]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/wireless/zd1211rw/zd_usb.c
Merge branches 'topic/slob/cleanups', 'topic/slob/fixes', 'topic/slub/core', 'topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38 /* ZD1211 */
39 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
56 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
58 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
59 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
60 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
61 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
62 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
63 /* ZD1211B */
64 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
85 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
86 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
87 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
88 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
89 /* "Driverless" devices that need ejecting */
90 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
91 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
92 {}
93 };
94
95 MODULE_LICENSE("GPL");
96 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
97 MODULE_AUTHOR("Ulrich Kunitz");
98 MODULE_AUTHOR("Daniel Drake");
99 MODULE_VERSION("1.0");
100 MODULE_DEVICE_TABLE(usb, usb_ids);
101
102 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
103 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
104
105 /* USB device initialization */
106 static void int_urb_complete(struct urb *urb);
107
108 static int request_fw_file(
109 const struct firmware **fw, const char *name, struct device *device)
110 {
111 int r;
112
113 dev_dbg_f(device, "fw name %s\n", name);
114
115 r = request_firmware(fw, name, device);
116 if (r)
117 dev_err(device,
118 "Could not load firmware file %s. Error number %d\n",
119 name, r);
120 return r;
121 }
122
123 static inline u16 get_bcdDevice(const struct usb_device *udev)
124 {
125 return le16_to_cpu(udev->descriptor.bcdDevice);
126 }
127
128 enum upload_code_flags {
129 REBOOT = 1,
130 };
131
132 /* Ensures that MAX_TRANSFER_SIZE is even. */
133 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
134
135 static int upload_code(struct usb_device *udev,
136 const u8 *data, size_t size, u16 code_offset, int flags)
137 {
138 u8 *p;
139 int r;
140
141 /* USB request blocks need "kmalloced" buffers.
142 */
143 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
144 if (!p) {
145 dev_err(&udev->dev, "out of memory\n");
146 r = -ENOMEM;
147 goto error;
148 }
149
150 size &= ~1;
151 while (size > 0) {
152 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
153 size : MAX_TRANSFER_SIZE;
154
155 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
156
157 memcpy(p, data, transfer_size);
158 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
159 USB_REQ_FIRMWARE_DOWNLOAD,
160 USB_DIR_OUT | USB_TYPE_VENDOR,
161 code_offset, 0, p, transfer_size, 1000 /* ms */);
162 if (r < 0) {
163 dev_err(&udev->dev,
164 "USB control request for firmware upload"
165 " failed. Error number %d\n", r);
166 goto error;
167 }
168 transfer_size = r & ~1;
169
170 size -= transfer_size;
171 data += transfer_size;
172 code_offset += transfer_size/sizeof(u16);
173 }
174
175 if (flags & REBOOT) {
176 u8 ret;
177
178 /* Use "DMA-aware" buffer. */
179 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
180 USB_REQ_FIRMWARE_CONFIRM,
181 USB_DIR_IN | USB_TYPE_VENDOR,
182 0, 0, p, sizeof(ret), 5000 /* ms */);
183 if (r != sizeof(ret)) {
184 dev_err(&udev->dev,
185 "control request firmeware confirmation failed."
186 " Return value %d\n", r);
187 if (r >= 0)
188 r = -ENODEV;
189 goto error;
190 }
191 ret = p[0];
192 if (ret & 0x80) {
193 dev_err(&udev->dev,
194 "Internal error while downloading."
195 " Firmware confirm return value %#04x\n",
196 (unsigned int)ret);
197 r = -ENODEV;
198 goto error;
199 }
200 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
201 (unsigned int)ret);
202 }
203
204 r = 0;
205 error:
206 kfree(p);
207 return r;
208 }
209
210 static u16 get_word(const void *data, u16 offset)
211 {
212 const __le16 *p = data;
213 return le16_to_cpu(p[offset]);
214 }
215
216 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
217 const char* postfix)
218 {
219 scnprintf(buffer, size, "%s%s",
220 usb->is_zd1211b ?
221 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
222 postfix);
223 return buffer;
224 }
225
226 static int handle_version_mismatch(struct zd_usb *usb,
227 const struct firmware *ub_fw)
228 {
229 struct usb_device *udev = zd_usb_to_usbdev(usb);
230 const struct firmware *ur_fw = NULL;
231 int offset;
232 int r = 0;
233 char fw_name[128];
234
235 r = request_fw_file(&ur_fw,
236 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
237 &udev->dev);
238 if (r)
239 goto error;
240
241 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
242 if (r)
243 goto error;
244
245 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
246 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
247 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
248
249 /* At this point, the vendor driver downloads the whole firmware
250 * image, hacks around with version IDs, and uploads it again,
251 * completely overwriting the boot code. We do not do this here as
252 * it is not required on any tested devices, and it is suspected to
253 * cause problems. */
254 error:
255 release_firmware(ur_fw);
256 return r;
257 }
258
259 static int upload_firmware(struct zd_usb *usb)
260 {
261 int r;
262 u16 fw_bcdDevice;
263 u16 bcdDevice;
264 struct usb_device *udev = zd_usb_to_usbdev(usb);
265 const struct firmware *ub_fw = NULL;
266 const struct firmware *uph_fw = NULL;
267 char fw_name[128];
268
269 bcdDevice = get_bcdDevice(udev);
270
271 r = request_fw_file(&ub_fw,
272 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
273 &udev->dev);
274 if (r)
275 goto error;
276
277 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
278
279 if (fw_bcdDevice != bcdDevice) {
280 dev_info(&udev->dev,
281 "firmware version %#06x and device bootcode version "
282 "%#06x differ\n", fw_bcdDevice, bcdDevice);
283 if (bcdDevice <= 0x4313)
284 dev_warn(&udev->dev, "device has old bootcode, please "
285 "report success or failure\n");
286
287 r = handle_version_mismatch(usb, ub_fw);
288 if (r)
289 goto error;
290 } else {
291 dev_dbg_f(&udev->dev,
292 "firmware device id %#06x is equal to the "
293 "actual device id\n", fw_bcdDevice);
294 }
295
296
297 r = request_fw_file(&uph_fw,
298 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
299 &udev->dev);
300 if (r)
301 goto error;
302
303 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
304 if (r) {
305 dev_err(&udev->dev,
306 "Could not upload firmware code uph. Error number %d\n",
307 r);
308 }
309
310 /* FALL-THROUGH */
311 error:
312 release_firmware(ub_fw);
313 release_firmware(uph_fw);
314 return r;
315 }
316
317 /* Read data from device address space using "firmware interface" which does
318 * not require firmware to be loaded. */
319 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
320 {
321 int r;
322 struct usb_device *udev = zd_usb_to_usbdev(usb);
323 u8 *buf;
324
325 /* Use "DMA-aware" buffer. */
326 buf = kmalloc(len, GFP_KERNEL);
327 if (!buf)
328 return -ENOMEM;
329 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
330 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
331 buf, len, 5000);
332 if (r < 0) {
333 dev_err(&udev->dev,
334 "read over firmware interface failed: %d\n", r);
335 goto exit;
336 } else if (r != len) {
337 dev_err(&udev->dev,
338 "incomplete read over firmware interface: %d/%d\n",
339 r, len);
340 r = -EIO;
341 goto exit;
342 }
343 r = 0;
344 memcpy(data, buf, len);
345 exit:
346 kfree(buf);
347 return r;
348 }
349
350 #define urb_dev(urb) (&(urb)->dev->dev)
351
352 static inline void handle_regs_int(struct urb *urb)
353 {
354 struct zd_usb *usb = urb->context;
355 struct zd_usb_interrupt *intr = &usb->intr;
356 int len;
357 u16 int_num;
358
359 ZD_ASSERT(in_interrupt());
360 spin_lock(&intr->lock);
361
362 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
363 if (int_num == CR_INTERRUPT) {
364 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
365 memcpy(&mac->intr_buffer, urb->transfer_buffer,
366 USB_MAX_EP_INT_BUFFER);
367 schedule_work(&mac->process_intr);
368 } else if (intr->read_regs_enabled) {
369 intr->read_regs.length = len = urb->actual_length;
370
371 if (len > sizeof(intr->read_regs.buffer))
372 len = sizeof(intr->read_regs.buffer);
373 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
374 intr->read_regs_enabled = 0;
375 complete(&intr->read_regs.completion);
376 goto out;
377 }
378
379 out:
380 spin_unlock(&intr->lock);
381 }
382
383 static void int_urb_complete(struct urb *urb)
384 {
385 int r;
386 struct usb_int_header *hdr;
387
388 switch (urb->status) {
389 case 0:
390 break;
391 case -ESHUTDOWN:
392 case -EINVAL:
393 case -ENODEV:
394 case -ENOENT:
395 case -ECONNRESET:
396 case -EPIPE:
397 goto kfree;
398 default:
399 goto resubmit;
400 }
401
402 if (urb->actual_length < sizeof(hdr)) {
403 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
404 goto resubmit;
405 }
406
407 hdr = urb->transfer_buffer;
408 if (hdr->type != USB_INT_TYPE) {
409 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
410 goto resubmit;
411 }
412
413 switch (hdr->id) {
414 case USB_INT_ID_REGS:
415 handle_regs_int(urb);
416 break;
417 case USB_INT_ID_RETRY_FAILED:
418 zd_mac_tx_failed(zd_usb_to_hw(urb->context));
419 break;
420 default:
421 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
422 (unsigned int)hdr->id);
423 goto resubmit;
424 }
425
426 resubmit:
427 r = usb_submit_urb(urb, GFP_ATOMIC);
428 if (r) {
429 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
430 goto kfree;
431 }
432 return;
433 kfree:
434 kfree(urb->transfer_buffer);
435 }
436
437 static inline int int_urb_interval(struct usb_device *udev)
438 {
439 switch (udev->speed) {
440 case USB_SPEED_HIGH:
441 return 4;
442 case USB_SPEED_LOW:
443 return 10;
444 case USB_SPEED_FULL:
445 default:
446 return 1;
447 }
448 }
449
450 static inline int usb_int_enabled(struct zd_usb *usb)
451 {
452 unsigned long flags;
453 struct zd_usb_interrupt *intr = &usb->intr;
454 struct urb *urb;
455
456 spin_lock_irqsave(&intr->lock, flags);
457 urb = intr->urb;
458 spin_unlock_irqrestore(&intr->lock, flags);
459 return urb != NULL;
460 }
461
462 int zd_usb_enable_int(struct zd_usb *usb)
463 {
464 int r;
465 struct usb_device *udev;
466 struct zd_usb_interrupt *intr = &usb->intr;
467 void *transfer_buffer = NULL;
468 struct urb *urb;
469
470 dev_dbg_f(zd_usb_dev(usb), "\n");
471
472 urb = usb_alloc_urb(0, GFP_KERNEL);
473 if (!urb) {
474 r = -ENOMEM;
475 goto out;
476 }
477
478 ZD_ASSERT(!irqs_disabled());
479 spin_lock_irq(&intr->lock);
480 if (intr->urb) {
481 spin_unlock_irq(&intr->lock);
482 r = 0;
483 goto error_free_urb;
484 }
485 intr->urb = urb;
486 spin_unlock_irq(&intr->lock);
487
488 /* TODO: make it a DMA buffer */
489 r = -ENOMEM;
490 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
491 if (!transfer_buffer) {
492 dev_dbg_f(zd_usb_dev(usb),
493 "couldn't allocate transfer_buffer\n");
494 goto error_set_urb_null;
495 }
496
497 udev = zd_usb_to_usbdev(usb);
498 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
499 transfer_buffer, USB_MAX_EP_INT_BUFFER,
500 int_urb_complete, usb,
501 intr->interval);
502
503 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
504 r = usb_submit_urb(urb, GFP_KERNEL);
505 if (r) {
506 dev_dbg_f(zd_usb_dev(usb),
507 "Couldn't submit urb. Error number %d\n", r);
508 goto error;
509 }
510
511 return 0;
512 error:
513 kfree(transfer_buffer);
514 error_set_urb_null:
515 spin_lock_irq(&intr->lock);
516 intr->urb = NULL;
517 spin_unlock_irq(&intr->lock);
518 error_free_urb:
519 usb_free_urb(urb);
520 out:
521 return r;
522 }
523
524 void zd_usb_disable_int(struct zd_usb *usb)
525 {
526 unsigned long flags;
527 struct zd_usb_interrupt *intr = &usb->intr;
528 struct urb *urb;
529
530 spin_lock_irqsave(&intr->lock, flags);
531 urb = intr->urb;
532 if (!urb) {
533 spin_unlock_irqrestore(&intr->lock, flags);
534 return;
535 }
536 intr->urb = NULL;
537 spin_unlock_irqrestore(&intr->lock, flags);
538
539 usb_kill_urb(urb);
540 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
541 usb_free_urb(urb);
542 }
543
544 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
545 unsigned int length)
546 {
547 int i;
548 const struct rx_length_info *length_info;
549
550 if (length < sizeof(struct rx_length_info)) {
551 /* It's not a complete packet anyhow. */
552 return;
553 }
554 length_info = (struct rx_length_info *)
555 (buffer + length - sizeof(struct rx_length_info));
556
557 /* It might be that three frames are merged into a single URB
558 * transaction. We have to check for the length info tag.
559 *
560 * While testing we discovered that length_info might be unaligned,
561 * because if USB transactions are merged, the last packet will not
562 * be padded. Unaligned access might also happen if the length_info
563 * structure is not present.
564 */
565 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
566 {
567 unsigned int l, k, n;
568 for (i = 0, l = 0;; i++) {
569 k = get_unaligned_le16(&length_info->length[i]);
570 if (k == 0)
571 return;
572 n = l+k;
573 if (n > length)
574 return;
575 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
576 if (i >= 2)
577 return;
578 l = (n+3) & ~3;
579 }
580 } else {
581 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
582 }
583 }
584
585 static void rx_urb_complete(struct urb *urb)
586 {
587 struct zd_usb *usb;
588 struct zd_usb_rx *rx;
589 const u8 *buffer;
590 unsigned int length;
591
592 switch (urb->status) {
593 case 0:
594 break;
595 case -ESHUTDOWN:
596 case -EINVAL:
597 case -ENODEV:
598 case -ENOENT:
599 case -ECONNRESET:
600 case -EPIPE:
601 return;
602 default:
603 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
604 goto resubmit;
605 }
606
607 buffer = urb->transfer_buffer;
608 length = urb->actual_length;
609 usb = urb->context;
610 rx = &usb->rx;
611
612 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
613 /* If there is an old first fragment, we don't care. */
614 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
615 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
616 spin_lock(&rx->lock);
617 memcpy(rx->fragment, buffer, length);
618 rx->fragment_length = length;
619 spin_unlock(&rx->lock);
620 goto resubmit;
621 }
622
623 spin_lock(&rx->lock);
624 if (rx->fragment_length > 0) {
625 /* We are on a second fragment, we believe */
626 ZD_ASSERT(length + rx->fragment_length <=
627 ARRAY_SIZE(rx->fragment));
628 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
629 memcpy(rx->fragment+rx->fragment_length, buffer, length);
630 handle_rx_packet(usb, rx->fragment,
631 rx->fragment_length + length);
632 rx->fragment_length = 0;
633 spin_unlock(&rx->lock);
634 } else {
635 spin_unlock(&rx->lock);
636 handle_rx_packet(usb, buffer, length);
637 }
638
639 resubmit:
640 usb_submit_urb(urb, GFP_ATOMIC);
641 }
642
643 static struct urb *alloc_rx_urb(struct zd_usb *usb)
644 {
645 struct usb_device *udev = zd_usb_to_usbdev(usb);
646 struct urb *urb;
647 void *buffer;
648
649 urb = usb_alloc_urb(0, GFP_KERNEL);
650 if (!urb)
651 return NULL;
652 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
653 &urb->transfer_dma);
654 if (!buffer) {
655 usb_free_urb(urb);
656 return NULL;
657 }
658
659 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
660 buffer, USB_MAX_RX_SIZE,
661 rx_urb_complete, usb);
662 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
663
664 return urb;
665 }
666
667 static void free_rx_urb(struct urb *urb)
668 {
669 if (!urb)
670 return;
671 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
672 urb->transfer_buffer, urb->transfer_dma);
673 usb_free_urb(urb);
674 }
675
676 int zd_usb_enable_rx(struct zd_usb *usb)
677 {
678 int i, r;
679 struct zd_usb_rx *rx = &usb->rx;
680 struct urb **urbs;
681
682 dev_dbg_f(zd_usb_dev(usb), "\n");
683
684 r = -ENOMEM;
685 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
686 if (!urbs)
687 goto error;
688 for (i = 0; i < RX_URBS_COUNT; i++) {
689 urbs[i] = alloc_rx_urb(usb);
690 if (!urbs[i])
691 goto error;
692 }
693
694 ZD_ASSERT(!irqs_disabled());
695 spin_lock_irq(&rx->lock);
696 if (rx->urbs) {
697 spin_unlock_irq(&rx->lock);
698 r = 0;
699 goto error;
700 }
701 rx->urbs = urbs;
702 rx->urbs_count = RX_URBS_COUNT;
703 spin_unlock_irq(&rx->lock);
704
705 for (i = 0; i < RX_URBS_COUNT; i++) {
706 r = usb_submit_urb(urbs[i], GFP_KERNEL);
707 if (r)
708 goto error_submit;
709 }
710
711 return 0;
712 error_submit:
713 for (i = 0; i < RX_URBS_COUNT; i++) {
714 usb_kill_urb(urbs[i]);
715 }
716 spin_lock_irq(&rx->lock);
717 rx->urbs = NULL;
718 rx->urbs_count = 0;
719 spin_unlock_irq(&rx->lock);
720 error:
721 if (urbs) {
722 for (i = 0; i < RX_URBS_COUNT; i++)
723 free_rx_urb(urbs[i]);
724 }
725 return r;
726 }
727
728 void zd_usb_disable_rx(struct zd_usb *usb)
729 {
730 int i;
731 unsigned long flags;
732 struct urb **urbs;
733 unsigned int count;
734 struct zd_usb_rx *rx = &usb->rx;
735
736 spin_lock_irqsave(&rx->lock, flags);
737 urbs = rx->urbs;
738 count = rx->urbs_count;
739 spin_unlock_irqrestore(&rx->lock, flags);
740 if (!urbs)
741 return;
742
743 for (i = 0; i < count; i++) {
744 usb_kill_urb(urbs[i]);
745 free_rx_urb(urbs[i]);
746 }
747 kfree(urbs);
748
749 spin_lock_irqsave(&rx->lock, flags);
750 rx->urbs = NULL;
751 rx->urbs_count = 0;
752 spin_unlock_irqrestore(&rx->lock, flags);
753 }
754
755 /**
756 * zd_usb_disable_tx - disable transmission
757 * @usb: the zd1211rw-private USB structure
758 *
759 * Frees all URBs in the free list and marks the transmission as disabled.
760 */
761 void zd_usb_disable_tx(struct zd_usb *usb)
762 {
763 struct zd_usb_tx *tx = &usb->tx;
764 unsigned long flags;
765 struct list_head *pos, *n;
766
767 spin_lock_irqsave(&tx->lock, flags);
768 list_for_each_safe(pos, n, &tx->free_urb_list) {
769 list_del(pos);
770 usb_free_urb(list_entry(pos, struct urb, urb_list));
771 }
772 tx->enabled = 0;
773 tx->submitted_urbs = 0;
774 /* The stopped state is ignored, relying on ieee80211_wake_queues()
775 * in a potentionally following zd_usb_enable_tx().
776 */
777 spin_unlock_irqrestore(&tx->lock, flags);
778 }
779
780 /**
781 * zd_usb_enable_tx - enables transmission
782 * @usb: a &struct zd_usb pointer
783 *
784 * This function enables transmission and prepares the &zd_usb_tx data
785 * structure.
786 */
787 void zd_usb_enable_tx(struct zd_usb *usb)
788 {
789 unsigned long flags;
790 struct zd_usb_tx *tx = &usb->tx;
791
792 spin_lock_irqsave(&tx->lock, flags);
793 tx->enabled = 1;
794 tx->submitted_urbs = 0;
795 ieee80211_wake_queues(zd_usb_to_hw(usb));
796 tx->stopped = 0;
797 spin_unlock_irqrestore(&tx->lock, flags);
798 }
799
800 /**
801 * alloc_tx_urb - provides an tx URB
802 * @usb: a &struct zd_usb pointer
803 *
804 * Allocates a new URB. If possible takes the urb from the free list in
805 * usb->tx.
806 */
807 static struct urb *alloc_tx_urb(struct zd_usb *usb)
808 {
809 struct zd_usb_tx *tx = &usb->tx;
810 unsigned long flags;
811 struct list_head *entry;
812 struct urb *urb;
813
814 spin_lock_irqsave(&tx->lock, flags);
815 if (list_empty(&tx->free_urb_list)) {
816 urb = usb_alloc_urb(0, GFP_ATOMIC);
817 goto out;
818 }
819 entry = tx->free_urb_list.next;
820 list_del(entry);
821 urb = list_entry(entry, struct urb, urb_list);
822 out:
823 spin_unlock_irqrestore(&tx->lock, flags);
824 return urb;
825 }
826
827 /**
828 * free_tx_urb - frees a used tx URB
829 * @usb: a &struct zd_usb pointer
830 * @urb: URB to be freed
831 *
832 * Frees the the transmission URB, which means to put it on the free URB
833 * list.
834 */
835 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
836 {
837 struct zd_usb_tx *tx = &usb->tx;
838 unsigned long flags;
839
840 spin_lock_irqsave(&tx->lock, flags);
841 if (!tx->enabled) {
842 usb_free_urb(urb);
843 goto out;
844 }
845 list_add(&urb->urb_list, &tx->free_urb_list);
846 out:
847 spin_unlock_irqrestore(&tx->lock, flags);
848 }
849
850 static void tx_dec_submitted_urbs(struct zd_usb *usb)
851 {
852 struct zd_usb_tx *tx = &usb->tx;
853 unsigned long flags;
854
855 spin_lock_irqsave(&tx->lock, flags);
856 --tx->submitted_urbs;
857 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
858 ieee80211_wake_queues(zd_usb_to_hw(usb));
859 tx->stopped = 0;
860 }
861 spin_unlock_irqrestore(&tx->lock, flags);
862 }
863
864 static void tx_inc_submitted_urbs(struct zd_usb *usb)
865 {
866 struct zd_usb_tx *tx = &usb->tx;
867 unsigned long flags;
868
869 spin_lock_irqsave(&tx->lock, flags);
870 ++tx->submitted_urbs;
871 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
872 ieee80211_stop_queues(zd_usb_to_hw(usb));
873 tx->stopped = 1;
874 }
875 spin_unlock_irqrestore(&tx->lock, flags);
876 }
877
878 /**
879 * tx_urb_complete - completes the execution of an URB
880 * @urb: a URB
881 *
882 * This function is called if the URB has been transferred to a device or an
883 * error has happened.
884 */
885 static void tx_urb_complete(struct urb *urb)
886 {
887 int r;
888 struct sk_buff *skb;
889 struct ieee80211_tx_info *info;
890 struct zd_usb *usb;
891
892 switch (urb->status) {
893 case 0:
894 break;
895 case -ESHUTDOWN:
896 case -EINVAL:
897 case -ENODEV:
898 case -ENOENT:
899 case -ECONNRESET:
900 case -EPIPE:
901 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
902 break;
903 default:
904 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
905 goto resubmit;
906 }
907 free_urb:
908 skb = (struct sk_buff *)urb->context;
909 /*
910 * grab 'usb' pointer before handing off the skb (since
911 * it might be freed by zd_mac_tx_to_dev or mac80211)
912 */
913 info = IEEE80211_SKB_CB(skb);
914 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
915 zd_mac_tx_to_dev(skb, urb->status);
916 free_tx_urb(usb, urb);
917 tx_dec_submitted_urbs(usb);
918 return;
919 resubmit:
920 r = usb_submit_urb(urb, GFP_ATOMIC);
921 if (r) {
922 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
923 goto free_urb;
924 }
925 }
926
927 /**
928 * zd_usb_tx: initiates transfer of a frame of the device
929 *
930 * @usb: the zd1211rw-private USB structure
931 * @skb: a &struct sk_buff pointer
932 *
933 * This function tranmits a frame to the device. It doesn't wait for
934 * completion. The frame must contain the control set and have all the
935 * control set information available.
936 *
937 * The function returns 0 if the transfer has been successfully initiated.
938 */
939 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
940 {
941 int r;
942 struct usb_device *udev = zd_usb_to_usbdev(usb);
943 struct urb *urb;
944
945 urb = alloc_tx_urb(usb);
946 if (!urb) {
947 r = -ENOMEM;
948 goto out;
949 }
950
951 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
952 skb->data, skb->len, tx_urb_complete, skb);
953
954 r = usb_submit_urb(urb, GFP_ATOMIC);
955 if (r)
956 goto error;
957 tx_inc_submitted_urbs(usb);
958 return 0;
959 error:
960 free_tx_urb(usb, urb);
961 out:
962 return r;
963 }
964
965 static inline void init_usb_interrupt(struct zd_usb *usb)
966 {
967 struct zd_usb_interrupt *intr = &usb->intr;
968
969 spin_lock_init(&intr->lock);
970 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
971 init_completion(&intr->read_regs.completion);
972 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
973 }
974
975 static inline void init_usb_rx(struct zd_usb *usb)
976 {
977 struct zd_usb_rx *rx = &usb->rx;
978 spin_lock_init(&rx->lock);
979 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
980 rx->usb_packet_size = 512;
981 } else {
982 rx->usb_packet_size = 64;
983 }
984 ZD_ASSERT(rx->fragment_length == 0);
985 }
986
987 static inline void init_usb_tx(struct zd_usb *usb)
988 {
989 struct zd_usb_tx *tx = &usb->tx;
990 spin_lock_init(&tx->lock);
991 tx->enabled = 0;
992 tx->stopped = 0;
993 INIT_LIST_HEAD(&tx->free_urb_list);
994 tx->submitted_urbs = 0;
995 }
996
997 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
998 struct usb_interface *intf)
999 {
1000 memset(usb, 0, sizeof(*usb));
1001 usb->intf = usb_get_intf(intf);
1002 usb_set_intfdata(usb->intf, hw);
1003 init_usb_interrupt(usb);
1004 init_usb_tx(usb);
1005 init_usb_rx(usb);
1006 }
1007
1008 void zd_usb_clear(struct zd_usb *usb)
1009 {
1010 usb_set_intfdata(usb->intf, NULL);
1011 usb_put_intf(usb->intf);
1012 ZD_MEMCLEAR(usb, sizeof(*usb));
1013 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1014 }
1015
1016 static const char *speed(enum usb_device_speed speed)
1017 {
1018 switch (speed) {
1019 case USB_SPEED_LOW:
1020 return "low";
1021 case USB_SPEED_FULL:
1022 return "full";
1023 case USB_SPEED_HIGH:
1024 return "high";
1025 default:
1026 return "unknown speed";
1027 }
1028 }
1029
1030 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1031 {
1032 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1033 le16_to_cpu(udev->descriptor.idVendor),
1034 le16_to_cpu(udev->descriptor.idProduct),
1035 get_bcdDevice(udev),
1036 speed(udev->speed));
1037 }
1038
1039 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1040 {
1041 struct usb_device *udev = interface_to_usbdev(usb->intf);
1042 return scnprint_id(udev, buffer, size);
1043 }
1044
1045 #ifdef DEBUG
1046 static void print_id(struct usb_device *udev)
1047 {
1048 char buffer[40];
1049
1050 scnprint_id(udev, buffer, sizeof(buffer));
1051 buffer[sizeof(buffer)-1] = 0;
1052 dev_dbg_f(&udev->dev, "%s\n", buffer);
1053 }
1054 #else
1055 #define print_id(udev) do { } while (0)
1056 #endif
1057
1058 static int eject_installer(struct usb_interface *intf)
1059 {
1060 struct usb_device *udev = interface_to_usbdev(intf);
1061 struct usb_host_interface *iface_desc = &intf->altsetting[0];
1062 struct usb_endpoint_descriptor *endpoint;
1063 unsigned char *cmd;
1064 u8 bulk_out_ep;
1065 int r;
1066
1067 /* Find bulk out endpoint */
1068 endpoint = &iface_desc->endpoint[1].desc;
1069 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
1070 usb_endpoint_xfer_bulk(endpoint)) {
1071 bulk_out_ep = endpoint->bEndpointAddress;
1072 } else {
1073 dev_err(&udev->dev,
1074 "zd1211rw: Could not find bulk out endpoint\n");
1075 return -ENODEV;
1076 }
1077
1078 cmd = kzalloc(31, GFP_KERNEL);
1079 if (cmd == NULL)
1080 return -ENODEV;
1081
1082 /* USB bulk command block */
1083 cmd[0] = 0x55; /* bulk command signature */
1084 cmd[1] = 0x53; /* bulk command signature */
1085 cmd[2] = 0x42; /* bulk command signature */
1086 cmd[3] = 0x43; /* bulk command signature */
1087 cmd[14] = 6; /* command length */
1088
1089 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1090 cmd[19] = 0x2; /* eject disc */
1091
1092 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1093 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1094 cmd, 31, NULL, 2000);
1095 kfree(cmd);
1096 if (r)
1097 return r;
1098
1099 /* At this point, the device disconnects and reconnects with the real
1100 * ID numbers. */
1101
1102 usb_set_intfdata(intf, NULL);
1103 return 0;
1104 }
1105
1106 int zd_usb_init_hw(struct zd_usb *usb)
1107 {
1108 int r;
1109 struct zd_mac *mac = zd_usb_to_mac(usb);
1110
1111 dev_dbg_f(zd_usb_dev(usb), "\n");
1112
1113 r = upload_firmware(usb);
1114 if (r) {
1115 dev_err(zd_usb_dev(usb),
1116 "couldn't load firmware. Error number %d\n", r);
1117 return r;
1118 }
1119
1120 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1121 if (r) {
1122 dev_dbg_f(zd_usb_dev(usb),
1123 "couldn't reset configuration. Error number %d\n", r);
1124 return r;
1125 }
1126
1127 r = zd_mac_init_hw(mac->hw);
1128 if (r) {
1129 dev_dbg_f(zd_usb_dev(usb),
1130 "couldn't initialize mac. Error number %d\n", r);
1131 return r;
1132 }
1133
1134 usb->initialized = 1;
1135 return 0;
1136 }
1137
1138 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1139 {
1140 int r;
1141 struct usb_device *udev = interface_to_usbdev(intf);
1142 struct zd_usb *usb;
1143 struct ieee80211_hw *hw = NULL;
1144
1145 print_id(udev);
1146
1147 if (id->driver_info & DEVICE_INSTALLER)
1148 return eject_installer(intf);
1149
1150 switch (udev->speed) {
1151 case USB_SPEED_LOW:
1152 case USB_SPEED_FULL:
1153 case USB_SPEED_HIGH:
1154 break;
1155 default:
1156 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1157 r = -ENODEV;
1158 goto error;
1159 }
1160
1161 r = usb_reset_device(udev);
1162 if (r) {
1163 dev_err(&intf->dev,
1164 "couldn't reset usb device. Error number %d\n", r);
1165 goto error;
1166 }
1167
1168 hw = zd_mac_alloc_hw(intf);
1169 if (hw == NULL) {
1170 r = -ENOMEM;
1171 goto error;
1172 }
1173
1174 usb = &zd_hw_mac(hw)->chip.usb;
1175 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1176
1177 r = zd_mac_preinit_hw(hw);
1178 if (r) {
1179 dev_dbg_f(&intf->dev,
1180 "couldn't initialize mac. Error number %d\n", r);
1181 goto error;
1182 }
1183
1184 r = ieee80211_register_hw(hw);
1185 if (r) {
1186 dev_dbg_f(&intf->dev,
1187 "couldn't register device. Error number %d\n", r);
1188 goto error;
1189 }
1190
1191 dev_dbg_f(&intf->dev, "successful\n");
1192 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1193 return 0;
1194 error:
1195 usb_reset_device(interface_to_usbdev(intf));
1196 if (hw) {
1197 zd_mac_clear(zd_hw_mac(hw));
1198 ieee80211_free_hw(hw);
1199 }
1200 return r;
1201 }
1202
1203 static void disconnect(struct usb_interface *intf)
1204 {
1205 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1206 struct zd_mac *mac;
1207 struct zd_usb *usb;
1208
1209 /* Either something really bad happened, or we're just dealing with
1210 * a DEVICE_INSTALLER. */
1211 if (hw == NULL)
1212 return;
1213
1214 mac = zd_hw_mac(hw);
1215 usb = &mac->chip.usb;
1216
1217 dev_dbg_f(zd_usb_dev(usb), "\n");
1218
1219 ieee80211_unregister_hw(hw);
1220
1221 /* Just in case something has gone wrong! */
1222 zd_usb_disable_rx(usb);
1223 zd_usb_disable_int(usb);
1224
1225 /* If the disconnect has been caused by a removal of the
1226 * driver module, the reset allows reloading of the driver. If the
1227 * reset will not be executed here, the upload of the firmware in the
1228 * probe function caused by the reloading of the driver will fail.
1229 */
1230 usb_reset_device(interface_to_usbdev(intf));
1231
1232 zd_mac_clear(mac);
1233 ieee80211_free_hw(hw);
1234 dev_dbg(&intf->dev, "disconnected\n");
1235 }
1236
1237 static struct usb_driver driver = {
1238 .name = KBUILD_MODNAME,
1239 .id_table = usb_ids,
1240 .probe = probe,
1241 .disconnect = disconnect,
1242 };
1243
1244 struct workqueue_struct *zd_workqueue;
1245
1246 static int __init usb_init(void)
1247 {
1248 int r;
1249
1250 pr_debug("%s usb_init()\n", driver.name);
1251
1252 zd_workqueue = create_singlethread_workqueue(driver.name);
1253 if (zd_workqueue == NULL) {
1254 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1255 return -ENOMEM;
1256 }
1257
1258 r = usb_register(&driver);
1259 if (r) {
1260 destroy_workqueue(zd_workqueue);
1261 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1262 driver.name, r);
1263 return r;
1264 }
1265
1266 pr_debug("%s initialized\n", driver.name);
1267 return 0;
1268 }
1269
1270 static void __exit usb_exit(void)
1271 {
1272 pr_debug("%s usb_exit()\n", driver.name);
1273 usb_deregister(&driver);
1274 destroy_workqueue(zd_workqueue);
1275 }
1276
1277 module_init(usb_init);
1278 module_exit(usb_exit);
1279
1280 static int usb_int_regs_length(unsigned int count)
1281 {
1282 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1283 }
1284
1285 static void prepare_read_regs_int(struct zd_usb *usb)
1286 {
1287 struct zd_usb_interrupt *intr = &usb->intr;
1288
1289 spin_lock_irq(&intr->lock);
1290 intr->read_regs_enabled = 1;
1291 INIT_COMPLETION(intr->read_regs.completion);
1292 spin_unlock_irq(&intr->lock);
1293 }
1294
1295 static void disable_read_regs_int(struct zd_usb *usb)
1296 {
1297 struct zd_usb_interrupt *intr = &usb->intr;
1298
1299 spin_lock_irq(&intr->lock);
1300 intr->read_regs_enabled = 0;
1301 spin_unlock_irq(&intr->lock);
1302 }
1303
1304 static int get_results(struct zd_usb *usb, u16 *values,
1305 struct usb_req_read_regs *req, unsigned int count)
1306 {
1307 int r;
1308 int i;
1309 struct zd_usb_interrupt *intr = &usb->intr;
1310 struct read_regs_int *rr = &intr->read_regs;
1311 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1312
1313 spin_lock_irq(&intr->lock);
1314
1315 r = -EIO;
1316 /* The created block size seems to be larger than expected.
1317 * However results appear to be correct.
1318 */
1319 if (rr->length < usb_int_regs_length(count)) {
1320 dev_dbg_f(zd_usb_dev(usb),
1321 "error: actual length %d less than expected %d\n",
1322 rr->length, usb_int_regs_length(count));
1323 goto error_unlock;
1324 }
1325 if (rr->length > sizeof(rr->buffer)) {
1326 dev_dbg_f(zd_usb_dev(usb),
1327 "error: actual length %d exceeds buffer size %zu\n",
1328 rr->length, sizeof(rr->buffer));
1329 goto error_unlock;
1330 }
1331
1332 for (i = 0; i < count; i++) {
1333 struct reg_data *rd = &regs->regs[i];
1334 if (rd->addr != req->addr[i]) {
1335 dev_dbg_f(zd_usb_dev(usb),
1336 "rd[%d] addr %#06hx expected %#06hx\n", i,
1337 le16_to_cpu(rd->addr),
1338 le16_to_cpu(req->addr[i]));
1339 goto error_unlock;
1340 }
1341 values[i] = le16_to_cpu(rd->value);
1342 }
1343
1344 r = 0;
1345 error_unlock:
1346 spin_unlock_irq(&intr->lock);
1347 return r;
1348 }
1349
1350 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1351 const zd_addr_t *addresses, unsigned int count)
1352 {
1353 int r;
1354 int i, req_len, actual_req_len;
1355 struct usb_device *udev;
1356 struct usb_req_read_regs *req = NULL;
1357 unsigned long timeout;
1358
1359 if (count < 1) {
1360 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1361 return -EINVAL;
1362 }
1363 if (count > USB_MAX_IOREAD16_COUNT) {
1364 dev_dbg_f(zd_usb_dev(usb),
1365 "error: count %u exceeds possible max %u\n",
1366 count, USB_MAX_IOREAD16_COUNT);
1367 return -EINVAL;
1368 }
1369 if (in_atomic()) {
1370 dev_dbg_f(zd_usb_dev(usb),
1371 "error: io in atomic context not supported\n");
1372 return -EWOULDBLOCK;
1373 }
1374 if (!usb_int_enabled(usb)) {
1375 dev_dbg_f(zd_usb_dev(usb),
1376 "error: usb interrupt not enabled\n");
1377 return -EWOULDBLOCK;
1378 }
1379
1380 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1381 req = kmalloc(req_len, GFP_KERNEL);
1382 if (!req)
1383 return -ENOMEM;
1384 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1385 for (i = 0; i < count; i++)
1386 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1387
1388 udev = zd_usb_to_usbdev(usb);
1389 prepare_read_regs_int(usb);
1390 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1391 req, req_len, &actual_req_len, 1000 /* ms */);
1392 if (r) {
1393 dev_dbg_f(zd_usb_dev(usb),
1394 "error in usb_bulk_msg(). Error number %d\n", r);
1395 goto error;
1396 }
1397 if (req_len != actual_req_len) {
1398 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1399 " req_len %d != actual_req_len %d\n",
1400 req_len, actual_req_len);
1401 r = -EIO;
1402 goto error;
1403 }
1404
1405 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1406 msecs_to_jiffies(1000));
1407 if (!timeout) {
1408 disable_read_regs_int(usb);
1409 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1410 r = -ETIMEDOUT;
1411 goto error;
1412 }
1413
1414 r = get_results(usb, values, req, count);
1415 error:
1416 kfree(req);
1417 return r;
1418 }
1419
1420 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1421 unsigned int count)
1422 {
1423 int r;
1424 struct usb_device *udev;
1425 struct usb_req_write_regs *req = NULL;
1426 int i, req_len, actual_req_len;
1427
1428 if (count == 0)
1429 return 0;
1430 if (count > USB_MAX_IOWRITE16_COUNT) {
1431 dev_dbg_f(zd_usb_dev(usb),
1432 "error: count %u exceeds possible max %u\n",
1433 count, USB_MAX_IOWRITE16_COUNT);
1434 return -EINVAL;
1435 }
1436 if (in_atomic()) {
1437 dev_dbg_f(zd_usb_dev(usb),
1438 "error: io in atomic context not supported\n");
1439 return -EWOULDBLOCK;
1440 }
1441
1442 req_len = sizeof(struct usb_req_write_regs) +
1443 count * sizeof(struct reg_data);
1444 req = kmalloc(req_len, GFP_KERNEL);
1445 if (!req)
1446 return -ENOMEM;
1447
1448 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1449 for (i = 0; i < count; i++) {
1450 struct reg_data *rw = &req->reg_writes[i];
1451 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1452 rw->value = cpu_to_le16(ioreqs[i].value);
1453 }
1454
1455 udev = zd_usb_to_usbdev(usb);
1456 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1457 req, req_len, &actual_req_len, 1000 /* ms */);
1458 if (r) {
1459 dev_dbg_f(zd_usb_dev(usb),
1460 "error in usb_bulk_msg(). Error number %d\n", r);
1461 goto error;
1462 }
1463 if (req_len != actual_req_len) {
1464 dev_dbg_f(zd_usb_dev(usb),
1465 "error in usb_bulk_msg()"
1466 " req_len %d != actual_req_len %d\n",
1467 req_len, actual_req_len);
1468 r = -EIO;
1469 goto error;
1470 }
1471
1472 /* FALL-THROUGH with r == 0 */
1473 error:
1474 kfree(req);
1475 return r;
1476 }
1477
1478 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1479 {
1480 int r;
1481 struct usb_device *udev;
1482 struct usb_req_rfwrite *req = NULL;
1483 int i, req_len, actual_req_len;
1484 u16 bit_value_template;
1485
1486 if (in_atomic()) {
1487 dev_dbg_f(zd_usb_dev(usb),
1488 "error: io in atomic context not supported\n");
1489 return -EWOULDBLOCK;
1490 }
1491 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1492 dev_dbg_f(zd_usb_dev(usb),
1493 "error: bits %d are smaller than"
1494 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1495 bits, USB_MIN_RFWRITE_BIT_COUNT);
1496 return -EINVAL;
1497 }
1498 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1499 dev_dbg_f(zd_usb_dev(usb),
1500 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1501 bits, USB_MAX_RFWRITE_BIT_COUNT);
1502 return -EINVAL;
1503 }
1504 #ifdef DEBUG
1505 if (value & (~0UL << bits)) {
1506 dev_dbg_f(zd_usb_dev(usb),
1507 "error: value %#09x has bits >= %d set\n",
1508 value, bits);
1509 return -EINVAL;
1510 }
1511 #endif /* DEBUG */
1512
1513 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1514
1515 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1516 if (r) {
1517 dev_dbg_f(zd_usb_dev(usb),
1518 "error %d: Couldn't read CR203\n", r);
1519 goto out;
1520 }
1521 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1522
1523 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1524 req = kmalloc(req_len, GFP_KERNEL);
1525 if (!req)
1526 return -ENOMEM;
1527
1528 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1529 /* 1: 3683a, but not used in ZYDAS driver */
1530 req->value = cpu_to_le16(2);
1531 req->bits = cpu_to_le16(bits);
1532
1533 for (i = 0; i < bits; i++) {
1534 u16 bv = bit_value_template;
1535 if (value & (1 << (bits-1-i)))
1536 bv |= RF_DATA;
1537 req->bit_values[i] = cpu_to_le16(bv);
1538 }
1539
1540 udev = zd_usb_to_usbdev(usb);
1541 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1542 req, req_len, &actual_req_len, 1000 /* ms */);
1543 if (r) {
1544 dev_dbg_f(zd_usb_dev(usb),
1545 "error in usb_bulk_msg(). Error number %d\n", r);
1546 goto out;
1547 }
1548 if (req_len != actual_req_len) {
1549 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1550 " req_len %d != actual_req_len %d\n",
1551 req_len, actual_req_len);
1552 r = -EIO;
1553 goto out;
1554 }
1555
1556 /* FALL-THROUGH with r == 0 */
1557 out:
1558 kfree(req);
1559 return r;
1560 }