
929 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
930 zd_mac_tx_to_dev(skb, urb->status);
931 free_tx_urb(usb, urb);
932 tx_dec_submitted_urbs(usb);
933 return;
934 resubmit:
935 r = usb_submit_urb(urb, GFP_ATOMIC);
936 if (r) {
937 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
938 goto free_urb;
939 }
940 }
941
942 /**
943 * zd_usb_tx: initiates transfer of a frame of the device
944 *
945 * @usb: the zd1211rw-private USB structure
946 * @skb: a &struct sk_buff pointer
947 *
948 * This function tranmits a frame to the device. It doesn't wait for
949 * completion. The frame must contain the control set and have all the
950 * control set information available.
951 *
952 * The function returns 0 if the transfer has been successfully initiated.
953 */
954 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
955 {
956 int r;
957 struct usb_device *udev = zd_usb_to_usbdev(usb);
958 struct urb *urb;
959
960 urb = alloc_tx_urb(usb);
961 if (!urb) {
962 r = -ENOMEM;
963 goto out;
964 }
965
966 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
967 skb->data, skb->len, tx_urb_complete, skb);
968
969 r = usb_submit_urb(urb, GFP_ATOMIC);
970 if (r)
971 goto error;
972 tx_inc_submitted_urbs(usb);
973 return 0;
974 error:
975 free_tx_urb(usb, urb);
976 out:
977 return r;
978 }
979
980 static inline void init_usb_interrupt(struct zd_usb *usb)
981 {
982 struct zd_usb_interrupt *intr = &usb->intr;
983
984 spin_lock_init(&intr->lock);
985 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
986 init_completion(&intr->read_regs.completion);
987 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
988 }
989
990 static inline void init_usb_rx(struct zd_usb *usb)
991 {
992 struct zd_usb_rx *rx = &usb->rx;
993 spin_lock_init(&rx->lock);
994 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
995 rx->usb_packet_size = 512;
996 } else {
997 rx->usb_packet_size = 64;
998 }
999 ZD_ASSERT(rx->fragment_length == 0);
1000 }
1001
1002 static inline void init_usb_tx(struct zd_usb *usb)
1003 {
1004 struct zd_usb_tx *tx = &usb->tx;
1005 spin_lock_init(&tx->lock);
1006 tx->enabled = 0;
1007 tx->stopped = 0;
1008 INIT_LIST_HEAD(&tx->free_urb_list);
1009 tx->submitted_urbs = 0;
1010 }
1011
1012 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1013 struct usb_interface *intf)
1014 {
1015 memset(usb, 0, sizeof(*usb));
1016 usb->intf = usb_get_intf(intf);
1017 usb_set_intfdata(usb->intf, hw);
1018 init_usb_interrupt(usb);
1019 init_usb_tx(usb);
1020 init_usb_rx(usb);
1021 }
1022
1023 void zd_usb_clear(struct zd_usb *usb)
1024 {
1025 usb_set_intfdata(usb->intf, NULL);
1026 usb_put_intf(usb->intf);
1027 ZD_MEMCLEAR(usb, sizeof(*usb));
1028 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1029 }
1030
1031 static const char *speed(enum usb_device_speed speed)
1032 {
1033 switch (speed) {
1034 case USB_SPEED_LOW:
1035 return "low";
1036 case USB_SPEED_FULL:
1037 return "full";
1038 case USB_SPEED_HIGH:
1039 return "high";
1040 default:
1041 return "unknown speed";
1042 }
1043 }
1044
1045 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1046 {
1047 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1048 le16_to_cpu(udev->descriptor.idVendor),
1049 le16_to_cpu(udev->descriptor.idProduct),
1050 get_bcdDevice(udev),
1051 speed(udev->speed));
1052 }
1053
1054 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1055 {
1056 struct usb_device *udev = interface_to_usbdev(usb->intf);
1057 return scnprint_id(udev, buffer, size);
1058 }
1059
1060 #ifdef DEBUG
1061 static void print_id(struct usb_device *udev)
1062 {
1063 char buffer[40];
1064
1065 scnprint_id(udev, buffer, sizeof(buffer));
1066 buffer[sizeof(buffer)-1] = 0;
1067 dev_dbg_f(&udev->dev, "%s\n", buffer);
1068 }
1069 #else
1070 #define print_id(udev) do { } while (0)
1071 #endif
1072
1073 static int eject_installer(struct usb_interface *intf)
1074 {
1075 struct usb_device *udev = interface_to_usbdev(intf);
1076 struct usb_host_interface *iface_desc = &intf->altsetting[0];
1077 struct usb_endpoint_descriptor *endpoint;
1078 unsigned char *cmd;
1079 u8 bulk_out_ep;
1080 int r;
1081
1082 /* Find bulk out endpoint */
1083 for (r = 1; r >= 0; r--) {
1084 endpoint = &iface_desc->endpoint[r].desc;
1085 if (usb_endpoint_dir_out(endpoint) &&
1086 usb_endpoint_xfer_bulk(endpoint)) {
1087 bulk_out_ep = endpoint->bEndpointAddress;
1088 break;
1089 }
1090 }
1091 if (r == -1) {
1092 dev_err(&udev->dev,
1093 "zd1211rw: Could not find bulk out endpoint\n");
1094 return -ENODEV;
1095 }
1096
1097 cmd = kzalloc(31, GFP_KERNEL);
1098 if (cmd == NULL)
1099 return -ENODEV;
1100
1101 /* USB bulk command block */
1102 cmd[0] = 0x55; /* bulk command signature */
1103 cmd[1] = 0x53; /* bulk command signature */
1104 cmd[2] = 0x42; /* bulk command signature */
1105 cmd[3] = 0x43; /* bulk command signature */
1106 cmd[14] = 6; /* command length */
1107
1108 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1109 cmd[19] = 0x2; /* eject disc */
1110
1111 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1112 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1113 cmd, 31, NULL, 2000);
1114 kfree(cmd);
1115 if (r)
1116 return r;
1117
1118 /* At this point, the device disconnects and reconnects with the real
1119 * ID numbers. */
1120
1121 usb_set_intfdata(intf, NULL);
1122 return 0;
1123 }
1124
1125 int zd_usb_init_hw(struct zd_usb *usb)
1126 {
1127 int r;
1128 struct zd_mac *mac = zd_usb_to_mac(usb);
1129
1130 dev_dbg_f(zd_usb_dev(usb), "\n");
1131
1132 r = upload_firmware(usb);
1133 if (r) {
1134 dev_err(zd_usb_dev(usb),
1135 "couldn't load firmware. Error number %d\n", r);
1136 return r;
1137 }
1138
1139 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1140 if (r) {
1141 dev_dbg_f(zd_usb_dev(usb),
1142 "couldn't reset configuration. Error number %d\n", r);
1143 return r;
1144 }
1145
1146 r = zd_mac_init_hw(mac->hw);
1147 if (r) {
1148 dev_dbg_f(zd_usb_dev(usb),
1149 "couldn't initialize mac. Error number %d\n", r);
1150 return r;
1151 }
1152
1153 usb->initialized = 1;
1154 return 0;
1155 }
1156
1157 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1158 {
1159 int r;
1160 struct usb_device *udev = interface_to_usbdev(intf);
1161 struct zd_usb *usb;
1162 struct ieee80211_hw *hw = NULL;
1163
1164 print_id(udev);
1165
1166 if (id->driver_info & DEVICE_INSTALLER)
1167 return eject_installer(intf);
1168
1169 switch (udev->speed) {
1170 case USB_SPEED_LOW:
1171 case USB_SPEED_FULL:
1172 case USB_SPEED_HIGH:
1173 break;
1174 default:
1175 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1176 r = -ENODEV;
1177 goto error;
1178 }
1179
1180 r = usb_reset_device(udev);
1181 if (r) {
1182 dev_err(&intf->dev,
1183 "couldn't reset usb device. Error number %d\n", r);
1184 goto error;
1185 }
1186
1187 hw = zd_mac_alloc_hw(intf);
1188 if (hw == NULL) {
1189 r = -ENOMEM;
1190 goto error;
1191 }
1192
1193 usb = &zd_hw_mac(hw)->chip.usb;
1194 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1195
1196 r = zd_mac_preinit_hw(hw);
1197 if (r) {
1198 dev_dbg_f(&intf->dev,
1199 "couldn't initialize mac. Error number %d\n", r);
1200 goto error;
1201 }
1202
1203 r = ieee80211_register_hw(hw);
1204 if (r) {
1205 dev_dbg_f(&intf->dev,
1206 "couldn't register device. Error number %d\n", r);
1207 goto error;
1208 }
1209
1210 dev_dbg_f(&intf->dev, "successful\n");
1211 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1212 return 0;
1213 error:
1214 usb_reset_device(interface_to_usbdev(intf));
1215 if (hw) {
1216 zd_mac_clear(zd_hw_mac(hw));
1217 ieee80211_free_hw(hw);
1218 }
1219 return r;
1220 }
1221
1222 static void disconnect(struct usb_interface *intf)
1223 {
1224 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1225 struct zd_mac *mac;
1226 struct zd_usb *usb;
1227
1228 /* Either something really bad happened, or we're just dealing with
1229 * a DEVICE_INSTALLER. */
1230 if (hw == NULL)
1231 return;
1232
1233 mac = zd_hw_mac(hw);
1234 usb = &mac->chip.usb;
1235
1236 dev_dbg_f(zd_usb_dev(usb), "\n");
1237
1238 ieee80211_unregister_hw(hw);
1239
1240 /* Just in case something has gone wrong! */
1241 zd_usb_disable_rx(usb);
1242 zd_usb_disable_int(usb);
1243
1244 /* If the disconnect has been caused by a removal of the
1245 * driver module, the reset allows reloading of the driver. If the
1246 * reset will not be executed here, the upload of the firmware in the
1247 * probe function caused by the reloading of the driver will fail.
1248 */
1249 usb_reset_device(interface_to_usbdev(intf));
1250
1251 zd_mac_clear(mac);
1252 ieee80211_free_hw(hw);
1253 dev_dbg(&intf->dev, "disconnected\n");
1254 }
1255
1256 static struct usb_driver driver = {
1257 .name = KBUILD_MODNAME,
1258 .id_table = usb_ids,
1259 .probe = probe,
1260 .disconnect = disconnect,
1261 };
1262
1263 struct workqueue_struct *zd_workqueue;
1264
1265 static int __init usb_init(void)
1266 {
1267 int r;
1268
1269 pr_debug("%s usb_init()\n", driver.name);
1270
1271 zd_workqueue = create_singlethread_workqueue(driver.name);
1272 if (zd_workqueue == NULL) {
1273 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1274 return -ENOMEM;
1275 }
1276
1277 r = usb_register(&driver);
1278 if (r) {
1279 destroy_workqueue(zd_workqueue);
1280 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1281 driver.name, r);
1282 return r;
1283 }
1284
1285 pr_debug("%s initialized\n", driver.name);
1286 return 0;
1287 }
1288
1289 static void __exit usb_exit(void)
1290 {
1291 pr_debug("%s usb_exit()\n", driver.name);
1292 usb_deregister(&driver);
1293 destroy_workqueue(zd_workqueue);
1294 }
1295
1296 module_init(usb_init);
1297 module_exit(usb_exit);
1298
1299 static int usb_int_regs_length(unsigned int count)
1300 {
1301 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1302 }
1303
1304 static void prepare_read_regs_int(struct zd_usb *usb)
1305 {
1306 struct zd_usb_interrupt *intr = &usb->intr;
1307
1308 spin_lock_irq(&intr->lock);
1309 intr->read_regs_enabled = 1;
1310 INIT_COMPLETION(intr->read_regs.completion);
1311 spin_unlock_irq(&intr->lock);
1312 }
1313
1314 static void disable_read_regs_int(struct zd_usb *usb)
1315 {
1316 struct zd_usb_interrupt *intr = &usb->intr;
1317
1318 spin_lock_irq(&intr->lock);
1319 intr->read_regs_enabled = 0;
1320 spin_unlock_irq(&intr->lock);
1321 }
1322
1323 static int get_results(struct zd_usb *usb, u16 *values,
1324 struct usb_req_read_regs *req, unsigned int count)
1325 {
1326 int r;
1327 int i;
1328 struct zd_usb_interrupt *intr = &usb->intr;
1329 struct read_regs_int *rr = &intr->read_regs;
1330 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1331
1332 spin_lock_irq(&intr->lock);
1333
1334 r = -EIO;
1335 /* The created block size seems to be larger than expected.
1336 * However results appear to be correct.
1337 */
1338 if (rr->length < usb_int_regs_length(count)) {
1339 dev_dbg_f(zd_usb_dev(usb),
1340 "error: actual length %d less than expected %d\n",
1341 rr->length, usb_int_regs_length(count));
1342 goto error_unlock;
1343 }
1344 if (rr->length > sizeof(rr->buffer)) {
1345 dev_dbg_f(zd_usb_dev(usb),
1346 "error: actual length %d exceeds buffer size %zu\n",
1347 rr->length, sizeof(rr->buffer));
1348 goto error_unlock;
1349 }
1350
1351 for (i = 0; i < count; i++) {
1352 struct reg_data *rd = &regs->regs[i];
1353 if (rd->addr != req->addr[i]) {
1354 dev_dbg_f(zd_usb_dev(usb),
1355 "rd[%d] addr %#06hx expected %#06hx\n", i,
1356 le16_to_cpu(rd->addr),
1357 le16_to_cpu(req->addr[i]));
1358 goto error_unlock;
1359 }
1360 values[i] = le16_to_cpu(rd->value);
1361 }
1362
1363 r = 0;
1364 error_unlock:
1365 spin_unlock_irq(&intr->lock);
1366 return r;
1367 }
1368
1369 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1370 const zd_addr_t *addresses, unsigned int count)
1371 {
1372 int r;
1373 int i, req_len, actual_req_len;
1374 struct usb_device *udev;
1375 struct usb_req_read_regs *req = NULL;
1376 unsigned long timeout;
1377
1378 if (count < 1) {
1379 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1380 return -EINVAL;
1381 }
1382 if (count > USB_MAX_IOREAD16_COUNT) {
1383 dev_dbg_f(zd_usb_dev(usb),
1384 "error: count %u exceeds possible max %u\n",
1385 count, USB_MAX_IOREAD16_COUNT);
1386 return -EINVAL;
1387 }
1388 if (in_atomic()) {
1389 dev_dbg_f(zd_usb_dev(usb),
1390 "error: io in atomic context not supported\n");
1391 return -EWOULDBLOCK;
1392 }
1393 if (!usb_int_enabled(usb)) {
1394 dev_dbg_f(zd_usb_dev(usb),
1395 "error: usb interrupt not enabled\n");
1396 return -EWOULDBLOCK;
1397 }
1398
1399 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1400 req = kmalloc(req_len, GFP_KERNEL);
1401 if (!req)
1402 return -ENOMEM;
1403 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1404 for (i = 0; i < count; i++)
1405 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1406
1407 udev = zd_usb_to_usbdev(usb);
1408 prepare_read_regs_int(usb);
1409 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1410 req, req_len, &actual_req_len, 1000 /* ms */);
1411 if (r) {
1412 dev_dbg_f(zd_usb_dev(usb),
1413 "error in usb_bulk_msg(). Error number %d\n", r);
1414 goto error;
1415 }
1416 if (req_len != actual_req_len) {
1417 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1418 " req_len %d != actual_req_len %d\n",
1419 req_len, actual_req_len);
1420 r = -EIO;
1421 goto error;
1422 }
1423
1424 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1425 msecs_to_jiffies(1000));
1426 if (!timeout) {
1427 disable_read_regs_int(usb);
1428 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1429 r = -ETIMEDOUT;
1430 goto error;
1431 }
1432
1433 r = get_results(usb, values, req, count);
1434 error:
1435 kfree(req);
1436 return r;
1437 }
1438
1439 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1440 unsigned int count)
1441 {
1442 int r;
1443 struct usb_device *udev;
1444 struct usb_req_write_regs *req = NULL;
1445 int i, req_len, actual_req_len;
1446
1447 if (count == 0)
1448 return 0;
1449 if (count > USB_MAX_IOWRITE16_COUNT) {
1450 dev_dbg_f(zd_usb_dev(usb),
1451 "error: count %u exceeds possible max %u\n",
1452 count, USB_MAX_IOWRITE16_COUNT);
1453 return -EINVAL;
1454 }
1455 if (in_atomic()) {
1456 dev_dbg_f(zd_usb_dev(usb),
1457 "error: io in atomic context not supported\n");
1458 return -EWOULDBLOCK;
1459 }
1460
1461 req_len = sizeof(struct usb_req_write_regs) +
1462 count * sizeof(struct reg_data);
1463 req = kmalloc(req_len, GFP_KERNEL);
1464 if (!req)
1465 return -ENOMEM;
1466
1467 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1468 for (i = 0; i < count; i++) {
1469 struct reg_data *rw = &req->reg_writes[i];
1470 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1471 rw->value = cpu_to_le16(ioreqs[i].value);
1472 }
1473
1474 udev = zd_usb_to_usbdev(usb);
1475 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1476 req, req_len, &actual_req_len, 1000 /* ms */);
1477 if (r) {
1478 dev_dbg_f(zd_usb_dev(usb),
1479 "error in usb_bulk_msg(). Error number %d\n", r);
1480 goto error;
1481 }
1482 if (req_len != actual_req_len) {
1483 dev_dbg_f(zd_usb_dev(usb),
1484 "error in usb_bulk_msg()"
1485 " req_len %d != actual_req_len %d\n",
1486 req_len, actual_req_len);
1487 r = -EIO;
1488 goto error;
1489 }
1490
1491 /* FALL-THROUGH with r == 0 */
1492 error:
1493 kfree(req);
1494 return r;
1495 }
1496
1497 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1498 {
1499 int r;
1500 struct usb_device *udev;
1501 struct usb_req_rfwrite *req = NULL;
1502 int i, req_len, actual_req_len;
1503 u16 bit_value_template;
1504
1505 if (in_atomic()) {
1506 dev_dbg_f(zd_usb_dev(usb),
1507 "error: io in atomic context not supported\n");
1508 return -EWOULDBLOCK;
1509 }
1510 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1511 dev_dbg_f(zd_usb_dev(usb),
1512 "error: bits %d are smaller than"
1513 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1514 bits, USB_MIN_RFWRITE_BIT_COUNT);
1515 return -EINVAL;
1516 }
1517 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1518 dev_dbg_f(zd_usb_dev(usb),
1519 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1520 bits, USB_MAX_RFWRITE_BIT_COUNT);
1521 return -EINVAL;
1522 }
1523 #ifdef DEBUG
1524 if (value & (~0UL << bits)) {
1525 dev_dbg_f(zd_usb_dev(usb),
1526 "error: value %#09x has bits >= %d set\n",
1527 value, bits);
1528 return -EINVAL;
1529 }
1530 #endif /* DEBUG */
1531
1532 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1533
1534 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1535 if (r) {
1536 dev_dbg_f(zd_usb_dev(usb),
1537 "error %d: Couldn't read CR203\n", r);
1538 goto out;
1539 }
1540 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1541
1542 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1543 req = kmalloc(req_len, GFP_KERNEL);
1544 if (!req)
1545 return -ENOMEM;
1546
1547 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1548 /* 1: 3683a, but not used in ZYDAS driver */
1549 req->value = cpu_to_le16(2);
1550 req->bits = cpu_to_le16(bits);
1551
1552 for (i = 0; i < bits; i++) {
1553 u16 bv = bit_value_template;
1554 if (value & (1 << (bits-1-i)))
1555 bv |= RF_DATA;
1556 req->bit_values[i] = cpu_to_le16(bv);
1557 }
1558
1559 udev = zd_usb_to_usbdev(usb);
1560 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1561 req, req_len, &actual_req_len, 1000 /* ms */);
1562 if (r) {
1563 dev_dbg_f(zd_usb_dev(usb),
1564 "error in usb_bulk_msg(). Error number %d\n", r);
1565 goto out;
1566 }
1567 if (req_len != actual_req_len) {
1568 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1569 " req_len %d != actual_req_len %d\n",
1570 req_len, actual_req_len);
1571 r = -EIO;
1572 goto out;
1573 }
1574
1575 /* FALL-THROUGH with r == 0 */
1576 out:
1577 kfree(req);
1578 return r;
1579 }